JP4674129B2 - Plastic molded products and plastic lenses - Google Patents
Plastic molded products and plastic lenses Download PDFInfo
- Publication number
- JP4674129B2 JP4674129B2 JP2005209276A JP2005209276A JP4674129B2 JP 4674129 B2 JP4674129 B2 JP 4674129B2 JP 2005209276 A JP2005209276 A JP 2005209276A JP 2005209276 A JP2005209276 A JP 2005209276A JP 4674129 B2 JP4674129 B2 JP 4674129B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- thickness
- rib
- plastic
- rib portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Description
本発明は、プラスチック部品等の射出成形を用いる成形品に関し、とくにプラスチックレンズ、ミラー等の高精度化が求められるプラスチック成形部品に関するものである。 The present invention relates to a molded article using injection molding of a plastic part or the like, and more particularly to a plastic molded part that requires high precision such as a plastic lens or a mirror.
近年、部品生産のタクトタイム短縮が一層重視されており、プラスチックモールド成形においては、高温のプラスチックの冷却・固化に要する時間が占める割合が大きいため、冷却時間を短縮する必要があるが、光学プラスチック部品は厚肉・偏肉形状のために冷却されにくく、寸法精度を維持するためには或る程度の冷却時間を設ける必要がある(例えば、特許文献1乃至8参照)。
特許文献1には、レンズの各断面積を等しくするため、断面におけるレンズ面とリブとの交点部の形状を変化させる技術が開示されており、また、特許文献2には同じく各部の断面積の変動を抑えるために、レンズ肉厚部の幅寸法を減じる技術が開示されている。特許文献3乃至8は本発明に関連する技術として単に列挙している。
かかる従来技術において、レンズ部は中央部が厚いのに対し、リブ部は薄くなっている。このレンズにおいては、レンズ部とリブ部を足し合わせた断面積が中央と端とでほぼ同一としている。
溶融樹脂射出成形により製造され、かつ少なくとも一面以上の機能部に高転写性が求められる高精度プラスチック成形品にあっては、機能上複雑な形状が射出成形によって形成される。かかるプラスチック成形品では、その複雑な形状の高精度化を達成するために成形条件や温度条件または加熱や徐冷などの手段により機能部の変形やヒケ等の不具合を低減し、所望の形状を形成している。
一例として上述のような従来技術を適用するプラスチックレンズ成形では、光学的機能面の高精度化により、長尺化したプラスチックレンズの高精度成形が望まれている。
そのプラスチックレンズは光学的機能面を有し、その光学的機能面の形状的剛性を向上させるために光学的機能面にリブを隣接した箱型プラスチックレンズとしている。このとき、光学的機能面の肉厚が光学的機能面に隣接したリブ部よりも厚いと光学的機能面にヒケや変形が生じ易くなる。
Patent Document 1 discloses a technique for changing the shape of the intersection of the lens surface and the rib in the cross section in order to make each cross-sectional area of the lens equal.
In such a conventional technique, the lens portion is thick at the central portion, whereas the rib portion is thin. In this lens, the cross-sectional area obtained by adding the lens portion and the rib portion is substantially the same at the center and at the end.
In a high-precision plastic molded product that is manufactured by molten resin injection molding and requires high transferability at least on one or more functional parts, a functionally complicated shape is formed by injection molding. In such a plastic molded product, in order to achieve high accuracy of the complicated shape, defects such as deformation of the functional part and sink marks are reduced by means of molding conditions, temperature conditions, heating or slow cooling, and the desired shape is obtained. Forming.
As an example, in plastic lens molding to which the above-described conventional technology is applied, high precision molding of an elongated plastic lens is desired due to high accuracy of the optical functional surface.
The plastic lens has an optical functional surface, and in order to improve the shape rigidity of the optical functional surface, a box-type plastic lens having a rib adjacent to the optical functional surface is used. At this time, if the thickness of the optical functional surface is thicker than the rib portion adjacent to the optical functional surface, sink marks and deformation are likely to occur on the optical functional surface.
上記従来技術は、断面形状における熱容量を等しくすることを目的としている。プラスチック成形では、その所望の形状に対し、成形品肉厚の薄い部分は早く固化するためにヒケや変形が生じ難いが、肉厚の厚い部分では遅く固化するので、ヒケや変形が生じ易くなる特性が有り、従来技術の成形条件や温度条件のみで機能部の変形やヒケを制御するには限界が有る。
そこで、本発明の目的は、プラスチックレンズの形状に着目し、光学的機能面の性能を低下させず、非光学的機能面は許容される範囲内でリブや構造の肉厚を変化させ、光学的機能面の変形やヒケのメカニズムを所望のプラスチック成形品の形状そのものを工夫することによって制御し、光学的機能上、長尺化したプラスチックレンズの変形やヒケという問題を解消して、高精度プラスチック成形を具現化できるプラスチック成形品を提供することにある。
The above prior art aims at equalizing the heat capacities in the cross-sectional shapes. In plastic molding, shrinkage and deformation are less likely to occur because the thin part of the molded product solidifies quickly compared to its desired shape, but sinking and deformation are likely to occur because it solidifies later in the thick part. There is a characteristic, and there is a limit in controlling the deformation and sink of the functional part only by the molding conditions and temperature conditions of the prior art.
Therefore, the object of the present invention is to focus on the shape of the plastic lens, without degrading the performance of the optical functional surface, and by changing the thickness of the rib or structure within the allowable range of the non-optical functional surface, By controlling the deformation and sinking mechanism of the functional surface by devising the shape of the desired plastic molded product, the problem of the deformation and sinking of the plastic lens that has become longer in terms of optical function can be solved with high accuracy. The object is to provide a plastic molded product that can embody plastic molding.
上記の課題を解決するために、請求項1に記載の発明は、長尺化された少なくとも一面以上の高転写性が求められるレンズ部と、該レンズ部に隣接している少なくとも一面以上のリブ部と、を有するプラスチックレンズにおいて、前記レンズ部の光軸方向肉厚と、該光軸方向と直交する方向での前記リブ部の肉厚との肉厚比を、前記レンズ部の肉厚の変化に対応させて前記リブ部の内形形状を変化させることにより制御し、各長手方向位置において一定に設定したことを特徴とする。
請求項2の発明は、請求項1において、前記リブ部の内形形状は、複数の小平面を不連続に連設することにより構成されていることを特徴とする。
請求項3の発明は、長尺化された少なくとも一面以上の高転写性が求められるレンズ部と、該レンズ部に隣接している少なくとも一面以上のリブ部と、を有するプラスチックレンズにおいて、前記レンズ部の光軸方向肉厚と、該光軸方向と直交する方向での前記リブ部の肉厚との肉厚比を、前記レンズ部と前記リブ部の肉厚比は、前記プラスチックレンズ本体を形成するリブ部の外形形状を変化させることにより制御し、各長手方向位置において一定に設定したことを特徴とする。
請求項4の発明は、請求項3において、前記リブ部の外形形状は、複数の小平面を不連続に連設することにより構成されていることを特徴とする。
請求項5の発明は、長尺化された少なくとも一面以上の高転写性が求められるレンズ部と、該レンズ部に隣接している少なくとも一面以上のリブ部と、を有するプラスチックレンズにおいて、前記レンズ部の光軸方向肉厚と、該光軸方向と直交する方向での前記リブ部の肉厚との肉厚比を、前記レンズ部と前記リブ部の肉厚比は、前記プラスチックレンズ本体を形成する前記リブ部の内形および外形形状を変化させることにより制御し、各長手方向位置において一定に設定したことを特徴とする。
請求項6の発明は請求項5において、前記リブ部の内形および外形形状は、複数の小平面を不連続に連設することにより構成されていることを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a long-length lens part requiring high transferability of at least one surface, and at least one surface rib adjacent to the lens portion. A thickness ratio between the thickness of the lens portion in the optical axis direction and the thickness of the rib portion in a direction orthogonal to the optical axis direction is equal to the thickness of the lens portion. It is controlled by changing the inner shape of the rib portion corresponding to the change, and is set constant at each longitudinal position.
According to a second aspect of the present invention, in the first aspect , the inner shape of the rib portion is constituted by discontinuously connecting a plurality of small planes.
According to a third aspect of the present invention, there is provided a plastic lens having an elongated lens portion that is required to have high transferability of at least one surface, and at least one or more rib portions adjacent to the lens portion. The thickness ratio of the thickness of the rib portion in the direction orthogonal to the optical axis direction and the thickness ratio of the rib portion in the direction orthogonal to the optical axis direction is the thickness ratio of the lens portion and the rib portion. It is controlled by changing the outer shape of the rib portion to be formed , and is set to be constant at each longitudinal position.
According to a fourth aspect of the present invention, in the third aspect , the outer shape of the rib portion is configured by discontinuously connecting a plurality of small planes.
According to a fifth aspect of the present invention, there is provided a plastic lens having an elongated lens portion that is required to have a high transfer property on at least one surface, and at least one rib portion adjacent to the lens portion. The thickness ratio of the thickness of the rib portion in the direction orthogonal to the optical axis direction and the thickness ratio of the rib portion in the direction orthogonal to the optical axis direction is the thickness ratio of the lens portion and the rib portion. It is controlled by changing an inner shape and an outer shape of the rib portion to be formed, and is set to be constant at each longitudinal position.
The invention of claim 6 is characterized in that, in claim 5 , the inner shape and the outer shape of the rib portion are constituted by discontinuously connecting a plurality of small planes.
本発明によれば、少なくとも一面以上の高転写性が求められる光学的機能部と、この光学的機能部に隣接している少なくとも一面以上の非光学的機能部を有するプラスチック成形品において、前記機能部と前記非機能部に直交する任意断面における機能部と非機能部の肉厚比を一定にしたので、射出成形で溶融温度以上に加熱された成形樹脂が金型装置内に充填され、樹脂固化温度に到達するまでの徐冷期間に発生する固化タイミングの差をほぼ均一化して、樹脂圧の変化に伴う密度差を低減し、変形やヒケの無い高精度のプラスチック成形品を得ることができる。
また、本発明によれば、長尺化された少なくとも一面以上の高転写性が求められる光学的機能を持つレンズ部を有し、その光学的機能を持つレンズ部に接している少なくとも一面以上の光学的機能を持たないリブ部を有するプラスチックレンズにおいて、前記高転写性が求められる光学的機能を持つレンズ部と光学的機能を持たないリブ部に直交する任意断面におけるレンズ部とリブ部の肉厚比を一定にしたので、光学的機能上長尺化したプラスチックレンズで各短手断面におけるレンズ厚さとそれに隣接する光学的機能を持たないリブ部の直交方向の固化タイミングをほぼ均一にし、変形やヒケの無い高精度のプラスチック成形品を得ることができる。
According to the present invention, in a plastic molded article having an optical function part that requires high transferability of at least one surface and at least one non-optical function part adjacent to the optical function part, the function is described above. Since the thickness ratio of the functional part and the non-functional part in an arbitrary cross section orthogonal to the part and the non-functional part is made constant, a molding resin heated above the melting temperature by injection molding is filled in the mold apparatus, and the resin The difference in solidification timing that occurs during the slow cooling period until the solidification temperature is reached can be made almost uniform, the density difference accompanying the change in resin pressure can be reduced, and high-precision plastic molded products free from deformation and sink can be obtained. it can.
In addition, according to the present invention, the elongated lens unit has an optical function that requires high transferability of at least one surface, and has at least one surface in contact with the lens unit having the optical function. In a plastic lens having a rib portion having no optical function, the lens portion having the optical function required to have high transferability and the thickness of the lens portion and the rib portion in an arbitrary cross section perpendicular to the rib portion having no optical function. Since the thickness ratio is constant, the plastic thickness of the optical function is long, and the lens thickness in each short cross section and the solidification timing in the orthogonal direction of the rib part that does not have the optical function adjacent to it are almost uniform and deformed. It is possible to obtain a high-precision plastic molded product free from dents and sink marks.
以下、図面を参照して、本発明の実施の形態及び本発明とは異なるが、上記課題を解決する参考実施形態を詳細に説明する。図1はプラスチック成形品の参考実施形態の光学的機能部(以下、機能部、という)と非光学的機能部(以下、非機能部、という)の各構成を説明する概略正面図である。図2は図1のプラスチック成形品の側面図である。図3(a)は図1のプラスチック成形品の上面図、(b)は斜視図である。
図1乃至図3に示される参考実施形態にかかるプラスチック成形品(プラスチックレンズ)1は、少なくとも一面以上の高転写性が求められる機能部A(レンズ部)と、機能部Aの外周に一体化して連設配置された少なくとも一面以上の非機能部B(リブ部)と、を有している。
プラスチック成形品1は、機能部Aと非機能部Bに対して直交する任意断面における機能部Aと非機能部Bの各肉厚を、互いの肉厚比が一定になるように構成した点に特徴を有している。つまり、どの位置における任意断面においても機能部Aと非機能部Bの各肉厚の比が一定になるように構成している。
Hereinafter, embodiments of the present invention and reference embodiments that solve the above-described problems will be described in detail with reference to the drawings. FIG. 1 is a schematic front view illustrating respective configurations of an optical function part (hereinafter referred to as a function part) and a non-optical function part (hereinafter referred to as a non-function part) of a reference embodiment of a plastic molded product. FIG. 2 is a side view of the plastic molded product of FIG. 3A is a top view of the plastic molded product of FIG. 1, and FIG. 3B is a perspective view.
A plastic molded product (plastic lens) 1 according to the reference embodiment shown in FIGS. 1 to 3 is integrated with a functional part A (lens part) that requires at least one surface having high transferability and an outer periphery of the functional part A. And at least one non-functional part B (rib part) arranged continuously.
Plastic moldings 1, each thickness of the functional portion A and the non-functional portion B at an arbitrary cross section perpendicular to the functional unit A and the non-functional part B, is configured as the thickness ratio of each other becomes constant It is characterized by a point. That is, the thickness ratio between the functional part A and the non-functional part B is configured to be constant in any cross section at any position.
図1乃至図3に示したプラスチック成形品1を構成する機能部Aは、側面断面図(図1)及び正面図(図2)から見て円弧状(曲面状)に形成された機能部Aの外周に、平板状(矩形環状)の非機能部Bが形成されている。
機能部Aの厚さは図2の側面図から見てとれるように長手方向の端部D1と中央部D2の各断面厚が、端部D1厚さ<中央部D2の厚さ、となり、その機能上の必要から厚さが異なる形状となっている。一方、非機能部Bの厚さEは、長手方向のどの部分においても変化は小さい。
このプラスチック成形品1は、射出成形用金型装置(図示せず)において、溶融温度以上で加熱された成形樹脂をその金型装置内の成形品形成部に充填して成形してから、樹脂固化温度に達するまで徐冷期間を設け、樹脂固化温度に達した時点でプラスチック成形品を取り出すことにより製造される。
しかし、図1乃至図3において、プラスチック成形品の機能部Aは、側面から見た長手方向の厚みが一定でなく、中央部が最大厚で両側へ向かうほど曲線状に厚みが漸減する。そして、溶融温度以上で加熱された成形樹脂を金型装置内の成形品形成部に充填し、樹脂固化温度に達するまでの徐冷期間において、溶融樹脂の固化タイミング(固化に要する時間)が端部D1に対応する非機能部Bの端部部分では機能部Aの厚さと非機能部Bの厚さとの間に差が少ないので、両部分の硬化に要する時間に差を生じることは少ないが、中央部D2に対応する非機能部Bの中央部分では、機能部と非機能部の各断面の肉厚差が大きくなるので両者の固化タイミング(固化時間)に差を生じる。
実際、金型装置内の成形品形成部において成形品の徐冷が進む過程で、固化タイミング(固化進行度)が非機能部Bの中央部分では、機能部Aの中央部分との肉厚差に起因して、非機能部Bの端部部分の固化速度に比較して固化速度が同等には進行しておらず、さらに、非機能部Bの中央部分の固化速度は端部より遅くなり、中央部D2付近では樹脂圧低下により密度が粗になるので機能部Aにヒケが発生してしまう。
The functional part A constituting the plastic molded product 1 shown in FIG. 1 to FIG. 3 is a functional part A formed in an arc shape (curved surface) when viewed from a side sectional view (FIG. 1) and a front view (FIG. 2). A non-functional portion B having a flat plate shape (rectangular ring shape) is formed on the outer periphery of the plate.
As can be seen from the side view of FIG. 2, the thickness of the functional part A is such that the cross-sectional thicknesses of the end part D1 and the central part D2 in the longitudinal direction are the end part D1 thickness <the thickness of the central part D2, The thickness is different due to functional requirements. On the other hand, the thickness E of the non-functional part B is small in any part in the longitudinal direction.
This plastic molded product 1 is molded by filling a molded product forming portion in the mold apparatus with a molding resin heated at a melting temperature or higher in an injection mold apparatus (not shown), and then molding the resin. A slow cooling period is provided until the solidification temperature is reached, and the plastic molded product is taken out when the resin solidification temperature is reached.
However, in FIGS. 1 to 3, the functional part A of the plastic molded product has a constant thickness in the longitudinal direction as viewed from the side surface, and the thickness gradually decreases in a curved shape toward the both sides with the maximum thickness at the central part. Then, the molding resin heated at the melting temperature or higher is filled in the molded product forming portion in the mold apparatus, and the solidification timing of the molten resin (the time required for solidification) is over in the slow cooling period until the resin solidification temperature is reached. Since there is little difference between the thickness of the functional part A and the thickness of the non-functional part B at the end part of the non-functional part B corresponding to the part D1, there is little difference in the time required for curing both parts. In the central part of the non-functional part B corresponding to the central part D2, the difference in thickness between the cross-sections of the functional part and the non-functional part becomes large, so that a difference occurs in the solidification timing (solidification time) between them.
In fact, in the process of slow cooling of the molded product in the molded product forming part in the mold apparatus, the thickness difference between the central part of the non-functional part B and the central part of the functional part A in the central part of the non-functional part B Due to the above, the solidification rate does not proceed equally as compared with the solidification rate of the end portion of the non-functional part B, and the solidification rate of the central part of the non-functional part B becomes slower than the end part. In the vicinity of the center portion D2, the density becomes rough due to a decrease in the resin pressure, so that sink marks occur in the functional portion A.
そこで、参考実施形態では、プラスチック成形品1の固化速度の差異に着目し、図1の正面図において、付加肉厚部Ca、Cbの付加肉厚面Ca1〜Ca2、Cb1〜Cb2をプラスチック成形品1の非機能部Bに付与し、図3の上面図の中心線に直交する方向の断面の機能部肉厚を端部D1:Ca1〜Ca2、同じく中央部D2:Cb1〜Cb2の関係で一定とする。D1位置における寸法差は、D2位置よりも少ない。
それにより機能部Aの図3の上面図の中心線Lと直交する方向の断面における断面肉厚の差が無いプラスチック成形品を形成すると、溶融樹脂の固化タイミングに均一性が得られ、図1の機能部位Aで見られた肉厚差が生じる部分でのヒケの発生が低減される。
さらに、プラスチック成形品1に変形やヒケが発生するメカニズムを、前述のごとく図示してない金型装置内の成形品形成部に溶融樹脂を充填してから徐冷が行われ、成形品が取り出されるまでの過程において説明する。
図1乃至図3のプラスチック成形品1は、円弧形状の機能部Aと矩形環状(平板状)の非機能部Bとから形成されている。このプラスチック成形品1を得るために金型装置内の形成空間内には機能部Aと非機能部Bに対応した入子が配置される。とくに、機能部Aを形成する成形面は高転写性が求められるため、高精度に作り込まれた入子部品が用いられ、その形成空間内に溶融温度以上で加熱した樹脂を充填する。なお、高転写性が得られる光学的機能部とは、例えば表面粗さRzで基準長さを0.08mmとしたとき、80nm以下のものを通常は光学鏡面と指称するが、この程度の光学鏡面を含む概念である。
前記形成空間内では溶融樹脂の徐冷により樹脂温度が低下し始め、樹脂の固化が始まる。時間的には、成形品の薄肉部から厚肉部の順で固化が進むが、端部D1に対応する非機能部Bは、直交する断面(縦断面)の縦横の肉厚差が少ないために固化タイミング差が生じ難いため、同じ樹脂圧状態で固化するので所望の形状に形成される。
しかし、D2と非機能部Bは、D1と非機能部Bよりも、直交する断面の縦横方向の肉厚の差が大きいため、固化タイミングに差を生じる。そのために、肉厚差の大きい非機能部では、薄肉の部分は早く固化し、密度が密になるが、遅く固化する厚肉部分では樹脂圧低下により密度が粗になり、結果として対応する機能部Aに変形やヒケが生じ易いために所望の形状を得られないことが多い。
Therefore, in the reference embodiment , paying attention to the difference in the solidification rate of the plastic molded product 1, in the front view of FIG. 1, the additional thick surfaces Ca1 to Ca2 and Cb1 to Cb2 of the additional thickened portions Ca and Cb are plastic molded products. 1 is applied to the non-functional part B, and the functional part thickness in the cross section in the direction perpendicular to the center line of the top view of FIG. 3 is constant depending on the relationship of the end part D1: Ca1-Ca2 and the central part D2: Cb1-Cb2. And The dimensional difference at the D1 position is smaller than that at the D2 position.
Thereby, when a plastic molded product having no difference in cross-sectional thickness in the cross section in the direction orthogonal to the center line L in the top view of FIG. 3 of the functional part A is formed, uniformity in the solidification timing of the molten resin is obtained. The occurrence of sink marks in the portion where the difference in thickness seen in the functional part A is reduced.
Further, as described above, the mechanism of deformation and sinking in the plastic molded product 1 is gradually cooled after filling the molded product forming portion in the mold apparatus (not shown) with a molten resin, and the molded product is taken out. This will be explained in the process up to.
The plastic molded article 1 shown in FIGS. 1 to 3 is formed of an arc-shaped functional part A and a rectangular annular (flat plate) non-functional part B. In order to obtain the plastic molded product 1, inserts corresponding to the functional part A and the non-functional part B are arranged in the forming space in the mold apparatus. In particular, since the molding surface for forming the functional part A is required to have high transferability, a nested part made with high accuracy is used, and the formation space is filled with a resin heated at a melting temperature or higher. Note that the optical functional part that can achieve high transferability is usually referred to as an optical mirror surface when the reference length is 0.08 mm and the surface roughness is Rz. It is a concept that includes a mirror surface.
In the formation space, the resin temperature begins to decrease due to the slow cooling of the molten resin, and the resin begins to solidify. In terms of time, solidification progresses in the order of the thin-walled portion to the thick-walled portion of the molded product, but the non-functional portion B corresponding to the end portion D1 has a small vertical and horizontal thickness difference in the orthogonal cross section (vertical cross section). Since the difference in solidification timing hardly occurs, the solidification is carried out under the same resin pressure state, so that the desired shape is formed.
However, D2 and the non-functional part B have a larger difference in thickness in the vertical and horizontal directions of the cross-sections orthogonal to each other than D1 and the non-functional part B, so that a difference in solidification timing occurs. For this reason, in the non-functional part where the thickness difference is large, the thin part solidifies quickly and the density becomes dense, but in the thick part that solidifies slowly, the density becomes coarse due to a decrease in the resin pressure, resulting in a corresponding function. In many cases, a desired shape cannot be obtained because the portion A is easily deformed or sinked.
ここでプラスチック成形品の固化速度差に起因して発生する部分的な樹脂密度差について着目すると、樹脂の密度差の発生が顕著なのは機能部Aとそれに隣接する非機能部Bの直交する任意断面の前記機能部Aと非機能部Bの肉厚比が大きい場所である。つまり、プラスチック成形品を図3の中心線Lと直交する線で切断した場合の機能部Aと非機能部Bの各断面の肉厚の差が大きい。
図2においては、機能部Aの中央部D2付近が非機能部Bの中央部に対して最も肉厚差が大きい部分であり、両者の固化速度に大きな差が発生する箇所である。参考実施形態では、機能部Aの中央部D2とそれに隣接(連設)する非機能部Bの中央部の固化時間差をほぼ無くすることで樹脂固化時の両者の密度を均等化し、機能部Aの中央部に発生し易い変形やヒケを少なくして、高精度な成形品を得るようにしている。
図1において、破線で示した付加部Ca、Cbは、機能部Aの断面肉厚とそれに隣接する非機能部Bの断面肉厚との差に起因した各部の固化速度差を低減するためにプラスチック成形品1に対して付加した部分である。Cn(n=a or b)を付加後の非機能部B’とすると、B’=B+Cnとなる。
機能部Aと非機能部Bの固化タイミングをほぼ均一にするために、図3の上面図に示したように、機能部Aの幅Ca1、Ca2と、付加部Cb1、Cb2の各肉厚を設定した。
機能部Aの端部D1、中央部D2の縦断面肉厚の違いに対応して、機能部Bの両側面に付加部分Ca、Cbを増加設定したことにより、機能部Aと非機能部Bの肉厚比が一定になり、プラスチック成形品の各部で機能部Aと非機能部Bの固化タイミングをほぼ均一にし、固化時の樹脂圧変化による密度差を少なくし、ヒケや変形を抑えた高精度な成形品を得ることができる。
参考実施形態では、機能部A(レンズ部)の透過方向厚と、非機能部B(リブ部)の幅方向肉厚の比を一定に保つことで、レンズ縦横方向の偏収縮を各縦断面部で等しくさせるようにしている。縦断面積を等しくして、長手各部の冷却固化に要する時間を等しくすることよりも、レンズの縦横方向の偏収縮を長手方向各部で同等にすることによる形状精度の向上を目指している。
一方、参考実施形態では上述したように、レンズ部については「縦断面肉厚」に着目し、リブ部については平面方向から見た「幅」(幅厚)に着目し、この比を一定に保つことで偏収縮を防ぐようにしている。
Here, when attention is paid to the partial resin density difference generated due to the difference in the solidification speed of the plastic molded product, the occurrence of the resin density difference is remarkable in any cross section perpendicular to the functional part A and the non-functional part B adjacent thereto. The functional part A and the non-functional part B have a large thickness ratio. That is, the difference in the thickness of each cross section of the functional part A and the non-functional part B when the plastic molded product is cut along a line orthogonal to the center line L in FIG.
In FIG. 2, the vicinity of the central part D2 of the functional part A is the part having the largest thickness difference with respect to the central part of the non-functional part B, and is a part where a large difference occurs between the solidification speeds. In the reference embodiment , the density of both at the time of resin solidification is equalized by substantially eliminating the difference in solidification time between the central part D2 of the functional part A and the central part of the non-functional part B adjacent (continuously provided) to the functional part A. The deformation and sink marks that are likely to occur in the central part are reduced, and a highly accurate molded product is obtained.
In FIG. 1, the additional portions Ca and Cb indicated by broken lines are used to reduce the difference in the solidification rate of each part due to the difference between the cross-sectional thickness of the functional part A and the cross-sectional thickness of the non-functional part B adjacent thereto. This is a portion added to the plastic molded product 1. Assuming that Cn (n = a or b) is the non-functional part B ′ after addition, B ′ = B + Cn.
In order to make the solidification timing of the functional part A and the non-functional part B substantially uniform, as shown in the top view of FIG. 3, the widths Ca1 and Ca2 of the functional part A and the thicknesses of the additional parts Cb1 and Cb2 are set. Set.
Corresponding to the difference in the vertical cross-sectional thickness of the end part D1 and the center part D2 of the functional part A, the additional parts Ca and Cb are set to increase on both side surfaces of the functional part B, so that the functional part A and the non-functional part B The thickness ratio is constant, the solidification timing of the functional part A and the non-functional part B is almost uniform in each part of the plastic molded product, the difference in density due to resin pressure change during solidification is reduced, and sink marks and deformation are suppressed. A highly accurate molded product can be obtained.
In the reference embodiment , the ratio of the transmission direction thickness of the functional part A (lens part) and the thickness in the width direction of the non-functional part B (rib part) is kept constant so that the vertical contraction and contraction in the vertical and horizontal directions of the lens To make them equal. Rather than equalizing the vertical cross-sectional area and equalizing the time required for cooling and solidifying each part in the longitudinal direction, the aim is to improve the shape accuracy by making the partial contraction in the longitudinal and lateral directions of the lens equal in each part in the longitudinal direction.
On the other hand, in the reference embodiment , as described above, the lens portion is focused on “thickness of the longitudinal section”, and the rib portion is focused on “width” (width / thickness) viewed from the plane direction. By keeping it, we try to prevent partial shrinkage.
図4は本発明によるプラスチック成形品の実施の形態の機能部と非機能部を説明する概略斜視図である。図5は図4のプラスチック成形品の断面AA−AA’に沿う断面図である。図6は図4の矢視AAAから見た矢視図である。図7は図4のプラスチック成形品の断面BB-BB’に沿う断面図である。
本発明による実施の形態は、長尺化された少なくとも一面以上の高転写性が求められる光学的機能を持つレンズ部を有し、レンズ部に隣接している少なくとも一面以上の光学的機能を持たないリブ部を有するプラスチックレンズ2に関する。
図4乃至図7のプラスチック成形品(プラスチックレンズ)2は、光学的機能を持つレンズ部Fと、光学的機能を持たない矩形環状のリブ部Gと、で構成されている。また、図5および図7に図示したようにレンズ部Fは、その外周縁全体を、矩形環状枠型のリブ部Gの内壁の中間高さ位置に一体的に連設されている。
さらに、図7に示した非球面のプラスチックレンズ部Fは、長手方向の各部位ty1〜ty3の厚さが異なっている。リブ部Gの形状、特に外周部Ga、Gbの幅(リブ厚)は、レンズ部Fの強度向上のためや、光走査装置レイアウトにより、光学設計者が任意に設定できるものであるが、リブ厚Ga、Gbの変化(リブ厚差)は全長に亘って小さい。
プラスチックレンズ2は、射出成形金型装置内において、溶融温度以上にて加熱された成形樹脂をその金型装置内の成形品形成部(成形空間)内に充填し、充填完了後に、樹脂固化温度に達するまで徐冷期間を設け、樹脂固化温度に達した時点でプラスチックレンズを取り出すといった従来技術の射出成形によってその所望の形状を得ている。
Figure 4 is a schematic perspective view illustrating a functional portion and a non-functional part of the implementation in the form of a plastic molded article according to the present invention. FIG. 5 is a sectional view taken along a section AA-AA ′ of the plastic molded product of FIG. FIG. 6 is an arrow view seen from the arrow AAA in FIG. FIG. 7 is a cross-sectional view taken along the section BB-BB ′ of the plastic molded product of FIG.
Implementation of forms that by the present invention, elongated by having a lens unit having an optical function of at least one surface or more high transfer resistance is required, the optical over at least one surface that is adjacent to the lens unit The present invention relates to a
A plastic molded product (plastic lens) 2 shown in FIGS. 4 to 7 includes a lens portion F having an optical function and a rectangular annular rib portion G having no optical function. Further, as shown in FIGS. 5 and 7, the entire outer peripheral edge of the lens portion F is integrally connected to an intermediate height position of the inner wall of the rib portion G of the rectangular annular frame type.
Further, in the aspheric plastic lens portion F shown in FIG. 7, the thicknesses of the portions ty1 to ty3 in the longitudinal direction are different. The shape of the rib part G, in particular the width (rib thickness) of the outer peripheral parts Ga and Gb, can be arbitrarily set by the optical designer for improving the strength of the lens part F or by the optical scanning device layout. Changes in the thickness Ga and Gb (rib thickness difference) are small over the entire length.
The
しかし、図7における説明の通り、レンズ部Fは長手方向に沿った各部の縦断面厚みが異なっており、図5に示したリブ厚txとレンズ厚tyとの関係(厚さ比)が断面AA−AA’をとる位置(長手方向位置)で異なっている。なお、リブ厚txは図4の断面AA−AA’におけるリブ厚(平面方向から見たリブ幅)、レンズ厚tyは図4の断面AA−AA’で見た母線上のレンズ厚(縦断面厚み)を示している。
プラスチックレンズ2を射出成形する場合、溶融温度以上で加熱された成形樹脂をその金型装置内のレンズ形成部に充填し樹脂固化温度に達するまでの徐冷期間で、図7のレンズ部Fの長手方向各部ty1〜ty3における厚みが異なるために、全長に亘ってほぼ均一な厚さであるリブ部txに対する溶融樹脂の固化タイミングに差が生じている。
実際、金型装置内のレンズ形成部では徐冷が進む過程で、レンズ部Fの縦断面厚さが長手方向各部で一定でないのに対して、リブ部Gの幅方向厚さがほぼ均一であるため、溶融樹脂の固化のタイミングがty3:tx3では、断面の肉厚がほぼ均一なのでタイミングに差を生じることは少ない。つまり、レンズ部ty3の縦断面肉厚とリブ部tx3の幅が同等である場合には、固化時間がほぼ同等になる。
しかし、レンズ部ty1と、それに対応するリブ部tx1との関係、レンズ部ty2と、それに対応するレンズ部tx2との関係では、断面肉厚と平面方向幅寸法との間に差があるため、固化に要する時間に差を生じ、またty1とtx1との関係、ty2とtx2では断面の肉厚の差から、各断面内で固化が均一に進行しておらず、さらにレンズ部の厚みが大きい部位であるty2、ty1と、対応する各リブ部tx2、tx1との関係では、レンズ部とそれに対応するリブ部との間の固化速度に差が大きくなり、固化速度の遅くなるty2、ty1付近では樹脂圧低下により密度が粗になるのでヒケが発生してしまう。
However, as described in FIG. 7, the lens portion F has a different longitudinal cross-sectional thickness along the longitudinal direction, and the relationship (thickness ratio) between the rib thickness tx and the lens thickness ty shown in FIG. It differs in the position (longitudinal direction position) which takes AA-AA '. The rib thickness tx is the rib thickness (rib width seen from the plane direction) in the section AA-AA ′ in FIG. 4, and the lens thickness ty is the lens thickness (longitudinal section) on the generatrix viewed in the section AA-AA ′ in FIG. Thickness).
When the
Actually, in the process of gradual cooling in the lens forming part in the mold apparatus, the longitudinal sectional thickness of the lens part F is not constant in each part in the longitudinal direction, whereas the thickness in the width direction of the rib part G is substantially uniform. Therefore, when the timing of solidification of the molten resin is ty3: tx3, the thickness of the cross section is almost uniform, so there is little difference in timing. That is, when the longitudinal cross-sectional thickness of the lens portion ty3 and the width of the rib portion tx3 are equal, the solidification time is substantially equal.
However, in the relationship between the lens portion ty1 and the corresponding rib portion tx1, the relationship between the lens portion ty2 and the corresponding lens portion tx2, there is a difference between the cross-sectional thickness and the planar width dimension. There is a difference in the time required for solidification, and due to the relationship between ty1 and tx1 and the difference in cross-sectional thickness between ty2 and tx2, solidification does not progress uniformly in each cross section, and the thickness of the lens portion is large. In the relationship between the parts ty2 and ty1 and the corresponding rib portions tx2 and tx1, the difference in the solidification speed between the lens portion and the corresponding rib portion is large, and the solidification speed is slow and in the vicinity of ty2 and ty1. In this case, the density becomes rough due to a decrease in the resin pressure, so that sink marks occur.
そこで、参考実施形態にて説明した特徴的な構成を、本発明の実施の形態のプラスチックレンズに適用することにより、ヒケの発生を防止できる。即ち、図4の矢視AAAから見た図6におけるレンズ部母線J上の任意の各点tx1〜tx3における直交方向リブ厚(平面方向幅)と、それに隣接した図7におけるレンズ厚中心線K上の任意の各点ty1〜ty3における直交方向レンズ厚との間の比が、図5のtx:tyとの関係で一定比になるように光学的機能を持たないリブ部Ga、Gbの肉厚を長手方向によって異ならせることによって制御するようにしている。
そのさい、前記説明の任意点の位置は母線J上の中央に配列され、かつレンズ中心線上の中央に配列された、長手方向と短手方向で同一基点とする。制御されるリブ部G、Ga、Gbと、tyの断面の肉厚を一定にする手段としては、図5の場合、リブ部内形la、lbまたリブ部外形Ha、Hb、図6で見た場合にはリブ部内形Iまたはリブ部外形Hの何れかで断面の肉厚を制御して良い。つまり、レンズ部Fの長手方向各点tx1〜tx3における肉厚の違いによる各部でのヒケ発生を防止するために、各点tx1〜tx3に対応するリブ部の幅方向寸法を広狭制御する。具体的には、リブ部の外側面を平坦面にしておく一方で内側面を変化させることによってリブの各部の肉厚を異ならせる方法(図8、図9)と、リブ部の内側面を平坦面にしておく一方で外側面を変化させることによってリブの各部の肉厚を異ならせる方法(図10、図11)がある。
また、展開方法に応じてリブ内形を変形させる方法と、外形を変形させる方法との複合制御を用いることが可能である。上述のようにレンズ部の縦断面厚さtyに対し、それと隣接するリブ部の厚さ(平面方向幅)txとの肉厚比を一定にする(図12、図13の例)。これにより、参考実施形態の構成で確認できたように、本発明の実施形態においても、光学的機能上、長尺化したプラスチックレンズで長手方向全長に亘って、レンズ部の厚さtyとそれに隣接するリブ部txの幅方向肉厚(平面方向幅)との肉厚比を一定にし、各部の固化時間をほぼ均一化することで、変形やヒケの無い高精度なプラスチック成形品を得ることができる。
また、プラスチックレンズは、高転写性が求められる光学的機能を持つレンズ部Fと、それに隣接する光学的機能を持たないリブ部Gの縦断面(母線Jと直交する断面)において、レンズ部Fの縦断面肉厚とリブ部Gの幅方向肉厚との比がリブ部Gの内形形状(リブ部の肉厚)を種々変化させることで一定に制御されている。
Therefore, the feature configuration described in Reference Embodiment, by applying to the plastic lens according to embodiment of the present invention can prevent the occurrence of sink marks. That is, the rib thickness (plane direction width) in the orthogonal direction at any point tx1 to tx3 on the lens portion bus J in FIG. 6 as viewed from the arrow AAA in FIG. 4, and the lens thickness center line K in FIG. The thickness of the rib portions Ga and Gb having no optical function so that the ratio between the lens thicknesses in the orthogonal direction at any of the above arbitrary points ty1 to ty3 becomes a constant ratio in relation to tx: ty in FIG. The thickness is controlled by varying it in the longitudinal direction.
At this time, the position of the arbitrary point in the above description is arranged at the center on the generatrix J, and at the center on the lens center line, the same base point in the longitudinal direction and the short direction. In the case of FIG. 5, the rib portions G, Ga, Gb to be controlled and the means for making the wall thickness of the cross section constant are as shown in FIG. 6 in the rib portion inner shapes la and lb and the rib portion outer shapes Ha and Hb. In this case, the thickness of the cross section may be controlled by either the rib part inner shape I or the rib part outer shape H. In other words, in order to prevent the occurrence of sink marks in each part due to the difference in thickness at the respective points tx1 to tx3 in the longitudinal direction of the lens part F, the width direction dimension of the rib part corresponding to each point tx1 to tx3 is controlled to be wide or narrow. Specifically, a method of making the thickness of each part of the rib different by changing the inner surface while keeping the outer surface of the rib part flat (FIGS. 8 and 9), and the inner surface of the rib part There is a method (FIGS. 10 and 11) in which the thickness of each part of the rib is changed by changing the outer surface while keeping the flat surface.
Further, it is possible to use a combined control of a method for deforming the rib inner shape and a method for deforming the outer shape according to the developing method. As described above, the thickness ratio of the longitudinal cross-sectional thickness ty of the lens portion to the thickness (width in the plane direction) tx of the adjacent rib portion is made constant (example in FIGS. 12 and 13). As a result, as confirmed by the configuration of the reference embodiment, in the embodiment of the present invention , the lens portion thickness ty and the length ty of the plastic lens elongated in terms of optical function over the entire length in the longitudinal direction are also provided. By obtaining a uniform thickness ratio with the thickness in the width direction (planar width) of the adjacent rib portion tx and making the solidification time of each portion substantially uniform, a highly accurate plastic molded product free from deformation and sink marks can be obtained. Can do.
In addition, the plastic lens has a lens portion F in a longitudinal section (cross section perpendicular to the generatrix J) of a lens portion F having an optical function that requires high transferability and a rib portion G that does not have an optical function adjacent thereto. The ratio of the vertical cross-sectional thickness to the thickness in the width direction of the rib portion G is controlled to be constant by variously changing the inner shape (the thickness of the rib portion) of the rib portion G.
本発明の実施の形態におけるプラスチック成形方法は、参考実施形態の作用に記載される射出成形法と同じであり、図4はその射出成形によって得られるプラスチックレンズを示す。変形やヒケの発生メカニズムは参考実施形態の作用に記載されている内容と同じである。
図7から見てとれるように、プラスチックレンズ中心線Kに対して直交する方向の断面レンズ厚さが各部において異なっているために、リブ部Gが矩形環状枠型で形成される図7のプラスチックレンズ本体では、リブ部の幅方向肉厚と異なる縦断面肉厚を有した長手方向の各部ty2、ty1においてヒケや変形が発生し易く、リブ部の幅方向肉厚と縦断面肉厚がほぼ同等な中央部ty3付近ではヒケや変形がし難い。
ここで図7の各部tyと隣接する図5のリブ部txの幅厚と、レンズ部tyでの肉厚との関係は、リブ部の厚みをtxとし、レンズ部中心厚さをtyとしたときに、両者の厚み比Rを、R=ty/txで表す。このとき、各断面のRの最大値と最小値の比がRmax/Rmin<1.2になるように、レンズ厚みtyの変化に応じてリブ部Gの厚み(平面幅)txを変化させることが望ましい。
なお、図5のリブ部の幅厚は一定に描かれているようであるが、実際の成型時には型抜き方向が図5の上下方向となるため、リブ部の幅厚は均一ではなく、先端が細くなる傾向がある。
以上の関係から、レンズ厚tyとそれに隣接するリブ厚txとの肉厚比の最適化が図れ、光学的機能上、長尺化したプラスチックレンズの長手方向に対する短手断面の厚みtyを考慮した、リブ厚txの設計ができることにより、高精度な製品を得ることができる。
The plastic molding method in the embodiment of the present invention is the same as the injection molding method described in the operation of the reference embodiment , and FIG. 4 shows a plastic lens obtained by the injection molding. The generation mechanism of deformation and sink marks is the same as that described in the operation of the reference embodiment .
As can be seen from FIG. 7, since the cross-sectional lens thickness in the direction orthogonal to the plastic lens center line K is different in each part, the rib part G is formed in a rectangular annular frame shape. In the lens body, sinking and deformation are likely to occur in each of the longitudinal portions ty2 and ty1 having a longitudinal section thickness different from the thickness in the width direction of the rib portion, and the width direction thickness and the longitudinal section thickness of the rib portion are almost equal. In the vicinity of the equivalent central portion ty3, it is difficult to sink or deform.
Here, the relationship between the width and thickness of the rib portion tx in FIG. 5 adjacent to each portion ty in FIG. 7 and the thickness at the lens portion ty is that the thickness of the rib portion is tx and the center thickness of the lens portion is ty. Sometimes, the thickness ratio R of both is represented by R = ty / tx. At this time, the thickness (plane width) tx of the rib portion G is changed according to the change of the lens thickness ty so that the ratio of the maximum value and the minimum value of R in each cross section becomes Rmax / Rmin <1.2. Is desirable.
Although the width and thickness of the rib portion in FIG. 5 seems to be drawn constant, the width and thickness of the rib portion are not uniform because the die-cutting direction is the vertical direction in FIG. Tend to be thin.
From the above relationship, the thickness ratio between the lens thickness ty and the rib thickness tx adjacent to the lens thickness ty can be optimized, and the thickness ty of the short cross section with respect to the longitudinal direction of the elongated plastic lens is considered in terms of optical function. Since the rib thickness tx can be designed, a highly accurate product can be obtained.
図8はレンズ部とリブ部の肉厚比を、プラスチックレンズ本体を形成する光学的機能を持たないリブ部の内形形状(内側への突出度)を部分的に変化させることによって制御されている例を示す概略図である。図8では、プラスチックレンズ2のリブ部Gの内側に湾曲リブ面(内湾曲リブ部内形)Lを設けることによりレンズ面との肉厚比を制御している。つまり、レンズ部の肉厚の変化に応じて、リブ部内壁の内側への突出量を曲面的に変化させることによって、長手方向各部におけるレンズ部の縦断面肉厚と、リブ部の幅厚との比が均一になるように制御している。
またリブ内壁の湾曲面の構成は、肉厚制御に応じて大小の円弧や楕円の集合となるようにしても良く、正確な輪郭を有する円弧または楕円でなくても良い。図8において、Hはリブ部外形、Jは母線、tx1、tx2、tx3はリブ部外形厚を示している。
光学的機能上、長尺化したプラスチックレンズにおいて、各短手断面(長手方向と直交する線に沿った断面)におけるレンズ部の厚さと、それに隣接する光学的機能を持たないリブ部Gの幅厚との比を一定にして、各部の固化時間を均等化することにより、変形やヒケの無い高精度なプラスチック成形品を得ることができる。
図9はレンズ部とリブ部の肉厚比がプラスチックレンズ本体を形成する光学的機能を持たないリブ部の内形形状で制御されていることを説明する概略図である。プラスチックレンズ2のリブ部Gの内側に不連続リブ面Mを設けることにより、レンズ面との肉厚比を制御している。
また、不連続面の構成は肉厚制御に応じて大小の立方形また直方形の集合でも良く、コーナー部はエッジでなくても良い。図9において、Jは母線、tx1、tx2、tx3はリブ部外形厚を示している。
プラスチックレンズ本体を形成する光学的機能を持たないリブ部Gの内形形状が不連続な平面で積層されることによって、光学的機能上、長尺化したプラスチックレンズで各短手断面におけるレンズ厚さとそれに隣接する光学的機能を持たないリブ部Gの直交方向の固化タイミングをほぼ均一にし、変形やヒケの無い高精度なプラスチック成形品を得ることができる。
さらに、プラスチックレンズ2は、高転写性が求められる光学的機能を持つレンズ部とそれに隣接する前記光学的機能を持たないリブ部に直交する任意断面においてレンズ部とリブ部の肉厚比がプラスチックレンズ本体を形成する光学的機能を持たないリブ部の外形形状で制御されている。
In FIG. 8, the thickness ratio between the lens part and the rib part is controlled by partially changing the inner shape (degree of protrusion inward) of the rib part that does not have an optical function to form the plastic lens body. It is the schematic which shows the example which is. In FIG. 8, the thickness ratio with the lens surface is controlled by providing a curved rib surface (inner curved rib portion inner shape) L inside the rib portion G of the
The configuration of the curved surface of the rib inner wall may be a set of large and small arcs or ellipses according to the thickness control, and may not be an arc or ellipse having an accurate contour. In FIG. 8, H is the rib portion outer shape, J is the bus bar, and tx1, tx2, and tx3 are rib portion outer thicknesses.
In the plastic lens lengthened in terms of optical function, the thickness of the lens portion in each short cross section (cross section along the line perpendicular to the longitudinal direction) and the width of the rib portion G having no optical function adjacent thereto By making the ratio with thickness constant and equalizing the solidification time of each part, it is possible to obtain a highly accurate plastic molded product free from deformation and sink.
FIG. 9 is a schematic diagram for explaining that the thickness ratio between the lens portion and the rib portion is controlled by the inner shape of the rib portion having no optical function for forming the plastic lens body. By providing the discontinuous rib surface M inside the rib portion G of the
Further, the configuration of the discontinuous surface may be a set of large and small cubic shapes or rectangular shapes according to the thickness control, and the corner portion may not be an edge. In FIG. 9, J represents a bus bar, and tx1, tx2, and tx3 represent rib portion outer thicknesses.
The inner thickness of the rib part G that does not have an optical function for forming the plastic lens body is laminated on a discontinuous plane, so that the lens thickness in each short cross section is increased with a plastic lens that is elongated in terms of optical function. In addition, the solidification timing in the orthogonal direction of the rib portion G having no optical function adjacent thereto can be made substantially uniform, and a highly accurate plastic molded product free from deformation and sink can be obtained.
Further, the
図10はレンズ部とリブ部の肉厚比がプラスチックレンズ本体を形成する光学的機能を持たないリブ部の外形形状で制御されていることを説明する概略図である。プラスチックレンズ2のリブ部Gの外側に湾曲リブ面(外湾曲リブ部外形)Nを設けることによりレンズ面との肉厚比を制御している。
また、湾曲面の構成は肉厚制御に応じて大小の円弧や楕円の集合でも良く、形状部は正確な輪郭を有する円弧または楕円でなくても良い。図10において、Iはリブ部内形、Jは母線、tx1、tx2、tx3はリブ部外形厚を示している。
このプラスチック成形品(プラスチックレンズ)では、高転写性が求められる光学的機能を持つレンズ部と前記光学的機能を持たないリブ部に直交する任意断面においてレンズ部とリブ部の肉厚比が本体を形成する光学的機能を持たないリブ部の外形形状で制御されている。
それによって、光学的機能上長尺化したプラスチックレンズで各短手断面におけるレンズ厚さとそれに隣接する光学的機能を持たないリブ部の直交方向の固化タイミングをほぼ均一にし、変形やヒケの無い高精度なプラスチック成形品を得ることができる。
プラスチック成形品(プラスチックレンズ)2は、高転写性が求められる光学的機能を持つレンズ部とそれに隣接する前記光学的機能を持たないリブ部に直交する任意断面においてレンズ部とリブ部の肉厚比がプラスチックレンズ本体を形成する光学的機能を持たないリブ部の内形形状で制御されている。
FIG. 10 is a schematic diagram for explaining that the thickness ratio between the lens portion and the rib portion is controlled by the outer shape of the rib portion having no optical function for forming the plastic lens body. By providing a curved rib surface (outer curved rib portion outer shape) N on the outside of the rib portion G of the
Further, the curved surface may be configured as a set of large and small arcs or ellipses according to the thickness control, and the shape portion may not be an arc or ellipse having an accurate contour. In FIG. 10, I is the rib part inner shape, J is the bus bar, tx1, tx2, and tx3 are the rib part outer thicknesses.
In this plastic molded product (plastic lens), the thickness ratio of the lens part to the rib part in the arbitrary cross section perpendicular to the lens part having an optical function that requires high transferability and the rib part not having the optical function is the main body. The outer shape of the rib portion having no optical function is controlled.
This makes the lens thickness in each short cross section and the solidification timing in the orthogonal direction of the rib part that does not have the optical function adjacent to each other in the plastic lens elongated in terms of optical function almost uniform, and there is no deformation or sink. An accurate plastic molded product can be obtained.
The plastic molded product (plastic lens) 2 has a thickness of the lens portion and the rib portion in an arbitrary cross section orthogonal to the lens portion having an optical function required to have high transferability and the adjacent rib portion having no optical function. The ratio is controlled by the inner shape of the rib portion having no optical function to form the plastic lens body.
図11はレンズ部とリブ部の肉厚比がプラスチックレンズ本体を形成する光学的機能を持たないリブ部の外形形状で制御されていることを説明する概略図である。プラスチックレンズ2のリブ部Gの外側に不連続リブ面(不連続リブ外形)Oを設けることによりレンズ面との肉厚比を制御している。
また不連続面の構成は肉厚制御に応じて大小の立方形また直方形の集合でも良く、コーナー部は角じょうでなく、丸みを有していても良い。図11において、Iはリブ部内形、Jは母線、tx1、tx2、tx3、tx4はリブ部外形厚を示している。
このプラスチック成形品(プラスチックレンズ)では、プラスチックレンズ本体を形成する光学的機能を持たないリブ部の外形形状が不連続な平面で積層されている。それによって、光学的機能上、長尺化したプラスチックレンズで各短手断面におけるレンズ厚さとそれに隣接する光学的機能を持たないリブ部の直交方向の固化タイミングをほぼ均一にし、変形やヒケの無い高精度なプラスチック成形品を得ることができる。
プラスチック成形品(プラスチックレンズ)2は、高転写性が求められる光学的機能を持つレンズ部とそれに隣接する前記光学的機能を持たないリブ部に直交する任意断面においてレンズ部とリブ部の肉厚比がプラスチックレンズ本体を形成する光学的機能を持たないリブ部の外形形状で制御されている。
FIG. 11 is a schematic diagram for explaining that the thickness ratio between the lens portion and the rib portion is controlled by the outer shape of the rib portion having no optical function for forming the plastic lens body. By providing a discontinuous rib surface (discontinuous rib outer shape) O outside the rib portion G of the
In addition, the discontinuous surface may be a large or small cubic shape or a rectangular shape depending on the thickness control, and the corner portion may be rounded instead of square. In FIG. 11, I is the rib part inner shape, J is the bus bar, tx1, tx2, tx3, and tx4 are the rib part outer thicknesses.
In this plastic molded product (plastic lens), the outer shape of the rib portion that does not have an optical function for forming the plastic lens body is laminated on a discontinuous plane. As a result, in terms of optical function, the lens thickness in each short cross-section of the plastic lens that has been elongated and the solidification timing in the orthogonal direction of the rib portion that does not have an optical function adjacent thereto are almost uniform, and there is no deformation or sink. A highly accurate plastic molded product can be obtained.
The plastic molded product (plastic lens) 2 has a thickness of the lens portion and the rib portion in an arbitrary cross section orthogonal to the lens portion having an optical function required to have high transferability and the adjacent rib portion having no optical function. The ratio is controlled by the outer shape of the rib portion having no optical function for forming the plastic lens body.
図12はレンズ部とリブ部の肉厚比がプラスチックレンズ本体を形成する光学的機能を持たないリブ部の内形および外形形状で制御されていることを説明する概略図である。プラスチックレンズ2のリブ部Gの内側と外側に湾曲リブ面(湾曲リブ部内形)Lおよび湾曲リブ面(湾曲リブ部外形)Nを設けることによりレンズ面との肉厚比を制御している。
また湾曲面の構成は肉厚制御に応じて大小の円弧や楕円の集合でも良く、形状部は正確な輪郭を有する円弧または楕円でなくても良い。図12において、Jは母線、tx1、tx2、tx3はリブ部外形厚を示している。
このプラスチック成形品(プラスチックレンズ)では、高転写性が求められる光学的機能を持つレンズ部と前記光学的機能を持たないリブ部に直交する任意断面においてレンズ部とリブ部の肉厚比が本体を形成する光学的機能を持たないリブ部の外形形状で制御されている。
それによって、光学的機能上長尺化したプラスチックレンズで各短手断面におけるレンズ厚さとそれに隣接する光学的機能を持たないリブ部の直交方向の固化タイミングをほぼ均一にし、変形やヒケの無い高精度なプラスチック成形品を得ることができる。
プラスチック成形品(プラスチックレンズ)2は、高転写性が求められる光学的機能を持つレンズ部とそれと隣接する前記光学的機能を持たないリブ部に直交する任意断面においてレンズ部とリブ部の肉厚比がプラスチックレンズ本体を形成する光学的機能を持たないリブ部の内形形状で制御されている。
FIG. 12 is a schematic diagram for explaining that the thickness ratio between the lens portion and the rib portion is controlled by the inner shape and the outer shape of the rib portion having no optical function for forming the plastic lens body. By providing the curved rib surface (inner shape of the curved rib portion) L and the curved rib surface (outer shape of the curved rib portion) N on the inner side and the outer side of the rib portion G of the
Further, the curved surface may be a set of large and small arcs or ellipses according to the thickness control, and the shape portion may not be an arc or ellipse having an accurate contour. In FIG. 12, J represents a bus bar, and tx1, tx2, and tx3 represent rib portion outer thicknesses.
In this plastic molded product (plastic lens), the thickness ratio of the lens part to the rib part in the arbitrary cross section perpendicular to the lens part having an optical function that requires high transferability and the rib part not having the optical function is the main body. The outer shape of the rib portion having no optical function is controlled.
This makes the lens thickness in each short cross section and the solidification timing in the orthogonal direction of the rib part that does not have the optical function adjacent to each other in the plastic lens elongated in terms of optical function almost uniform, and there is no deformation or sink. An accurate plastic molded product can be obtained.
The plastic molded product (plastic lens) 2 has a thickness of the lens portion and the rib portion in an arbitrary cross section orthogonal to the lens portion having an optical function required to have high transferability and the rib portion adjacent to the lens portion having no optical function. The ratio is controlled by the inner shape of the rib portion having no optical function to form the plastic lens body.
図13はレンズ部とリブ部の肉厚比がプラスチックレンズ本体を形成する光学的機能を持たないリブ部の内形および外形形状で制御されていることを説明する概略図である。プラスチックレンズ2のリブ部Gの内側と外側に不連続リブ面(不連続リブ内形)Mおよび不連続リブ面(不連続リブ外形)Oを設けることによりレンズ面との肉厚比を制御している。
また不連続面の構成は肉厚制御に応じて大小の立方形また直方形の集合でも良く、コーナー部はエッジでなくても良い。図13において、Jは母線、tx1、tx2、tx3はリブ部外形厚を示している。
このプラスチック成形品(プラスチックレンズ)では、プラスチックレンズ本体を形成する光学的機能を持たないリブ部の内外形形状が不連続な平面で積層されている。それによって、光学的機能上、長尺化したプラスチックレンズで各短手断面におけるレンズ厚さとそれに隣接する光学的機能を持たないリブ部の直交方向の固化タイミングをほぼ均一にし、変形やヒケの無い高精度なプラスチック成形品を得ることができる。
上述した図10〜13に示されるような形状では断面積比は、元形状より拡大しており、特許文献1および2の従来技術とは異なる構成である。本発明は、光学プラスチック部品の冷却工程における冷却状態を各部で均一に保つためのものであり、これにより成形不良や形状の変形(形状精度の悪化)を抑えて、より短いタクトタイムの達成が可能となる。
FIG. 13 is a schematic diagram for explaining that the thickness ratio between the lens portion and the rib portion is controlled by the inner shape and the outer shape of the rib portion having no optical function for forming the plastic lens body. By providing a discontinuous rib surface (discontinuous rib inner shape) M and a discontinuous rib surface (discontinuous rib outer shape) O on the inner and outer sides of the rib part G of the
Further, the discontinuous surface may be configured as a set of large and small cubic shapes or rectangular shapes according to the thickness control, and the corner portion may not be an edge. In FIG. 13, J indicates a bus, and tx1, tx2, and tx3 indicate rib portion outer thicknesses.
In this plastic molded product (plastic lens), the inner and outer shapes of rib portions that do not have an optical function for forming a plastic lens body are laminated on a discontinuous plane. As a result, in terms of optical function, the lens thickness in each short cross-section of the plastic lens that has been elongated and the solidification timing in the orthogonal direction of the rib portion that does not have an optical function adjacent thereto are almost uniform, and there is no deformation or sink. A highly accurate plastic molded product can be obtained.
In the shape as shown in FIGS. 10 to 13 described above, the cross-sectional area ratio is larger than that of the original shape, which is different from the conventional techniques of
1 プラスチック成形品
2 プラスチック成形品(プラスチックレンズ)
A 機能部
B 非機能部
CA 付加肉厚部
Cb 付加肉厚部
D1 機能面肉厚
D2 機能面肉厚
F レンズ部
G リブ部
H リブ部外形
I リブ部内形
K レンズ厚中心線
L 内湾曲リブ部内形
M 内不連続リブ部内形
N 外湾曲リブ部外形
O 不連続リブ部外形
1 Plastic molded
A Functional part B Non-functional part CA Additional thickness part Cb Additional thickness part D1 Functional surface thickness D2 Functional surface thickness F Lens part G Rib part H Rib part outline I Rib part inner shape K Lens thickness center line L Internal curved rib Inner part type M Inner discontinuous rib part inner form N Outer curved rib part outer shape O Discontinuous rib part outer shape
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005209276A JP4674129B2 (en) | 2005-07-19 | 2005-07-19 | Plastic molded products and plastic lenses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005209276A JP4674129B2 (en) | 2005-07-19 | 2005-07-19 | Plastic molded products and plastic lenses |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007021961A JP2007021961A (en) | 2007-02-01 |
JP4674129B2 true JP4674129B2 (en) | 2011-04-20 |
Family
ID=37783341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005209276A Expired - Fee Related JP4674129B2 (en) | 2005-07-19 | 2005-07-19 | Plastic molded products and plastic lenses |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4674129B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101167214B1 (en) | 2010-05-28 | 2012-07-24 | 현대제철 주식회사 | Sample making device |
JP6862808B2 (en) * | 2016-12-06 | 2021-04-21 | コニカミノルタ株式会社 | Optical writing device and image forming device |
EP3546386B1 (en) | 2018-03-28 | 2020-09-02 | 3M Innovative Properties Company | Flip-top cap for dispensing a flowable dental substance |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0580208A (en) * | 1991-09-25 | 1993-04-02 | Matsushita Electric Ind Co Ltd | Long-sized molded resin lens |
JPH08136706A (en) * | 1994-11-07 | 1996-05-31 | Fuji Xerox Co Ltd | Plastic optical element |
JPH0970849A (en) * | 1995-09-04 | 1997-03-18 | Ricoh Co Ltd | Plastic molded product |
JP2000155281A (en) * | 1998-11-19 | 2000-06-06 | Ricoh Co Ltd | Long-sized plastic lens |
JP2000329908A (en) * | 1999-05-18 | 2000-11-30 | Ricoh Co Ltd | Plastic molded goods |
JP2001219447A (en) * | 2000-02-08 | 2001-08-14 | Canon Inc | Optical element |
JP2005156879A (en) * | 2003-11-25 | 2005-06-16 | Ricoh Co Ltd | Plastic scanning lens, manufacturing method, and laser scanning optical apparatus |
-
2005
- 2005-07-19 JP JP2005209276A patent/JP4674129B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0580208A (en) * | 1991-09-25 | 1993-04-02 | Matsushita Electric Ind Co Ltd | Long-sized molded resin lens |
JPH08136706A (en) * | 1994-11-07 | 1996-05-31 | Fuji Xerox Co Ltd | Plastic optical element |
JPH0970849A (en) * | 1995-09-04 | 1997-03-18 | Ricoh Co Ltd | Plastic molded product |
JP2000155281A (en) * | 1998-11-19 | 2000-06-06 | Ricoh Co Ltd | Long-sized plastic lens |
JP2000329908A (en) * | 1999-05-18 | 2000-11-30 | Ricoh Co Ltd | Plastic molded goods |
JP2001219447A (en) * | 2000-02-08 | 2001-08-14 | Canon Inc | Optical element |
JP2005156879A (en) * | 2003-11-25 | 2005-06-16 | Ricoh Co Ltd | Plastic scanning lens, manufacturing method, and laser scanning optical apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2007021961A (en) | 2007-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4108195B2 (en) | Plastic molded product and molding method thereof | |
JP5326276B2 (en) | Mold for molding plastic lens, plastic lens, optical scanning device including the same, and image forming apparatus | |
JP4674129B2 (en) | Plastic molded products and plastic lenses | |
US20190283290A1 (en) | Optical element and method for manufacturing optical element | |
US20070020421A1 (en) | Cylindrical part | |
JP4057385B2 (en) | Molding method of plastic molded product and injection mold | |
JP2000329908A (en) | Plastic molded goods | |
JP5163518B2 (en) | Optical scanning apparatus, image forming apparatus, and plastic lens manufacturing method | |
JP4815897B2 (en) | Injection mold and injection molding method | |
JP2014172237A (en) | Injection molding mold, optical component, optical scanner, and image forming apparatus | |
JP4793514B1 (en) | INJECTION MOLDING APPARATUS AND METHOD FOR MANUFACTURING LONG FORM | |
JP2009113423A (en) | Mold for injection molding | |
JP5589389B2 (en) | Plastic molded product, method for molding plastic molded product, and optical scanning device having the plastic molded product | |
JP2005326697A (en) | Plastic molded article for optical element, molding method therefor, optical scanner, and image forming apparatus mounting optical scanner thereon | |
JP2004042469A (en) | Plastic molded article and its manufacturing method, and die used for the same, and optical scanning unit using the plastic molded article | |
JP4827406B2 (en) | Nest and mold | |
JP2007260916A (en) | Mold for injection-molding optical lens | |
JP2006051822A (en) | Plastic part and its shaping method | |
JP2012020511A (en) | Plastic article, method of shaping plastic article, and optical scanning device having the plastic article | |
JPH09220770A (en) | Plastic member or plastic lens | |
JP7255415B2 (en) | Injection mold and manufacturing method | |
JP2022126095A (en) | Resin molding method and resin molded article | |
JP2011131437A (en) | Method of manufacturing tire mold | |
JP2784164B2 (en) | Plastic moldings | |
JP2002086517A (en) | Method for manufacturing plastic molded product and mold therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080624 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |