JP4684593B2 - Low bending loss multimode fiber - Google Patents
Low bending loss multimode fiber Download PDFInfo
- Publication number
- JP4684593B2 JP4684593B2 JP2004229003A JP2004229003A JP4684593B2 JP 4684593 B2 JP4684593 B2 JP 4684593B2 JP 2004229003 A JP2004229003 A JP 2004229003A JP 2004229003 A JP2004229003 A JP 2004229003A JP 4684593 B2 JP4684593 B2 JP 4684593B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- bending loss
- band
- core
- multimode fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005452 bending Methods 0.000 title claims description 68
- 239000000835 fiber Substances 0.000 title claims description 57
- 230000000994 depressogenic effect Effects 0.000 claims description 53
- 238000009826 distribution Methods 0.000 claims description 30
- 238000005253 cladding Methods 0.000 claims description 15
- 230000005284 excitation Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000593 degrading effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0288—Multimode fibre, e.g. graded index core for compensating modal dispersion
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03638—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
- G02B6/0365—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03616—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
- G02B6/03688—Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 5 or more layers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Description
本発明は、従来のグレーテッドインデックス型(以下、GI型と記す。)マルチモードファイバを改良し、極小な曲げ径に対しても損失が低いマルチモードファイバに関するものである。従来のGI型マルチモードファイバ(以下、GIファイバと記す。)は、クラッドに対するコアの屈折率差が高いので、元々曲げに強いが、FTTF(Fiber to the home)に用いられる屋内配線に用いる場合、極小な曲げ径に対しても、低い曲げ損失特性が要求される。 The present invention relates to a multimode fiber that improves a conventional graded index type (hereinafter referred to as GI type) multimode fiber and has a low loss even for a minimum bending diameter. Conventional GI type multimode fiber (hereinafter referred to as GI fiber) has a high refractive index difference between the core and the clad, so it is inherently resistant to bending, but is used for indoor wiring used in FTTF (Fiber to the home). Even for extremely small bending diameters, low bending loss characteristics are required.
従来のGIファイバは通常、次式(1)に示すα乗屈折率分布をもつコアを有する。 A conventional GI fiber usually has a core having an α-th power refractive index distribution represented by the following equation (1).
(式中、aはコア半径、n1はコア中心屈折率、Δは比屈折率差を表し、αは所望の波長帯で帯域が最大になるように設定されるパラメータである。)
従来のGIファイバは、そのままでは極小な曲げ径に対する曲げ損失が大きくなり、宅内配線の要求を満たすことができない。
一方、帯域が最大になるように、ファイバの屈折率分布を合成する方法が提案されている(例えば、非特許文献1参照。)。
この従来技術で得られる屈折率分布は、α乗屈折率分布に近い分布の外側に屈折率がクラッドよりも小さくなる領域(デプレスド領域)が存在するのが特徴であり、この構造では曲げ損失特性の良いファイバが得られることが予想される。
The conventional GI fiber has a large bending loss with respect to a minimum bending diameter as it is, and cannot satisfy the demand for home wiring.
On the other hand, a method of synthesizing the refractive index distribution of the fiber so as to maximize the band has been proposed (see, for example, Non-Patent Document 1).
The refractive index distribution obtained by this conventional technique is characterized by the fact that there is a region where the refractive index is smaller than the cladding (depressed region) outside the distribution close to the α power refractive index distribution. It is expected that a good fiber will be obtained.
しかしながら、非特許文献1において提案された屈折率分布は、簡単な式で表すことができず、ファイバ製造上屈折率分布を精密に制御しなければならないため、製造するのが困難である。
However, the refractive index distribution proposed in
本発明は前記事情に鑑みてなされ、容易に製造でき、優れた曲げ損失特性をもったマルチモードファイバの提供を目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a multimode fiber that can be easily manufactured and has excellent bending loss characteristics.
前記目的を達成するため、本発明は、次式(1) In order to achieve the above object, the present invention provides the following formula (1):
(式中、aはコア半径、n1はコア中心屈折率、Δは比屈折率差を表し、αは所望の波長帯で帯域が最大になるように設定されるパラメータである。)で表されるα乗屈折率分布をもつコアと、その外側のクラッドとを有するマルチモードファイバであって、コアの外側に、クラッドよりも低屈折率でそれぞれ屈折率の異なる複数のデプレスド領域が設けられ、これらのデプレスド領域が4層階段状の屈折率分布をなし、a=25μm、α=2.04であり、Δ=0.01、r≦25μmでα乗屈折率分布をもち、前記デプレスド領域の4層の内側境界までの半径が、最も内側の層から順に、25.5μm、26.8μm、28μm及び29μmであり、最も外側の境界までの半径が30.1μmであり、前記デプレスド領域の4層の比屈折率差Δ 0 が、最も内側の層から順に、−0.001、−0.002、−0.004及び−0.003であり、0.85μm波長帯でOFL帯域が1.5GHz・km以上、定常モード励振時、φ10の曲げに対する曲げ損失が5dB/m以下であることを特徴とする低曲げ損失マルチモードファイバを提供する。 (Wherein, a is a core radius, n 1 is a core center refractive index, Δ is a relative refractive index difference, and α is a parameter set to maximize the band in a desired wavelength band). A multimode fiber having a core having an α power refractive index profile and an outer cladding, and a plurality of depressed regions each having a lower refractive index and a different refractive index than the cladding are provided outside the core. these Depuresudo region forms the refractive index distribution of a four-layer stepped, a = 25 [mu] m, an α = 2.04, Δ = 0.01, has alpha-ride refractive index distribution r ≦ 25 [mu] m, the Depuresudo region The radius to the inner boundary of the four layers is 25.5 μm, 26.8 μm, 28 μm, and 29 μm in order from the innermost layer, and the radius to the outermost boundary is 30.1 μm. 4 layers of relative refractive index difference Δ 0 is -0.001, -0.002, -0.004, and -0.003 in order from the innermost layer, and the OFL band is 1.5 GHz · km or more in the 0.85 μm wavelength band. Provided is a low bending loss multimode fiber characterized by having a bending loss of 5 dB / m or less with respect to the bending of φ10 during excitation.
本発明によれば、極小な曲げ径に対しても低い曲げ損失を有する低曲げ損失マルチモードファイバを提供することができる。
また、本発明の低曲げ損失マルチモードファイバは、コアの外側にクラッドよりも低屈折率で均一な屈折率分布をもつデプレスド領域を設けた簡単な構造であるため、製造が容易であり、低コストで提供することができる。
また、本発明の低曲げ損失マルチモードファイバは、極小な曲げ径に対しても低い曲げ損失を有することから、配線の柔軟性や施工性が要求される宅内配線に好適に用いることができる。
また、0.85μm波長帯用のVCSELレーザが安価であり、GIファイバの接続の容易さから、0.85μm波長帯で高い帯域と低い曲げ損失を有する本発明の低曲げ損失マルチモードファイバは、ユーザ自身が配線を行い、光LANを構築するためのファイバとして最適である。
ADVANTAGE OF THE INVENTION According to this invention, the low bending loss multimode fiber which has a low bending loss with respect to an extremely small bending diameter can be provided.
The low bending loss multimode fiber of the present invention has a simple structure in which a depressed region having a uniform refractive index distribution with a lower refractive index than the cladding is provided on the outer side of the core. Can be provided at a cost.
Moreover, since the low bending loss multimode fiber of the present invention has a low bending loss even with respect to an extremely small bending diameter, it can be suitably used for home wiring that requires wiring flexibility and workability.
In addition, the VCSEL laser for the 0.85 μm wavelength band is inexpensive, and the low bending loss multimode fiber of the present invention having a high band and a low bending loss in the 0.85 μm wavelength band is obtained from the ease of connection of the GI fiber. It is optimal as a fiber for the user to perform wiring and construct an optical LAN.
以下、図面を参照して本発明の実施形態を説明する。
図1は本発明に係る低曲げ損失マルチモードファイバの屈折率分布の一例を示す図である。図中、符号1はコア、2はクラッド、3はデプレスド領域を表し、また符号aはコア半径、rは半径、Δはクラッドに対する比屈折率差、r1はデプレスド領域内側境界までの半径、r2はデプレスド領域外側境界までの半径、Δ0はデプレスド領域の比屈折率差を表している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an example of a refractive index distribution of a low bending loss multimode fiber according to the present invention. In the figure,
この低曲げ損失マルチモードファイバは、前述した式(1)で表されるα乗屈折率分布をもつコア1と、その外側のクラッド2と、コア1の外側近傍に設けられ、クラッド2よりも低屈折率で均一な屈折率分布をもつデプレスド領域3とから構成されている。図1に示す低曲げ損失マルチモードファイバの屈折率分布は、半径rがaより小さい領域ではα乗屈折率分布に従い、r≧aの領域にはコア1を囲むリング状のデプレスド領域3を有する。好ましい例示において、コア1はGeドープ石英ガラス、クラッド2は石英ガラス、デプレスド領域3はFドープ石英ガラスからなっているが、これに限定されない。
This low-bending loss multimode fiber is provided in the
図1の例示においてこのデプレスド領域3は、r1からr2までの領域に形成され、クラッド2よりも低く均一な屈折率分布、すなわち単純な凹状の屈折率分布になっている。
この低曲げ損失マルチモードファイバは、従来公知のGIファイバ用母材製造プロセスにおいて、コアとなる母材の外側にクラッド層を形成する際に、Fドープ石英ガラスなどの低屈折率材料からなる層を介在させ、得られた母材を従来公知の方法で線引きすることにより製造することができる。
In the illustration of FIG. 1, the
This low bending loss multimode fiber is a layer made of a low refractive index material such as F-doped quartz glass when a cladding layer is formed on the outer side of the core base material in a conventionally known GI fiber base material manufacturing process. Can be produced by drawing the obtained base material by a conventionally known method.
このデプレスト領域3を有する低曲げ損失マルチモードファイバは、次の(a)〜(f)に示す条件のいずれかを満たすことが好ましい。
(a)0.85μm波長帯でOFL帯域が1.5GHz・km以上、定常モード励振時、φ10の曲げに対する曲げ損失が5dB/m以下であり、比屈折率差Δが0.011以下であること。
(b)0.85μm波長帯でOFL帯域が0.8GHz・km以上、定常モード励振時、φ10の曲げに対する曲げ損失が3dB/m以下であり、比屈折率差Δが0.022以下であること。
(c)Δ≦0.011、r≦25μmでα乗屈折率分布をもち、25μm≦r1≦28μm、26μm≦r2≦32μm、−0.006≦Δ0≦−0.001で表される凹状屈折率分布をもつデプレスド領域3を有すること。
(d)Δ≦0.022、r≦32.5μmでα乗屈折率分布をもち、32.5μm≦r1≦35.5μm、33.5μm≦r2≦40.5μm、−0.005≦Δ0≦−0.001で表される凹状屈折率分布をもつデプレスド領域を有すること。
(e)0.85μm波長帯でOFL帯域が0.4GHz・km以上、1.30mm波長帯でOFL帯域が0.4GHz・km以上、0.85μm及び1.30μmのいずれの波長帯に対しても、定常モード励振時、φ10の曲げに対する曲げ損失が5dB/m以下であり、比屈折率差Δが0.011以下であること。
(f)0.85μm波長帯でOFL帯域が0.3GHz・km以上、1.30mm波長帯でOFL帯域が0.3GHz・km以上、0.85μm及び1.30μmのいずれの波長帯に対しても、定常モード励振時、φ10の曲げに対する曲げ損失が3dB/m以下であり、比屈折率差Δが0.022以下であること。
The low bending loss multimode fiber having the
(A) In the 0.85 μm wavelength band, the OFL band is 1.5 GHz · km or more, the bending loss with respect to the bending of φ10 is 5 dB / m or less and the relative refractive index difference Δ is 0.011 or less at the time of steady mode excitation. thing.
(B) In the 0.85 μm wavelength band, the OFL band is 0.8 GHz · km or more, the bending loss with respect to the bending of φ10 is 3 dB / m or less and the relative refractive index difference Δ is 0.022 or less at the time of steady mode excitation. thing.
(C) Δ ≦ 0.011, r ≦ 25 μm, α power refractive index distribution, 25 μm ≦ r 1 ≦ 28 μm, 26 μm ≦ r 2 ≦ 32 μm, −0.006 ≦ Δ 0 ≦ −0.001 A
(D) Δ ≦ 0.022, r ≦ 32.5 μm, α power refractive index distribution, 32.5 μm ≦ r 1 ≦ 35.5 μm, 33.5 μm ≦ r 2 ≦ 40.5 μm, −0.005 ≦ It has a depressed region having a concave refractive index profile represented by Δ 0 ≦ −0.001.
(E) With respect to any wavelength band of 0.85 μm and 1.30 μm, the OFL band is 0.4 GHz · km or more in the 0.85 μm wavelength band, and the OFL band is 0.4 GHz · km or more in the 1.30 mm wavelength band. In the steady mode excitation, the bending loss with respect to the bending of φ10 is 5 dB / m or less, and the relative refractive index difference Δ is 0.011 or less.
(F) In the 0.85 μm wavelength band, the OFL band is 0.3 GHz · km or more, and in the 1.30 mm wavelength band, the OFL band is 0.3 GHz · km or more, for any of the wavelength bands of 0.85 μm and 1.30 μm. In the steady mode excitation, the bending loss with respect to the bending of φ10 is 3 dB / m or less, and the relative refractive index difference Δ is 0.022 or less.
この低曲げ損失マルチモードファイバは、α乗屈折率分布をもつコア2の外側に、単純な屈折率分布形状をしたデプレスド領域3を設けることにより、帯域を落とすことなく、曲げ損失特性を向上させることができ、極小な曲げ径に対しても低い曲げ損失を有するものとなる。
また、この低曲げ損失マルチモードファイバは、コアの外側にクラッドよりも低屈折率で均一な屈折率分布をもつデプレスド領域を設けた簡単な構造であるため、製造が容易であり、低コストで提供することができる。
また、この低曲げ損失マルチモードファイバは、極小な曲げ径に対しても低い曲げ損失を有することから、配線の柔軟性や施工性が要求される宅内配線に好適に用いることができる。
また、0.85μm波長帯用のVCSELレーザが安価であり、GIファイバの接続の容易さから、0.85μm波長帯で高い帯域と低い曲げ損失を有する本発明の低曲げ損失マルチモードファイバは、ユーザ自身が配線を行い、光LANを構築するためのファイバとして最適である。
This low bending loss multimode fiber improves the bending loss characteristics without dropping the band by providing a
In addition, this low bending loss multimode fiber has a simple structure in which a depressed region having a uniform refractive index distribution with a lower refractive index than that of the cladding is provided outside the core. Can be provided.
Moreover, since this low bending loss multimode fiber has a low bending loss with respect to an extremely small bending diameter, it can be suitably used for home wiring that requires wiring flexibility and workability.
In addition, the VCSEL laser for the 0.85 μm wavelength band is inexpensive, and the low bending loss multimode fiber of the present invention having a high band and a low bending loss in the 0.85 μm wavelength band is obtained from the ease of connection of the GI fiber. It is optimal as a fiber for the user to perform wiring and construct an optical LAN.
なお、本発明の低曲げ損失マルチモードファイバは、前述した例示に限定されるものではなく、種々の変更が可能である。
例えば、デプレスド領域3は一層に限らず、図5に示すようにコア1の外側に、それぞれ屈折率の異なる複数のデプレスド領域3A,3B,3C,3Dを設け、これらのデプレスド領域3A,3B,3C,3Dが多層階段状の屈折率分布をなしている構成としてもよい。
In addition, the low bending loss multimode fiber of this invention is not limited to the illustration mentioned above, A various change is possible.
For example, the
[実施例1]
波長0.85μmで最適化される低曲げ損失マルチモードファイバとして、図2に示すように、従来のα乗屈折率分布(α=2.04、a=25μm、Δ=0.01)をもつコアの外側に、r1=26μm、r2=30μmとなる凹状の屈折率分布をもつデプレスド領域を設ける。デプレスド領域の比屈折率差Δ0を変えた場合、有限要素法(K. Okamoto,“Comparison of calculated and measured impulse responses of optical fibers,”Appl. Opt., vol.18, pp.2199-2206, 1979参照。)に基づいて計算した帯域の変化を図3に示す。
図3に示すように、デプレスド領域の比屈折率差Δ0を0〜−0.004に設定した構造は、デプレスド領域がない構造に比べて高い帯域をもつ。すなわち、|Δ0|を0.004程度に大きくすることにより、帯域を劣化させることなく、曲げ損失を低減することが可能である。
従来のGIファイバ製造用のコア母材(r≦aに相当する部分の母材)を用い、外付け法によりファイバ母材を作製する際、デプレスド領域を設けない従来のファイバおよびデプレスド領域を設けたファイバを作製し、特性を比較した。デプレスド領域を設けていないGIファイバは、OFL(Overfilled-launched)帯域(規格IEC60793−1−49参照。)が2.3GHz・km、10mmの曲げ直径(φ10)に対して定常モード励振時(規格IEC60793−1−40参照。)の曲げ損失が10dB/mであったが、r1=26μm、r2=30μm、Δ0=−0.004のデプレスド領域を設けると、OFL帯域が2.2GHz・kmで、φ10に対して定常モード励振時の曲げ損失が2.5dB/mに改善された。
[Example 1]
As a low bending loss multimode fiber optimized at a wavelength of 0.85 μm, as shown in FIG. 2, it has a conventional α power refractive index profile (α = 2.04, a = 25 μm, Δ = 0.01). A depressed region having a concave refractive index distribution with r 1 = 26 μm and r 2 = 30 μm is provided outside the core. When the relative refractive index difference Δ 0 in the depressed region is changed, the finite element method (K. Okamoto, “Comparison of calculated and measured impulse responses of optical fibers,” Appl. Opt., Vol.18, pp.2199-2206, FIG. 3 shows the change of the bandwidth calculated based on 1979.
As shown in FIG. 3, the structure in which the relative refractive index difference Δ 0 in the depressed region is set to 0 to −0.004 has a higher band than the structure without the depressed region. That is, by increasing | Δ 0 | to about 0.004, it is possible to reduce bending loss without degrading the band.
When using a conventional GI fiber manufacturing core preform (a portion corresponding to r ≦ a) to produce a fiber preform by an external method, a conventional fiber and a depressed region are provided without a depressed region. Fibers were fabricated and the characteristics were compared. The GI fiber without a depressed region has an OFL (Overfilled-launched) band (see standard IEC 60793-1-49) at 2.3 GHz · km and a bending diameter (φ10) of 10 mm (standard) The bending loss of IEC 60793-1-40 was 10 dB / m. However, when a depressed region of r 1 = 26 μm, r 2 = 30 μm, Δ 0 = −0.004 is provided, the OFL band is 2.2 GHz. -At km, the bending loss during steady mode excitation with respect to φ10 was improved to 2.5 dB / m.
[実施例2]
実施例1では、デプレスド領域の比屈折率差Δ0を最適化して、低曲げ損失GIファイバを実現しているが、Δ0を固定して、デプレスド領域の幅を変えても同様な結果が得られる。図4は、r1=26μm、Δ0=−0.003と固定し、r2を変えた場合の帯域の変化を示す。
実施例1と同じコア母材を用いて、外付け時にr1=26μm、r2=28μm、Δ0=−0.003のデプレスド領域を設けると、OFL帯域が2.3GHz・kmで、φ10に対して定常モード励振時の曲げ損失が3.5dB/mに改善された。
[Example 2]
In Example 1, the relative refractive index difference Δ 0 in the depressed region is optimized to realize a low bending loss GI fiber. However, the same result can be obtained even when Δ 0 is fixed and the width of the depressed region is changed. can get. FIG. 4 shows changes in the band when r 1 = 26 μm and Δ 0 = −0.003 and r 2 is changed.
Using the same core base material as in Example 1 and providing a depressed region of r 1 = 26 μm, r 2 = 28 μm, and Δ 0 = −0.003 at the time of external attachment, the OFL band is 2.3 GHz · km, φ10 In contrast, the bending loss during steady mode excitation was improved to 3.5 dB / m.
[実施例3]
実施例1,2は、最も簡単な凹状屈折率分布をもつデプレスド領域を有する構造であるが、デプレスド領域の屈折率分布を単純な凹状に限定する必要はなく、多層構造でも同様な効果がある。α乗屈折率分布(α=2.04、a=25μm、Δ=0.01)の外側に、図5に示すような4層構造を有し、r1=25.5μm、r2=26.8μm、r3=28μm、r4=29μm、r5=30.1μm、Δ0=−0.001、Δ1=−0.002、Δ2=−0.004、Δ3=−0.003となる4層のデプレスド領域を設けた場合、計算したOFL帯域は2.68GHz・kmであった。
実施例1で使用したコア母材の外側に同じデプレスド領域を設けてファイバを作製すると、OFL帯域が2.3GHz・kmで、φ10に対して定常モード励振時の曲げ損失が2.8dB/mに改善された。
[Example 3]
Examples 1 and 2 are structures having a depressed region having the simplest concave refractive index distribution, but it is not necessary to limit the refractive index distribution of the depressed region to a simple concave shape, and the same effect can be obtained even in a multilayer structure. . 5 has a four-layer structure outside the α power refractive index distribution (α = 2.04, a = 25 μm, Δ = 0.01), r 1 = 25.5 μm, r 2 = 26. .8 μm, r 3 = 28 μm, r 4 = 29 μm, r 5 = 30.1 μm, Δ 0 = −0.001, Δ 1 = −0.002, Δ 2 = −0.004, Δ 3 = −0. When a four-layer depressed region having 003 was provided, the calculated OFL band was 2.68 GHz · km.
When a fiber is manufactured by providing the same depressed region outside the core base material used in Example 1, the OFL band is 2.3 GHz · km, and the bending loss during steady mode excitation with respect to φ10 is 2.8 dB / m. Improved.
[実施例4]
波長0.85μmでΔが0.02の低曲げ損失マルチモードファイバとして、従来のα乗屈折率分布(α=2.04、a=25μm、Δ=0.02)をもつコアの外側に、r1=34.5μm、r2=38.5μmと固定した凹状屈折率分布をもつデプレスド領域を設ける。デプレスド領域の比屈折率差Δ0を変えた場合、有限要素法に基づいて計算した帯域の変化を図6に示す。
図6に示すように、デプレスド領域の比屈折率差Δ0を0〜−0.0025に設定した構造は、デプレスド領域がない構造に比べて高い帯域をもつ。すなわち、|Δ0|を0.0025程度に大きくすることにより、帯域を劣化させることなく、曲げ損失を低減することが可能である。
従来のGIファイバのコア母材を用いて外付けする際、デプレスド領域を設けない従来のファイバおよびデプレスド領域を設けたファイバを作製し、特性を比較した。デプレスド領域を設けていないGIファイバは、OFL帯域が1.5GHz・km、φ10に対して定常モード励振時の曲げ損失が4.5dB/mであったが、r1=34.5μm、r2=38.5μm、Δ0=−0.0025のデプレスド領域を設けると、OFL帯域が1.5GHz・kmで、φ10に対して定常モード励振時の曲げ損失が2.0dB/mに改善された。
[Example 4]
As a low-bending loss multimode fiber with a wavelength of 0.85 μm and Δ of 0.02, outside the core having a conventional α power refractive index profile (α = 2.04, a = 25 μm, Δ = 0.02), A depressed region having a concave refractive index distribution fixed at r 1 = 34.5 μm and r 2 = 38.5 μm is provided. FIG. 6 shows a change in the band calculated based on the finite element method when the relative refractive index difference Δ 0 in the depressed region is changed.
As shown in FIG. 6, the structure in which the relative refractive index difference Δ0 in the depressed region is set to 0 to −0.0025 has a higher band than the structure without the depressed region. That is, by increasing | Δ 0 | to about 0.0025, it is possible to reduce the bending loss without degrading the band.
When externally attached using a core base material of a conventional GI fiber, a conventional fiber without a depressed region and a fiber with a depressed region were manufactured, and the characteristics were compared. The GI fiber not provided with the depressed region had an OFL band of 1.5 GHz · km and a bending loss of 4.5 dB / m during steady mode excitation with respect to φ10, but r 1 = 34.5 μm, r 2 = 38.5 μm, Δ 0 = -0.0025, when the depressed region is provided, the OFL band is 1.5 GHz · km, and the bending loss during steady mode excitation is improved to 2.0 dB / m for φ10 .
[実施例5]
実施例4では、デプレスド領域の比屈折率差Δ0を最適化して、低曲げ損失GIファイバを実現しているが、Δ0を固定して、デプレスド領域の幅を変えても同様な結果が得られる。図7は、r1=34.5μm、Δ0=−0.003と固定し、r2を変えた場合の帯域の変化を示す。
実施例4と同じコア母材を用いて、外付け時にr1=34.5μm、r2=36.0μm、Δ0=−0.003のデプレスド領域を設けると、OFL帯域が1.4GHz・kmで、φ10に対して定常モード励振時の曲げ損失が3.2dB/mに改善された。
[Example 5]
In Example 4, the relative refractive index difference Δ 0 in the depressed region is optimized to realize a low bending loss GI fiber, but the same result is obtained even when Δ 0 is fixed and the width of the depressed region is changed. can get. FIG. 7 shows changes in the band when r 1 = 34.5 μm and Δ 0 = −0.003 and r 2 is changed.
Using the same core base material as in Example 4 and providing a depressed region of r 1 = 34.5 μm, r 2 = 36.0 μm, and Δ 0 = −0.003 when externally attached, the OFL band is 1.4 GHz · At km, the bending loss during steady mode excitation was improved to 3.2 dB / m for φ10.
1…コア、2…クラッド、3,3A,3B,3C,3D…デプレスド領域。
DESCRIPTION OF
Claims (1)
a=25μm、α=2.04であり、
Δ=0.01、r≦25μmでα乗屈折率分布をもち、
前記デプレスド領域の4層の内側境界までの半径が、最も内側の層から順に、25.5μm、26.8μm、28μm及び29μmであり、最も外側の境界までの半径が30.1μmであり、
前記デプレスド領域の4層の比屈折率差Δ 0 が、最も内側の層から順に、−0.001、−0.002、−0.004及び−0.003であり、
0.85μm波長帯でOFL帯域が1.5GHz・km以上、定常モード励振時、φ10の曲げに対する曲げ損失が5dB/m以下であることを特徴とする低曲げ損失マルチモードファイバ。 The following formula (1)
a = 25 μm, α = 2.04,
Δ = 0.01 , r ≦ 25 μm and α power refractive index distribution,
The radius to the inner boundary of the four layers of the depressed area is 25.5 μm, 26.8 μm, 28 μm and 29 μm in order from the innermost layer, and the radius to the outermost boundary is 30.1 μm,
Wherein the relative refractive index difference delta 0 of 4 layers of Depuresudo region, in order from the innermost layer, -0.001, -0.002, was -0.004 and -0.003,
A low-bending loss multimode fiber characterized by having an OFL band of 1.5 GHz · km or more in a 0.85 μm wavelength band and a bending loss of 5 dB / m or less with respect to φ10 bending during steady mode excitation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004229003A JP4684593B2 (en) | 2004-08-05 | 2004-08-05 | Low bending loss multimode fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004229003A JP4684593B2 (en) | 2004-08-05 | 2004-08-05 | Low bending loss multimode fiber |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010294151A Division JP5461384B2 (en) | 2010-12-28 | 2010-12-28 | Low bending loss multimode fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006047719A JP2006047719A (en) | 2006-02-16 |
JP4684593B2 true JP4684593B2 (en) | 2011-05-18 |
Family
ID=36026342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004229003A Expired - Lifetime JP4684593B2 (en) | 2004-08-05 | 2004-08-05 | Low bending loss multimode fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4684593B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8737791B2 (en) | 2010-02-09 | 2014-05-27 | Ofs Fitel, Llc | DMD performance in bend optimized multimode fiber |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1024015C2 (en) | 2003-07-28 | 2005-02-01 | Draka Fibre Technology Bv | Multimode optical fiber provided with a refractive index profile, optical communication system using this and method for manufacturing such a fiber. |
US7787731B2 (en) * | 2007-01-08 | 2010-08-31 | Corning Incorporated | Bend resistant multimode optical fiber |
WO2009022479A1 (en) | 2007-08-13 | 2009-02-19 | The Furukawa Electric Co., Ltd. | Optical fiber and optical fiber tape and optical interconnection system |
US9042695B2 (en) | 2007-10-05 | 2015-05-26 | Optacore D.O.O. Optical Fibers | Low bending loss multimode fiber transmission system |
FR2922657B1 (en) | 2007-10-23 | 2010-02-12 | Draka Comteq France | MULTIMODE FIBER. |
US20090169163A1 (en) | 2007-12-13 | 2009-07-02 | Abbott Iii John Steele | Bend Resistant Multimode Optical Fiber |
JP5330729B2 (en) * | 2008-04-16 | 2013-10-30 | 三菱電線工業株式会社 | Graded index multimode optical fiber |
FR2932932B1 (en) | 2008-06-23 | 2010-08-13 | Draka Comteq France Sa | MULTIPLEX WAVE LENGTH OPTIC SYSTEM WITH MULTIMODE OPTIC FIBERS |
FR2933779B1 (en) | 2008-07-08 | 2010-08-27 | Draka Comteq France | MULTIMODE OPTIC FIBERS |
WO2010036684A2 (en) * | 2008-09-26 | 2010-04-01 | Corning Incorporated | High numerical aperture multimode optical fiber |
FR2940839B1 (en) | 2009-01-08 | 2012-09-14 | Draka Comteq France | INDEX GRADIENT MULTIMODAL OPTICAL FIBER, METHODS FOR CHARACTERIZATION AND MANUFACTURE OF SUCH A FIBER |
US8385702B2 (en) * | 2009-05-28 | 2013-02-26 | Corning Incorporated | Bend resistant multimode optical fiber |
FR2946436B1 (en) | 2009-06-05 | 2011-12-09 | Draka Comteq France | MULTIMODE OPTICAL FIBER WITH LARGE BANDWIDTH WITH AN OPTIMIZED HEAT-SLEEVE INTERFACE |
FR2957153B1 (en) | 2010-03-02 | 2012-08-10 | Draka Comteq France | MULTIMODE OPTICAL FIBER WITH BROAD BANDWIDTH AND LOW BENDBACK LOSSES |
US9014525B2 (en) | 2009-09-09 | 2015-04-21 | Draka Comteq, B.V. | Trench-assisted multimode optical fiber |
FR2949870B1 (en) | 2009-09-09 | 2011-12-16 | Draka Compteq France | MULTIMODE OPTICAL FIBER HAVING IMPROVED BENDING LOSSES |
FR2953029B1 (en) * | 2009-11-25 | 2011-11-18 | Draka Comteq France | MULTIMODE OPTICAL FIBER WITH LARGE BANDWIDTH WITH AN OPTIMIZED HEAT-SLEEVE INTERFACE |
FR2953605B1 (en) * | 2009-12-03 | 2011-12-16 | Draka Comteq France | MULTIMODE OPTICAL FIBER WITH BROAD BANDWIDTH AND LOW BENDBACK LOSSES |
FR2953606B1 (en) | 2009-12-03 | 2012-04-27 | Draka Comteq France | MULTIMODE OPTICAL FIBER WITH BROAD BANDWIDTH AND LOW BENDBACK LOSSES |
FR2953030B1 (en) * | 2009-11-25 | 2011-11-18 | Draka Comteq France | MULTIMODE OPTICAL FIBER WITH LARGE BANDWIDTH WITH AN OPTIMIZED HEAT-SLEEVE INTERFACE |
FR2950156B1 (en) | 2009-09-17 | 2011-11-18 | Draka Comteq France | MULTIMODE OPTIC FIBER |
US7865050B1 (en) * | 2010-02-16 | 2011-01-04 | Ofs Fitel, Llc | Equalizing modal delay of high order modes in bend insensitive multimode fiber |
US7903918B1 (en) | 2010-02-22 | 2011-03-08 | Corning Incorporated | Large numerical aperture bend resistant multimode optical fiber |
US8385703B2 (en) * | 2010-03-02 | 2013-02-26 | Corning Incorporated | High numerical aperture multimode optical fiber |
JP2012078804A (en) * | 2010-09-06 | 2012-04-19 | Shin Etsu Chem Co Ltd | Optical fiber, optical fiber preform, and manufacturing method thereof |
FR2966255A1 (en) * | 2010-10-18 | 2012-04-20 | Draka Comteq France | Multimode optical fibers selection method for transmission system, involves selecting fibers, where modal bandwidth and value of bandwidth are function of predetermined bending loss |
FR2966256B1 (en) * | 2010-10-18 | 2012-11-16 | Draka Comteq France | MULTIMODE OPTICAL FIBER INSENSITIVE TO LOSSES BY |
JP5461384B2 (en) * | 2010-12-28 | 2014-04-02 | 株式会社フジクラ | Low bending loss multimode fiber |
FR2971061B1 (en) | 2011-01-31 | 2013-02-08 | Draka Comteq France | BROAD BANDWIDTH OPTICAL FIBER WITH LOW CURB LOSSES |
ES2494640T3 (en) | 2011-01-31 | 2014-09-15 | Draka Comteq B.V. | Multimode fiber |
ES2674887T3 (en) | 2011-02-21 | 2018-07-04 | Draka Comteq B.V. | Interconnect cable for optical fibers |
EP2503368A1 (en) | 2011-03-24 | 2012-09-26 | Draka Comteq B.V. | Multimode optical fiber with improved bend resistance |
EP2506044A1 (en) | 2011-03-29 | 2012-10-03 | Draka Comteq B.V. | Multimode optical fiber |
EP2518546B1 (en) | 2011-04-27 | 2018-06-20 | Draka Comteq B.V. | High-bandwidth, radiation-resistant multimode optical fiber |
DE102011109838A1 (en) * | 2011-05-27 | 2012-11-29 | J-Plasma Gmbh | optical fiber |
CN102193142B (en) * | 2011-06-28 | 2013-06-26 | 长飞光纤光缆有限公司 | Bending-resistant large core high numerical aperture multimode fiber |
DK2541292T3 (en) | 2011-07-01 | 2014-12-01 | Draka Comteq Bv | A multimode optical fiber |
US8798420B2 (en) * | 2012-03-14 | 2014-08-05 | Sumitomo Electric Industries, Ltd. | Multi-mode optical fiber |
US8948559B2 (en) * | 2012-09-05 | 2015-02-03 | Ofs Fitel, Llc | Multiple LP mode fiber designs for mode division multiplexing |
DE102013200165B4 (en) | 2012-10-12 | 2019-09-19 | J-Fiber Gmbh | Optical fiber in the form of a bending-resistant multimode fiber and its use |
ES2654323T3 (en) | 2013-06-26 | 2018-02-13 | Draka Comteq Bv | Fiber optic multi-mode insensitive to curvature with reduced impact of leakage modes |
JP6051443B2 (en) * | 2014-01-14 | 2016-12-27 | ユーヴィックス株式会社 | Manufacturing method of liquid light guide |
JP2015132705A (en) * | 2014-01-14 | 2015-07-23 | ユーヴィックス株式会社 | Liquid light guide and method for manufacturing the same |
JP7019551B2 (en) * | 2018-12-12 | 2022-02-15 | 古河電気工業株式会社 | Fiber optics and optical systems |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59232302A (en) * | 1983-06-15 | 1984-12-27 | Sumitomo Electric Ind Ltd | Fiber for optical transmission |
WO2004025340A1 (en) * | 2002-09-12 | 2004-03-25 | Asahi Glass Company, Limited | Plastic optical fiber |
-
2004
- 2004-08-05 JP JP2004229003A patent/JP4684593B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59232302A (en) * | 1983-06-15 | 1984-12-27 | Sumitomo Electric Ind Ltd | Fiber for optical transmission |
WO2004025340A1 (en) * | 2002-09-12 | 2004-03-25 | Asahi Glass Company, Limited | Plastic optical fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8737791B2 (en) | 2010-02-09 | 2014-05-27 | Ofs Fitel, Llc | DMD performance in bend optimized multimode fiber |
Also Published As
Publication number | Publication date |
---|---|
JP2006047719A (en) | 2006-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4684593B2 (en) | Low bending loss multimode fiber | |
WO2011114795A1 (en) | Multi-core optical fibre and production method for same | |
JP3854627B2 (en) | Single-mode optical fiber with holes | |
JP7094915B2 (en) | Optical fiber | |
JP2009093070A (en) | Holey fiber | |
US9739935B2 (en) | Optical fiber and manufacturing method thereof | |
WO2019168054A1 (en) | Multicore fiber and manufacturing method therefor, and optical transmission system and optical transmission method | |
JP6393338B2 (en) | Optical fiber and manufacturing method thereof | |
WO2014199922A1 (en) | Optical fiber | |
JP2007536580A5 (en) | ||
JP5557953B2 (en) | Optical fiber | |
JP5461384B2 (en) | Low bending loss multimode fiber | |
JP4398491B2 (en) | Optical fiber | |
JP5356466B2 (en) | Holey fiber | |
JP2011027866A (en) | Vacancy optical fiber | |
US9234998B2 (en) | Optical fiber with a low-index core and a core grating | |
JP2006053331A (en) | Photonic crystal optical fiber | |
JP5248977B2 (en) | Method for producing hole-providing single mode optical fiber | |
JP4490464B2 (en) | Optical fiber and manufacturing method thereof | |
JP4644739B2 (en) | Polymer clad optical fiber | |
JP2023514642A (en) | structured silica clad silica optical fiber | |
JP4451360B2 (en) | Photonic band gap fiber and manufacturing method thereof | |
US8837888B1 (en) | Multimode optical fiber including a core and a cladding | |
JP4447529B2 (en) | Photonic band gap fiber and manufacturing method thereof | |
JP2007033547A (en) | Photonic band gap fiber and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091021 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101228 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110209 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4684593 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |