JP4671555B2 - Shape control method in multi-high mill - Google Patents
Shape control method in multi-high mill Download PDFInfo
- Publication number
- JP4671555B2 JP4671555B2 JP2001233572A JP2001233572A JP4671555B2 JP 4671555 B2 JP4671555 B2 JP 4671555B2 JP 2001233572 A JP2001233572 A JP 2001233572A JP 2001233572 A JP2001233572 A JP 2001233572A JP 4671555 B2 JP4671555 B2 JP 4671555B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- plate
- elongation
- difference
- asymmetric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Metal Rolling (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、多段圧延機を用いて金属帯を冷間圧延する際、圧延後の板形状を制御する方法に関する。
【0002】
【従来の技術】
圧延材の品質及び生産効率を向上させることは、コスト削減の上で重要なファクターとなる。そのため、圧延機を多段化するとともに種々の圧延制御方法が開発されてきた。多段圧延機の一つとして、20段センジミア圧延機が広く知られている。
20段センジミア圧延機10は、例えば図1に示すように、相対向する一対のワークロール11u,11d、それぞれのワークロール11u,11dに接する合計4本の第1中間ロール12u,12d、第1中間ロール12u,12dに接する合計6本の第2中間ロール13u,13d及び第2中間ロール13u,13dに接する合計8本のバックアップロール14u,14d,15u,15dで構成される。8本のバックアップロール14u,14d,15u,15dのうち、片側中央部に位置する2本のバックアップロール15uはクラウン調整機構を備えている。第1中間ロール12u,12dは、ロールの片側エッジ部にテーパを切っており、圧延材Mの板幅方向に移動可能になっている。バックアップロール15uのクラウン及び第1中間ロール12u,12dのシフト量を調整することにより、圧延材Mの形状が制御される。
【0003】
クラウン調整機構をもつバックアップロール15uは、軸方向断面を示す図2にみられるように、ロール本体が軸方向に分割されたベアリング16をベアリング軸17で保持し、ベアリング軸17をサドル18で支持している。ベアリング16の半径方向移動は、第2中間ロール13u及び第1中間ロール12uを介してワークロール11uに伝えられ、ワークロール11uの軸方向形状を変化させ、圧延材Mの形状制御に使用される。
【0004】
ところで、形状制御手段の初期設定に関し、特開平8−290209号公報では、それぞれ独立のモデル式に従って各分割ベアリングの押出し量の設定値を算出し、各分割ベアリングの幅方向位置と一致する位置のワークロール又は中間ロールのメカニカルクラウン量に予め定めた係数を乗じることにより、ワークロール又は中間ロールのメカニカルクラウンをモデル式に取り込んでいる。この方法によるとき、たとえば20段センジミア圧延機10では、バックアップロール15uの各ベアリングのクラウン調整量の初期設定が可能になる。
【0005】
フィードバック形状制御に関しては、形状検出器からの検出信号に基づいて形状評価関数が最小となるように各形状制御手段の制御量を補正することが特開昭62−214814号公報で紹介されている。この方法によると、例えば20段センジミア圧延機10では、第1中間ロール12u,12dのシフト位置及びバックアップロール15uの各ベアリングのクラウン調整量の補正が可能になる。
【0006】
【発明が解決しようとする課題】
特開平8−290209号公報の形状制御方法は、第1中間ロール12u,12dのメカニカルクラウン量が予め与えられたとき、すなわち第1中間ロール12u,12dのシフト位置が設定されているときにバックアップロール15uの各ベアリングのクラウン調整量を初期設定しており、第1中間ロール12u,12dのシフト位置を初期設定するものではない。そのため、第1中間ロール12u,12dのシフト位置によっては、バックアップロール15uのクラウン調整機構の形状制御作用が小さく、各ベアリングのクラウン調整だけで良好な形状が得られないことがある。
【0007】
特開平8−290209の形状制御方法は、左右対称なベアリングのクラウン調整による制御を前提としたものであり、圧下のレベリング不良、母材板厚分布の非対称等により左右非対称な形状を生じる場合がある。また、特開昭62−214814号公報の形状制御方法は各センサー位置における測定伸び値の関数である形状評価指数を用いているため、形状制御手段の制御量を算出する数式が複雑なものとなり、オンラインに適用した際、形状制御手段の制御量を算出するのに時間を要し、応答性の高い制御が困難となる。本発明は、このような問題を解消すべく案出されたものであり、多段圧延機において、形状制御手段の制御量及び板幅方向複数箇所における板幅中央に対する伸び率差の対称成分及び非対称成分を表す数式モデルを用いることにより、左右非対称な形状を生じることを防止し、形状精度に優れた圧延材を高生産性で製造できる制御方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の多段圧延機における形状制御方法は、その目的を達成するため、多段圧延機を用いて圧延材を冷間圧延する際、圧延材の板端部及びクォータ部における板幅中央に対する伸び率差の対称成分及び非対称成分を式(1)〜(4)で表すとともにバックアップロールのサドル位置、中間ロールシフト位置の対称成分及び非対称成分を式(5)〜(10)で表し、前記伸び率差の対称成分及び非対称成分とバックアップロールのサドル位置、中間ロールシフト位置の対称成分及び非対称成分の制御量との関係を表す式(20)〜(23)からなる数式モデルを予め作成し、形状検出器より得られる前記板端部及びクォータ部における板幅中央に対する伸び率差の対称成分及び非対称成分を前記数式モデルである式(20)〜(23)に代入して前記板端部及びクォータ部における板幅中央に対する伸び率差の対称成分及び非対称成分を算出し、算出された伸び率差の対称成分及び非対称成分が目標値に一致するようにバックアップロールのサドル位置の制御量及び中間ロールシフト位置の制御量を補正することを特徴とする。
εe={ε(EW)+ε(ED)}/2 (1)
εq={ε(QW)+ε(QD)}/2 (2)
εe’={ε(EW)−ε(ED)}/2 (3)
εq’={ε(QW)−ε(QD)}/2 (4)
L=(L W +L D )/2 (5)
Se=(Se W +Se D )/2 (6)
Sq=(Sq W +Sq D )/2 (7)
L’=(L W ―L D )/2 (8)
Se’=(Se W −Se D )/2 (9)
Sq’=(Sq W −Sq D )/2 (10)
εe=εe 1 +a 1 ΔL+a 2 ΔSe+a 3 ΔSq (20)
εq=εq 1 +b 1 ΔL+b 2 ΔSe+b 3 ΔSq (21)
εe'=εe' 1 +c 1 ΔL'+c 2 ΔSe'+c 3 ΔSq'
(22)
εq'=εq' 1 +d 1 ΔL'+d 2 ΔSe'+d 3 ΔSq'
(23)
ここで、ε(x):板幅方向位置xにおける板幅中央に対する伸び率差,εe:板端部の板幅中央に対する伸び率差の対称成分,εq:クォータ部の板幅中央に対する伸び率差の対称成分,εe’:板端部の板幅中央に対する伸び率差の非対称成分,εq’:クォータ部の板幅中央に対する伸び率差の非対称成分,EW:操作側の板端部位置,ED:駆動側の板端部位置,QW:操作側のクォータ部位置,QD:駆動側のクォータ部位置,L:第1中間ロールシフト位置の対称成分,Se:板端部サドル位置の対称成分,Sq:クォータ部サドル位置の対称成分,L’:第1中間ロールシフト位置の非対称成分,Se’:板端部サドル位置の非対称成分,Sq’:クォータ部サドル位置の非対称成分,L W :操作側の第1中間ロールシフト位置,L D :駆動側の第1中間ロールシフト位置,Se W :操作側の板端部のサドル位置,Se D :駆動側の板端部のサドル位置,Sq W :操作側のクォータ部のサドル位置,Sq D :駆動側のクォータ部のサドル位置,εe 1 :形状検出器より得られる板端部の板幅中央に対する伸び率差の対称成分,εq 1 :形状検出器より得られるクォータ部の板幅中央に対する伸び率差の対称成分,εe' 1 :形状検出器より得られる板端部の板幅中央に対する伸び率差の非対称成分,εq' 1 :形状検出器より得られるクォータ部の板幅中央に対する伸び率差の非対称成分,ΔL:第1中間ロールシフト位置の対称成分の制御量,ΔSe:板端部の板幅中央に対する伸び率差の対称成分の制御量,ΔSq:クォータ部サドル位置の対称成分の制御量,ΔL’:第1中間ロールシフト位置の非対称成分の制御量,ΔSe’:板端部サドル位置の非対称成分の制御量,ΔSq’:クォータ部サドル位置の非対称成分の制御量,a 1 、a 2 、a 3 、b 1 、b 2 、b 3 、c 1 、c 2 、c 3 、d 1 、d 2 、d 3 :影響係数
【0009】
【実施の形態】
本発明者らは、形状検出器により検出される板形状を板幅方向代表位置で評価し、種々の要因により生じる左右非対称性を考慮して、バックアップロール15uのクラウン調整量及び第1中間ロール12u,12dのシフト位置を補正することにより安定して良好な形状が得られる、オンラインで適用可能な20段センジミア圧延機10における形状制御方法を種々調査検討した。この結果、板端からの距離が異なる複数個所における板幅中央に対する伸び率差の対称成分及び非対称成分の変化量が、バックアップロール15uのクラウン調整量及び第1中間ロール12u,12dのシフト位置の変化量と比例関係にあることに着目し、伸び率差の対称成分及び非対称成分にバックアップロール15uのクラウン調整量及び第1中間ロール12u,12dのシフト位置の変化量が与える影響を取り込んだ数式モデルを用いると、精度の良い形状制御手段の制御量の補正が可能となり、良好な形状をもつ圧延材が製造されることを見出した。
【0010】
以下、20段センジミア圧延機を対象に本発明の形状制御方法について説明するが、本発明方法は他の多段圧延機についても適用可能である。
耳伸び,中伸び等の単純な形状不良だけでなく、クォータ伸び,片伸びや各種伸びが複雑に組み合わされた複合伸びを防止するためには、圧延形状を複数の指標で評価し制御することが要求される。
そこで、本発明においては、圧延形状を板端から距離が異なる複数の箇所における伸び率と板幅中央の伸び率との差で評価している。具体的には、板端部及びクォータ部の板幅中央に対する伸び率差をその対称成分εe,εq、非対称成分εe',εq'に分け、圧延形状を定義する。板幅方向位置xにおける板幅中央に対する伸び率差をε(x)とすると、伸び率差の対称成分εe,εq及び非対称成分εe',εq'は次の式(1)〜(4)のように表される。
【0011】
εe={ε(EW)+ε(ED)}/2・・・・・(1)
εq={ε(QW)+ε(QD)}/2・・・・・(2)
εe'={ε(EW)−ε(ED)}/2・・・・・(3)
εq'={ε(QW)−ε(QD)}/2・・・・・(4)
ここで、EW:操作側の板端部位置
ED:駆動側の板端部位置
QW:操作側のクォータ部位置
QD:駆動側のクォータ部位置
なお、板端部及びクォータ部の測定位置については、形状を適切に表し、かつ精度の良い数式モデルが得られるように経験的に定められる。
【0012】
次に、第1中間ロールシフト位置,板端部サドル位置,クォータ部サドル位置の対称成分L,Se,Sqをそれぞれ次の式(5)〜(7)で定義し、第1中間ロールシフト位置,板端部サドル位置,クォータ部サドル位置の非対称成分L',Se',Sq'をそれぞれ次の式(8)〜(10)で定義する。
L=(LW+LD)/2・・・・・・(5)
Se=(SeW+SeD)/2・・・(6)
Sq=(SqW+SqD)/2・・・(7)
L'=(LW−LD)/2・・・・・・(8)
Se'=(SeW−SeD)/2・・・(9)
Sq'=(SqW−SqD)/2・・・(10)
ここで、LW:操作側の第1中間ロールシフト位置
LD:駆動側の第1中間ロールシフト位置
SeW:操作側の板端部のサドル位置
SeD:駆動側の板端部のサドル位置
SqW:操作側のクォータ部のサドル位置
SqD:駆動側のクォータ部のサドル位置
【0013】
各形状制御手段の制御量の対称成分は形状を左右対称に変化させるものであるから、伸び率差の対称成分のみに影響し、非対称成分には影響しない。また、各形状制御手段の制御量の非対称成分は形状を左右非対称に変化させるが、左右の平均的な形状は変化しないので、伸び率差の非対称成分のみに影響し、対称成分には影響しない。
【0014】
各形状制御手段の制御量の対称成分が伸び率差の対称成分に及ぼす影響及び各形状制御手段の制御量の非対称成分が伸び率差の非対称成分に及ぼす影響を種々調査検討した結果から、各要因の間に次の関係が成立していることが判明した。
バックアップロール15uのクラウン調整量の変化はワークロールの撓みとして現れ、圧延材Mの形状を変化させる。バックアップロール15uの板端部サドル位置及びクォータ部サドル位置の対称成分Se,Sqとロール撓みの関係は弾性領域における変形であることから、ほぼ直線的な関係にある。したがって、前記式(1)及び式(2)で表される板端部及びクォータ部の伸び率差の対称成分εe,εqも図3及び図4に示すように板端部サドル位置及びクォータ部サドル位置の対称成分Se,Sqとほぼ直線的な関係にある。
また、第1中間ロールシフト位置の対称成分Lと伸び率差の対称成分εe,εqとの関係も、狭いシフト範囲内では図5に示すように線形関係で近似できる。したがって、板端部サドル位置,クォータ部サドル位置及び第1中間ロールシフト位置それぞれの対称成分の変化量ΔSe,ΔSq及びΔLと伸び率差の対称成分の変化量Δεe,Δεqとの関係も線的関係となる。
【0015】
同様に、式(3)及び式(4)で表される板端部及びクォータ部の伸び率差の非対称成分εe',εq'も図6及び図7に示すように板端部及びクォータ部サドル位置の非対称成分Se',Sq'とほぼ直線的な関係にある。また、第1中間ロールシフト位置の非対称成分L'と伸び率差の非対称成分εe',εq'との関係も、狭いシフト位置内では図8に示すように線形関係で近似できる。したがって、板端部サドル位置,クォータ部サドル位置及び第1中間ロールシフト位置の非対称成分の変化量ΔSe',ΔSq'及びΔL'と伸び率差の非対称成分の変化量Δεe',Δεq'との関係も線形関係となる。
【0016】
以上の各要因相互の関係から、a1,a2,a3,b1,b2,b3,c1,c2,c3,d1,d2,d3を影響係数として、次の式(11)〜(14)で圧延形状変化の予測式を表すことができる。
Δεe=a1ΔL+a2ΔSe+a3ΔSq・・・・・(11)
Δεq=b1ΔL+b2ΔSe+b3ΔSq・・・・・(12)
Δεe'=c1ΔL'+c2ΔSe'+c3ΔSq'・・・・(13)
Δεq'=d1ΔL'+d2ΔSe'+d3ΔSq'・・・・(14)
影響係数a1,a2,a3,b1,b2,b3,c1,c2,c3,d1,d2,d3は、板厚,板幅,鋼種等の製造品種によって定まる定数であり、実験又はロールの弾性変形解析と素材の塑性変形解析とを連立させた解析モデルを用いたシミュレーションでそれぞれ求められる。各影響係数は、板厚,板幅,鋼種等の各区分毎にテーブルを設定し、或いは板厚,板幅,鋼種等の関数として数式化される。
【0017】
圧延中の形状制御に際しては、圧延機出側に設置された形状検出器で板幅方向の張力分布を検出することにより、板形状として板幅方向各位置における板幅中央に対する伸び率差を測定する。そして、板幅方向各位置における板幅中央に対する伸び率差ε1(x)を、板幅方向位置xを変数とした多項式で近似する。ここでは伸び率差を次の式(15)で示すように4次関数で近似したが、更に精度を向上させるために4次以上の多項式で近似することも可能である。
ε1(x)=α1x+α2x2+α3x3+α4x4・・・・(15)
ここで、α1,α2,α3,α4:係数
【0018】
そして、伸び率差の対称成分εe1,εq1及び非対称成分εe'1,εq'1を次の式(16)〜(19)で算出する。
εe1={ε1(EW)+ε1(ED)}/2・・・・・(16)
εq1={ε1(QW)+ε1(QD)}/2・・・・・(17)
εe'1={ε1(EW)−ε1(ED)}/2・・・・・(18)
εq'1={ε1(QW)−ε1(QD)}/2・・・・・(19)
【0019】
上記の圧延形状変化の予測式(11)〜(14)より、圧延形状予測式として伸び率差の対称成分εe,εq及び非対称成分εe',εq'を次式(20)〜(23)で表すことができる。
εe=εe1+a1ΔL+a2ΔSe+a3ΔSq・・・・・(20)
εq=εq1+b1ΔL+b2ΔSe+b3ΔSq・・・・・(21)
εe'=εe'1+c1ΔL'+c2ΔSe'+c3ΔSq'・・・(22)
εq'=εq'1+d1ΔL'+d2ΔSe'+d3ΔSq'・・・(23)
【0020】
そして、圧延形状予測式(20)〜(23)において、伸び率差の対称成分εe,εq及び非対称成分εe',εq'がそれぞれ目標値εe0,εq0,εe'0,εq'0となるように、板端部サドル位置,クォータ部サドル位置及び第1中間ロールシフト位置それぞれの対称成分の制御量をΔSe,ΔSq,ΔLだけ補正し、板端部サドル位置,クォータ部サドル位置及び第1中間ロールシフト位置それぞれの非対称成分制御量をΔSe',ΔSq',ΔL'だけ補正する。
【0021】
板端部サドル位置の制御量ΔSe,ΔSe'、クォータ部サドル位置の制御量ΔSq,ΔSq'及び第1中間ロールシフト位置の制御量ΔL,ΔL'の組み合わせとしては任意の組み合わせを採用できるが、例えば次の式(24),(25)に示すように板端部サドル位置の制御量ΔSe,ΔSe'とクォータ部サドル位置の制御量ΔSq,ΔSq'の関係に制約を加えることにより一つの組み合わせに固定できる。
ΔSq=ΔSe/2・・・・・・(24)
ΔSq'=ΔSe'/2・・・・・・(25)
【0023】
【実施例】
径80mmのワークロール11uを備えた20段センジミア圧延機10を用いて、板幅1000mm,板厚0.92mmの冷延鋼板を板厚0.8mmに冷間圧延した。このとき、次の手順で圧延材Mの板形状を制御した。
板幅中央部に対する板端部及びクォータ部の2点についての伸び率差の対称成分及び非対称成分を式(1)〜(4)にしたがって表し、圧延形状を定義した。板端部としては、測定誤差や影響係数の算出誤差に由来する影響が小さくなる板端から20mm内側の位置に設定した。クォータ部としては、使用した20段センジミア圧延機10において圧延形状のピークが生じ易い板幅中央からw/(2√2)だけ外側の位置に設定した。
【0024】
図9に示すように圧延中の形状制御として形状検出器で板幅方向各位置における板幅中央に対する伸び率差の分布を測定し、その伸び率差の分布を上位コンピュータ21に入力した。上位コンピュータでは伸び率差の分布を式(15)に示す4次式で近似し、対称成分εe1,εq1、非対称成分εe'1,εq'1を式(16)〜(19)で算出した。
プロセスコンピュータ22では、板幅,板厚,鋼種等の製造品質毎に予め算出した影響係数を取り込んで、実測した伸び率差の対称成分εe1,εq1及び非対称成分εe'1,εq'1から式(20)〜(23)により伸び率差の対称成分εe,εq、非対称成分εe',εq'を算出し、εe,εq,εe',εq'がそれぞれ目標値εe0,εq0,εe'0,εq'0となるように板端部サドル位置の補正量ΔSe,ΔSe'、クォータ部サドル位置の補正量ΔSq,ΔSq'、第1中間ロールシフト位置の補正量ΔL,ΔL'を算出し、形状制御手段23の制御量を補正した。このとき、伸び率差の対称成分及び非対称成分の目標値εe0,εq0,εe'0,εq'0としては、εe0=0,εq0=0,εe'0=0,εq'0=0に設定した。
【0025】
圧延後に圧延材Mの形状をオフラインで測定し、圧延材M表面の波高/波長として板幅方向に関する急峻度分布を求め、その最大値を最大急峻度とした。
得られた最大急峻度を形状評価関数に基づいて形状制御する従来法で得られた圧延材Mの最大急峻度と比較して図10に示す。図10から明らかなように、従来法では形状評価関数に基いて形状制御しているために応答性が低く、0.8%を超える最大急峻度が示された。これに対し、本発明法に基いた制御方法では、圧延開始からコイル全長にわたって最大急峻度が0.5%以下に収められており、形状精度の良好な圧延が行えた。
【0026】
【発明の効果】
以上に説明したように、本発明によれば、形状制御手段の制御量及び板幅方向の板端部及びクォータ部における板幅中央に対する伸び率差の対称成分及び非対称成分を表す数式モデルを用いて形状制御手段の制御量を算出し補正を行っているので、圧下のレベリング不良,母材板厚分布の非対称等の左右非対称な形状を生じる要因がある場合にも、コイル長手方向全域にわたり形状精度の良好な冷延鋼帯が高生産性で製造できる。
【図面の簡単な説明】
【図1】 20段センジミア圧延機の概略図
【図2】 バックアップロールの軸方向断面図
【図3】 板端部サドル位置の対称成分が伸び率差の対称成分に及ぼす影響を表したグラフ
【図4】 クォータ部サドル位置の対称成分が伸び率差の対称成分に及ぼす影響を表したグラフ
【図5】 第1中間ロールシフト位置の対称成分が伸び率差の対称成分に及ぼす影響を表したグラフ
【図6】 板端部サドル位置の非対称成分が伸び率差の非対称成分に及ぼす影響を表したグラフ
【図7】 クォータ部サドル位置の非対称成分が伸び率差の非対称成分に及ぼす影響を表したグラフ
【図8】 第1中間ロールシフト位置の非対称成分が伸び率差の非対称成分に及ぼす影響を表したグラフ
【図9】 20段センジミア圧延機の制御系統を示した図
【図10】 実施例で製造した冷延鋼帯の板幅方向に関する最大急峻度を従来法で製造した冷延鋼帯の最大急峻度と比較したグラフ
【符号の説明】
10:20段センジミア圧延機、
11u、11d:ワークロール、
12u,12d:第1中間ロール、
13u,13d:第2中間ロール、
14u,14d:バックアップロール、
15u:クラウン調整機構をもつバックアップロール、
15d:クラウン調整機構をもたないバックアップロール、
16:ベアリング、 17:ベアリング軸、 18:サドル、
21:上位コンピュータ、 22:プロセスコンピュータ、
23:形状制御手段、 24:形状検出器[0001]
[Industrial application fields]
The present invention relates to a method for controlling a plate shape after rolling when a metal strip is cold-rolled using a multi-high rolling mill.
[0002]
[Prior art]
Improving the quality and production efficiency of the rolled material is an important factor for cost reduction. Therefore, various rolling control methods have been developed while increasing the number of rolling mills. As one of the multi-stage rolling mills, a 20-stage Sendier mill is widely known.
For example, as shown in FIG. 1, the 20-stage Sendia
[0003]
As shown in FIG. 2 showing the axial cross section, the
[0004]
By the way, regarding the initial setting of the shape control means, in Japanese Patent Laid-Open No. 8-290209, the set value of the extrusion amount of each split bearing is calculated according to each independent model formula, and the position corresponding to the position in the width direction of each split bearing is calculated. By multiplying the mechanical crown amount of the work roll or intermediate roll by a predetermined coefficient, the mechanical crown of the work roll or intermediate roll is taken into the model formula. When this method is used, for example, in the 20-stage Sendmir rolling
[0005]
Regarding feedback shape control, JP-A-62-214814 discloses that the control amount of each shape control means is corrected based on the detection signal from the shape detector so that the shape evaluation function is minimized. . According to this method, for example, in the 20-stage Sendmir rolling
[0006]
[Problems to be solved by the invention]
In the shape control method disclosed in Japanese Patent Laid-Open No. 8-290209, when the mechanical crown amounts of the first
[0007]
The shape control method of Japanese Patent Laid-Open No. 8-290209 is premised on the control by the crown adjustment of a bilaterally symmetric bearing, and there is a case where a bilaterally asymmetric shape is generated due to a leveling defect under rolling, an asymmetry of a base plate thickness distribution, or the like. is there. In addition, since the shape control method disclosed in JP-A-62-214814 uses a shape evaluation index that is a function of the measured elongation value at each sensor position, the mathematical formula for calculating the control amount of the shape control means becomes complicated. When applied online, it takes time to calculate the control amount of the shape control means, and control with high responsiveness becomes difficult. The present invention has been devised to solve such a problem. In a multi-high rolling mill, the control amount of the shape control means and the symmetrical component and the asymmetry of the elongation difference with respect to the center of the sheet width at a plurality of positions in the sheet width direction. It is an object of the present invention to provide a control method that can prevent the formation of a left-right asymmetric shape by using a mathematical model representing components and can produce a rolled material with excellent shape accuracy with high productivity.
[0008]
[Means for Solving the Problems]
In order to achieve the object, the shape control method in the multi-high rolling mill according to the present invention, when cold rolling the rolled material using the multi-high rolling mill, the elongation ratio with respect to the plate width center at the plate end portion and the quarter portion of the rolled material. The symmetric component and the asymmetric component of the difference are expressed by the equations (1) to (4), and the symmetric component and the asymmetric component of the backup roll saddle position and the intermediate roll shift position are expressed by the equations (5) to (10). A mathematical model comprising equations (20) to (23) representing the relationship between the symmetric and asymmetric components of the difference and the control amount of the saddle position of the backup roll and the symmetric and asymmetric components of the intermediate roll shift position is created in advance, and the shape into the equation symmetric component and the asymmetric component of the elongation index difference with respect to sheet width center of the plate ends and the quarter portion from the detector which is the mathematical expression model (20) - (23) Plate width calculating symmetrical components and the asymmetric component of the elongation index difference with respect to the center, the saddle of the backup roll as symmetric component and the asymmetric component of the calculated elongation difference coincides with the target value in the plate end and quarter unit Te The control amount of the position and the control amount of the intermediate roll shift position are corrected.
εe = {ε (EW) + ε (ED)} / 2 (1)
εq = {ε (QW) + ε (QD)} / 2 (2)
εe ′ = {ε (EW) −ε (ED)} / 2 (3)
εq ′ = {ε (QW) −ε (QD)} / 2 (4)
L = (L W + L D ) / 2 (5)
Se = (Se W + Se D ) / 2 (6)
Sq = (Sq W + Sq D ) / 2 (7)
L ′ = (L W −L D ) / 2 (8)
Se ′ = (Se W −Se D ) / 2 (9)
Sq ′ = (Sq W −Sq D ) / 2 (10)
εe = εe 1 + a 1 ΔL + a 2 ΔSe + a 3 ΔSq (20)
εq = εq 1 + b 1 ΔL + b 2 ΔSe + b 3 ΔSq (21)
εe ′ = εe ′ 1 + c 1 ΔL ′ + c 2 ΔSe ′ + c 3 ΔSq ′
(22)
εq ′ = εq ′ 1 + d 1 ΔL ′ + d 2 ΔSe ′ + d 3 ΔSq ′
(23)
Where ε (x): difference in elongation with respect to the center of the plate width at the position x in the plate width direction, εe: symmetrical component of the difference in elongation with respect to the center of the plate width at the end of the plate, εq: elongation of the quarter portion with respect to the center of the plate width Symmetric component of difference, εe ′: asymmetric component of elongation difference with respect to the center of the plate width of the plate end portion, εq ′: asymmetric component of difference of elongation rate with respect to the center of the plate width of the quarter portion, EW: plate end position on the operation side, ED: drive side plate end position, QW: operation side quarter portion position, QD: drive side quarter portion position, L: symmetrical component of first intermediate roll shift position, Se: symmetrical component of plate end saddle position , Sq: symmetric component of quarter part saddle position, L ′: asymmetric component of first intermediate roll shift position, Se ′: asymmetric component of saddle position of plate end, Sq ′: asymmetric component of quarter part saddle position, L W : First intermediate roll shift position on the operating side, L D : First intermediate roll shift position on the driving side, Se W : saddle position on the plate end on the operating side, Se D : saddle position on the plate end on the driving side, Sq W : saddle position on the quarter portion on the operating side, Sq D : Saddle position of quarter part on driving side, εe 1 : Symmetric component of elongation difference with respect to center of plate width of plate end obtained from shape detector, εq 1 : Center of plate width of quarter part obtained from shape detector Εe ′ 1 : asymmetric component of elongation difference with respect to the center of the plate width at the end of the plate obtained from the shape detector , εq ′ 1 : relative to the center of the plate width of the quarter portion obtained from the shape detector Asymmetric component of elongation difference, ΔL: control amount of symmetrical component of first intermediate roll shift position, ΔSe: control amount of symmetrical component of elongation difference with respect to center of plate width at end of plate, ΔSq: symmetry of quarter portion saddle position Component control amount, ΔL ′: first The control amount of the asymmetric component between roll shifting position, ΔSe ': the control amount of the asymmetric component of the plate end portion saddle position, ΔSq': the control amount of the asymmetric component of the
Embodiment
The present inventors evaluated the plate shape detected by the shape detector at the representative position in the plate width direction, taking into account the left-right asymmetry caused by various factors, and the crown adjustment amount of the
[0010]
Hereinafter, although the shape control method of the present invention will be described for a 20-send Sendemia mill, the method of the present invention can also be applied to other multi-high mills.
In order to prevent not only simple shape defects such as ear elongation and medium elongation, but also complex elongation in which quarter elongation, piece elongation and various elongations are combined in a complex manner, the rolling shape should be evaluated and controlled with multiple indices. Is required.
Therefore, in the present invention, the rolling shape is evaluated by the difference between the elongation rate at a plurality of locations at different distances from the plate edge and the elongation rate at the center of the plate width. Specifically, the elongation difference with respect to the center of the plate width of the plate end portion and the quarter portion is divided into symmetric components εe, εq and asymmetric components εe ′, εq ′, and the rolling shape is defined. Assuming that the elongation difference with respect to the center of the sheet width at the position x in the sheet width direction is ε (x), the symmetric components εe and εq and the asymmetric components εe ′ and εq ′ of the elongation difference are expressed by the following equations (1) to (4). It is expressed as follows.
[0011]
εe = {ε (EW) + ε (ED)} / 2 (1)
εq = {ε (QW) + ε (QD)} / 2 (2)
εe ′ = {ε (EW) −ε (ED)} / 2 (3)
εq ′ = {ε (QW) −ε (QD)} / 2 (4)
Here, EW: plate end position on the operation side ED: plate end position on the drive side QW: quarter portion position on the operation side QD: quarter portion position on the drive side Note that the measurement positions of the plate end portion and the quarter portion are as follows. It is determined empirically so as to obtain a mathematical expression model that accurately represents the shape and is accurate.
[0012]
Next, symmetrical components L, Se, and Sq of the first intermediate roll shift position, the plate end saddle position, and the quarter saddle position are defined by the following equations (5) to (7), respectively, and the first intermediate roll shift position: , Plate end saddle position and quarter part saddle position are defined by the following equations (8) to (10), respectively.
L = (L W + L D ) / 2 (5)
Se = (Se W + Se D ) / 2 (6)
Sq = (Sq W + Sq D ) / 2 (7)
L ′ = (L W −L D ) / 2 (8)
Se ′ = (Se W −Se D ) / 2 (9)
Sq ′ = (Sq W −Sq D ) / 2 (10)
Here, L W : first intermediate roll shift position L D on the operation side: first intermediate roll shift position Se W on the driving side Se W : saddle position Se D on the plate end on the operation side Se D : saddle on the plate end on the driving side Position Sq W : Saddle position of the quarter part on the operating side Sq D : Saddle position of the quarter part on the driving side
Since the symmetrical component of the control amount of each shape control means changes the shape symmetrically, it affects only the symmetrical component of the elongation difference, and does not affect the asymmetric component. In addition, the asymmetric component of the control amount of each shape control means changes the shape left and right asymmetrically, but the average shape on the left and right does not change, so it affects only the asymmetric component of the elongation difference and not the symmetric component. .
[0014]
From the results of various investigations and investigations on the influence of the symmetric component of the control amount of each shape control means on the symmetric component of the elongation difference and the influence of the asymmetric component of the control amount of each shape control means on the asymmetric component of the elongation difference. It was found that the following relationship was established between the factors.
A change in the crown adjustment amount of the
Further, the relationship between the symmetrical component L at the first intermediate roll shift position and the symmetrical components εe and εq of the difference in elongation can be approximated by a linear relationship as shown in FIG. 5 within a narrow shift range. Therefore, the relationship between the change amounts ΔSe, ΔSq and ΔL of the symmetric components at the plate end saddle position, the quarter portion saddle position and the first intermediate roll shift position and the change amounts Δεe and Δεq of the symmetric components of the elongation difference is also linear. It becomes a relationship.
[0015]
Similarly, the asymmetrical components εe ′ and εq ′ of the elongation difference between the plate end portion and the quarter portion represented by the expressions (3) and (4) are also shown in FIGS. It is in a substantially linear relationship with the asymmetric components Se ′ and Sq ′ at the saddle position. Further, the relationship between the asymmetric component L ′ at the first intermediate roll shift position and the asymmetric components εe ′ and εq ′ of the difference in elongation can be approximated by a linear relationship as shown in FIG. 8 within a narrow shift position. Accordingly, the variation amounts ΔSe ′, ΔSq ′ and ΔL ′ of the asymmetric components of the plate end saddle position, the quarter portion saddle position and the first intermediate roll shift position and the variation amounts Δεe ′ and Δεq ′ of the asymmetric components of the elongation difference. The relationship is also a linear relationship.
[0016]
From the relationship between the above factors, a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d 1 , d 2 , and d 3 are used as influence coefficients, and Equations (11) to (14) can be used to express a rolling shape change prediction formula.
Δεe = a 1 ΔL + a 2 ΔSe + a 3 ΔSq (11)
Δεq = b 1 ΔL + b 2 ΔSe + b 3 ΔSq (12)
Δεe ′ = c 1 ΔL ′ + c 2 ΔSe ′ + c 3 ΔSq ′ (13)
Δεq ′ = d 1 ΔL ′ + d 2 ΔSe ′ + d 3 ΔSq ′ (14)
The influence coefficients a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d 1 , d 2 , and d 3 are production types such as sheet thickness, sheet width, steel type, etc. The constant is determined by an experiment or a simulation using an analysis model in which an elastic deformation analysis of a roll and a plastic deformation analysis of a material are combined. Each influence coefficient is expressed by a table for each section such as a plate thickness, a plate width, and a steel type, or expressed as a function of a plate thickness, a plate width, a steel type, and the like.
[0017]
When controlling the shape during rolling, the tension difference in the plate width direction at each position in the plate width direction is measured as a plate shape by detecting the tension distribution in the plate width direction with a shape detector installed on the delivery side of the rolling mill. To do. Then, the elongation difference ε 1 (x) with respect to the plate width center at each position in the plate width direction is approximated by a polynomial having the plate width direction position x as a variable. Here, the elongation difference is approximated by a quartic function as shown by the following equation (15), but it is also possible to approximate it by a quartic or higher order polynomial in order to further improve the accuracy.
ε 1 (x) = α 1 x + α 2 x 2 + α 3 x 3 + α 4 x 4 (15)
Here, α 1 , α 2 , α 3 , α 4 : coefficients
Then, the symmetric components εe 1 and εq 1 and the asymmetric components εe ′ 1 and εq ′ 1 of the elongation difference are calculated by the following equations (16) to (19).
εe 1 = {ε 1 (EW) + ε 1 (ED)} / 2 (16)
εq 1 = {ε 1 (QW) + ε 1 (QD)} / 2 (17)
εe ′ 1 = {ε 1 (EW) −ε 1 (ED)} / 2 (18)
εq ′ 1 = {ε 1 (QW) −ε 1 (QD)} / 2 (19)
[0019]
From the prediction formulas (11) to (14) for the rolling shape change, the symmetrical components εe and εq and the asymmetric components εe ′ and εq ′ of the elongation difference are expressed by the following equations (20) to (23). Can be represented.
εe = εe 1 + a 1 ΔL + a 2 ΔSe + a 3 ΔSq (20)
εq = εq 1 + b 1 ΔL + b 2 ΔSe + b 3 ΔSq (21)
εe ′ = εe ′ 1 + c 1 ΔL ′ + c 2 ΔSe ′ + c 3 ΔSq ′ (22)
εq ′ = εq ′ 1 + d 1 ΔL ′ + d 2 ΔSe ′ + d 3 ΔSq ′ (23)
[0020]
In the rolling shape prediction formulas (20) to (23), the symmetric components εe and εq and the asymmetric components εe ′ and εq ′ of the elongation difference are respectively set to target values εe 0 , εq 0 , εe ′ 0 , and εq ′ 0 . Thus, the control amounts of the symmetrical components at the plate end saddle position, the quarter portion saddle position, and the first intermediate roll shift position are corrected by ΔSe, ΔSq, and ΔL, respectively, and the plate end saddle position, the quarter portion saddle position, and the first intermediate roll shift position are corrected. The amount of asymmetric component control at each intermediate roll shift position is corrected by ΔSe ′, ΔSq ′, and ΔL ′.
[0021]
Arbitrary combinations can be adopted as combinations of the control amounts ΔSe, ΔSe ′ of the plate end saddle position, the control amounts ΔSq, ΔSq ′ of the quarter saddle position, and the control amounts ΔL, ΔL ′ of the first intermediate roll shift position. For example, as shown in the following expressions (24) and (25), one combination is obtained by adding a restriction to the relationship between the control amounts ΔSe, ΔSe ′ of the plate end saddle position and the control amounts ΔSq, ΔSq ′ of the quarter saddle position. Can be fixed.
ΔSq = ΔSe / 2 (24)
ΔSq ′ = ΔSe ′ / 2 (25)
[0023]
【Example】
A cold rolled steel sheet having a sheet width of 1000 mm and a sheet thickness of 0.92 mm was cold-rolled to a sheet thickness of 0.8 mm using a 20-
A symmetric component and an asymmetric component of elongation difference at two points of the plate end portion and the quarter portion with respect to the plate width central portion were expressed according to the formulas (1) to (4), and the rolling shape was defined. The plate edge was set at a
[0024]
As shown in FIG. 9, the distribution of the elongation difference with respect to the center of the sheet width at each position in the sheet width direction was measured by a shape detector as shape control during rolling, and the distribution of the elongation difference was input to the
The process computer 22 incorporates influence coefficients calculated in advance for each production quality such as sheet width, sheet thickness, steel type, and the like, and symmetric components εe 1 and εq 1 and asymmetric components εe ′ 1 and εq ′ 1 of the measured elongation difference. From Equations (20) to (23), symmetric components εe and εq and asymmetric components εe ′ and εq ′ of the elongation difference are calculated, and εe, εq, εe ′, and εq ′ are respectively set to target values εe 0 , εq 0 , εe '0, εq' correction amount DerutaSe of Itatan portion saddle position so that 0, ΔSe ', the correction amount DerutaSq quota portion saddle position, ΔSq', the correction amount of the first intermediate roll shift position [Delta] L, the [Delta] L ' The amount of control was calculated and the control amount of the shape control means 23 was corrected. At this time, as target values εe 0 , εq 0 , εe ′ 0 , εq ′ 0 of the symmetric component and the asymmetric component of the elongation difference, εe 0 = 0, εq 0 = 0, εe ′ 0 = 0, εq ′ 0 = 0.
[0025]
The shape of the rolled material M was measured off-line after rolling, the steepness distribution in the sheet width direction was determined as the wave height / wavelength of the surface of the rolled material M, and the maximum value was defined as the maximum steepness.
The obtained maximum steepness is shown in FIG. 10 in comparison with the maximum steepness of the rolled material M obtained by the conventional method in which the shape is controlled based on the shape evaluation function. As is apparent from FIG. 10, the conventional method controls the shape based on the shape evaluation function, and therefore has low responsiveness and a maximum steepness exceeding 0.8%. On the other hand, in the control method based on the method of the present invention, the maximum steepness was kept below 0.5% over the entire coil length from the start of rolling, and rolling with good shape accuracy could be performed.
[0026]
【The invention's effect】
As described above, according to the present invention, the mathematical model representing the control component of the shape control means and the symmetric component and the asymmetric component of the elongation difference with respect to the center of the plate width at the plate end portion and the quarter portion in the plate width direction is used. Since the control amount of the shape control means is calculated and corrected, even if there are factors that cause asymmetrical shapes such as poor leveling under rolling and asymmetry of the base plate thickness distribution, Cold rolled steel strip with good accuracy can be manufactured with high productivity.
[Brief description of the drawings]
[Fig. 1] Schematic diagram of a 20-stage Sendia mill [Fig. 2] Axial cross-sectional view of a backup roll [Fig. 3] A graph showing the influence of the symmetrical component of the saddle position at the plate edge on the symmetrical component of the elongation difference [ FIG. 4 is a graph showing the influence of the symmetrical component of the quarter saddle position on the symmetrical component of the elongation difference. FIG. 5 shows the influence of the symmetrical component of the first intermediate roll shift position on the symmetrical component of the elongation difference. Graph [Fig. 6] A graph showing the effect of the asymmetric component of the plate edge saddle position on the asymmetric component of the elongation difference. [Fig. 7] The effect of the asymmetric component of the quarter saddle position on the asymmetric component of the elongation difference. [Fig. 8] Graph showing the effect of the asymmetric component of the first intermediate roll shift position on the asymmetric component of the elongation difference. [Fig. 9] A diagram showing the control system of the 20-stage Sendamire mill [Fig. 10] Example A graph comparing the maximum steepness of the cold-rolled steel strip manufactured in the above with the maximum steepness of the cold-rolled steel strip manufactured by the conventional method.
10: 20-stage Sendier mill,
11u, 11d: work roll,
12u, 12d: first intermediate roll,
13u, 13d: second intermediate roll,
14u, 14d: backup roll,
15u: a backup roll having a crown adjusting mechanism,
15d: a backup roll having no crown adjustment mechanism,
16: Bearing, 17: Bearing shaft, 18: Saddle,
21: Host computer, 22: Process computer,
23: Shape control means, 24: Shape detector
Claims (1)
εe={ε(EW)+ε(ED)}/2 (1)
εq={ε(QW)+ε(QD)}/2 (2)
εe’={ε(EW)−ε(ED)}/2 (3)
εq’={ε(QW)−ε(QD)}/2 (4)
L=(L W +L D )/2 (5)
Se=(Se W +Se D )/2 (6)
Sq=(Sq W +Sq D )/2 (7)
L’=(L W ―L D )/2 (8)
Se’=(Se W −Se D )/2 (9)
Sq’=(Sq W −Sq D )/2 (10)
εe=εe 1 +a 1 ΔL+a 2 ΔSe+a 3 ΔSq (20)
εq=εq 1 +b 1 ΔL+b 2 ΔSe+b 3 ΔSq (21)
εe'=εe' 1 +c 1 ΔL'+c 2 ΔSe'+c 3 ΔSq'
(22)
εq'=εq' 1 +d 1 ΔL'+d 2 ΔSe'+d 3 ΔSq'
(23)
ここで、ε(x):板幅方向位置xにおける板幅中央に対する伸び率差,εe:板端部の板幅中央に対する伸び率差の対称成分,εq:クォータ部の板幅中央に対する伸び率差の対称成分,εe’:板端部の板幅中央に対する伸び率差の非対称成分,εq’:クォータ部の板幅中央に対する伸び率差の非対称成分,EW:操作側の板端部位置,ED:駆動側の板端部位置,QW:操作側のクォータ部位置,QD:駆動側のクォータ部位置,L:第1中間ロールシフト位置の対称成分,Se:板端部サドル位置の対称成分,Sq:クォータ部サドル位置の対称成分,L’:第1中間ロールシフト位置の非対称成分,Se’:板端部サドル位置の非対称成分,Sq’:クォータ部サドル位置の非対称成分,L W :操作側の第1中間ロールシフト位置,L D :駆動側の第1中間ロールシフト位置,Se W :操作側の板端部のサドル位置,Se D :駆動側の板端部のサドル位置,Sq W :操作側のクォータ部のサドル位置,Sq D :駆動側のクォータ部のサドル位置,εe 1 :形状検出器より得られる板端部の板幅中央に対する伸び率差の対称成分,εq 1 :形状検出器より得られるクォータ部の板幅中央に対する伸び率差の対称成分,εe' 1 :形状検出器より得られる板端部の板幅中央に対する伸び率差の非対称成分,εq' 1 :形状検出器より得られるクォータ部の板幅中央に対する伸び率差の非対称成分,ΔL:第1中間ロールシフト位置の対称成分の制御量,ΔSe:板端部の板幅中央に対する伸び率差の対称成分の制御量,ΔSq:クォータ部サドル位置の対称成分の制御量,ΔL’:第1中間ロールシフト位置の非対称成分の制御量,ΔSe’:板端部サドル位置の非対称成分の制御量,ΔSq’:クォータ部サドル位置の非対称成分の制御量,a 1 、a 2 、a 3 、b 1 、b 2 、b 3 、c 1 、c 2 、c 3 、d 1 、d 2 、d 3 :影響係数 When the rolled material is cold-rolled using a multi-stage rolling mill, the symmetrical and asymmetrical components of the elongation difference with respect to the center of the plate width at the plate end portion and the quarter portion of the rolled material are expressed by equations (1) to (4). The symmetric component and the asymmetric component of the backup roll saddle position and the intermediate roll shift position are expressed by the equations (5) to (10), and the symmetric component and the asymmetric component of the elongation difference, the saddle position of the backup roll, and the intermediate roll shift position. An equation model (20) to (23) representing the relationship between the control amount of the symmetric component and the asymmetric component is created in advance, and the elongation ratio with respect to the plate width center at the plate end portion and the quarter portion obtained from the shape detector symmetrical elongation index difference with respect to sheet width center of the plate end and quarter unit into equation (20) to (23) is symmetric component and the asymmetric component in the mathematical model of the difference Calculating the minute and asymmetric components, and correcting the control amount of the backup roll saddle position and the control amount of the intermediate roll shift position so that the calculated symmetric and asymmetric components of the difference in elongation coincide with the target value. A shape control method in a multi-high rolling mill.
εe = {ε (EW) + ε (ED)} / 2 (1)
εq = {ε (QW) + ε (QD)} / 2 (2)
εe ′ = {ε (EW) −ε (ED)} / 2 (3)
εq ′ = {ε (QW) −ε (QD)} / 2 (4)
L = (L W + L D ) / 2 (5)
Se = (Se W + Se D ) / 2 (6)
Sq = (Sq W + Sq D ) / 2 (7)
L ′ = (L W −L D ) / 2 (8)
Se ′ = (Se W −Se D ) / 2 (9)
Sq ′ = (Sq W −Sq D ) / 2 (10)
εe = εe 1 + a 1 ΔL + a 2 ΔSe + a 3 ΔSq (20)
εq = εq 1 + b 1 ΔL + b 2 ΔSe + b 3 ΔSq (21)
εe ′ = εe ′ 1 + c 1 ΔL ′ + c 2 ΔSe ′ + c 3 ΔSq ′
(22)
εq ′ = εq ′ 1 + d 1 ΔL ′ + d 2 ΔSe ′ + d 3 ΔSq ′
(23)
Where ε (x): difference in elongation with respect to the center of the plate width at the position x in the plate width direction, εe: symmetrical component of the difference in elongation with respect to the center of the plate width at the end of the plate, εq: elongation of the quarter portion with respect to the center of the plate width Symmetric component of difference, εe ′: asymmetric component of elongation difference with respect to the center of the plate width of the plate end portion, εq ′: asymmetric component of difference of elongation rate with respect to the center of the plate width of the quarter portion, EW: plate end position on the operation side, ED: drive side plate end position, QW: operation side quarter portion position, QD: drive side quarter portion position, L: symmetrical component of first intermediate roll shift position, Se: symmetrical component of plate end saddle position , Sq: symmetric component of quarter part saddle position, L ′: asymmetric component of first intermediate roll shift position, Se ′: asymmetric component of saddle position of plate end, Sq ′: asymmetric component of quarter part saddle position, L W : First intermediate roll shift position on the operating side, L D : First intermediate roll shift position on the driving side, Se W : saddle position on the plate end on the operating side, Se D : saddle position on the plate end on the driving side, Sq W : saddle position on the quarter portion on the operating side, Sq D : Saddle position of quarter part on driving side, εe 1 : Symmetric component of elongation difference with respect to center of plate width of plate end obtained from shape detector, εq 1 : Center of plate width of quarter part obtained from shape detector Εe ′ 1 : asymmetric component of elongation difference with respect to the center of the plate width at the end of the plate obtained from the shape detector , εq ′ 1 : relative to the center of the plate width of the quarter portion obtained from the shape detector Asymmetric component of elongation difference, ΔL: control amount of symmetrical component of first intermediate roll shift position, ΔSe: control amount of symmetrical component of elongation difference with respect to center of plate width at end of plate, ΔSq: symmetry of quarter portion saddle position Component control amount, ΔL ′: first The control amount of the asymmetric component between roll shifting position, ΔSe ': the control amount of the asymmetric component of the plate end portion saddle position, ΔSq': the control amount of the asymmetric component of the quarter portions saddle position, a 1, a 2, a 3, b 1 , b 2 , b 3 , c 1 , c 2 , c 3 , d 1 , d 2 , d 3 : influence coefficient
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001233572A JP4671555B2 (en) | 2001-08-01 | 2001-08-01 | Shape control method in multi-high mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001233572A JP4671555B2 (en) | 2001-08-01 | 2001-08-01 | Shape control method in multi-high mill |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003048008A JP2003048008A (en) | 2003-02-18 |
JP4671555B2 true JP4671555B2 (en) | 2011-04-20 |
Family
ID=19065332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001233572A Expired - Fee Related JP4671555B2 (en) | 2001-08-01 | 2001-08-01 | Shape control method in multi-high mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4671555B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103978031A (en) * | 2014-03-25 | 2014-08-13 | 宁波宝新不锈钢有限公司 | Asymmetric rolling method of twenty-high roll mill |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5854765B2 (en) * | 2011-11-01 | 2016-02-09 | 古河電気工業株式会社 | Shape control method for workpiece using cluster rolling mill and shape control apparatus for cluster rolling mill |
CN104275352B (en) * | 2014-09-22 | 2016-04-27 | 宁波宝新不锈钢有限公司 | A kind of cold-strip mill sideslip and Automatic Flatness Control method |
CN108817089B (en) * | 2018-04-28 | 2020-02-21 | 江苏省沙钢钢铁研究院有限公司 | Control method for hot rolling thin-specification strip steel coil |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58116915A (en) * | 1981-12-28 | 1983-07-12 | Mitsubishi Heavy Ind Ltd | Method for shape control of sheet in multi cluster mill |
JPS62214814A (en) * | 1986-03-17 | 1987-09-21 | Kobe Steel Ltd | Nonlinear control method for plate shape in multistage rolling mill |
JPH04100618A (en) * | 1990-08-21 | 1992-04-02 | Nippon Steel Corp | Method for controlling form in rolling metal plate |
JPH0985319A (en) * | 1995-09-19 | 1997-03-31 | Kawasaki Steel Corp | Initialization of shape control actuator in multiroll mill |
JPH11226610A (en) * | 1998-02-10 | 1999-08-24 | Kawasaki Steel Corp | Multiple rolling mill and control method for shape using the same |
-
2001
- 2001-08-01 JP JP2001233572A patent/JP4671555B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58116915A (en) * | 1981-12-28 | 1983-07-12 | Mitsubishi Heavy Ind Ltd | Method for shape control of sheet in multi cluster mill |
JPS62214814A (en) * | 1986-03-17 | 1987-09-21 | Kobe Steel Ltd | Nonlinear control method for plate shape in multistage rolling mill |
JPH04100618A (en) * | 1990-08-21 | 1992-04-02 | Nippon Steel Corp | Method for controlling form in rolling metal plate |
JPH0985319A (en) * | 1995-09-19 | 1997-03-31 | Kawasaki Steel Corp | Initialization of shape control actuator in multiroll mill |
JPH11226610A (en) * | 1998-02-10 | 1999-08-24 | Kawasaki Steel Corp | Multiple rolling mill and control method for shape using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103978031A (en) * | 2014-03-25 | 2014-08-13 | 宁波宝新不锈钢有限公司 | Asymmetric rolling method of twenty-high roll mill |
CN103978031B (en) * | 2014-03-25 | 2016-02-24 | 宁波宝新不锈钢有限公司 | A kind of Asymmetric Rolling method of mill |
Also Published As
Publication number | Publication date |
---|---|
JP2003048008A (en) | 2003-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101299946B1 (en) | Method for calibrating two interacting working rollers in a rolling stand | |
US4776192A (en) | Controlling the profile of sheet during rolling thereof | |
CN100352570C (en) | Rolling method for overcoming compound wave shape | |
JP4671555B2 (en) | Shape control method in multi-high mill | |
JP4330094B2 (en) | Shape control method in multi-high mill | |
JP2003048009A (en) | Method for controlling shape in multi roll mill | |
US5553475A (en) | Method for detecting setting errors of clearance between rollers in universal rolling mill, and method for rolling H-shaped steel having favorable flange dimensions utilizing same detecting method | |
JP4330095B2 (en) | Shape control method in multi-high mill | |
JP4227686B2 (en) | Edge drop control method during cold rolling | |
JP2978056B2 (en) | Prediction method of contact wear between rolls of rolling mill | |
JP4086119B2 (en) | Shape control method in cold rolling of hot rolled steel strip before pickling | |
JP4086120B2 (en) | Cold rolling method for hot rolled steel strip before pickling | |
JPH07148512A (en) | Method for rolling | |
JPH05208204A (en) | Method for controlling shape in strip rolling | |
JP3344092B2 (en) | Rolling machine tension control method | |
JP2003326308A (en) | Rolling method | |
JPH049205A (en) | Method and device for assymmetrically correcting shape of sheet | |
JP2978058B2 (en) | Mill elongation prediction method for rolling mill | |
JPH10263658A (en) | Flatness control method of rolled stock in hot finishing mill | |
JP2719216B2 (en) | Edge drop control method for sheet rolling | |
JP2001062508A (en) | Shape control method with multistage rolling mill | |
JPH0515911A (en) | Method for controlling edge drop in cold rolling | |
JPH0966308A (en) | Thick plate rolling method | |
JP2005152942A (en) | Shape detection method for cold rolled sheet and shape control method in multi-stage rolling mill | |
KR20020045697A (en) | A method for manufacturing strips having uniform thickness in widthwise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070313 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101021 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4671555 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |