JP4685744B2 - High-speed differential transmission cable - Google Patents
High-speed differential transmission cable Download PDFInfo
- Publication number
- JP4685744B2 JP4685744B2 JP2006284434A JP2006284434A JP4685744B2 JP 4685744 B2 JP4685744 B2 JP 4685744B2 JP 2006284434 A JP2006284434 A JP 2006284434A JP 2006284434 A JP2006284434 A JP 2006284434A JP 4685744 B2 JP4685744 B2 JP 4685744B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission cable
- differential transmission
- speed differential
- tape
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims description 144
- 239000011247 coating layer Substances 0.000 claims description 53
- 239000004020 conductor Substances 0.000 claims description 45
- 229910052751 metal Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 45
- 239000012212 insulator Substances 0.000 claims description 35
- 238000004804 winding Methods 0.000 claims description 15
- 239000000853 adhesive Substances 0.000 claims description 10
- 230000001070 adhesive effect Effects 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 239000003063 flame retardant Substances 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 7
- 229920005672 polyolefin resin Polymers 0.000 claims description 7
- -1 polytetrafluoroethylene Polymers 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 6
- 239000011800 void material Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 4
- 229920000098 polyolefin Polymers 0.000 claims description 4
- 239000012943 hotmelt Substances 0.000 claims description 3
- 229920003002 synthetic resin Polymers 0.000 claims description 3
- 239000000057 synthetic resin Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 11
- 238000009413 insulation Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 229920000915 polyvinyl chloride Polymers 0.000 description 6
- 239000004800 polyvinyl chloride Substances 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 5
- 239000012790 adhesive layer Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Communication Cables (AREA)
Description
本発明は、高速サーバや半導体テスタ、移動体通信基地局等の内部及び外部接続、デジタル家電や自動車内の機器間接続などに使用される差動伝送ケーブルに関し、特に高速LVDS(低電圧差動信号)伝送に代表されるような高速データ伝送用のフラット構造の高速差動伝送ケーブルに関するものである。 The present invention relates to a differential transmission cable used for internal and external connection of a high-speed server, a semiconductor tester, a mobile communication base station, etc., a connection between devices in a digital home appliance or an automobile, and more particularly, a high-speed LVDS (low voltage differential). The present invention relates to a high-speed differential transmission cable having a flat structure for high-speed data transmission represented by signal) transmission.
情報技術産業の成長が益々加速している昨今、大きな記憶媒体を備えた強力なPC(パソコン)が急増し、また高度な電気通信装置の実現化に伴って、さらに高速度で長距離間のデータ伝送が可能なケーブルに対するニーズが生じてきている。このニーズに対応したケーブルとして高速データ伝送用の差動伝送ケーブルがある。従来の差動伝送ケーブルとしては、例えば特許文献1の従来例として開示されているものがある。この従来の差動伝送ケーブルについて図8、図9を用いて説明する。 The growth of the information technology industry is accelerating, and the number of powerful PCs (PCs) equipped with large storage media has increased rapidly, and with the realization of advanced telecommunications equipment, the speed has increased over long distances. A need has arisen for cables capable of data transmission. As a cable that meets this need, there is a differential transmission cable for high-speed data transmission. As a conventional differential transmission cable, for example, there is one disclosed as a conventional example of Patent Document 1. This conventional differential transmission cable will be described with reference to FIGS.
先ず従来の差動伝送ケーブルの第1例(シングルドレインタイプ)としては、図8の断面図に示すように、中心導体(1)の外周に絶縁被覆層として低密度絶縁体(2’)を設けて信号線(4H),(4L)とし、この2本を2芯平行に並べ、更にこの両信号線(4H,4L)の中央谷間部に1本のドレイン線(5)を縦添えで配置し、その外側に、3芯フラット構造を保持しつつアルミポリエステルテープを金属面内側で縦添え若しくは螺旋巻きして外部導体(6)を形成し、ジャケット(7)を設けた構成の差動伝送ケーブル(50)がある。
また従来の差動伝送ケーブルの第2例(デュアルドレインタイプ)としては、図9の断面図に示すように、上記第1例と同じ構造の信号線2芯(4H,4L)の電気的平衡度を重視し、ビットレートの高速化に対応したハイスペック品として、信号線(4H,4L)の2本を2芯平行に並べ、それらの外側にドレイン線(5H),(5L)を縦添えで配置し、4芯フラット構造を保持しつつアルミポリエステルテープを金属面内側で縦添え若しくは螺旋巻きして外部導体(6)を形成し、ジャケット(7)を設けた構成の差動伝送ケーブル(60)がある。
これら差動伝送ケーブル(50,60)の中心導体サイズとドレイン線サイズは同じで、AWG(アメリカンワイヤーゲージ)30番(7/0.102mm)または28番(7/0.127mm)が通常使用されており、また低密度絶縁体(2’)にはオレフィン系樹脂の発泡体が通常使用されており、この場合のデータ伝送能力は最良時1.0Gbpsの差動信号を10m伝送可能という。
Further, as a second example (dual drain type) of the conventional differential transmission cable, as shown in the cross-sectional view of FIG. 9, the electric balance of the two signal wires (4H, 4L) having the same structure as the first example is provided. As a high-spec product that supports higher bit rates, two signal lines (4H, 4L) are arranged in parallel to each other, and drain lines (5H), (5L) are vertically placed outside of them. A differential transmission cable having a configuration in which an outer conductor (6) is formed by vertically attaching or spirally winding an aluminum polyester tape on the inner side of a metal surface while maintaining a four-core flat structure, and a jacket (7) is provided. There is (60).
These differential transmission cables (50, 60) have the same center conductor size and drain wire size, and AWG (American Wire Gauge) No. 30 (7 / 0.102 mm) or No. 28 (7 / 0.127 mm) is usually used. In addition, an olefin resin foam is usually used for the low-density insulator (2 ′), and the data transmission capacity in this case is capable of transmitting a differential signal of 1.0 Gbps at a maximum of 10 m.
差動伝送ケーブルにおいては、2芯平行に並べた信号線2本の、長手方向の両信号線間の静電容量の差とコア外径の差、つまりは比誘電率の差が小さいことが必要である。これにより両信号線間のIntra−Skew(対内伝播遅延時間差)を小さくすることができる。特に伝送信号が高速になるとIntra−Skewはpsオーダーでの合わせ込みが必要で、2線間の特性インピーダンスのズレも極力小さくおさえることが重要となる。
上記従来の第1、第2例の差動伝送ケーブル(50,60)において、絶縁被覆層の低密度絶縁体(2’)にオレフィン系樹脂の発泡絶縁体を用いた場合は、誘電率は低く好ましいが、絶縁体中の微細な発泡の形状は必ずしも同じ泡径ではないため、信号線(4H,4L)2線間の比誘電率に差が生じ、2線間の伝播遅延時間や特性インピーダンスにズレが生じてしまうという問題があった。なお絶縁被覆層に充実絶縁体を用いると2線間の伝播遅延時間や特性インピーダンスのズレの問題は少ないが、規定の特性インピーダンスを確保するために絶縁被覆層を厚くする必要があり、絶縁体は太く且つ硬く、また減衰特性等の電気的特性が劣化するなどの問題があった。
また従来の第1,第2例の差動伝送ケーブルは、低密度絶縁体(2’)には同じ色相の材料を用いているため、2本の信号線(4H,4L)の判別が困難であり端末加工性に問題があった。また、ジャケット(7)の素材としてPVC(ポリ塩化ビニル樹脂)を用いているので、近時、ハロゲン含有樹脂として環境上問題があると指摘されている。
本発明は、上記従来技術が有する各種問題点を解決するためになされたものであり、2芯平行に並べた信号線2本の、長手方向の両信号線間の静電容量の差とコア径差が小さく、両信号線間のIntra−Skewが小さく、両信号線間の特性インピーダンスが安定し、また両信号線間の特性インピーダンスのズレがなく、データ伝送能力を最大限に引き出すケーブル構成を取りながら信号線の識別を可能とし、また環境に優しく、更に端末加工性に優れた高速差動伝送ケーブルを提供することを目的とする。
In the differential transmission cable, the difference in capacitance between the two signal lines in the longitudinal direction and the difference in core outer diameter, that is, the relative dielectric constant is small. is necessary. Thereby, Intra-Skew (inward propagation delay time difference) between both signal lines can be reduced. In particular, when the transmission signal becomes high speed, the Intra-Skew needs to be adjusted in the ps order, and it is important to minimize the deviation of the characteristic impedance between the two lines.
In the conventional differential transmission cables (50, 60) of the first and second examples, when a low-density insulator (2 ′) of the insulating coating layer is made of a foamed insulator of olefin resin, the dielectric constant is Although low and preferable, since the shape of fine foam in the insulator is not necessarily the same bubble diameter, there is a difference in the dielectric constant between the two signal lines (4H, 4L), and the propagation delay time and characteristics between the two lines There was a problem that the impedance was shifted. If a solid insulator is used for the insulation coating layer, there are few problems with the propagation delay time between the two wires and the deviation of the characteristic impedance, but it is necessary to increase the thickness of the insulation coating layer in order to ensure the specified characteristic impedance. There are problems such as thick and hard, and deterioration of electrical characteristics such as attenuation characteristics.
In the conventional differential transmission cables of the first and second examples, since the same hue material is used for the low density insulator (2 ′), it is difficult to distinguish the two signal lines (4H, 4L). There was a problem with the terminal processability. Moreover, since PVC (polyvinyl chloride resin) is used as the material of the jacket (7), it has recently been pointed out that there are environmental problems as halogen-containing resins.
The present invention has been made in order to solve the various problems of the prior art, and the difference in capacitance between the two signal lines in the longitudinal direction and the core of two signal lines arranged in parallel with two cores. Cable configuration with a small diameter difference, small intra-skew between both signal lines, stable characteristic impedance between both signal lines, and no deviation of characteristic impedance between both signal lines, and maximum data transmission capability It is an object of the present invention to provide a high-speed differential transmission cable that can identify a signal line while taking care of the environment, is environmentally friendly, and has excellent terminal processability.
第1の観点として本発明は、中心導体の外周に、長手方向に連続した空隙部を有する絶縁被覆層を設けて信号線とし、これを2芯平行に並べ、更に両信号線の外側若しくは両信号線の中央谷間部にドレイン線を配置し、4芯若しくは3芯フラット構造を保持しつつ金属ラミネートテープ、金属蒸着テープまたは金属テープの巻回し或いは縦添えで外部導体を形成し、これにジャケットを被覆してなることを特徴とする高速差動伝送ケーブルにある。
上記第1観点の高速差動伝送ケーブルでは、長手方向に安定して連続した空隙部を有する絶縁被覆層を用いることにより、長手方向の両信号線間の静電容量の差とコア径差を最小限に留め、強いては両信号線間のIntra−Skewが低減され、また特性インピーダンスの整合性に優れたものとなる。
As a first aspect, the present invention provides a signal line by providing an insulating coating layer having a gap continuous in the longitudinal direction on the outer periphery of the center conductor, and arranges the signal lines in parallel with each other, and further, outside or both of the signal lines. A drain line is arranged in the central valley of the signal line, and an external conductor is formed by winding or vertically attaching a metal laminate tape, metal vapor-deposited tape, or metal tape while maintaining a 4-core or 3-core flat structure, and a jacket. The high-speed differential transmission cable is characterized in that it is coated.
In the high-speed differential transmission cable according to the first aspect, by using an insulating coating layer having a gap that is stably continuous in the longitudinal direction, the difference in capacitance between both signal lines in the longitudinal direction and the difference in core diameter can be reduced. In addition, the intra-skew between both signal lines is reduced, and the matching of the characteristic impedance is excellent.
第2の観点として本発明は、前記絶縁被覆層は、前記中心導体の外周を被覆する内環状部と、この内環状部の外周から外方に向けて放射状に延設される3本以上の連結部と、各連結部の外端間を連結する外環状部とを備えた中空絶縁体であり、前記連結部で前記空隙部の周方向を形成することを特徴とする高速差動伝送ケーブルにある。
上記第2観点の高速差動伝送ケーブルでは、前記絶縁被覆層は、前記内環状部と、3本以上の連結部と、各連結部の外端間を連結する外環状部とを備えた中空絶縁体が好ましく、前記連結部で前記空隙部の周方向が形成され、上記第1観点の高速差動伝送ケーブルが好ましく得られる。
As a second aspect, the present invention provides the insulating coating layer comprising: an inner annular portion that covers the outer periphery of the central conductor; and three or more radially extending outwards from the outer periphery of the inner annular portion. A high-speed differential transmission cable comprising a connecting portion and an outer annular portion connecting between outer ends of each connecting portion, wherein the connecting portion forms a circumferential direction of the gap portion. It is in.
In the high-speed differential transmission cable according to the second aspect, the insulating coating layer is a hollow including the inner annular portion, three or more connecting portions, and an outer annular portion that connects between outer ends of the connecting portions. An insulator is preferable, and the circumferential direction of the gap is formed at the connecting portion, and the high-speed differential transmission cable according to the first aspect is preferably obtained.
第3の観点として本発明は、前記絶縁被覆層は、連結部が等角度間隔で配置され、長手方向に連続した3つ以上の空隙部が中心導体を中心にして周方向に均等に配置されていることを特徴とする高速差動伝送ケーブルにある。
上記第3観点の高速差動伝送ケーブルでは、前記絶縁被覆層は、連結部が等角度間隔で配置され、長手方向に連続した3つ以上の空隙部が中心導体を中心にして周方向に均等に配置されていることが好ましく、上記第2観点の高速差動伝送ケーブルが好ましく得られる。
According to a third aspect of the present invention, in the insulating coating layer, the connecting portions are arranged at equiangular intervals, and three or more gap portions that are continuous in the longitudinal direction are evenly arranged in the circumferential direction around the central conductor. The high-speed differential transmission cable is characterized by
In the high-speed differential transmission cable according to the third aspect, the insulating coating layer has the connecting portions arranged at equiangular intervals, and three or more void portions continuous in the longitudinal direction are even in the circumferential direction around the central conductor. The high-speed differential transmission cable according to the second aspect is preferably obtained.
第4の観点として本発明は、前記絶縁被覆層は、その横断面において、前記空隙部が面積比で20%以上70%以下を占めることを特徴とする高速差動伝送ケーブルにある。
上記第4観点の高速差動伝送ケーブルでは、前記絶縁被覆層は、その横断面において、前記空隙部が面積比で(以下、空隙率(断面積比)と略記する)20%以上70%以下を占めることが好ましい。なお、前記空隙率(断面積比)が20%未満では空隙部が少ないために絶縁体が太く且つ硬く、また減衰特性等の電気的特性が劣化するので好ましくなく、また空隙率(断面積比)が70%を超えると絶縁被覆層の強度が低下し、金属ラミネートテープ等の巻回し等で外部導体を形成する際に潰れ易くなるので好ましくない。
According to a fourth aspect of the present invention, there is provided the high-speed differential transmission cable according to the present invention, wherein the insulating coating layer has an area ratio of 20% to 70% in the cross section.
In the high-speed differential transmission cable according to the fourth aspect, the insulating coating layer has an area ratio of 20% or more and 70% or less (hereinafter abbreviated as a void ratio (cross-sectional area ratio)). Preferably. If the porosity (cross-sectional area ratio) is less than 20%, the insulator is thick and hard because the number of voids is small, and electrical characteristics such as attenuation characteristics are deteriorated. ) Exceeding 70% is not preferable because the strength of the insulating coating layer is reduced, and the outer conductor is easily crushed by winding the metal laminate tape or the like.
第5の観点として本発明は、前記絶縁被覆層は、オレフィン系ポリマー(ポリオレフィン)樹脂からなることを特徴とする高速差動伝送ケーブルにある。
上記第5観点の高速差動伝送ケーブルでは、前記絶縁被覆層としては、オレフィン系ポリマー(ポリオレフィン)樹脂、例えばポリエチレン樹脂を好ましく用いることができる。
As a fifth aspect, the present invention is the high-speed differential transmission cable, wherein the insulating coating layer is made of an olefin polymer (polyolefin) resin.
In the high-speed differential transmission cable according to the fifth aspect, an olefin polymer (polyolefin) resin such as a polyethylene resin can be preferably used as the insulating coating layer.
第6の観点として本発明は、前記絶縁被覆層は、連続使用最高温度が200℃以上の合成樹脂からなることを特徴とする高速差動伝送ケーブルにある。
上記第6観点の高速差動伝送ケーブルでは、前記絶縁被覆層としては、連続使用最高温度が200℃以上の合成樹脂を好ましく用いることができる。
As a sixth aspect, the present invention provides the high-speed differential transmission cable, wherein the insulating coating layer is made of a synthetic resin having a maximum continuous use temperature of 200 ° C. or higher.
In the high-speed differential transmission cable of the sixth aspect, a synthetic resin having a maximum continuous use temperature of 200 ° C. or higher can be preferably used as the insulating coating layer.
第7の観点として本発明は、前記絶縁被覆層は、PFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)、またはPTFE(ポリテトラフルオロエチレン)から選ばれるフッ素樹脂からなることを特徴とする高速差動伝送ケーブルにある。
上記第7観点の高速差動伝送ケーブルでは、前記絶縁被覆層としては、PFA、FEP、PTFEから選ばれるフッ素樹脂を好ましく用いることができる。
As a seventh aspect, the present invention provides the insulating coating layer comprising: PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene-hexafluoropropylene copolymer), or PTFE (polytetrafluoroethylene). A high-speed differential transmission cable comprising a fluororesin selected from ethylene).
In the high-speed differential transmission cable according to the seventh aspect, a fluororesin selected from PFA, FEP, and PTFE can be preferably used as the insulating coating layer.
第8の観点として本発明は、前記中心導体およびドレイン線は、単線または集合撚り線若しくは同心撚り線からなることを特徴とする高速差動伝送ケーブルにある。
上記第8観点の高速差動伝送ケーブルでは、前記中心導体およびドレイン線は、単線または集合撚り線若しくは同心撚り線を好ましく用いることができる。なお、単線または集合撚り線若しくは同心撚り線と限定した理由は、単線は減衰特性や反射特性など、特に電気的特性が重要視される場所に有用で、また集合撚り線若しくは同心撚り線とすることにより中心導体或いはドレイン線の耐屈曲性能が向上する。
As an eighth aspect, the present invention resides in a high-speed differential transmission cable, wherein the central conductor and the drain wire are made of a single wire, a collective stranded wire or a concentric stranded wire.
In the high-speed differential transmission cable according to the eighth aspect, the central conductor and the drain wire can be preferably a single wire, a collective stranded wire, or a concentric stranded wire. The reason for limiting to single wire, collective stranded wire or concentric stranded wire is that single wire is useful in places where electrical characteristics such as attenuation characteristics and reflection characteristics are particularly important, and is also used as collective stranded wire or concentric stranded wire. This improves the bending resistance of the center conductor or drain wire.
第9の観点として本発明は、前記中心導体およびドレイン線は、サイズがAWG(アメリカンワイヤーゲージ)32番〜22番からなることを特徴とする高速差動伝送ケーブルにある。
上記第9観点の高速差動伝送ケーブルでは、前記中心導体およびドレイン線は、サイズがAWG32番〜22番のものを好ましく用いることができる。
According to a ninth aspect of the present invention, there is provided a high-speed differential transmission cable according to the present invention, wherein the central conductor and the drain wire are AWG (American Wire Gauge) Nos. 32 to 22.
In the ninth aspect of the high-speed differential transmission cable, the central conductor and the drain wire having a size of AWG Nos. 32 to 22 can be preferably used.
第10の観点として本発明は、前記金属ラミネートテープ、金属蒸着テープの樹脂面または金属テープの片面には予め接着剤が塗布されており、接着面を外側にして巻回されることを特徴とする高速差動伝送ケーブルにある。
上記第10観点の高速差動伝送ケーブルでは、前記金属ラミネートテープ、金属蒸着テープの樹脂面または金属テープの片面には予め接着剤が塗布されており、接着面を外側にして巻回されることが好ましい。これにより、端末加工時に一体化したジャケットと外部導体を一括除去できるようになり端末加工性に優れた高速差動伝送ケーブルとなる。
As a tenth aspect, the present invention is characterized in that an adhesive is preliminarily applied to the resin surface of the metal laminate tape, the metal vapor-deposited tape, or one surface of the metal tape, and is wound with the adhesive surface facing outward. There is a high-speed differential transmission cable.
In the high-speed differential transmission cable according to the tenth aspect, an adhesive is applied in advance to the resin surface of the metal laminate tape, the metal vapor-deposited tape, or one surface of the metal tape, and the wire is wound with the adhesive surface facing outside. Is preferred. As a result, the jacket and the outer conductor integrated at the time of terminal processing can be removed all at once, and a high-speed differential transmission cable excellent in terminal processability can be obtained.
第11の観点として本発明は、前記金属ラミネートテープ、金属蒸着テープまたは金属テープのテープ厚さ(t)は0.005mm≦t≦0.050mmであることを特徴とする高速差動伝送ケーブルにある。
上記第11観点の高速差動伝送ケーブルでは、前記金属ラミネートテープ等のテープ厚さ(t)は0.005mm≦t≦0.050mmであることが好ましい。
なお、テープ厚さ(t)が0.005mm未満では、テープの巻回時に切れやすく、またテープ厚さ(t)が0.050mmを超えると、テープが硬くなり、巻回作業がしづらくなるので好ましくない。
As an eleventh aspect, the present invention provides a high-speed differential transmission cable, wherein the metal laminate tape, metal vapor-deposited tape, or metal tape has a tape thickness (t) of 0.005 mm ≦ t ≦ 0.050 mm. is there.
In the high-speed differential transmission cable according to the eleventh aspect, the thickness (t) of the metal laminate tape or the like is preferably 0.005 mm ≦ t ≦ 0.050 mm.
When the tape thickness (t) is less than 0.005 mm, the tape is easily cut during winding, and when the tape thickness (t) exceeds 0.050 mm, the tape becomes hard and the winding work becomes difficult. Therefore, it is not preferable.
第12の観点として本発明は、前記両信号線を識別することを特徴とする高速差動伝送ケーブルにある。
上記第12観点の高速差動伝送ケーブルでは、前記両信号線を識別、例えば、一方の信号線の絶縁被覆層の色相を変えることにより、コネクタ端末加工時の作業性向上が図れる。
According to a twelfth aspect of the present invention, there is provided a high-speed differential transmission cable characterized by identifying both the signal lines.
In the high-speed differential transmission cable according to the twelfth aspect, the workability at the time of processing the connector terminal can be improved by identifying both the signal lines, for example, by changing the hue of the insulating coating layer of one of the signal lines.
第13の観点として本発明は、前記両信号線を識別する代わりに、ジャケット外面の片一方の信号線側に長手方向にジャケットと色相を変えたインクでマーキングするか、若しくはジャケット外面の片一方の信号線側に長手方向に異形ダイスを用いて凹部または凸部を形成することを特徴とする高速差動伝送ケーブルにある。
上記第13観点の高速差動伝送ケーブルでは、ジャケット外面の片一方の信号線側に長手方向にジャケットと色相を変えたインクでマーキングするか、若しくはジャケット外面の片一方の信号線側に長手方向に異形ダイスを用いて凹部または凸部を形成することにより両信号線を間接的に識別することが可能となり、コネクタ端末加工時の作業性向上が図れる。またこの間接的識別方法は、前記一方の信号線の絶縁被覆層の色相を変えることが困難な場合、或は色相を変えることにより信号線2芯間の特性が同じにならない場合に好ましく適用することができる。
As a thirteenth aspect, in the present invention, instead of identifying both the signal lines, either one of the outer surfaces of the jacket is marked with one of the signal lines on the side of the jacket with ink whose hue has been changed in the longitudinal direction, or one of the outer surfaces of the jacket. In the high-speed differential transmission cable, a concave portion or a convex portion is formed in the longitudinal direction on the signal line side using a deformed die.
In the high-speed differential transmission cable according to the thirteenth aspect, one of the signal lines on the outer surface of the jacket is marked with ink having a different hue from that of the jacket in the longitudinal direction, or the one of the signal lines on the outer surface of the jacket in the longitudinal direction. In addition, by forming a concave or convex portion using a deformed die, both signal lines can be indirectly identified, and workability at the time of connector terminal processing can be improved. This indirect identification method is preferably applied when it is difficult to change the hue of the insulating coating layer of the one signal line, or when the characteristics between the two signal lines are not the same by changing the hue. be able to.
第14の観点として本発明は、前記ジャケットは、非鉛PVCまたはノンハロゲン難燃性オレフィンからなることを特徴とする高速差動伝送ケーブルにある。
上記第14観点の高速差動伝送ケーブルでは、前記ジャケットの素材として非鉛PVCまたはノンハロゲン難燃性オレフィンを使用することにより環境配慮型製品とすることができる。
As a fourteenth aspect, the present invention is the high-speed differential transmission cable, wherein the jacket is made of lead-free PVC or non-halogen flame-retardant olefin.
In the high-speed differential transmission cable according to the fourteenth aspect, an environment-friendly product can be obtained by using lead-free PVC or non-halogen flame-retardant olefin as the jacket material.
第15の観点として本発明は、前記高速差動伝送ケーブルは、1Gbps以上の高速デジタル信号を伝送することが可能であることを特徴とする高速差動伝送ケーブルにある。
上記第15観点の高速差動伝送ケーブルでは、1Gbps以上の高速デジタル信号を伝送することが可能となるので好ましい。
As a fifteenth aspect, the present invention resides in a high-speed differential transmission cable characterized in that the high-speed differential transmission cable can transmit a high-speed digital signal of 1 Gbps or more.
The high-speed differential transmission cable of the fifteenth aspect is preferable because it can transmit a high-speed digital signal of 1 Gbps or more.
第16の観点として本発明は、前記高速差動伝送ケーブルは、前記信号線の外側若しくは両信号線の中央部にドレイン線を配置し、4芯若しくは3芯フラット構造を保持しつつ、その外周に前記金属ラミネートテープ、金属蒸着テープまたは金属テープを安定して巻回することのできる専用テープ巻き装置により安定した4芯若しくは3芯フラット構造が形成されていることを特徴とする高速差動伝送ケーブルにある。
上記第16観点の高速差動伝送ケーブルでは、前記高速差動伝送ケーブルは、金属ラミネートテープ等を安定して巻回することのできる専用テープ巻き装置により安定した4芯若しくは3芯フラット構造が形成される。
According to a sixteenth aspect of the present invention, in the high-speed differential transmission cable, a drain line is disposed outside the signal line or at the center of both signal lines, and the outer periphery of the high-speed differential transmission cable is maintained while maintaining a four-core or three-core flat structure. A high-speed differential transmission characterized in that a stable 4-core or 3-core flat structure is formed by a dedicated tape winding device capable of stably winding the metal laminate tape, metal vapor-deposited tape or metal tape. In the cable.
In the high-speed differential transmission cable according to the sixteenth aspect, the high-speed differential transmission cable has a stable 4-core or 3-core flat structure formed by a dedicated tape winding device capable of stably winding a metal laminate tape or the like. Is done.
第17の観点として本発明は、前記高速差動伝送ケーブルにおいて、一体化したジャケットと外部導体の所定長を熱刃若しくは機械刃により一括除去して両信号線とドレイン線を露出させ、また露出した両信号線を更に熱刃若しくは機械刃により絶縁被覆層の所定長を除去して中心導体を露出させ、また絶縁被覆層の端部を熱刃による溶融、若しくは接着剤、コーティング剤或はホットメルト樹脂の塗布により覆って空隙部を塞ぐという端末加工を施したことを特徴とする高速差動伝送ケーブルにある。
上記第17観点の高速差動伝送ケーブルでは、上記端末加工を施すことによりケーブルコネクタへの接続が容易になり、また絶縁被覆層の空隙部にフラックスや水分が浸入し電気的特性が劣化するのを防ぐことができる。
According to a seventeenth aspect of the present invention, in the high-speed differential transmission cable, the integrated jacket and a predetermined length of the outer conductor are collectively removed by a hot blade or a mechanical blade to expose both signal lines and drain lines. Further, remove the specified length of the insulation coating layer with a hot blade or a mechanical blade to expose the center conductor, and melt the end portion of the insulation coating layer with a hot blade, or use an adhesive, coating agent or hot The high-speed differential transmission cable is characterized in that a terminal process is performed in which a gap is covered by covering with a melt resin.
In the high-speed differential transmission cable according to the seventeenth aspect, the terminal processing makes it easy to connect to the cable connector, and flux and moisture enter the gap portion of the insulating coating layer to deteriorate the electrical characteristics. Can be prevented.
本発明の高速差動伝送ケーブルによれば、前記絶縁被覆層に、長手方向に安定して連続した空隙部を有する絶縁被覆層を用いることにより、2芯平行に並べた信号線2本の、長手方向の両信号線間の静電容量の差とコア径差を最小限に留め、強いては両信号線間のIntra−Skewが低減され、また特性インピーダンスの整合性に優れたものとなる。
また前記両信号線を識別する、或はジャケット外面の片一方の信号線側に長手方向にジャケットと色相を変えたインクでマーキングするか、若しくはジャケット外面の片一方の信号線側に凹部または凸部を形成することにより両信号線を直接的あるいは間接的に識別することが可能となり、コネクタ端末加工時の作業性向上が図れる。また、前記ジャケットの素材として非鉛PVCまたはノンハロゲン難燃性オレフィンを使用することにより、環境配慮型製品とすることができる。また、前記金属ラミネートテープ等を安定して巻き付けることのできる専用テープ巻き装置を用いることにより、安定した4芯若しくは3芯フラット構造を形成することができる。また本発明の高速差動伝送ケーブルは、1Gbps以上の高速デジタル信号を伝送することが可能となる。また前記端末加工を施すことによりケーブルコネクタへの接続が容易になり、また絶縁被覆層の空隙部にフラックスや水分が浸入し電気的特性が劣化するのを防ぐことができる。
従って、本発明は産業上に寄与する効果が極めて大である。
According to the high-speed differential transmission cable of the present invention, by using an insulating coating layer having a gap portion that is stable and continuous in the longitudinal direction, two signal lines arranged in parallel with two cores are used as the insulating coating layer. The difference in capacitance between both signal lines in the longitudinal direction and the difference in core diameter are kept to a minimum. Intra-skew between both signal lines is reduced, and the matching of characteristic impedance is excellent.
In addition, the two signal lines are identified, or one of the signal lines on the outer surface of the jacket is marked with ink having a different hue from the jacket in the longitudinal direction, or one of the signal lines on the outer surface of the jacket is recessed or protruded. By forming the portion, both signal lines can be identified directly or indirectly, and workability at the time of processing the connector terminal can be improved. Further, by using non-lead PVC or non-halogen flame retardant olefin as the material of the jacket, an environment-friendly product can be obtained. Moreover, a stable 4-core or 3-core flat structure can be formed by using a dedicated tape winding device that can stably wind the metal laminate tape or the like. The high-speed differential transmission cable of the present invention can transmit a high-speed digital signal of 1 Gbps or more. Further, the terminal processing makes it easy to connect to the cable connector, and it is possible to prevent the flux and moisture from entering the gap portion of the insulating coating layer and deteriorating the electrical characteristics.
Therefore, the present invention has an extremely large effect contributing to the industry.
以下、本発明の高速差動伝送ケーブルの内容を、図に示す実施の形態により更に詳細に説明する。なお、これにより本発明が限定されるものではない。
図1は、本発明の高速差動伝送ケーブルの第1の実施形態(シングルドレインタイプ)を示す断面図である。図2は、本発明の高速差動伝送ケーブルの第2の実施形態(デュアルドレインタイプ)を示す断面図である。図3は、本発明の高速差動伝送ケーブルの第3の実施形態(シングルドレインタイプ)を示す断面図である。図4は、本発明の高速差動伝送ケーブルの第4の実施形態(シングルドレインタイプ)を示す断面図である。図5は本発明の端末加工に用いる熱刃の1例を示す略図であり、同図(a)はジャケット層用熱刃の正面図、同図(b)は絶縁被覆層用熱刃の正面図、また同図(c)は同図(b)の左側面図である。図6は、高速差動伝送ケーブル端末加工品の1例を示す略図である。図7は、絶縁体長手方向の外径・静電容量安定性比較試験のチャート図であり、同図(a)は実施例1の高速差動伝送ケーブルの絶縁体、また同図(b)は比較例1の差動伝送ケーブルの絶縁体である。
これらの図において、1は中心導体、2,2x,2yは絶縁被覆層(中空絶縁体)、2aは内環状部、2bは連結部、2cは外環状部、2dは空隙部(断面扇面形)、2eは空隙部(断面楕円形)、2fは空隙部(断面ばち形)、2hは絶縁被覆層端部、4,4a,4b,4c,4d,4e,4f,4g,4hは信号線、5,5a,5bはドレイン線、6は外部導体(金属ラミネートテープ、金属蒸着テープまたは金属テープ)、7はジャケット、10,20,30,40は高速差動伝送ケーブル、20aは高速差動伝送ケーブル端末加工品(高速差動伝送ケーブル)、n1,n2は熱刃、oは刃部、pは熱溶融部、qは丸溝部、tは突起、またyは溶融端部である。
Hereinafter, the contents of the high-speed differential transmission cable of the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.
FIG. 1 is a sectional view showing a first embodiment (single drain type) of the high-speed differential transmission cable of the present invention. FIG. 2 is a sectional view showing a second embodiment (dual drain type) of the high-speed differential transmission cable of the present invention. FIG. 3 is a sectional view showing a third embodiment (single drain type) of the high-speed differential transmission cable of the present invention. FIG. 4 is a cross-sectional view showing a fourth embodiment (single drain type) of the high-speed differential transmission cable of the present invention. FIG. 5 is a schematic view showing an example of a hot blade used for terminal processing according to the present invention, in which FIG. 5 (a) is a front view of a jacket layer hot blade, and FIG. 5 (b) is a front view of an insulating coating layer hot blade. FIG. 1C is a left side view of FIG. FIG. 6 is a schematic diagram showing an example of a high-speed differential transmission cable terminal processed product. FIG. 7 is a chart of an outer diameter / capacitance stability comparison test in the longitudinal direction of the insulator. FIG. 7A is an insulator of the high-speed differential transmission cable of Example 1, and FIG. These are insulators of the differential transmission cable of Comparative Example 1.
In these drawings, 1 is a central conductor, 2, 2x and 2y are insulating coating layers (hollow insulators), 2a is an inner annular portion, 2b is a connecting portion, 2c is an outer annular portion, 2d is a gap portion (cross-sectional fan shape) ), 2e is a gap (elliptical cross section), 2f is a gap (cross section), 2h is an insulating coating layer end, 4, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h are signals 5, 5 a, 5 b are drain wires, 6 is an external conductor (metal laminate tape, metal evaporated tape or metal tape), 7 is a jacket, 10, 20, 30, 40 are high-speed differential transmission cables, and 20 a is a high-speed differential cable. Dynamic transmission cable terminal processed product (high-speed differential transmission cable), n1 and n2 are hot blades, o is a blade portion, p is a heat melting portion, q is a round groove portion, t is a protrusion, and y is a melting end portion.
本発明の高速差動伝送ケーブルの第1実施形態(実施例1)について図1を用いて説明する。
AWG28番(7/0.127mm)で外径0.38mmの銀メッキ軟銅撚線を中心導体(1)とし、この外周を被覆する内環状部(2a)と、この内環状部(2a)の外周から外方に向けて放射状に等角度間隔(60度)で配置され長手方向に連続した6本の連結部(2b)と、これらの連結部(2b)の外端間を連結する外環状部(2c)により長手方向に連続した断面扇面形の6個の空隙部(2d)が、中心導体(1)を中心として周方向に均等配置された絶縁被覆層(中空絶縁体)(2)を、フッ素樹脂のPFAを0.280mmの厚さに押し出しして設け、空隙率60%(断面積比)の信号線(4)を製造した。
次に信号線2芯(4a,4b)を平行に並べ、更に信号線2芯の中央谷間部に上記中心導体(1)と同じAWG28番の銀メッキ軟銅撚線からなるドレイン線(5)を縦添えで配置し、3芯フラット構造を保持しつつ厚さ0.015mmの樹脂面接着層付のアルミポリエステルテープを金属面内側で螺旋巻きし、信号線2芯(4a,4b)及びドレイン線(5)を包囲するように外部導体(6)を形成した。更にその外側に0.25mmの厚さで、外部導体(6)に接着するようにノンハロゲン難燃性オレフィン樹脂のジャケット(7)を被覆しシングルドレインタイプの高速差動伝送ケーブル(10)を製造した。なお、信号線2芯のうち一方の信号線(4b)のみを着色剤によりPFAを青色に着色し、信号線2芯(4a,4b)が識別できるようにしてコネクタ端末加工時の作業性向上を図った。また、前記アルミポリエステルテープの螺旋巻きには多頭供線装置や特殊整線ダイスチップ、フォーミング滑車を備えた専用テーピングマシーンを使用した。
ここで、中心導体(1)及びドレイン線(5)にはAWG28番の銀メッキ軟銅撚線(同心撚り線)を使用したが、銅又は銅合金線の単線または集合撚り線でも良く、また他の番手(AWG32番〜22番)や構成、材質やメッキ品でも良い。また絶縁被覆層(2)としては、上記フッ素樹脂のPFAの他にFEP又はPTFE、或はオレフィン系ポリマー樹脂を用いることもできる。また外部導体(6)には接着層付きアルミポリエステルテープを使用したが、他の金属ラミネートテープ(接着層無しを含む)や金属蒸着テープ若しくは金属テープを用いても良い。テープ厚さは0.005〜0.05mmまで可変出来る。なお金属ラミネートテープ等は螺旋巻きの他、縦添えでも良い。またジャケット(7)の素材は従来通り難燃非鉛PVCやその他の樹脂でもかまわない。
A first embodiment (Example 1) of the high-speed differential transmission cable of the present invention will be described with reference to FIG.
AWG No. 28 (7 / 0.127 mm) with a silver-plated annealed copper stranded wire having an outer diameter of 0.38 mm as a central conductor (1), an inner annular portion (2a) covering the outer periphery, and an inner annular portion (2a) Six connecting portions (2b) arranged radially at equal angular intervals (60 degrees) radially outward from the outer periphery and continuous in the longitudinal direction, and an outer ring connecting the outer ends of these connecting portions (2b) Insulation coating layer (hollow insulator) (2) in which six voids (2d) having a fan-shaped cross section continuous in the longitudinal direction by the portion (2c) are arranged evenly in the circumferential direction around the central conductor (1) Was prepared by extruding PFA of fluororesin to a thickness of 0.280 mm to produce a signal line (4) having a porosity of 60% (cross-sectional area ratio).
Next, the signal wires 2 cores (4a, 4b) are arranged in parallel, and the drain wire (5) made of the same AWG 28 silver-plated annealed copper stranded wire as the central conductor (1) is arranged in the central valley portion of the 2 signal wires. Arranged vertically and holding a 3-core flat structure, an aluminum polyester tape with a resin surface adhesive layer of 0.015 mm in thickness is spirally wound inside the metal surface, 2 signal lines (4a, 4b) and drain lines The outer conductor (6) was formed so as to surround (5). Further, a non-halogen flame-retardant olefin resin jacket (7) is coated on the outside with a thickness of 0.25 mm so as to adhere to the outer conductor (6), thereby producing a single drain type high-speed differential transmission cable (10). did. In addition, only one signal line (4b) out of the two signal lines is colored with PFA in blue with a colorant so that the signal line two cores (4a, 4b) can be identified to improve workability when processing the connector terminal. I planned. In addition, a special taping machine equipped with a multi-head feeder, a special wire-shaping die chip, and a forming pulley was used for spiral winding of the aluminum polyester tape.
Here, AWG No. 28 silver-plated annealed copper stranded wire (concentric stranded wire) was used for the central conductor (1) and drain wire (5), but it may be a single wire or a collective stranded wire of copper or copper alloy wire. No. (AWG Nos. 32 to 22), configuration, material, and plated product may be used. Further, as the insulating coating layer (2), FEP or PTFE, or an olefin polymer resin can be used in addition to the fluororesin PFA. Moreover, although the aluminum polyester tape with an adhesive layer was used for the external conductor (6), other metal laminate tapes (including those without an adhesive layer), metal vapor-deposited tapes or metal tapes may be used. The tape thickness can be varied from 0.005 to 0.05 mm. Note that the metal laminate tape or the like may be longitudinally attached in addition to the spiral winding. The material of the jacket (7) may be flame retardant non-lead PVC or other resin as usual.
本発明の高速差動伝送ケーブルの第2の実施形態(実施例2)について図2を用いて説明する。
AWG26番(7/0.160mm)で外径0.48mmの銀メッキ軟銅撚線を中心導体(1)とし、この外周を被覆する内環状部(2a)と、この内環状部(2a)の外周から外方に向けて放射状に等角度間隔(60度)で配置され長手方向に連続した6本の連結部(2b)と、これらの連結部(2b)の外端間を連結する外環状部(2c)により長手方向に連続した断面扇面形の6個の空隙部(2d)が、中心導体を中心として周方向に均等配置された中空絶縁体(2)を、PFAを0.31mmの厚さに押し出しして設け、空隙率53%(断面積比)の信号線(4)を製造した。
次にこの信号線(4)を2本(4c及び4d)用意し、この2本を2芯平行に並べ、更にそれらの外側に上記AWG26番の銀メッキ軟銅撚線からなるドレイン線(5a,5b)をそれぞれ縦添えで配置し、4芯フラット構造を保持しつつ厚さ0.015mmの樹脂面接着層付のアルミポリエステルテープを金属面内側で螺旋巻きし、信号線2芯(4c,4d)及びドレイン線(5a,5b)を包囲するように外部導体(6)を形成した。なお、信号線2芯(4c,4d)は色分けをしていない。
更にその外側に0.25mmの厚さで外部導体(6)に接着するようにノンハロゲン難燃性オレフィン樹脂のジャケット(7)を被覆しデュアルドレインタイプの高速差動伝送ケーブル(20)を製造した。
なお、ジャケット(7)を被覆する際、ジャケット外面の片一方の信号線(4c)側に長手方向に沿って異形ダイスで突起(t)を形成した。この結果、ケーブル内部での信号線2芯(4c,4d)の存在位置が外部で識別できるようになり、コネクタ端末加工時の作業性向上が図られた。
A second embodiment (Example 2) of the high-speed differential transmission cable of the present invention will be described with reference to FIG.
An AWG No. 26 (7 / 0.160 mm) and a silver-plated annealed copper stranded wire having an outer diameter of 0.48 mm as a central conductor (1), an inner annular portion (2a) covering the outer periphery, and an inner annular portion (2a) Six connecting portions (2b) arranged radially at equal angular intervals (60 degrees) radially outward from the outer periphery and continuous in the longitudinal direction, and an outer ring connecting the outer ends of these connecting portions (2b) The hollow insulator (2) in which six gaps (2d) having a fan-shaped cross section continuous in the longitudinal direction by the portion (2c) are arranged uniformly in the circumferential direction around the central conductor, and PFA of 0.31 mm A signal line (4) having a porosity of 53% (cross-sectional area ratio) was manufactured by extruding the thickness.
Next, two signal wires (4) (4c and 4d) are prepared, these two wires are arranged in parallel with two cores, and further, the drain wires (5a, 5a, 5b) are arranged vertically, and an aluminum polyester tape with a resin surface adhesive layer having a thickness of 0.015 mm is spirally wound inside the metal surface while maintaining a four-core flat structure, and two signal wires (4c, 4d) ) And the drain wire (5a, 5b), the outer conductor (6) was formed. Note that the two signal lines (4c, 4d) are not color-coded.
Further, a non-halogen flame-retardant olefin resin jacket (7) was coated on the outside so as to adhere to the outer conductor (6) with a thickness of 0.25 mm, and a dual drain type high-speed differential transmission cable (20) was manufactured. .
When covering the jacket (7), a protrusion (t) was formed with a deformed die along the longitudinal direction on one signal line (4c) side of the outer surface of the jacket. As a result, the position where the two signal wires (4c, 4d) are present inside the cable can be identified externally, and the workability at the time of processing the connector terminal is improved.
本発明の高速差動伝送ケーブルの第3の実施形態(実施例3)について図3を用いて説明する。この実施例3の高速差動伝送ケーブル(30)は、中空絶縁体(2x)に内在する6個の空隙部(2e)の断面形状が楕円形であり、実施例1の空隙部(2d)と異なる他は実施例1の高速差動伝送ケーブル(10)と同じ構造である。なお、空隙部(2e)は断面形状が長円形、円形でも良い。前記楕円形の空隙部を有する中空絶縁体(2x)は、空隙部の断面形状が楕円形なので強度が向上し、外から力が加わったときに潰れ難いという利点がある。 A third embodiment (Example 3) of the high-speed differential transmission cable of the present invention will be described with reference to FIG. In the high-speed differential transmission cable (30) of Example 3, the cross-sectional shape of the six gaps (2e) in the hollow insulator (2x) is elliptical, and the gap (2d) of Example 1 Otherwise, the structure is the same as that of the high-speed differential transmission cable (10) of the first embodiment. The gap (2e) may be oval or circular in cross section. The hollow insulator (2x) having an elliptical void portion has an advantage that the cross-sectional shape of the void portion is elliptical so that the strength is improved and it is difficult to be crushed when a force is applied from the outside.
本発明の高速差動伝送ケーブルの第4の実施形態(実施例4)について図4を用いて説明する。この実施例4の高速差動伝送ケーブル(40)は、中空絶縁体(2y)に内在する6個の空隙部(2f)の断面形状がばち形(実施例1の断面扇面形の空隙部の両側辺を内側に湾曲させた形状)であり、実施例1の空隙部(2d)と異なる他は実施例1の高速差動伝送ケーブルと同じ構造である。前記断面ばち形の空隙部を有する中空絶縁体(2y)は、連結部(2b)の中央部近辺が太くなるので強度が向上し、外から力が加わったときに潰れ難いという利点がある。 A fourth embodiment (Example 4) of the high-speed differential transmission cable of the present invention will be described with reference to FIG. In the high-speed differential transmission cable (40) of Example 4, the cross-sectional shape of the six air gaps (2f) in the hollow insulator (2y) is a cross-section (the air gap having the cross-sectional fan shape of Example 1). This is the same structure as the high-speed differential transmission cable of the first embodiment except that it is different from the gap (2d) of the first embodiment. The hollow insulator (2y) having the void portion having the cross-sectional shape has an advantage that the strength is improved because the central portion of the connecting portion (2b) is thick, and that it is difficult to be crushed when force is applied from the outside. .
本発明の高速差動伝送ケーブルの第5の実施形態(実施例5)(端末加工品)について図5、図6を用いて説明する。
前記実施例2により得られた高速差動伝送ケーブル(20)の所定長を用意し、ケーブル端部のジャケット(7)の所定の位置に、図5(a)に示す熱刃(n1)(温度約250℃)の刃部(o)により傷を入れてから、除去する部分のジャケットを引っ張り、一体化したジャケット(7)と外部導体(6)の所定長を一括除去して両信号線(4c,4d)およびドレイン線(5a,5b)を露出させた。
次に、露出した両信号線(4c,4d)の所定の位置に、図5(b),(c)に示す熱刃(n2)(温度約350℃)の熱溶融部(p)に設けられた丸溝部(q)により図6に示す高速差動伝送ケーブル(20a)の絶縁被覆層端部(2h)を潰しながら溶融し、空隙部(2d)(図示せず)を塞いで覆って溶融端部(y)を設け、また刃部(o)により絶縁被覆層(2)の所定の位置に傷を入れてから、除去する部分の絶縁被覆層を引っ張り、絶縁被覆層の所定長を除去して中心導体(1)を露出させるという端末加工を施して高速差動伝送ケーブル端末加工品(20a)を製造した。また熱刃(n1),(n2)は図示しないヒーターおよび温度調節器に接続されており、任意の温度に設定可能である。なお、前記熱刃(n1)を用いて絶縁被覆層(2)の所定長を除去することも可能で、この場合には、絶縁被覆層の端面を覆う方法として接着剤、コーティング剤、或はホットメルト樹脂の塗布を行うことが望ましい。
前記端末加工品(20a)では、溶融端部(y)を設けることにより、絶縁被覆層(2)の空隙部(2d)にフラックスや水分が浸入して電気的特性を劣化させるのを防ぐことができた。また前記端末加工品(20a)のデータ伝送性能を測定したところ、1Gbps以上の高速デジタル信号を伝送することができた。
5th Embodiment (Example 5) (terminal processed product) of the high-speed differential transmission cable of this invention is demonstrated using FIG. 5, FIG.
A predetermined length of the high-speed differential transmission cable (20) obtained in Example 2 is prepared, and a hot blade (n1) (n1) shown in FIG. After scratching with the blade part (o) at a temperature of about 250 ° C., the jacket of the part to be removed is pulled, and the predetermined lengths of the integrated jacket (7) and the external conductor (6) are removed at a time. (4c, 4d) and drain lines (5a, 5b) were exposed.
Next, it is provided at a predetermined position of both exposed signal lines (4c, 4d) in the hot melt part (p) of the hot blade (n2) (temperature of about 350 ° C.) shown in FIGS. 5 (b) and 5 (c). The circular groove (q) is melted while crushing the end portion (2h) of the insulating coating layer of the high-speed differential transmission cable (20a) shown in FIG. 6 to cover and cover the gap (2d) (not shown). The melted end (y) is provided, and the blade (o) is scratched at a predetermined position of the insulating coating layer (2), and then the portion of the insulating coating layer to be removed is pulled to increase the predetermined length of the insulating coating layer. Terminal processing of removing and exposing the central conductor (1) was performed to manufacture a high-speed differential transmission cable terminal processed product (20a). The hot blades (n1) and (n2) are connected to a heater and a temperature controller (not shown) and can be set to an arbitrary temperature. It is also possible to remove the predetermined length of the insulating coating layer (2) using the hot blade (n1). In this case, as a method of covering the end surface of the insulating coating layer, an adhesive, a coating agent, or It is desirable to apply hot melt resin.
In the terminal processed product (20a), by providing the melt end portion (y), it is possible to prevent the flux and moisture from entering the gap portion (2d) of the insulating coating layer (2) to deteriorate the electrical characteristics. I was able to. Further, when the data transmission performance of the processed terminal product (20a) was measured, a high-speed digital signal of 1 Gbps or more could be transmitted.
(比較例1)
比較例1の差動伝送ケーブル(シングルドレインタイプ)について説明する。この比較例1の差動伝送ケーブルは、図8に示した従来の差動伝送ケーブルの第1例(シングルドレインタイプ)と構造が同じであり、絶縁被覆層の低密度絶縁体(2’)として発泡ポリエチレン樹脂を0.275mmの厚さで被覆している。なお、絶縁被覆層および中心導体とドレイン線(錫メッキ軟銅撚り線)以外の構成材料は実施例1と同じである。
(Comparative Example 1)
The differential transmission cable (single drain type) of Comparative Example 1 will be described. The differential transmission cable of Comparative Example 1 has the same structure as the first example (single drain type) of the conventional differential transmission cable shown in FIG. 8, and has a low-density insulator (2 ′) with an insulating coating layer. The foamed polyethylene resin is coated with a thickness of 0.275 mm. The constituent materials other than the insulating coating layer, the central conductor, and the drain wire (tin-plated annealed copper stranded wire) are the same as those in Example 1.
―高速差動伝送ケーブルの特性試験―
上記実施例1の高速差動伝送ケーブルおよび比較例1の差動伝送ケーブルについて、絶縁体長手方向の外径・静電容量の安定性およびIntra−Skew特性を試験した。その試験結果について説明する。なお実施例2の高速差動伝送ケーブルについても試験したが、実施例1の高速差動伝送ケーブルと特性が同等であったので省略する。
(1)絶縁体長手方向の外径・静電容量の安定性比較試験
絶縁体長手方向の外径についてはレーザー外径測定器を用いて測定し、また静電容量についてはキャパシタンスモニタを用いて測定して同時にペンレコーダーのチャートに記録した。その試験結果を図7のチャート図に示す。なお同図(a)は実施例1の高速差動伝送ケーブルの絶縁体、また同図(b)は比較例1の差動伝送ケーブルの絶縁体である。またこのチャート図においては、チャートの上方がマイナス側、下方がプラス側である。
図7のチャート図から明らかなように、本発明の高速差動伝送ケーブルは絶縁体長手方向の静電容量が非常に安定しているとともに、外径レベル変動も小さいことが分かる。
そこで絶縁体の空隙率のバラツキにつき考察する。絶縁体の外径変動は実施例1と比較例1でほぼ同等であるため、絶縁体外径を一定と仮定し、静電容量変化を空隙率変化に換算して比較した。その結果、実施例1の差動伝送ケーブルは最大2.4%の空隙率バラツキであり、一方比較例1の高速差動伝送ケーブルは最大5.7%の空隙率バラツキであるので、本発明のケーブルは絶縁体の長手方向の空隙率バラツキが極めて小さく特性が優れている事が分かる。なお、空隙率バラツキを求めた換算式は省略する。
―Characteristic test of high-speed differential transmission cable―
The high-speed differential transmission cable of Example 1 and the differential transmission cable of Comparative Example 1 were tested for the stability of the outer diameter / capacitance in the longitudinal direction of the insulator and the intra-skew characteristics. The test results will be described. Although the high-speed differential transmission cable of Example 2 was also tested, the characteristics were the same as those of the high-speed differential transmission cable of Example 1, and the description thereof will be omitted.
(1) Stability comparison test of the outer diameter and capacitance in the insulator longitudinal direction The outer diameter in the insulator longitudinal direction is measured using a laser outer diameter measuring instrument, and the capacitance is measured using a capacitance monitor. Measured and recorded simultaneously on a pen recorder chart. The test results are shown in the chart of FIG. 1A is an insulator of the high-speed differential transmission cable of the first embodiment, and FIG. 1B is an insulator of the differential transmission cable of the first comparative example. In this chart, the upper side of the chart is the minus side and the lower side is the plus side.
As is apparent from the chart of FIG. 7, the high-speed differential transmission cable of the present invention has a very stable electrostatic capacitance in the longitudinal direction of the insulator and a small fluctuation in outer diameter level.
Therefore, the variation in the porosity of the insulator will be considered. Since the outer diameter variation of the insulator is almost the same in Example 1 and Comparative Example 1, it was assumed that the outer diameter of the insulator was constant, and the capacitance change was converted into the porosity change for comparison. As a result, the differential transmission cable of Example 1 has a maximum porosity variation of 2.4%, while the high-speed differential transmission cable of Comparative Example 1 has a maximum porosity variation of 5.7%. It can be seen that this cable has extremely small characteristics in the porosity in the longitudinal direction of the insulator and has excellent characteristics. In addition, the conversion formula which calculated | required the porosity variation is abbreviate | omitted.
(2)Intra−Skew特性試験
実施例1および比較例1の差動伝送ケーブルについて、試料ロットを3とし、Intra−Skew特性の測定にはTDR測定器(日本テクトロニクス製:TDS8000,サンプリングヘッド80E04)を使用し、ケーブルの接続は、セミリジットケーブルを加工した専用治具を介して行った。その試験結果を下記表1に示す。
表1の試験結果から明らかなように、本発明の高速差動伝送ケーブルはIntra−Skewの最大値、最小値および平均値が比較例の差動伝送ケーブルと比較して極めて小さいので、両信号線間のIntra−Skewが大幅に低減されていることが分かる。
(2) Intra-Skew characteristic test For the differential transmission cables of Example 1 and Comparative Example 1, the sample lot is set to 3, and the Intra-Skew characteristic is measured by a TDR measuring instrument (Nippon Tektronix: TDS8000, sampling head 80E04). The cable was connected via a special jig processed semi-rigid cable. The test results are shown in Table 1 below.
As is clear from the test results in Table 1, the high-speed differential transmission cable of the present invention has extremely small Intra-Skew maximum value, minimum value, and average value compared to the differential transmission cable of the comparative example. It can be seen that the intra-skew between the lines is greatly reduced.
本発明の高速差動伝送ケーブルは高速サーバや半導体テスタ、移動体通信基地局等の内部及び外部接続、デジタル家電や自動車内の機器間接続などに使用でき、特に高速LVDS伝送に代表されるような高速データ伝送用に好適に使用できる。 The high-speed differential transmission cable of the present invention can be used for internal and external connection of a high-speed server, semiconductor tester, mobile communication base station, etc., connection between devices in digital home appliances and automobiles, etc., especially as represented by high-speed LVDS transmission. It can be suitably used for high-speed data transmission.
1 中心導体
2,2x,2y 絶縁被覆層(中空絶縁体)
2a 内環状部
2b 連結部
2c 外環状部
2d 空隙部(断面扇面形)
2e 空隙部(断面楕円形)
2f 空隙部(断面ばち形)
2h 絶縁被覆層端部
4,4a,4b,4c,4d,4e,4f,4g,4h 信号線
5,5a,5b ドレイン線
6 外部導体(金属ラミネートテープ、金属蒸着テープまたは金属テープ)
7 ジャケット
10,20,30,40 高速差動伝送ケーブル
20a 高速差動伝送ケーブル端末加工品(高速差動伝送ケーブル)
n 熱刃
o 刃部
p 熱溶融部
q 丸溝部
t 突起
y 溶融端部
1 Center conductor 2, 2x, 2y Insulation coating layer (hollow insulator)
2a Inner ring part 2b Connection part 2c Outer ring part 2d Air gap part (cross-section fan shape)
2e Cavity (elliptical cross section)
2f Cavity (Cross section)
2h Insulation coating layer end 4, 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h Signal line 5, 5a, 5b Drain line 6 External conductor (metal laminate tape, metal vapor-deposited tape or metal tape)
7 Jacket 10, 20, 30, 40 High-speed differential transmission cable 20a Finished product of high-speed differential transmission cable (high-speed differential transmission cable)
n Hot blade o Blade portion p Thermal melting portion q Round groove portion t Projection y Melting end portion
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006284434A JP4685744B2 (en) | 2006-10-19 | 2006-10-19 | High-speed differential transmission cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006284434A JP4685744B2 (en) | 2006-10-19 | 2006-10-19 | High-speed differential transmission cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008103179A JP2008103179A (en) | 2008-05-01 |
JP4685744B2 true JP4685744B2 (en) | 2011-05-18 |
Family
ID=39437359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006284434A Active JP4685744B2 (en) | 2006-10-19 | 2006-10-19 | High-speed differential transmission cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4685744B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010040200A (en) * | 2008-07-31 | 2010-02-18 | Fujikura Ltd | Transmission cable |
JP5421565B2 (en) | 2008-09-24 | 2014-02-19 | 住友電気工業株式会社 | coaxial cable |
JP5383325B2 (en) * | 2009-06-01 | 2014-01-08 | 東京特殊電線株式会社 | Differential signal transmission cable |
JP5419568B2 (en) * | 2009-07-03 | 2014-02-19 | 東京特殊電線株式会社 | Manufacturing method of cable with resin mold type connector |
JP5255529B2 (en) * | 2009-07-15 | 2013-08-07 | 宇部日東化成株式会社 | Hollow core body for transmission cable, manufacturing method thereof, and signal transmission cable |
JP5464080B2 (en) * | 2009-09-24 | 2014-04-09 | 住友電気工業株式会社 | Coaxial cable and multi-core coaxial cable |
WO2012074002A1 (en) * | 2010-12-01 | 2012-06-07 | 住友電気工業株式会社 | Insulated wire, coaxial cable, and multicore cable |
CN102117677B (en) * | 2011-03-11 | 2013-01-23 | 南京全信传输科技股份有限公司 | High-temperature resistance light low voltage differential signaling (LVDS) data bus cable and preparation method thereof |
JP2013251163A (en) * | 2012-06-01 | 2013-12-12 | Sumitomo Electric Ind Ltd | Insulated wire |
CN103337281B (en) * | 2013-06-09 | 2016-03-30 | 深圳市穗榕同轴电缆科技有限公司 | A kind of Fluoroplastic coaxial cable with high transmission rate |
JP7073075B2 (en) * | 2017-11-09 | 2022-05-23 | 東京特殊電線株式会社 | Flat cable |
JP2019091562A (en) * | 2017-11-13 | 2019-06-13 | 青森昭和電線株式会社 | Twisted pair cable |
CN109742501A (en) * | 2019-01-21 | 2019-05-10 | 乐庭电线工业(惠州)有限公司 | High frequency data transfer line |
CN111764187A (en) * | 2020-07-09 | 2020-10-13 | 中复碳芯电缆科技有限公司 | Elastomer bonded fiber reinforced composite wire and preparation method thereof |
JPWO2022130801A1 (en) | 2020-12-14 | 2022-06-23 | ||
JP6977198B1 (en) * | 2021-10-05 | 2021-12-08 | 東京特殊電線株式会社 | coaxial cable |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04111107U (en) * | 1991-03-08 | 1992-09-28 | 株式会社潤工社 | coaxial cable |
JPH09120717A (en) * | 1995-10-25 | 1997-05-06 | Yazaki Corp | Electric cable |
JP2000040423A (en) * | 1998-07-21 | 2000-02-08 | Hirakawa Hewtech Corp | Shield wire for signal transmission |
JP2002358841A (en) * | 2001-06-01 | 2002-12-13 | Totoku Electric Co Ltd | High speed differential cable |
JP2003249129A (en) * | 2001-12-19 | 2003-09-05 | Ube Nitto Kasei Co Ltd | Small diameter coaxial cable and its manufacturing method |
-
2006
- 2006-10-19 JP JP2006284434A patent/JP4685744B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04111107U (en) * | 1991-03-08 | 1992-09-28 | 株式会社潤工社 | coaxial cable |
JPH09120717A (en) * | 1995-10-25 | 1997-05-06 | Yazaki Corp | Electric cable |
JP2000040423A (en) * | 1998-07-21 | 2000-02-08 | Hirakawa Hewtech Corp | Shield wire for signal transmission |
JP2002358841A (en) * | 2001-06-01 | 2002-12-13 | Totoku Electric Co Ltd | High speed differential cable |
JP2003249129A (en) * | 2001-12-19 | 2003-09-05 | Ube Nitto Kasei Co Ltd | Small diameter coaxial cable and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2008103179A (en) | 2008-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4685744B2 (en) | High-speed differential transmission cable | |
JP5421565B2 (en) | coaxial cable | |
JP5508614B2 (en) | High-speed differential cable | |
AU2002308441B2 (en) | Communications cable provided with a crosstalk barrier for use at high transmission frequencies | |
JP2018181591A (en) | Two-core parallel cable | |
JPH09501796A (en) | Twinaxial cable | |
AU2002308441A1 (en) | Communications cable provided with a crosstalk barrier for use at high transmission frequencies | |
JP4232942B2 (en) | High-speed differential cable | |
JP2016015255A (en) | Differential signal transmission cable, method of manufacturing the same, and multi-core differential signal transmission cable | |
CN105788748A (en) | Insulated wire, coaxial cable, and multicore cable | |
JP2001035270A (en) | Parallel coaxial cable with low skew and manufacture thereof | |
US20230141502A1 (en) | Vehicle cable | |
JP2002304921A (en) | High speed differential cable, high speed differential roller-screen cable, high speed differential round shape multi-twin cable | |
JP2007280762A (en) | Non-halogen coaxial cable, and multicore cable using it | |
JP2008293862A (en) | Insulated electrical wire | |
US20100276178A1 (en) | Profiled insulation and method for making the same | |
JP2011071095A (en) | Coaxial cable and multicore coaxial cable | |
US20240021341A1 (en) | Cable | |
JP2011129261A (en) | Quad cable for high-speed differential | |
WO2022138900A1 (en) | Communication cable and manufacturing method therefor | |
JP3032624U (en) | Coaxial cable with shape retention | |
JP2003141944A (en) | Low-skew high-speed differential cable | |
JP2000294046A (en) | Twist flat cable | |
JP2008300305A (en) | Communication cable | |
JP2010073463A (en) | High-speed differential cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090917 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110204 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4685744 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |