[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4686392B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear Download PDF

Info

Publication number
JP4686392B2
JP4686392B2 JP2006084814A JP2006084814A JP4686392B2 JP 4686392 B2 JP4686392 B2 JP 4686392B2 JP 2006084814 A JP2006084814 A JP 2006084814A JP 2006084814 A JP2006084814 A JP 2006084814A JP 4686392 B2 JP4686392 B2 JP 4686392B2
Authority
JP
Japan
Prior art keywords
line
bus
lead
buses
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006084814A
Other languages
Japanese (ja)
Other versions
JP2007259681A (en
Inventor
礼二 小原
寛 池下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2006084814A priority Critical patent/JP4686392B2/en
Priority to KR1020070028975A priority patent/KR100869006B1/en
Priority to CN2007100884252A priority patent/CN101047304B/en
Publication of JP2007259681A publication Critical patent/JP2007259681A/en
Application granted granted Critical
Publication of JP4686392B2 publication Critical patent/JP4686392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/20Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)

Description

本発明は、1−1/2遮断器方式のレイアウト構成を有するガス絶縁開閉装置に関するものである。   The present invention relates to a gas-insulated switchgear having a layout configuration of a 1-1 / 2 circuit breaker system.

一般にガス絶縁開閉装置(以降GISと略す)を適用した電気所において、1−1/2遮断器方式のレイアウト構成を行う場合、図5に示すように、1回線あたり3台の遮断器1A〜1Cまたは1D〜1Fを回線内接続主母線2A,2Bの同一軸上に直列に配置している。   In general, in an electric station to which a gas-insulated switchgear (hereinafter abbreviated as GIS) is applied, when performing a layout configuration of a 1-1 / 2 circuit breaker system, as shown in FIG. 1C or 1D to 1F are arranged in series on the same axis of in-line main buses 2A and 2B.

回線内接続主母線2A,2Bの同一軸上に3台の遮断器1A〜1C,1D〜1Fを配置した回線6,7は送電線回線や変圧器回線などの引き出し回線8に対し平面上平行となるように配置し、各回線6及び7間は各々の平面上並列になるように配置している。   Lines 6 and 7 in which three circuit breakers 1A to 1C and 1D to 1F are arranged on the same axis of the main buses 2A and 2B in the line are parallel to the drawing line 8 such as a transmission line or a transformer line on a plane. The lines 6 and 7 are arranged in parallel on each plane.

各回線6及び7間は、任意の回線間接続主母線3A,3Bとの接続・切り離しが可能となるような主母線切り替え用断路器5を介して、各回線6及び7の端部を主母線3によって接続されている。   Between the lines 6 and 7, the ends of the lines 6 and 7 are connected to each other via a main bus switching disconnector 5 that can be connected to or disconnected from any main line connecting main buses 3A and 3B. Connected by bus 3.

送電線回線や変圧器回線などの引き出し回線を構成する引き出し回線母線4は、遮断器の保守・改修作業の邪魔とならないように、ガス遮断器1A〜1Cまたは1D〜1Fを避けるよう回線6と回線7の間に、回線6を構成する遮断器1Aと1Bあるいは遮断器1Bと1Cの間または回線7を構成する遮断器1Dと1Eあるいは遮断器1Eと1Fの間に、分岐を設けて、各回線6,7から引き出している。   The lead-out line bus 4 constituting the lead-out line such as a power transmission line or a transformer line is connected to the line 6 so as to avoid the gas circuit breakers 1A to 1C or 1D to 1F so as not to obstruct maintenance / repair work of the circuit breaker. A branch is provided between the circuit breakers 1A and 1B constituting the line 6 or between the circuit breakers 1B and 1C, or between the circuit breakers 1D and 1E constituting the line 7 or between the circuit breakers 1E and 1F. It is drawn from each line 6 and 7.

なお、図5では簡潔に説明するため、GIS構成要素のうち、説明に必要な遮断器、断路器、母線のみを示し接地開閉器、計器用変成器、計器用変流器、避雷器などは記載から省略している。   For the sake of brevity in FIG. 5, among the GIS components, only the circuit breaker, disconnector, and busbar necessary for explanation are shown, and the earthing switch, instrument transformer, instrument current transformer, lightning arrester, etc. are described. Is omitted.

上述のような1−1/2遮断器方式のGISレイアウトを適用する場合、各回線6,7の遮断器1A〜1Cまたは1D〜1Fを同一軸上に配置し、また各回線6,7を並列に配置するため、1回線あたりの奥行き(幅)が長くなり、据付けに必要なスペースを増長させる要因の一つとなっていた。また、屋内型GISの場合幅の広い建屋が必要となっていた。   When applying the GIS layout of the 1-1 / 2 circuit breaker system as described above, the circuit breakers 1A to 1C or 1D to 1F of the lines 6 and 7 are arranged on the same axis, and the lines 6 and 7 are connected to each other. Since they are arranged in parallel, the depth (width) per line is increased, which is one of the factors that increase the space required for installation. In the case of indoor type GIS, a wide building is required.

送電線回線や変圧器回線等の引出し回線の引き出し母線4は、各回線6,7の遮断器上部の保守スペースを避け配置することが必要であり、遮断器上部に配置することが不可能であるため、各回線6,7間に配置せざるを得ない。その結果、回線引き出し母線4の配置のために回線間スペースを大きく取らざるを得ず、これも据付けに必要なスペースを増長させる要因の一つとなっており、さらに回線6,7間の接続用主母線3A,3Bが長くなり経済性の観点から不利となっていた。   The lead-out bus 4 of the lead-out line such as a transmission line or transformer line needs to be arranged avoiding the maintenance space above the circuit breakers of the lines 6 and 7, and cannot be arranged above the circuit breakers. Therefore, it must be arranged between the lines 6 and 7. As a result, a large space between the lines is required for the arrangement of the line lead-out bus 4, which is one of the factors that increase the space required for installation. The main buses 3A and 3B are long and disadvantageous from the viewpoint of economy.

更に、各回線6,7は送電線回線や変圧器引出し回線4の引き出しに方向に対し平行に配置されているため、引き出し回線用母線4を90度の角度に方向転換する必要があり、多くの引き出し母線構成ユニットを必要とした。   Further, since the lines 6 and 7 are arranged in parallel to the direction of the transmission line line and the lead of the transformer lead line 4, it is necessary to change the direction of the lead line bus 4 to an angle of 90 degrees. Required a drawer busbar configuration unit.

上述のように従来のレイアウトではGIS据付けのために大きなスペースを確保せねばならず、増長な据付けスペース、増長な回線間接続主母線が必要となる等、経済性の面から不利となっていた。   As described above, in the conventional layout, a large space has to be secured for installing the GIS, which is disadvantageous in terms of economy, such as an increased installation space and an increased inter-line connection main bus. .

さらに各回線6,7に配置される遮断器に保守・改修等で回線からの引出しが必要となった場合、直接遮断器を回線から引き出すことができず、隣接する機器を分解してから引き出す必要があり、点検・改修のための作業効率が悪いものとなっていた。   In addition, when the circuit breakers placed on the lines 6 and 7 need to be pulled out of the line due to maintenance, repairs, etc., the breaker cannot be pulled out of the line directly, and the adjacent equipment is disassembled and pulled out. It was necessary, and work efficiency for inspection and repair was poor.

このような観点から、特許文献1には、1−1/2遮断器方式のガス絶縁開閉装置において、回線間接続主母線を水平に配置し、この主母線の長手方向に縦型遮断器を併置することにより、据え付け面積の縮小を図った発明が記載されている。しかしながら、特許文献1に記載の発明は、次のような解決すべき課題を有するものであって、実用性に優れたものではなかった。
特開昭58−006013号公報
From this point of view, Patent Document 1 discloses that in the 1-1 / 2 circuit breaker type gas insulated switchgear, the line connecting main buses are arranged horizontally and a vertical circuit breaker is provided in the longitudinal direction of the main bus bars. An invention is described in which the installation area is reduced by juxtaposition. However, the invention described in Patent Document 1 has the following problems to be solved and is not excellent in practicality.
JP 58-006013 A

変電所の構成には単母線方式、複母線方式、1−1/2遮断器方式などがある。経済性の比較はおおよそ1回線当たり1:1.2:1.5の割合となる。これは構成機器の中で最も高価な遮断器が、1−1/2遮断器方式の場合、2回線当たり3台使用されているためである。このため1−1/2遮断器方式の変電所は、建設コストの関係から重要度の高い変電所、すなわち高電圧、大容量変電所の構成として主に用いられてきた。   Substation configurations include single bus systems, multiple bus systems, and 1-1 / 2 circuit breaker systems. The economic comparison is approximately 1: 1.2: 1.5 per line. This is because three of the most expensive circuit breakers among the component devices are used for two lines in the case of the 1-1 / 2 circuit breaker system. For this reason, the 1/1/2 circuit breaker type substation has been mainly used as a construction of a highly important substation, that is, a high voltage, large capacity substation because of the construction cost.

一方、GISをタンク構造からみた特徴は、低電圧から高電圧になるに従い、三相器から単相器となる傾向がある。一般的に三相器はGISの縮小化、経済性のために採用されてきたが、同一タンク内に三相電圧機器を収納するため電界ストレスが厳しくなり、高電圧化するとタンクサイズが増大したり絶縁支持物が大型化するなど技術的な難しさが加わり、全体的に経済性の面を圧迫するからである。   On the other hand, the characteristics of the GIS viewed from the tank structure tend to change from a three-phase device to a single-phase device as the voltage increases from a low voltage. In general, three-phase devices have been adopted for GIS size reduction and economic efficiency, but because the three-phase voltage equipment is housed in the same tank, the electric field stress becomes severe, and the tank size increases as the voltage increases. This is because technical difficulties such as increasing the size of the insulating support are added and the overall economy is under pressure.

また、万が一の事故時には影響範囲が三相共に及ぶことから、復旧時間や復旧コストが増大し、長時間停電が許されない重要変電所では単相化の要望が強い。いいかえれば高電圧、大容量変電所では単相器が一般的に採用されているということである。ちなみに世界的に見ても電圧145kVクラス以下のGISでは三相器が主流であるが、420kV以上では逆にほとんどが単相器となっている。   Also, in the unlikely event of an accident, the impact range extends to all three phases, so the recovery time and cost will increase, and there is a strong demand for a single phase at important substations where long-time power outages are not allowed. In other words, high-voltage, large-capacity substations generally use single-phase devices. By the way, in the world, three-phase devices are mainstream in GIS with a voltage of 145 kV or less, but most of them are single-phase devices at 420 kV or more.

このように1−1/2遮断器方式の変電所は建設コストが割高であるにもかかわらず、高電圧、大容量の非常に重要な変電所に採用され、またそこに用いられるGISは単相器が多い。   In this way, even though the construction cost of the 1-1 / 2 circuit breaker system is high, it is used in very important substations with high voltage and large capacity, and the GIS used there is only one. There are many phasers.

このような技術的背景のもとで前記特許文献1の発明をみると、この特許文献1の発明は主母線が三相器となっている。したがって、特許文献1の発明において、主母線1,2を単相母線で構成したと仮定すると、垂直方向に3本の母線を配置するか、水平に3本の母線を配置するかのいずれかまたはこの両者の組み合わせとなる。   Looking at the invention of Patent Document 1 under such a technical background, the main bus line of the invention of Patent Document 1 is a three-phase device. Therefore, in the invention of Patent Document 1, if it is assumed that the main buses 1 and 2 are configured by single-phase buses, either three buses are arranged in the vertical direction or three buses are arranged horizontally. Or a combination of both.

しかし、垂直3本配置の場合はその幅寸法は増大しないが、実際には、遮断器から降りてくる取り合い母線が2相目、3相目の母線と干渉が起こり接続できない。このため水平配置となるが、主母線の単相母線それぞれ3本、合計6本が横に並びその幅寸法が大幅に伸びることとなる。   However, in the case of the three vertical arrangements, the width dimension does not increase. However, in actuality, the connecting bus descending from the circuit breaker interferes with the second and third phase buses and cannot be connected. For this reason, although it becomes horizontal arrangement | positioning, each of the single-phase bus | bath of a main bus line is 3 in total, a total of 6 will be located side by side, and the width dimension will extend significantly.

この点は、接続用母線も同様であって、遮断器からの取り合い母線が水平に出てくるため接続母線の単相母線は垂直配置とならざるを得ない。こうなると高さ方向にも大幅に伸びることになる。これではこの提案が解決しようとしている縮小化効果に程遠いものとなってしまう。   This is the same for the connecting bus. Since the connecting bus from the circuit breaker comes out horizontally, the single-phase bus of the connecting bus must be arranged vertically. If this happens, it will extend significantly in the height direction. This is far from the reduction effect that this proposal is trying to solve.

本発明は、前記のような従来技術の問題点を解決するために提案されたものであって、その目的は、遮断器を回線間接続主母線に対向して配置し、各回線を同一軸上に配置することで、効率的な機器・母線配置のGISを提供し、敷地面積の縮小や、母線長の短縮化をはかり、遮断器の保守・回収効率を高めることにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and the object thereof is to arrange a circuit breaker facing the main line between lines and connect each line to the same axis. By arranging it above, it is intended to provide efficient equipment / bus arrangement GIS, reduce the site area and shorten the bus length, and improve the maintenance / recovery efficiency of the circuit breaker.

前記の目標を達成するために、本発明のガス絶縁開閉装置は、回線間接続主母線を介して接続された第1と第2の回線を備え、第1と第2の回線のそれぞれには、第1、第2及び第3の遮断器が第1及び第2の回線内接続母線を介して電気的に直列接続され、第1及び第3の遮断器はその一端が回線間接続主母線に接続され、また第1の回線内接続母線における第1の遮断器と第2の遮断器の間及び第2の回線内接続母線における第2と第3の遮断器の間から引き出し回線が導出されている1−1/2遮断器方式のガス絶縁開閉装置において、第1と第2の回線内接続母線、引き出し母線、各遮断器及び回線間接続主母線をそれぞれ単相機器によって構成し、かつ第1と第2の回線内接続母線、引き出し母線及び回線間接続主母線におけるそれぞれ3相分の母線同一平面上において平行に配設し、第1と第2の回線内接続母線及び回線間接続主母線については、各相の母線の主軸が同一方向にしかも平面的に略重なるように、かつ、第1と第2の回線内接続母線及び回線間接続主母線が上下に重なり合うように配置し、前記引き出し母線を、第1と第2の回線内接続母線及び回線間接続主母線の主軸方向と交差する方向に、かつ第1と第2の回線内接続母線及び回線間接続主母線と上下に重なり合うように配置すると共に、前記第1の回線においては、第1の遮断器の上部口出しと第2の遮断器の上部口出しを第1の回線内接続母線に接続し、第2の遮断器の下部口出しと第3遮断器の下部口出しを第2の回線内接続母線に接続し、第1の回線の第1遮断器の下部口出しと第2の回線の第3の遮断器の下部口出しを回線間接続主母線に接続し、第1の回線の第3の遮断器の上部口出しと第2の回線の第1の遮断器の上部口出しを回線間接続主母線に接続したことを特徴とする。 In order to achieve the above-mentioned goal, the gas insulated switchgear of the present invention comprises first and second lines connected via an inter-line connecting main bus, and each of the first and second lines has The first, second, and third circuit breakers are electrically connected in series via the first and second in-line connection buses, and one end of each of the first and third circuit breakers is connected to the main line between lines. And a lead-out line is derived from between the first circuit breaker and the second circuit breaker in the first in-line connection bus and between the second and third circuit breakers in the second in-line connection bus. In the 1-1 / 2 circuit breaker type gas insulated switchgear, the first and second in-line connecting buses, lead-out buses, each circuit breaker and inter-line connecting main buses are configured by single-phase devices, respectively. and the first and second lines in the connection bus, its definitive drawer busbar and bridging main bus Parallel disposed in the generating line of the three phases, respectively on the same water plane, for the first and second lines in the connecting bus bars and bridging main bus, yet each phase of the bus of the main shaft in the same direction The first and second in-line connection buses and the inter-line connection main buses are arranged so as to overlap each other so as to substantially overlap in a plane, and the lead-out buses are connected to the first and second in-line connection buses. And in the direction intersecting with the main axis direction of the connection main bus line between the lines and so as to overlap vertically with the first and second in-line connection bus lines and the inter-line connection main bus line, in the first line, The upper lead of the first breaker and the upper lead of the second breaker are connected to the first in-line connection bus, and the lower lead of the second breaker and the lower lead of the third breaker are connected to the second line. Connected to the internal connection bus, the lower lead of the first circuit breaker of the first line and the first The lower lead of the third circuit breaker of the first line is connected to the inter-line connection main bus, and the upper lead of the third circuit breaker of the first line and the upper lead of the first circuit breaker of the second line are connected. It is characterized in that it is connected to the main connection bus .

前記のような構成を有する本発明のガス絶縁開閉装置では、第1と第2の回線内接続母線、引き出し母線、各遮断器及び回線間接続主母線をそれぞれ単相機器によって構成すると共に、各回線の第1乃至第3の遮断器を縦型遮断器とすることにより、各母線の積層配置が可能となる。   In the gas insulated switchgear of the present invention having the above-described configuration, each of the first and second in-line connecting buses, the lead-out buses, each circuit breaker, and the inter-line connecting main buses is constituted by a single-phase device, By using the first to third circuit breakers of the circuit as vertical circuit breakers, it is possible to stack each bus bar.

本発明によれば、主母線群を積層配置することにより、装置全体の奥行き(幅)寸法の縮小が可能となる。また、主母線群や遮断器として単相機器を使用したので、3相一括型の機器を前提とした特許文献1の装置に比較して、装置全体の小型化という利点を確保しつつ、高電圧化及び保守・点検作業の容易化を達成できる。   According to the present invention, it is possible to reduce the depth (width) dimension of the entire apparatus by arranging the main bus groups in a stacked manner. In addition, since a single-phase device is used as the main bus group and the circuit breaker, the advantage of downsizing the entire device is ensured as compared with the device of Patent Document 1 that presupposes a three-phase collective type device. Voltageization and easy maintenance and inspection work can be achieved.

以下、本発明の第1実施形態を図1乃至図4に従って具体的に説明する。即ち、図1は本実施形態の平面図、図2はその正面図、図3は縦型遮断器部分の側面図、図4は単線結線図である。なお、図5に示した従来のガス絶縁開閉装置と同一の部材については、同一の符号を付して説明する。   Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 is a plan view of this embodiment, FIG. 2 is a front view thereof, FIG. 3 is a side view of a vertical circuit breaker portion, and FIG. 4 is a single-line connection diagram. The same members as those in the conventional gas insulated switchgear shown in FIG.

(1)実施形態の構成
図1に示すように、第1と第2の回線6,7は、それぞれ平行に配置された3本の単相の回線内接続母線2A,2Bによって構成されている。ここで、回線内接続母線2A,2Bは、図2の正面図に示すように、回線内接続母線2Aが縦型遮断器の上部口出し部分と一致する高さに、回線内接続母線2Bが縦型遮断器の下部口出し部分と一致する高さに配置されている。また、第1の回線6の回線内接続母線2A,2Bと、第2の回線7の回線内接続母線2A,2Bは、同一軸上に配置されている。
(1) Configuration of Embodiment As shown in FIG. 1, the first and second lines 6 and 7 are each constituted by three single-phase in-line connecting buses 2A and 2B arranged in parallel. . Here, as shown in the front view of FIG. 2, the in-line connecting buses 2A and 2B are arranged at a height where the in-line connecting bus 2A coincides with the upper lead-out portion of the vertical circuit breaker. It is arranged at a height that coincides with the lower opening portion of the mold circuit breaker. The in-line connection buses 2A and 2B of the first line 6 and the in-line connection buses 2A and 2B of the second line 7 are arranged on the same axis.

第1と第2の回線6,7を接続する回線間接続主母線3A,3Bは、平行に配置された3本の単相母線から構成され、図2に示すように、第1の回線間接続主母線3Aは、引き出し母線4の上方に、第2の回線間接続主母線3Bは回線内接続母線2Bの下方に、回線内接続母線2A,2Bと平行に(第1と第2の回線6,7の長さ方向と平行に)配置されている。なお、図1の平面図では、回線内接続母線2Bまでを図示しており、回線間接続主母線3A,3Bは示されていない。   The inter-line connection main buses 3A and 3B connecting the first and second lines 6 and 7 are composed of three single-phase buses arranged in parallel. As shown in FIG. The connection main bus 3A is above the lead-out bus 4, the second inter-line connection main bus 3B is below the in-line connection bus 2B, parallel to the in-line connection buses 2A and 2B (first and second lines). 6 and 7 in parallel with the length direction). In the plan view of FIG. 1, only the in-line connection bus 2B is shown, and the inter-line connection main buses 3A and 3B are not shown.

第1と第2の回線6,7における回線内接続母線2A,2Bの長さ方向ほぼ中央部からは、回線内接続母線2A,2Bと直角に単相母線からなる3本の引き出し回線4がそれぞれ引き出されている。このうち、図2の上方に配置されている回線内接続母線2Aからは、回線内接続母線2Aの上部に設けた口出し部に対して水平に引き出し回線4が接続されている。また、下方に配置された回線内接続母線2Bからは、その上部に垂直母線を配置し、この垂直母線の上部口出し部に引き出し母線4が接続させている。その結果、回線内接続母線2A,2Bから引き出された2組の引き出し母線4は、同じ高さで、平行に配置される。   From the central portion in the length direction of the in-line connection buses 2A and 2B in the first and second lines 6 and 7, three lead lines 4 made of single-phase buses are perpendicular to the in-line connection buses 2A and 2B. Each is pulled out. Among these, from the in-line connection bus 2A arranged in the upper part of FIG. 2, a lead-out line 4 is connected horizontally to the lead portion provided on the upper part of the in-line connection bus 2A. Further, from the in-line connecting bus 2B arranged below, a vertical bus is arranged at the upper part, and the lead-out bus 4 is connected to the upper lead portion of this vertical bus. As a result, the two sets of lead-out buses 4 drawn from the in-line connection buses 2A and 2B are arranged in parallel at the same height.

第1と第2の回線6,7には、それぞれ第1から第3の縦型遮断器1A〜1Cと1D〜1Fが設けられている。これらの縦型遮断器1A〜1C,1D〜1Fは、図3の側面図に示すように、いずれも単相の型の遮断器であって、その上部口出し部が上方の回線内接続母線2Aに対応し、下部口出し部が下方の回線内接続母線2Bに対応する位置に設けられている。   First to third vertical circuit breakers 1A to 1C and 1D to 1F are provided on the first and second lines 6 and 7, respectively. These vertical type circuit breakers 1A to 1C and 1D to 1F are all single-phase type circuit breakers as shown in the side view of FIG. The lower lead-out portion is provided at a position corresponding to the lower in-line connection bus 2B.

各縦型遮断器1A〜1C,1D〜1Fの接続構成は次の通りである。
まず、第1の回線6においては、遮断器1Aの上部口出しと遮断器1Bの上部口出しを回線内接続母線2Aに主母線と接続・切り離しが可能となるような主母線切り替え用断路器5を介して接続し、遮断器1Bの下部口出し9と遮断器1Cの下部口出し9を回線内接続母線2に対して主母線切り替え用断路器5を介して接続し、回線内の母線の接続を行う。
The connection configuration of each of the vertical circuit breakers 1A to 1C and 1D to 1F is as follows.
First, in the first line 6, the main bus switching disconnector 5 is provided so that the upper lead of the circuit breaker 1A and the upper lead of the circuit breaker 1B can be connected to and disconnected from the main bus to the in-line connecting bus 2A. through the connected and connected through a disconnector 5 for the main bus switching the lower yarn end finding 9 of the lower yarn end finding 9 breaker 1C for the line in connection bus 2 B breaker 1B, the connection of the bus in the line Do.

第1の回線6の遮断器1Aの下部口出しと第2の回線7の遮断器1Fの下部口出し9を回線間接続主母線3Bに主母線切り替え用断路器5を介し接続し、遮断器1Cの上部口出し9と隣接回線7の遮断器1Dの上部口出し9を主母線切り替え用断路器5を介して回線間接続主母線3Aに接続し、回線6,7間の母線接続を行う。   The lower lead of the circuit breaker 1A of the first line 6 and the lower lead 9 of the breaker 1F of the second line 7 are connected to the inter-line connection main bus 3B via the main bus switching disconnector 5, and the circuit breaker 1C The upper lead 9 and the upper lead 9 of the circuit breaker 1D of the adjacent line 7 are connected to the inter-line connection main bus 3A via the main bus switching disconnector 5, and the buses 6 and 7 are connected.

なお、前記のように引き出し回線4は母線切り替え用断路器5に挟まれた回線内接続用母線2Aから分岐をとり、隣接遮断器1と逆方向に回線間接続用母線3A回線内接続母線2Aとの間のスペースを用いて引き出し回線用母線4を引き出す。   As described above, the lead-out line 4 is branched from the in-line connecting bus 2A sandwiched between the bus switching disconnectors 5, and the inter-line connecting bus 3A in-line connecting bus 2A in the opposite direction to the adjacent circuit breaker 1. Lead-out bus 4 is pulled out using the space between the two.

更に、送電線に接続される引き出し母線4については、その端部に気中絶縁ブッシング10を配置する。この場合、気中ブッシングの相配置(通常、A相、B相、C相と呼ばれる)の三相のブッシング軸を結ぶ軸線が、主母線群の主軸と平面的に平行となるように配置する。そして、前記図1乃至図3で説明した各機器は、図4の単線結線図に示すようにして、電気的に接続されている。   Further, an air-insulating bushing 10 is disposed at the end of the lead-out bus 4 connected to the power transmission line. In this case, the axial line connecting the three-phase bushing axes in the phase arrangement of the air bushings (usually referred to as A phase, B phase, and C phase) is arranged so as to be parallel to the main axis of the main bus group. . The devices described in FIGS. 1 to 3 are electrically connected as shown in the single-line connection diagram of FIG.

(2)実施形態の作用
以上の通り、本実施形態においては、回線内接続母線2A,2Bおよび回線間接続主母線3A,3Bを挟んで縦型遮断器1A〜1C,1D〜1Fを垂直に配置することで、縦型遮断器1A〜1C,1D〜1Fを母線とは逆方向に他の機器を分解することなく引き出すことが可能となり、点検・改修範囲のための作業範囲を大幅に縮小することで、保守に必要な作業時間、費用を低減することが可能となる。
(2) Operation of the embodiment As described above, in the present embodiment, the vertical circuit breakers 1A to 1C and 1D to 1F are vertically arranged with the in-line connection buses 2A and 2B and the inter-line connection main buses 3A and 3B interposed therebetween. By arranging it, the vertical circuit breakers 1A to 1C and 1D to 1F can be pulled out without disassembling other devices in the direction opposite to the busbar, and the work range for inspection / repair range is greatly reduced. By doing so, it becomes possible to reduce the working time and cost required for maintenance.

また、隣接する各回線6,7を回線間接続母線3A,3Bの同一軸線上に直列に配置することで、GIS各回線の奥行き(幅)寸法が小さくなるため、その据付奥行き幅の縮小が可能となり、敷地取得費用やGIS建屋建設費用の低減が図れる。同時に各回線の奥行き(幅)が小さくなることで、引き出し回線用母線4を短縮することが可能となり、コストの低減が図られる。   Further, by arranging the adjacent lines 6 and 7 in series on the same axis of the inter-line connecting buses 3A and 3B, the depth (width) dimension of each GIS line is reduced, so that the installation depth width can be reduced. This will enable the site acquisition cost and GIS building construction cost to be reduced. At the same time, by reducing the depth (width) of each line, the lead-out line bus 4 can be shortened, and the cost can be reduced.

従来のレイアウトでは引き出し母線4のスペースを確保するために、各回線6,7間に長い回線間接続主母線を必要としたが、各回線6,7を引き出し母線4方向に対し垂直に配置し各縦型遮断器1A〜1C,1D〜1F間から分岐をとることとしたことで、引き出し母線4を配置するためのスペースが不要となると共に遮断器を避けて配置する必要もなくなる。その結果、引き出し母線や回線間接続主母線長の短縮が可能となりコストの低減が図られる。また、引き出し母線4の角度変更も不要となり、引き出し母線構成ユニット数の低減にも寄与する。   In the conventional layout, in order to secure the space for the lead-out bus 4, a long inter-line connection main bus is required between the lines 6 and 7, but the lines 6 and 7 are arranged perpendicular to the direction of the lead-out bus 4. By branching from each of the vertical circuit breakers 1A to 1C and 1D to 1F, a space for arranging the lead-out bus 4 is not necessary, and it is not necessary to avoid the circuit breaker. As a result, it is possible to shorten the length of the lead-out bus and the connection main bus between lines, thereby reducing the cost. In addition, it is not necessary to change the angle of the lead-out bus 4, which contributes to a reduction in the number of lead-bar constituent units.

その上、本実施形態では、装置全体を単相母線構成とすると共に、回線内接続母線2A,2B、回線間接続主母線3A,3B及び引き出し母線4を上下4段に配置し、なかでも最下段と最上段に主母線3A,3Bを配置し、中間に接続母線2A、2Bを配置している。しかも、接続母線2A,2Bそれぞれの三相を結ぶ軸線は、縦型遮断器1A〜1C,1D〜1Fから出た水平取り合い母線の軸線とずらしている。   In addition, in the present embodiment, the entire apparatus has a single-phase bus configuration, and the in-line connection buses 2A and 2B, the inter-line connection main buses 3A and 3B, and the lead-out buses 4 are arranged in four upper and lower stages. Main buses 3A and 3B are arranged in the lower and upper stages, and connection buses 2A and 2B are arranged in the middle. Moreover, the axes connecting the three phases of the connecting buses 2A and 2B are shifted from the axes of the horizontal connecting buses extending from the vertical circuit breakers 1A to 1C and 1D to 1F.

こうすることによりすべての母線は立体交差が可能であり、しかも装置全体の奥行き(幅)寸法は単相母線3本分+遮断器幅で構成できる。これに対して、特許文献1の発明では、三相母線2本+遮断器幅であるが三相母線は単相母線に比べ径寸法は1.5〜2倍あることから、実質的には、本実施形態の装置は特許文献1の装置と比べても同等以下のものである。   By doing so, all the bus bars can be crossed, and the depth (width) dimension of the entire apparatus can be constituted by three single-phase bus lines + breaker width. On the other hand, in the invention of Patent Document 1, it is two three-phase buses + circuit breaker width, but the three-phase bus has a diameter of 1.5 to 2 times that of a single-phase bus, so substantially. The device of this embodiment is equivalent to or less than that of the device of Patent Document 1.

更に、超高圧変電所ではGIS列を挟んで一方が送電線側、もう一方が変圧器群で構成されることが多い。この点をも考慮し送電線側には気中絶縁ブッシング10を配置し、反対側にも引き出し母線4を配置して変圧器等に接続できるようにしている。この場合、遮断器上部を引き出し母線4が通過するため遮断器の点検性が損なわれることに配慮して、遮断器は引き出し母線の反対側に配置している。よって、拡張性が高くしかもコンパクトなガス絶縁開閉装置を実現できる。   Furthermore, in ultra-high voltage substations, one is often composed of the transmission line side and the other is a transformer group across the GIS line. Considering this point, an air insulation bushing 10 is disposed on the power transmission line side, and a lead-out bus 4 is disposed on the opposite side so that it can be connected to a transformer or the like. In this case, the circuit breaker is arranged on the opposite side of the drawer bus in consideration that the inspection performance of the circuit breaker is impaired because the drawer bus 4 passes through the upper part of the circuit breaker. Therefore, it is possible to realize a gas insulated switchgear that is highly expandable and compact.

本発明のガス絶縁開閉装置の一実施の形態を示す平面図である。It is a top view which shows one Embodiment of the gas insulated switchgear of this invention. 図1のガス絶縁開閉装置の正面図である。It is a front view of the gas insulated switchgear of FIG. 図1のガス絶縁開閉装置の縦型遮断器部分の側面図である。It is a side view of the vertical circuit breaker part of the gas insulated switchgear of FIG. 図1のガス絶縁開閉装置の単線結線図である。FIG. 2 is a single line connection diagram of the gas insulated switchgear of FIG. 1. 従来のガス絶縁開閉装置の一例を示す平面図である。It is a top view which shows an example of the conventional gas insulated switchgear.

符号の説明Explanation of symbols

1…回線の遮断器
1A…第1の回線の第1遮断器
1B…第1の回線の第2遮断器
1C…第1の回線の第3遮断器
1D…第2の回線の第1遮断器
1E…第2の回線の第2遮断器
1F…第2の回線の第3遮断器
2A…回線内接続用主母線
2B…回線内接続用主母線
3A…回線間接続主母線
3B…回線間接続主母線
4…引き出し回線母線
5…主母線断路器
6…第1の回線
7…第2の回線回線
8…引き出し回線
9…遮断器の口出し
10…気中絶縁ブッシング
DESCRIPTION OF SYMBOLS 1 ... Circuit breaker 1A ... 1st circuit breaker 1B ... 1st circuit 2nd circuit breaker 1C ... 1st circuit 3rd circuit breaker 1D ... 2nd circuit 1st circuit breaker 1E: Second circuit breaker 1F of second line 3rd circuit breaker 2A of second line ... Main bus 2B for in-line connection Main bus 3A for in-line connection Main line 3B for inter-line connection Main bus 3B ... Inter-line connection Main bus 4 ... Lead-out line bus 5 ... Main bus disconnector 6 ... First line 7 ... Second line 8 ... Lead-out line 9 ... Breaker outlet 10 ... Air insulation bushing

Claims (3)

回線間接続主母線を介して接続された第1と第2の回線を備え、第1と第2の回線のそれぞれには、第1、第2及び第3の遮断器が第1及び第2の回線内接続母線を介して電気的に直列接続され、第1及び第3の遮断器はその一端が回線間接続主母線に接続され、また第1の回線内接続母線における第1の遮断器と第2の遮断器の間及び第2の回線内接続母線における第2と第3の遮断器の間から引き出し回線が導出されている1−1/2遮断器方式のガス絶縁開閉装置において、
第1と第2の回線内接続母線、引き出し母線、各遮断器及び回線間接続主母線をそれぞれ単相機器によって構成し、
かつ
第1と第2の回線内接続母線、引き出し母線及び回線間接続主母線におけるそれぞれ3相分の母線同一平面上において平行に配設し、
第1と第2の回線内接続母線及び回線間接続主母線については、各相の母線の主軸が同一方向にしかも平面的に略重なるように、
かつ、
第1と第2の回線内接続母線及び回線間接続主母線が上下に重なり合うように配置し、
前記引き出し母線を、第1と第2の回線内接続母線及び回線間接続主母線の主軸方向と交差する方向に、かつ第1と第2の回線内接続母線及び回線間接続主母線と上下に重なり合うように配置すると共に、
前記第1の回線においては、第1の遮断器の上部口出しと第2の遮断器の上部口出しを第1の回線内接続母線に接続し、第2の遮断器の下部口出しと第3遮断器の下部口出しを第2の回線内接続母線に接続し、
第1の回線の第1遮断器の下部口出しと第2の回線の第3の遮断器の下部口出しを回線間接続主母線に接続し、第1の回線の第3の遮断器の上部口出しと第2の回線の第1の遮断器の上部口出しを回線間接続主母線に接続した
ことを特徴とするガス絶縁開閉装置。
First and second lines connected via an inter-line connecting main bus, and first, second, and third circuit breakers are provided in each of the first and second lines. The first and third circuit breakers are electrically connected in series via the in-line connecting bus, and one end of each of the first and third circuit breakers is connected to the inter-line connecting main bus, and the first breaker in the first in-line connecting bus 1-1 / 2 circuit breaker type gas insulated switchgear in which a lead-out line is led out between the second and third circuit breakers and between the second and third circuit breakers in the second in-line connection bus,
The first and second in-line connection buses, lead-out buses, circuit breakers and inter-line connection main buses are each composed of single-phase equipment,
And the first and second lines in the connection bus, the lead bus and each bus for three phases which definitive in bridging main bus is disposed in parallel on the same water plane,
For the first and second in-line connection buses and the inter-line connection main buses, the main axes of the buses of each phase are in the same direction and substantially overlap in a plane.
And,
The first and second in-line connection buses and the inter-line connection main buses are arranged so as to overlap vertically,
The lead-out bus is arranged in a direction crossing the main axis direction of the first and second in-line connecting buses and the inter-line connecting main bus, and above and below the first and second in-line connecting buses and the inter-line connecting main bus. Arrange them so that they overlap ,
In the first line, the upper lead of the first breaker and the upper lead of the second breaker are connected to the first in-line connection bus, the lower lead of the second breaker and the third breaker Connect the lower lead of to the second in-line connection bus,
The lower lead of the first circuit breaker of the first line and the lower lead of the third circuit breaker of the second line are connected to the main connection line between the lines, and the upper lead of the third breaker of the first line A gas insulated switchgear characterized in that the upper lead of the first circuit breaker of the second line is connected to the main connection line between lines .
前記回線内接続母線に接続した引き出し母線の導出方向と回線内接続母線を挟んで反対位置に、前記第1乃至第3の縦型遮断器の少なくとも1つを配置したことを特徴とする請求項1記載のガス絶縁開閉装置。   The at least one of the first to third vertical circuit breakers is arranged at a position opposite to a direction in which a lead-out bus connected to the in-line connecting bus is led out and an in-line connecting bus is interposed therebetween. The gas insulated switchgear according to 1. 各相の引き出し母線の先端に気中絶縁ブッシングを接続し、この3相分の気中絶縁ブッシングのブッシング軸を結ぶ軸線が前記主母線群の主軸と平面的に平行となるように配置したことを特徴とする請求項1記載のガス絶縁開閉装置。   Air insulation bushings are connected to the leading ends of the lead buses for each phase, and the axis connecting the bushing axes of the air insulation bushings for the three phases is arranged so as to be parallel to the main axis of the main bus group. The gas insulated switchgear according to claim 1.
JP2006084814A 2006-03-27 2006-03-27 Gas insulated switchgear Active JP4686392B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006084814A JP4686392B2 (en) 2006-03-27 2006-03-27 Gas insulated switchgear
KR1020070028975A KR100869006B1 (en) 2006-03-27 2007-03-26 Gas insulation switchgear
CN2007100884252A CN101047304B (en) 2006-03-27 2007-03-27 Gas insulation open-close device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084814A JP4686392B2 (en) 2006-03-27 2006-03-27 Gas insulated switchgear

Publications (2)

Publication Number Publication Date
JP2007259681A JP2007259681A (en) 2007-10-04
JP4686392B2 true JP4686392B2 (en) 2011-05-25

Family

ID=38633314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084814A Active JP4686392B2 (en) 2006-03-27 2006-03-27 Gas insulated switchgear

Country Status (3)

Country Link
JP (1) JP4686392B2 (en)
KR (1) KR100869006B1 (en)
CN (1) CN101047304B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255318B (en) * 2011-06-30 2013-07-17 辽宁电能发展股份有限公司 Capacitor breaker and isolation switch device
JP5887792B2 (en) * 2011-09-22 2016-03-16 富士通株式会社 Printer and its print control program
CN102545069B (en) * 2012-01-18 2015-03-25 浙江华仪电器科技有限公司 Bus arrangement structure
JP6054163B2 (en) * 2012-12-14 2016-12-27 株式会社東芝 Excitation current suppression system
CN103633567B (en) * 2013-11-22 2016-01-20 国家电网公司 The line arrangement structure of GIS power distribution equipment
CN108390262B (en) * 2018-04-11 2023-11-10 中国电建集团福建省电力勘测设计院有限公司 220kV bus lengthening type single-row arrangement GIS equipment
KR102139279B1 (en) 2018-12-06 2020-08-11 한국전력공사 Apparatus and method for automatically shutting off the recovery error of insulated gas
CN111987596B (en) * 2020-09-16 2024-06-25 中国电力工程顾问集团西北电力设计院有限公司 Main transformer inlet wire structure is arranged to 330kV HGIS equipment C

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089851A (en) * 1973-12-13 1975-07-18
JPH04109806A (en) * 1990-08-29 1992-04-10 Mitsubishi Electric Corp Gas insulation switchgear
JPH06169508A (en) * 1992-11-30 1994-06-14 Mitsubishi Electric Corp Gas-filled switchgear
JPH07193925A (en) * 1993-12-28 1995-07-28 Toshiba Corp Gas insulated switchgear

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106311A (en) * 1980-12-18 1982-07-02 Tokyo Shibaura Electric Co Gas insulated substation facility
JPH05130716A (en) * 1991-10-31 1993-05-25 Toshiba Corp Gas-insulated switching equipment
JPH0739028A (en) * 1993-07-22 1995-02-07 Mitsubishi Electric Corp Gas-insulated switchgear
JP3203293B2 (en) * 1994-09-26 2001-08-27 三菱電機株式会社 Phase-separated gas-insulated switchgear
JPH08265926A (en) * 1995-03-27 1996-10-11 Toshiba Corp Gas insulated switchgear
JPH11355923A (en) * 1998-06-08 1999-12-24 Toshiba Corp Gas-insulated switchgear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089851A (en) * 1973-12-13 1975-07-18
JPH04109806A (en) * 1990-08-29 1992-04-10 Mitsubishi Electric Corp Gas insulation switchgear
JPH06169508A (en) * 1992-11-30 1994-06-14 Mitsubishi Electric Corp Gas-filled switchgear
JPH07193925A (en) * 1993-12-28 1995-07-28 Toshiba Corp Gas insulated switchgear

Also Published As

Publication number Publication date
CN101047304A (en) 2007-10-03
KR100869006B1 (en) 2008-11-17
JP2007259681A (en) 2007-10-04
CN101047304B (en) 2011-10-05
KR20070096926A (en) 2007-10-02

Similar Documents

Publication Publication Date Title
JP4686392B2 (en) Gas insulated switchgear
KR0126219B1 (en) Gas insulating distribution apparatus
JP4969657B2 (en) Gas insulated switchgear
JP4837782B2 (en) Gas insulated switchgear
JP4990363B2 (en) Gas insulated switchgear
JP4559887B2 (en) Gas insulated switchgear
JP4896786B2 (en) Gas insulated switchgear
JP4790524B2 (en) Gas insulated switchgear
JP4836770B2 (en) Gas insulated switchgear
JP5547694B2 (en) Gas insulated switchgear
JP2008172958A (en) Gas insulation opening/closing device
JP5546425B2 (en) Gas insulated switchgear
RU56078U1 (en) OPEN DISTRIBUTION DEVICE
JP4416667B2 (en) Gas insulated switchgear
JP5783941B2 (en) Gas insulated switchgear
JP2014079116A (en) Gas-insulated switchgear
JPH0865833A (en) Gas-insulated switchgear
JP4969696B2 (en) Gas insulated switchgear
JPH11146522A (en) Gas-insulated switchgear
JPH09121413A (en) Gas insulated switchgear
JP2012090430A (en) Bus structure with gas insulated switchgear
WO2018109915A1 (en) Gas insulated switching apparatus
JPS5935509A (en) Gas insulated switching device
JPH04295211A (en) Gas insulated switchgear
JPH05103404A (en) Gas-insulated switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4686392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350