JP4665417B2 - Method for producing grain-oriented electrical steel sheet - Google Patents
Method for producing grain-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP4665417B2 JP4665417B2 JP2004095383A JP2004095383A JP4665417B2 JP 4665417 B2 JP4665417 B2 JP 4665417B2 JP 2004095383 A JP2004095383 A JP 2004095383A JP 2004095383 A JP2004095383 A JP 2004095383A JP 4665417 B2 JP4665417 B2 JP 4665417B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- hot
- annealing
- oriented electrical
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Rolling (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Description
本発明は方向性電磁鋼板の製造方法に係り、特に最終冷間圧延をタンデム圧延機により行なう工程を含む磁気特性に優れた方法性電磁鋼板の製造方法に関する。 The present invention relates to a method for producing a grain-oriented electrical steel sheet, and more particularly to a method for producing a method-oriented electrical steel sheet having excellent magnetic properties including a step of performing final cold rolling with a tandem rolling mill.
方向性電磁鋼板は、その磁気特性が優れていること、すなわちB8値により代表される透磁率が高くかつ、W17/50により代表される鉄損値が低いことが要求されている。そのため、結晶粒を極力ゴス方位すなわち(110)[001]に集積させる手段が多岐にわたって提案されている。 The grain- oriented electrical steel sheet is required to have excellent magnetic properties, that is, high magnetic permeability represented by B 8 value and low iron loss value represented by W 17/50 . Therefore, various means for accumulating crystal grains in the Goss orientation, that is, (110) [001] as much as possible have been proposed.
そのような提案は熱延板焼鈍工程から脱炭焼鈍に至る工程においても数多くなされており、たとえば、特許文献1には、圧延中に冷延板を低温で熱処理(以後、時効処理という)することにより、磁気特性を向上させる手段が提案されている。この手段は、侵入型固溶元素であるC,Nを低温で拡散させて圧延により発生した転位に固着させて転位の移動を妨げ、冷間圧延中にさらなるせん断変形を進行させ圧延集合組織を改善させようとするものである。また、特許文献2には、熱延板焼鈍または仕上冷延(最終冷延)前焼鈍時の冷却速度を30℃/s以上とし、さらに仕上冷延中に板温150〜300℃で2分間以上のパス間時効を2回以上行なう技術が開示されている。 Many proposals have been made in a process from a hot-rolled sheet annealing process to a decarburized annealing process. For example, in Patent Document 1, a cold-rolled sheet is heat-treated at a low temperature during rolling (hereinafter referred to as an aging process). Thus, means for improving the magnetic characteristics have been proposed. This means that interstitial solid solution elements C and N are diffused at a low temperature and fixed to the dislocations generated by rolling to prevent the movement of dislocations, and further shear deformation proceeds during cold rolling to form a rolling texture. It is to improve. Patent Document 2 discloses that the cooling rate at the time of hot-rolled sheet annealing or annealing before finish cold rolling (final cold rolling) is 30 ° C./s or more, and further during the finish cold rolling, the sheet temperature is 150 to 300 ° C. for 2 minutes. A technique for performing the above-described aging between passes twice or more is disclosed.
上記手段はいずれも冷間圧延のパス間で時効処理を行なう静的な時効処理手段であるが、これらと異なり、圧延中の鋼板温度を高温とすることにより圧延変形で発生した転位に直ちにC,Nを固着させる動的時効効果を利用する手段も提案されている。たとえば、特許文献3、特許文献4にはタンデム圧延機による冷間圧延過程において、少なくとも1パスでワークロール対に噛み込む圧延板の温度を300〜500℃(特許文献3)、100〜500℃(特許文献4)とする提案がなされている。これらの手段は、特に生産性の高いタンデム圧延機を用いて方向性電磁鋼板を製造するのに有効な手段とされている。 All of the above means are static aging treatment means in which aging treatment is performed between passes of cold rolling, but unlike these, the dislocation generated by rolling deformation is immediately increased by increasing the steel plate temperature during rolling. , Means using the dynamic aging effect to fix N have also been proposed. For example, in Patent Document 3 and Patent Document 4, in the cold rolling process by a tandem rolling mill, the temperature of the rolled plate that is bitten into the work roll pair in at least one pass is 300 to 500 ° C. (Patent Document 3), 100 to 500 ° C. (Patent Document 4) has been proposed. These means are effective means for producing grain-oriented electrical steel sheets using a highly productive tandem rolling mill.
しかしながら、特許文献1又は2に記載の提案を、タンデム圧延機を利用した方向性電磁鋼板の製造方法に適用しようとすると、タンデム圧延においては圧延過程におけるスタンド間の距離が短くまた、通板速度も大きいために到底2分間以上という加熱保持時間が得られず、C,Nの拡散が不十分となり、そのため磁気特性の十分な改善が得られないことになる。 However, if the proposal described in Patent Document 1 or 2 is applied to a method of manufacturing a grain-oriented electrical steel sheet using a tandem rolling mill, the distance between stands in the rolling process is short in tandem rolling, and the sheet passing speed is Therefore, the heating and holding time of 2 minutes or more cannot be obtained, and the diffusion of C and N becomes insufficient, so that the magnetic characteristics cannot be sufficiently improved.
一方、特許文献3又は4に開示されている手段は、その効果を十分に得ようとすると、圧延温度を高くする必要がある。すなわち、鋼板の動的時効の最適温度が歪速度に依存し、圧延速度が速くなるほど最適温度も高くなるために、タンデム圧延機のような圧延速度が大きい圧延機を使用すると、必然的に動的時効の最適温度も高くなり、またタンデム圧延機ではスタンド間距離が短いためパス間時効があまり期待できず、そのためさらに圧延温度を高める必要がある。しかしながら、圧延温度が高温側にシフトして300℃を超えると、圧延中に圧延油が鋼板表面に局所的に焼き付き、圧延時の摩擦係数が不安定となって仕上げ板厚にばらつきを生じてしまう等の問題を生ずる。さらに、圧延油が焼き付いた部分では、その後の脱炭・一次再結晶焼鈍工程において生成する表面酸化膜(サブスケール)が不均一となり、製品の被膜の形成不良や模様の発生により外観が劣化し、被膜の密着性不良により磁気特性が劣化するという問題も生ずる。 On the other hand, the means disclosed in Patent Document 3 or 4 needs to increase the rolling temperature in order to obtain the effect sufficiently. In other words, the optimum temperature for dynamic aging of the steel sheet depends on the strain rate, and the higher the rolling speed, the higher the optimum temperature. Therefore, using a rolling mill with a high rolling speed such as a tandem rolling mill inevitably moves. The optimum temperature for target aging is also increased, and the tandem rolling mill has a short distance between stands, so that aging between passes cannot be expected so much. Therefore, it is necessary to further increase the rolling temperature. However, if the rolling temperature is shifted to the high temperature side and exceeds 300 ° C, the rolling oil is locally baked on the surface of the steel plate during rolling, resulting in unstable friction coefficient during rolling and variations in the finished plate thickness. This causes problems such as Furthermore, the surface oxide film (subscale) generated in the subsequent decarburization / primary recrystallization annealing process becomes non-uniform in the part where the rolling oil is baked, and the appearance deteriorates due to defective formation of the coating film or generation of patterns. Further, there arises a problem that the magnetic properties are deteriorated due to poor adhesion of the film.
本発明は、上記問題を解決することを課題とし、特に生産性のよいタンデム圧延機を使用して最終圧延を行ないながら、圧延油の焼き付き等の品質上有害になる事象の発生を回避して安定して優れた磁束密度が得られる方向性電磁鋼板の製造方法を提案することを目的とする。 An object of the present invention is to solve the above-mentioned problems, and avoid the occurrence of events that are harmful to quality such as seizure of rolling oil while performing final rolling using a highly productive tandem rolling mill. It aims at proposing the manufacturing method of the grain-oriented electrical steel sheet from which the outstanding magnetic flux density is stably obtained.
本発明者は、タンデム圧延機により最終冷間圧延を行なう際、まず静的時効を発現させた後、ただちに所定の温度、かつ所定の圧下率で圧延加工を施すと、鋼板内での変形帯の生成形態が変化し、それにより静的時効による転位固着と相俟って集合組織の改善効果が助長されるとの知見を得て本発明を完成した。 When the present inventor performs the final cold rolling by a tandem rolling mill, first, after expressing static aging, immediately after rolling at a predetermined temperature and a predetermined reduction ratio, the deformation band in the steel plate is obtained. The present invention has been completed with the knowledge that the formation form of is changed, and that the effect of improving the texture is promoted in combination with dislocation fixation by static aging.
本発明は、質量比で、C:0.005〜0.10%、Si:2.0〜4.5%を含有する方向性電磁鋼板用スラブを熱間圧延した後、得られた熱延板に対し、熱延板焼鈍および1回のタンデム圧延機による冷間圧延を施して最終板厚に仕上げ、これに脱炭焼鈍および最終仕上げ焼純を行なって方向性電磁鋼板を製造するに当たり、(1)前記熱延板焼鈍後の冷却速度を700〜150℃間において10℃/s以上となし、(2)前記タンデム圧延機の最終スタンドに至るまでのいずれかのスタンド間において鋼板温度T(K)とスタンド間滞留時間t(s)とが下記(1)式を満足するようにしかつ、(3)前記タンデム圧延機の前記スタンド間以降のいずれかのスタンドの圧延材噛み込み温度を80℃以上300℃以下、圧下率を20%以上として圧延することとするものである。
記
t≧2×10-9×exp(10568/T)・・・(1)
In the present invention, by hot rolling a slab for grain- oriented electrical steel sheets containing C: 0.005 to 0.10% and Si: 2.0 to 4.5% by mass ratio , the obtained hot rolled sheet is subjected to hot rolled sheet annealing. When producing a grain-oriented electrical steel sheet by performing cold rolling by a tandem rolling mill and finishing it to the final thickness, and performing decarburization annealing and final finishing tempering on this, (1) the hot-rolled sheet annealing The subsequent cooling rate is 10 ° C./s or more between 700 and 150 ° C., and (2) the steel plate temperature T (K) and the residence time between stands between any of the stands until the final stand of the tandem rolling mill t (s) satisfies the following formula (1), and (3) the rolling material biting temperature of any of the stands after and between the stands of the tandem rolling mill is reduced to 80 ° C. or more and 300 ° C. or less. Rolling is performed at a rate of 20% or more.
Record
t ≧ 2 × 10 -9 × exp (10568 / T) (1)
また、本発明は、質量比で、C:0.005〜0.10%、Si:2.0〜4.5%を含有する方向性電磁鋼板用スラブを熱間圧延した後、得られた熱延板に対し、中間焼鈍を挟んで2回以上のタンデム圧延機による冷間圧延を施して最終板厚に仕上げ、これに脱炭焼鈍および最終仕上げ焼純を行なって方向性電磁鋼板を製造するに当たり、(1)前記中間焼鈍のうち最終中間焼鈍の冷却速度を700〜150℃間において10℃/s以上となし、(2)前記タンデム圧延機の最終スタンドに至るまでのいずれかのスタンド間において鋼板温度T(K)とスタンド間滞留時間t(s)とが前記(1)式を満足するようにしかつ、(3)前記タンデム圧延機の前記最終スタンド間以降のいずれかのスタンドの圧延材噛み込み温度を80℃以上300℃以下、圧下率を20%以上として圧延することとするものである。この場合において、前記熱延板に対し、熱延板焼鈍が行なわれることとすることができる。 In addition, the present invention, by mass rolling, slabs for grain- oriented electrical steel sheets containing C: 0.005 to 0.10% and Si: 2.0 to 4.5% are subjected to intermediate annealing on the obtained hot rolled sheets. When producing a grain-oriented electrical steel sheet by performing cold rolling with a tandem rolling mill twice or more across the surface and finishing it to the final thickness, and performing decarburization annealing and final finishing tempering on this, (1) Among the annealing, the cooling rate of the final intermediate annealing is set to 10 ° C / s or more between 700 to 150 ° C, and (2) the steel plate temperature T (K) between any of the stands up to the final stand of the tandem rolling mill And the residence time t (s) between the stands satisfy the formula (1), and (3) the rolling material biting temperature of any one of the stands after the last stand of the tandem rolling mill is 80 ° C. The rolling is performed at a temperature of 300 ° C. or lower and a rolling reduction of 20% or higher. In this case, hot-rolled sheet annealing can be performed on the hot-rolled sheet.
本発明により、生産性のよいタンデム圧延機を使用して最終圧延を行ないながら、圧延油の焼き付き等の品質上有害になる事象の発生を回避して安定して優れた磁束密度が優れた方向性電磁鋼板の製造することができる。 According to the present invention, while performing final rolling using a highly productive tandem rolling mill, avoiding the occurrence of events that are harmful to quality such as seizure of rolling oil, stable and excellent magnetic flux density Can be manufactured.
出発素材として用いるスラブは、方向性電磁鋼板を製造するために用いられるものを特に制限なく利用できる。典型的な組成を示すと、質量比でC:0.005〜0.10%、Si:2.0〜4.5%を含有し、必要に応じてAl、N、S、Se、Mn等の析出型のインヒビタ成分、もしくはCu,Sn,Sb,Mo,Te,Bi,P等の粒界偏析型のインヒビタ成分を含有する。その基本成分系および好適成分系を示すと以下のとおりとなる(成分含有量の単位はいずれも質量比による)。 As the slab used as the starting material, those used for producing grain-oriented electrical steel sheets can be used without particular limitation. When showing a typical composition, it contains C: 0.005 to 0.10% by mass ratio, Si: 2.0 to 4.5%, and if necessary, precipitation type inhibitor components such as Al, N, S, Se, and Mn, or Contains grain boundary segregation type inhibitor components such as Cu, Sn, Sb, Mo, Te, Bi, and P. The basic component system and the preferred component system are as follows (the unit of component content is based on the mass ratio).
(基本成分系)
C:0.005〜0.10%、Si:2.0〜4.5%
Cは、熱間圧延時のγ−α変態により熱延板の結晶組織を改善し、かつ最終冷間圧延時に生じた転位に固溶・拡散して固着し、静的時効効果を生じさせるのに必要な元素である。その含有量が0.005%未満では上記効果に乏しく、一方、0.10%を超えると、後の脱炭焼鈍で十分な脱炭が困難になるので、出発素材における含有量は0.005〜0.10%とする。
(Basic component system)
C: 0.005-0.10%, Si: 2.0-4.5%
C improves the crystal structure of the hot-rolled sheet by γ-α transformation during hot rolling, and fixes and disperses the dislocations generated during the final cold rolling, resulting in a static aging effect. It is a necessary element. If the content is less than 0.005%, the above effect is poor. On the other hand, if it exceeds 0.10%, it is difficult to perform sufficient decarburization by subsequent decarburization annealing, so the content in the starting material is 0.005 to 0.10%.
Siは、電気抵抗を高めることにより、鉄損特性を改善する有用な成分であるが、含有量が2.0%未満では効果が小さく、良好な鉄損特性が得られない。しかし、4.5%を超えると冷間圧延が困難になる。そのため、Siの含有量は2.0〜4.5%の範囲とする。 Si is a useful component that improves the iron loss characteristics by increasing the electric resistance. However, if the content is less than 2.0%, the effect is small, and good iron loss characteristics cannot be obtained. However, if it exceeds 4.5%, cold rolling becomes difficult. Therefore, the Si content is in the range of 2.0 to 4.5%.
(インヒビタ成分)
本発明における出発素材は、上記基本成分の他は、公知の工程、すなわち熱間圧延、必要に応じて行なう熱延板焼鈍および/又は中間焼鈍を挟む1回又は2回以上のタンデム圧延機による冷間圧延、脱炭焼鈍(一次再結晶焼鈍を兼ねる)および最終仕上げ焼純(二次再結晶焼鈍および純化焼鈍を兼ねる)を順次行なって一方向性電磁鋼板を得られる成分系であればよく、インヒビタ成分の種類、含有量等による制限はない。下記のようにインヒビタ成分を利用して二次再結晶粒を発達させることも可能であり、また特開2000-129856号公報等に示されているように、析出型のインヒビタ(AlN、MnS、MnSe等)を用いることなく二次再結晶粒を発達させることも可能である。インヒビタ成分の種類にしたがい、その好適含有量について説明すると以下のとおりである。
(Inhibitor component)
In addition to the above basic components, the starting material in the present invention is a known process, that is, hot rolling, hot rolling sheet annealing and / or one or more tandem rolling mills sandwiching intermediate annealing. Any component system capable of obtaining a unidirectional electrical steel sheet by sequentially performing cold rolling, decarburization annealing (also serves as primary recrystallization annealing) and final finish annealing (also serves as secondary recrystallization annealing and purification annealing). There are no restrictions due to the type and content of the inhibitor component. It is also possible to develop secondary recrystallized grains using the inhibitor component as described below, and as shown in JP-A-2000-129856 and the like, precipitation type inhibitors (AlN, MnS, It is also possible to develop secondary recrystallized grains without using MnSe or the like. According to the type of inhibitor component, its preferred content will be described as follows.
AlN系インヒビタを用いる場合
Sol.Al:0.01〜0.05%、N:0.004〜0.012%
Sol.Alは、含有量が0.01%未満では磁束密度が低下し、0.05%を超えると二次再結晶が不安定となる。したがって、AlN系インヒビタを用いる場合には、その含有量は0.01〜0.05%の範囲とする。
When using AlN inhibitors
Sol.Al: 0.01 to 0.05%, N: 0.004 to 0.012%
If the content of Sol. Al is less than 0.01%, the magnetic flux density decreases, and if it exceeds 0.05%, secondary recrystallization becomes unstable. Therefore, when using an AlN inhibitor, the content is in the range of 0.01 to 0.05%.
Nは、含有量が0.004%に満たないと、AlNインヒビタ量が不足して磁束密度が低下する。また、NはCとともに80℃以上で行なわれる最終冷間圧延時に転位に固着して静的時効を高める効果がある。しかし、その含有量が0.012%を超えるとブリスタとよばれる表面欠陥が多発する原因になる。したがって、その含有量は0.004〜0.012%の範囲とする。 If the content of N is less than 0.004%, the amount of AlN inhibitor is insufficient and the magnetic flux density is lowered. N, together with C, has the effect of fixing to dislocations and increasing static aging during the final cold rolling performed at 80 ° C. or higher. However, if its content exceeds 0.012%, surface defects called blisters frequently occur. Therefore, the content is made 0.004 to 0.012% of range.
MnSe及び/又はMnS系インヒビタを用いる場合
Mn:0.03〜0.30%、Se及び/又はS(合計で):0.01〜0.05%
Mnは、含有量が0.03%未満ではインヒビタ成分として絶対量が不足し、一方、0.30%を超えるとインヒビタ粒子径が粗大化して結晶粒成長抑制力が低下する。したがって、MnSe及び/又はMnS系インヒビタを用いる場合には、その含有量は0.03〜0.30%の範囲とする。
When using MnSe and / or MnS inhibitors
Mn: 0.03-0.30%, Se and / or S (total): 0.01-0.05%
If the content of Mn is less than 0.03%, the absolute amount is insufficient as an inhibitor component. On the other hand, if it exceeds 0.30%, the inhibitor particle diameter becomes coarse and the crystal grain growth inhibiting power decreases. Therefore, when using MnSe and / or MnS type | system | group inhibitor, the content shall be 0.03-0.30% of range.
SeおよびSは、これらの合計含有量が0.01%に満たないとインヒビタ成分として絶対量が不足し、一方、0.05%を超えると仕上げ焼鈍での純化を困難にする。したがって、これらの含有量は合計量で0.01〜0.05%の範囲とする。なお、S及びSeは、それぞれMnS、又はMnSeとしてインヒビタとして利用することもできれば、これらの複合物、Mn(S,Se)として利用することもできる。なお、AlN系インヒビタとMnSe及び/又はMnS系インヒビタは共存させることができ、それによる相乗効果を得ることもできる。 If the total content of Se and S is less than 0.01%, the absolute amount is insufficient as an inhibitor component. On the other hand, if it exceeds 0.05%, purification by finish annealing becomes difficult. Therefore, these contents are in the range of 0.01 to 0.05% in total. S and Se can be used as inhibitors as MnS or MnSe, respectively, or can be used as a composite thereof, Mn (S, Se). Note that the AlN inhibitor and the MnSe and / or MnS inhibitor can coexist and a synergistic effect can be obtained.
析出型インヒビタ成分を含有しない場合
この場合は析出型インヒビタ形成元素であるAl、N、Se及びSの含有量がきわめて低く制限される。具体的には、Al:100ppm未満、S:50ppm以下、Se:50ppm以下に制限される。これらの量を超えると、テクスチャーインヒビションの作用による二次再結晶組織を得ることが困難になる。なお、Nについては純化焼鈍後のSi窒化物の生成を防止するために50ppm以下にすることが望ましい。また、窒化物形成元素であるTi、Nb、B、Ta、Vもそれぞれ50ppm以下に低減することが望ましい。テクスチャーインヒビションの作用を妨害しないようにして鉄損の劣化を防ぐためである。
In the case where no precipitation type inhibitor component is contained In this case, the contents of Al, N, Se and S which are precipitation type inhibitor forming elements are limited to be extremely low. Specifically, it is limited to Al: less than 100 ppm, S: 50 ppm or less, Se: 50 ppm or less. When these amounts are exceeded, it becomes difficult to obtain a secondary recrystallized structure by the action of texture inhibition. N is preferably 50 ppm or less in order to prevent the formation of Si nitride after purification annealing. It is also desirable to reduce the nitride forming elements Ti, Nb, B, Ta, and V to 50 ppm or less, respectively. This is to prevent the iron loss from deteriorating without disturbing the action of the texture inhibition.
インヒビタ成分の含有量及び制限は上記のとおりであるが、これらに加えて粒界偏析型のインヒビタとして、Cu,Sn,Sb,Mo,Te,Bi,P等をそれぞれ0.005〜0.3%の範囲で含有させることができる。これらの元素は単独または複合して併用することができそれにより鉄損を向上させることができる。また、熱延板組織を改善して磁気特性を向上させる目的で、Niを0.005〜1.50%の範囲で含有させることもできる。 Inhibitor content and restrictions are as described above. In addition to these, as grain boundary segregation type inhibitors, Cu, Sn, Sb, Mo, Te, Bi, P, etc. are in the range of 0.005 to 0.3%, respectively. It can be included. These elements can be used alone or in combination, thereby improving iron loss. Further, Ni can be contained in the range of 0.005 to 1.50% for the purpose of improving the hot rolled sheet structure and improving the magnetic properties.
(熱間圧延)
上記組成を有する出発素材であるスラブは、成分系にしたがい適正な温度でスラブ加熱され、次いで粗圧延、仕上圧延を含む熱間圧延により熱延板とされる。スラブ加熱温度は析出型インヒビタ成分を含有する場合はAl、Se、Sなどを完全に固溶させるため1350〜1450℃の温度域に加熱される。一方、析出型インヒビタ成分を含有しない成分系の場合はスラブ加熱温度が高温にすぎると、加熱時に固溶したインヒビタ形成成分が熱延中に不均一に微細析出し、それにより、粒界移動が局所的に抑制されて粒径分布が極めて不均一になり、ゴス方位への二次再結晶粒の発達が阻害されるので、比較的低温のたとえば1250℃以下の加熱温度を採用するのがよい。熱延条件は特に制限を設ける必要がなく、通常方向性電磁鋼板の製造のために採用されている条件で行なえばよい。
(Hot rolling)
The slab, which is a starting material having the above composition, is slab-heated at an appropriate temperature according to the component system, and then hot-rolled by hot rolling including rough rolling and finish rolling. When the precipitation type inhibitor component is contained, the slab heating temperature is heated to a temperature range of 1350 to 1450 ° C. in order to completely dissolve Al, Se, S and the like. On the other hand, in the case of a component system that does not contain a precipitation-type inhibitor component, if the slab heating temperature is too high, the inhibitor-forming component that is solid-dissolved during heating precipitates nonuniformly during hot rolling, thereby causing grain boundary migration. Since it is locally suppressed and the particle size distribution becomes extremely non-uniform and the development of secondary recrystallized grains in the Goth orientation is impeded, it is recommended to use a relatively low heating temperature, for example, 1250 ° C or less. . The hot rolling conditions do not need to be particularly limited, and may be performed under the conditions adopted for the production of the normal grain-oriented electrical steel sheet.
(熱延板焼鈍、中間焼鈍)
このようにして得られた熱延板は、熱延板焼鈍後あるいは熱延板焼鈍を施すことなく直接に冷間圧延に供され、最終板厚の冷延板とされる。本発明では、この冷間圧延をタンデム圧延機によって行なうこととし、さらに最終的に製品板厚まで圧下する圧延段階(「最終圧延段階」という)の直前に加熱後の冷却速度を700〜150℃間において10℃/s以上とする焼鈍工程を行なう。これは最終圧延段階の前にC等の元素を固溶させ、続く最終圧延段階で静的時効とその後の温間圧下の効果を相乗的に発現させるための事前処理としての意義を有する。
(Hot rolled sheet annealing, intermediate annealing)
The hot-rolled sheet thus obtained is directly subjected to cold rolling after the hot-rolled sheet annealing or without performing the hot-rolled sheet annealing to obtain a cold-rolled sheet having a final thickness. In the present invention, this cold rolling is performed by a tandem rolling mill, and the cooling rate after heating is set to 700 to 150 ° C. immediately before the rolling stage (hereinafter referred to as “final rolling stage”) for finally reducing the sheet thickness to the product sheet thickness. An annealing process is performed at 10 ° C./s or more. This has significance as a pretreatment for dissolving elements such as C before the final rolling stage, and synergistically expressing the effects of static aging and subsequent warm reduction in the subsequent final rolling stage.
この最終圧延段階直前の焼鈍は、熱延板に対して熱延板焼鈍を行なって直ちに最終板厚への冷延を行なういわゆる1回法を採用する場合には、熱延板焼鈍がこれに相当し、一方、冷間圧延が中間焼鈍を挟んで複数回の圧延によって行なわれるいわゆる2回法等の場合には最終的に行なわれる冷間圧延の直前の中間焼鈍がこれに当たる。 The annealing immediately before the final rolling stage is performed by hot-rolled sheet annealing when a so-called one-time method in which hot-rolled sheet annealing is performed to immediately cold-roll to the final sheet thickness is adopted. On the other hand, in the case of a so-called two-time method in which the cold rolling is performed by a plurality of rollings with the intermediate annealing interposed therebetween, the intermediate annealing immediately before the cold rolling finally performed corresponds to this.
この最終圧延段階直前の焼鈍のための加熱温度は、C等の侵入型元素を完全に固溶させるために1150℃以上とし、保持時間は30s以上とすればよい。一方、その冷却速度は、700〜150℃間において10℃/s以上としなければならない。冷却速度がこれより小さいときには、冷却過程においてCが炭化物として析出し、続く圧延工程において時効処理の効果を十分得ることができなくなるからである。 The heating temperature for annealing immediately before the final rolling stage may be 1150 ° C. or higher in order to completely dissolve interstitial elements such as C, and the holding time may be 30 s or longer. On the other hand, the cooling rate must be 10 ° C./s or more between 700 and 150 ° C. This is because when the cooling rate is lower than this, C precipitates as carbides in the cooling process, and the effect of the aging treatment cannot be sufficiently obtained in the subsequent rolling process.
(最終圧延段階)
上記のようにして、C等の侵入型元素が固溶状態におかれた鋼板(熱延板又は中間冷延板)は最終板厚とするための最終冷間圧延に付される。この最終冷間圧延はタンデム圧延機を用いて行なわれ、そのため以下に記載する条件を適用して静的時効とその後の温間圧下による効果の相乗的発現による磁気特性の改善と操業の安定を図る。なお、冷間圧延はいわゆる1回法、2回法を問わず、すべてタンデム圧延機を用いて行なわれるものである。
(Final rolling stage)
As described above, a steel sheet (hot rolled sheet or intermediate cold rolled sheet) in which an interstitial element such as C is in a solid solution state is subjected to final cold rolling to obtain a final thickness. This final cold rolling is carried out using a tandem rolling mill, so that the conditions described below are applied to improve the magnetic properties and stabilize the operation by synergistic expression of the effects of static aging and subsequent warm reduction. Plan. Note that cold rolling is performed by using a tandem rolling mill regardless of the so-called one-time method or two-time method.
まず、タンデム圧延機の最終スタンドに至るまでのいずれかのスタンド間の鋼板温度T(K)とスタンド間滞留時間t(s)との間に
t≧2×10-9×exp(10568/T)・・・(1)
の関係をおく。
First, between the steel plate temperature T (K) between any of the stands up to the final stand of the tandem rolling mill and the residence time t (s) between the stands.
t ≧ 2 × 10 -9 × exp (10568 / T) (1)
Keep the relationship.
この関係式はタンデム圧延機のスタンド間において静的時効の効果が発生するのに必要な最低限の時間として以下のようにして算定されたものである。
(1)静的時効が発現するためには、CやN原子が拡散により転位まで移動、到達することが必要となる。鋼板における平均転位密度は予め存在する歪みや温度により依存するものであるが、通常1010個/cm2程度であることが知られており、これより転位間距離を求めることができる。
(2)Cの拡散係数はSmithら(Trans. AIME(1962), vol.224, p105)により実測され、表1のとおり与えられており、この拡散係数を用いて、Cが前記転位間距離を移動するに必要な時間t(s)を求めることができる。
(3)この時間は鋼板温度T(K)に依存し、図1に示す曲線となる。
(4)したがって、スタンド間で静的時効により拡散して転位を固着するためには、スタンド間の鋼板温度T(K)とスタンド間滞留時間t(s)との間に
t≧2×10-9×exp(10568×1/T)・・・(1)
の関係を維持しなければならない。
This relational expression is calculated as follows as the minimum time required for the static aging effect to occur between the stands of the tandem rolling mill.
(1) In order for static aging to appear, it is necessary for C and N atoms to move and reach dislocations by diffusion. The average dislocation density in the steel sheet depends on the strain and temperature existing in advance, but is generally known to be about 10 10 pieces / cm 2 , and the distance between dislocations can be obtained from this.
(2) The diffusion coefficient of C was measured by Smith et al. (Trans. AIME (1962), vol.224, p105) and is given as shown in Table 1. Using this diffusion coefficient, C is the distance between dislocations. The time t (s) required to move can be obtained.
(3) This time depends on the steel plate temperature T (K) and becomes a curve shown in FIG.
(4) Therefore, in order to diffuse and fix dislocations between the stands by static aging, between the steel plate temperature T (K) between the stands and the residence time t (s) between the stands.
t ≧ 2 × 10 -9 × exp (10568 × 1 / T) ・ ・ ・ (1)
Must maintain the relationship.
上記静的時効条件に加えて、本発明では、タンデム圧延機の前記スタンド間直後のスタンドの圧延材噛み込み温度を80℃以上、圧下率を20%以上として圧延することとする。これは上記により静的時効を発現させた後、ただちに温間で圧下を加えるものであり、鋼板内での変形帯の生成形態に影響を与え、それにより前記静的時効による転位固着と相俟って集合組織の改善効果が助長されるのである。よって、前記(1)式を満足した直後のスタンドで上記噛み込み温度と圧下率の圧延を行なうこととする。 In addition to the above static aging conditions, in the present invention, the rolling material biting temperature of the stands immediately after the stands of the tandem rolling mill is 80 ° C. or higher and the rolling reduction is 20% or more. This is a method in which after the static aging is expressed as described above, a warm reduction is immediately applied, which affects the formation of deformation bands in the steel sheet, thereby causing dislocation fixation and a combination with the static aging. Thus, the improvement effect of the texture is promoted. Therefore, the performing the rolling temperature and reduction ratio biting the stand immediately after satisfying the expression (1).
この圧延材噛み込み温度が80℃未満のとき、もしくは圧下率が20%未満のいずれかのときには、静的時効の変形帯の生成が不十分であり、前記の集合組織改善効果も不十分となる。したがって、この圧延材噛み込み温度を80℃以上かつ、圧下率を20%以上としなければならない。 When the rolling material biting temperature is less than 80 ° C., or the rolling reduction is less than 20%, the generation of the static aging deformation band is insufficient, and the texture improving effect is insufficient. Become. Therefore, the rolling material biting temperature must be 80 ° C. or higher and the rolling reduction must be 20% or higher.
ここに圧延材噛み込み温度とは、鋼板がスタンドのロールに噛み込む直前の温度をいう。圧延材がスタンドに噛み込む際には、スタンド入側のロール冷却スプレーにより圧延材の温度が降下するので、これを例えば圧延材を別途走行させて冷却スプレーによる温度降下量を測定しておく。その際、冷却前圧延温度、冷却液種類、流量、圧延材搬送速度、圧延材板厚等を種々変更して圧延材の温度降下量とこれら操業条件のテーブルを作成しておく。そして実操業時の条件により前記テーブルを参照して圧延材噛み込み温度を求めるのである。 Here, the rolling material biting temperature refers to the temperature immediately before the steel plate bites into the roll of the stand. When the rolled material bites into the stand, the temperature of the rolled material is lowered by the roll cooling spray on the stand entry side, and for example, the temperature of the temperature drop due to the cooling spray is measured by running the rolled material separately. At that time, a table of the temperature drop of the rolled material and these operating conditions is prepared by variously changing the rolling temperature before cooling, the type of coolant, the flow rate, the rolled material conveying speed, the rolled material sheet thickness, and the like. Then, the rolling material biting temperature is obtained by referring to the table according to the conditions during actual operation.
なお、この圧延材噛み込み温度が300℃を超えると、圧延油の焼付き等の問題が生ずるので、上記温度は300℃以下とする。 If the rolling material biting temperature exceeds 300 ° C., problems such as seizure of the rolling oil occur, so the temperature is set to 300 ° C. or less .
上記の条件下でタンデム圧延機により圧延された冷延板は、脱炭焼鈍を施した後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布して最終仕上げ焼鈍を施し製品板とする。これらの手段は、方向性電磁鋼板の製造のため広く採用されている手段を特に制限なく利用することがでる。また、このようにして得られた製品板に対し、りん酸系の絶縁被膜を被成することや鏡面化処理により鉄損の低減を図ることも自由であり、さらに方向性電磁鋼板の製造過程において磁区細分化処理を行なうことも可能である。 The cold-rolled sheet rolled by the tandem rolling mill under the above conditions is subjected to decarburization annealing, and then applied to the steel sheet surface with an annealing separator mainly composed of MgO and subjected to final finish annealing to obtain a product sheet. . As these means, means widely used for producing grain-oriented electrical steel sheets can be used without particular limitation. In addition, it is also possible to reduce the iron loss by forming a phosphoric acid-based insulating coating on the product plate obtained in this way or by applying a mirror finish. It is also possible to carry out the magnetic domain subdivision process.
C:0.074%、Si:3.26%、Mn:0.068%、Al:0.025%、Se:0.021%およびN:0.0081%を含有する鋼スラブを板厚2.7mmに熱間圧延して複数枚の熱延板を得た。1000℃で1分間の加熱後、表2に示す種々の冷却速度により冷却する熱延板焼鈍を施した(No.1〜24)。また、一部の熱延板については、(a)熱延板焼鈍を施さず1000℃、1分間の中間焼鈍を挟んだ冷間圧延を施し(No.25)、あるいは(b)熱延板焼鈍を施した後、1000℃、1分間の中間焼鈍を挟んだ冷間圧延を施した(No.26)。 Hot rolling a steel slab containing C: 0.074%, Si: 3.26%, Mn: 0.068%, Al: 0.025%, Se: 0.021% and N: 0.0081% to a thickness of 2.7mm I got a plate. After heating at 1000 ° C. for 1 minute, hot-rolled sheet annealing was performed at various cooling rates shown in Table 2 (No. 1 to 24). For some hot-rolled sheets, (a) cold-rolled with intermediate annealing for 1 minute at 1000 ° C without hot-rolled sheet annealing (No. 25), or (b) hot-rolled sheet After annealing, it was cold-rolled with an intermediate annealing at 1000 ° C. for 1 minute (No. 26).
最終冷間圧延は全4スタンドのタンデム圧延機により行なった。その際、第3スタンド(最終スタンドのひとつ前)と第4スタンド(最終スタンド)との間の滞留時間t(s)と、第4スタンドでの圧下率を変更して表2に示すとおりとした。スタンド間温度の変更は、第1スタンド〜第3スタンドでの圧延油の流量変更によって行った。スタンド間滞留時間の変更は圧延速度を変更して行った。また、噛み込み温度の変更は、第4スタンド入り側においてスプレーする圧延油の流量を調節することにより行なった。 The final cold rolling was performed by a tandem rolling mill with 4 stands. At that time, the residence time t (s) between the third stand (one before the final stand) and the fourth stand (final stand) and the rolling reduction at the fourth stand are changed as shown in Table 2. did. The temperature between the stands was changed by changing the flow rate of the rolling oil in the first stand to the third stand. The residence time between the stands was changed by changing the rolling speed. The biting temperature was changed by adjusting the flow rate of the rolling oil sprayed on the fourth stand entering side.
得られた冷延板に対し、湿水素中で840℃、2分間の脱炭焼鈍を施したのち、質量比で5%のTiO2を含むMgOを焼鈍分離剤として塗布した後、1200℃で10時間の最終仕上げ焼鈍を行なって製品板とした。得られた製品板について、JIS C2550に定められるエプスタイン法により鉄損W17/50(W/kg)を測定した結果を表2に示す。表2より、本発明に従う条件で製造した場合、タンデム圧延においても、十分な磁気特性を得ることができることが分かる。 The obtained cold-rolled sheet was subjected to decarburization annealing at 840 ° C for 2 minutes in wet hydrogen, and after applying MgO containing 5% TiO 2 by mass ratio as an annealing separator, at 1200 ° C A final finish annealing for 10 hours was performed to obtain a product plate. Table 2 shows the results of measuring iron loss W 17/50 (W / kg) by the Epstein method defined in JIS C2550 for the obtained product plate. It can be seen from Table 2 that sufficient magnetic properties can be obtained even in tandem rolling when manufactured under conditions according to the present invention.
Claims (3)
前記熱延板焼鈍後の冷却速度を700〜150℃間において10℃/s以上となし、前記タンデム圧延機の最終スタンドに至るまでのいずれかのスタンド間において鋼板温度T(K)とスタンド間滞留時間t(s)とが下記(1)式を満足するようにしかつ、
前記タンデム圧延機の前記スタンド間直後のスタンドの圧延材噛み込み温度を80℃以上300℃以下、圧下率を20%以上として圧延することを特徴とする方向性電磁鋼板の製造方法。
記
t≧2×10-9×exp(10568/T)・・・(1) After hot rolling a slab for grain- oriented electrical steel sheet containing C: 0.005-0.10% and Si: 2.0-4.5% by mass ratio , the obtained hot-rolled sheet was subjected to hot-rolled sheet annealing and one time. In producing a grain-oriented electrical steel sheet by performing cold rolling with a tandem rolling mill and finishing it to the final thickness, performing decarburization annealing and final finishing tempering on this,
The cooling rate after the hot-rolled sheet annealing is 10 ° C./s or more between 700 and 150 ° C., and between the steel plate temperature T (K) and the stand between any stands up to the final stand of the tandem rolling mill The residence time t (s) satisfies the following formula (1), and
A method for producing a grain-oriented electrical steel sheet, wherein rolling is performed at a rolling material biting temperature of 80 to 300 ° C. and a reduction rate of 20% or more immediately after the stands of the tandem rolling mill.
Record
t ≧ 2 × 10 -9 × exp (10568 / T) (1)
前記中間焼鈍のうち最終中間焼鈍の冷却速度を700〜150℃間において10℃/s以上となし、前記タンデム圧延機の最終スタンドに至るまでのいずれかのスタンド間において鋼板温度T(K)とスタンド間滞留時間t(s)とが下記(1)式を満足するようにしかつ、
前記タンデム圧延機の前記スタンド間直後のスタンドの圧延材噛み込み温度80℃以上300℃以下、圧下率を20%以上として圧延することを特徴とする方向性電磁鋼板の製造方法。
記
t≧2×10-9×exp(10568/T)・・・(1) After hot rolling a slab for grain- oriented electrical steel sheets containing C: 0.005-0.10% and Si: 2.0-4.5% by mass ratio , the obtained hot-rolled sheet is subjected to intermediate annealing at least twice. In producing a grain-oriented electrical steel sheet by performing cold rolling with a tandem rolling mill and finishing to the final sheet thickness, performing decarburization annealing and final finishing tempering on this,
Among the intermediate annealing, the cooling rate of the final intermediate annealing is 10 ° C./s or more between 700 and 150 ° C., and the steel plate temperature T (K) between any one of the stands until the final stand of the tandem rolling mill The residence time between stands t (s) satisfies the following formula (1), and
A method for producing a grain-oriented electrical steel sheet, comprising rolling at a rolling material biting temperature of 80 ° C. to 300 ° C. and a reduction rate of 20% or more immediately after between the stands of the tandem rolling mill.
Record
t ≧ 2 × 10 -9 × exp (10568 / T) (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004095383A JP4665417B2 (en) | 2004-03-29 | 2004-03-29 | Method for producing grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004095383A JP4665417B2 (en) | 2004-03-29 | 2004-03-29 | Method for producing grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005279689A JP2005279689A (en) | 2005-10-13 |
JP4665417B2 true JP4665417B2 (en) | 2011-04-06 |
Family
ID=35178623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004095383A Expired - Fee Related JP4665417B2 (en) | 2004-03-29 | 2004-03-29 | Method for producing grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4665417B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4568875B2 (en) * | 2004-03-16 | 2010-10-27 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheets with excellent magnetic properties |
JP5835557B2 (en) * | 2011-02-17 | 2015-12-24 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
JP5991484B2 (en) * | 2011-12-06 | 2016-09-14 | Jfeスチール株式会社 | Manufacturing method of low iron loss grain oriented electrical steel sheet |
CN118056024A (en) | 2021-10-15 | 2024-05-17 | 杰富意钢铁株式会社 | Aging treatment method and method for producing grain-oriented electromagnetic steel sheet |
CN115446113B (en) * | 2022-09-28 | 2024-04-26 | 湖南宏旺新材料科技有限公司 | Cold rolling process for improving oil burning defect of silicon steel plate surface |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621458B2 (en) * | 1982-03-24 | 1987-01-13 | Nippon Steel Corp | |
JPH07268471A (en) * | 1994-03-31 | 1995-10-17 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet having high magnetic flux density |
JPH08157964A (en) * | 1994-12-06 | 1996-06-18 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet excellent in magnetic property |
JPH0970602A (en) * | 1995-06-30 | 1997-03-18 | Kawasaki Steel Corp | Manufacture of grain oriented electrical steel sheet |
JPH09157744A (en) * | 1995-11-30 | 1997-06-17 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet |
JPH10121213A (en) * | 1996-10-21 | 1998-05-12 | Kawasaki Steel Corp | Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production |
JPH10226819A (en) * | 1996-12-13 | 1998-08-25 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet excellent in core loss characteristic |
JPH10259422A (en) * | 1997-03-21 | 1998-09-29 | Kawasaki Steel Corp | Production of grain-oriented silicon steel sheet good in core loss characteristic |
JPH11199933A (en) * | 1998-01-09 | 1999-07-27 | Kawasaki Steel Corp | Production of grain oriented magnetic steel sheet |
JP2001107145A (en) * | 1999-10-05 | 2001-04-17 | Kawasaki Steel Corp | Method for producing grain-oriented silicon steel sheet excellent in magnetic property |
JP2003193142A (en) * | 2001-12-27 | 2003-07-09 | Jfe Steel Kk | Method of producing grain oriented silicon steel sheet having excellent magnetic property |
JP2003253341A (en) * | 2002-03-05 | 2003-09-10 | Jfe Steel Kk | Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property |
JP2005262217A (en) * | 2004-03-16 | 2005-09-29 | Jfe Steel Kk | Method for producing grain oriented silicon steel sheet having excellent magnetic property |
-
2004
- 2004-03-29 JP JP2004095383A patent/JP4665417B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621458B2 (en) * | 1982-03-24 | 1987-01-13 | Nippon Steel Corp | |
JPH07268471A (en) * | 1994-03-31 | 1995-10-17 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet having high magnetic flux density |
JPH08157964A (en) * | 1994-12-06 | 1996-06-18 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet excellent in magnetic property |
JPH0970602A (en) * | 1995-06-30 | 1997-03-18 | Kawasaki Steel Corp | Manufacture of grain oriented electrical steel sheet |
JPH09157744A (en) * | 1995-11-30 | 1997-06-17 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet |
JPH10121213A (en) * | 1996-10-21 | 1998-05-12 | Kawasaki Steel Corp | Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production |
JPH10226819A (en) * | 1996-12-13 | 1998-08-25 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet excellent in core loss characteristic |
JPH10259422A (en) * | 1997-03-21 | 1998-09-29 | Kawasaki Steel Corp | Production of grain-oriented silicon steel sheet good in core loss characteristic |
JPH11199933A (en) * | 1998-01-09 | 1999-07-27 | Kawasaki Steel Corp | Production of grain oriented magnetic steel sheet |
JP2001107145A (en) * | 1999-10-05 | 2001-04-17 | Kawasaki Steel Corp | Method for producing grain-oriented silicon steel sheet excellent in magnetic property |
JP2003193142A (en) * | 2001-12-27 | 2003-07-09 | Jfe Steel Kk | Method of producing grain oriented silicon steel sheet having excellent magnetic property |
JP2003253341A (en) * | 2002-03-05 | 2003-09-10 | Jfe Steel Kk | Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property |
JP2005262217A (en) * | 2004-03-16 | 2005-09-29 | Jfe Steel Kk | Method for producing grain oriented silicon steel sheet having excellent magnetic property |
Also Published As
Publication number | Publication date |
---|---|
JP2005279689A (en) | 2005-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2880190B1 (en) | Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof | |
KR101433492B1 (en) | Method for producing oriented electrical steel sheets | |
KR100957911B1 (en) | Grain oriented electrical steel having excellent magnetic properties and manufacturing method for the same | |
US10907231B2 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
KR101707451B1 (en) | Grain oriented electrical steel sheet and method for manufacturing the same | |
JP4665417B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6879341B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP6146582B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP5920387B2 (en) | Method for producing grain-oriented electrical steel sheet | |
EP0798392A1 (en) | Production method for grain oriented silicon steel sheet having excellent magnetic characteristics | |
KR101053321B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
EP0551141B1 (en) | Oriented magnetic steel sheets and manufacturing process therefor | |
KR101528283B1 (en) | Grain-orinented electrical steel sheet and method for manufacturing the same | |
KR101053304B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
KR101053281B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
JP7276502B2 (en) | Manufacturing method and equipment for grain oriented electrical steel sheet | |
KR101053382B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
KR101053283B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
KR101053270B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
KR101053362B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
JP4151443B2 (en) | Thin steel plate with excellent flatness after punching and method for producing the same | |
KR101053294B1 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
JP2574583B2 (en) | Method for manufacturing oriented silicon steel sheet with good iron loss | |
JPH1036914A (en) | Production of grain oriented electric steel sheet excellent in magnetic characteristic | |
JP3858280B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091112 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100423 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100713 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101227 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4665417 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |