[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4664614B2 - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP4664614B2
JP4664614B2 JP2004111308A JP2004111308A JP4664614B2 JP 4664614 B2 JP4664614 B2 JP 4664614B2 JP 2004111308 A JP2004111308 A JP 2004111308A JP 2004111308 A JP2004111308 A JP 2004111308A JP 4664614 B2 JP4664614 B2 JP 4664614B2
Authority
JP
Japan
Prior art keywords
curvature
exterior material
radius
sealed battery
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004111308A
Other languages
Japanese (ja)
Other versions
JP2005294212A (en
Inventor
啓 下山田
文将 山本
公一 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004111308A priority Critical patent/JP4664614B2/en
Publication of JP2005294212A publication Critical patent/JP2005294212A/en
Application granted granted Critical
Publication of JP4664614B2 publication Critical patent/JP4664614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は密閉型電池に係り、特に絞り成形された金属ラミネート樹脂フィルム製外装材の絞り成形部に発電要素を収納した後に外装材の周縁部を封止した密閉型電池であり、金属ラミネート樹脂フィルム製外装材の絞り成形時にピンホール等の欠陥を生じることが少なく、電解液の注入浸透量が高まり、また電池の高容量化および生産性の向上を図ることが可能な密閉型電池に関する。   The present invention relates to a sealed battery, and more particularly to a sealed battery in which a power generation element is housed in a drawn part of a drawn metal laminated resin film outer package, and then a peripheral part of the outer package is sealed. The present invention relates to a sealed battery in which defects such as pinholes are less likely to occur during the drawing of a film exterior material, the amount of injected electrolyte penetrates, the capacity of the battery is increased, and productivity can be improved.

近年、ビデオカメラやヘッドホンステレオ、携帯端末機などの携帯電子機器における急速な高性能化,多機能化,軽量化および小型化を指向した技術展開には目覚しいものがあり、これらの電子機器を長時間稼動させるための駆動電源となる二次電池の高エネルギー化および高容量化への技術的要求も一段と高まっている。   In recent years, there have been remarkable developments in technologies aimed at rapid performance enhancement, multifunctionalization, weight reduction, and miniaturization in portable electronic devices such as video cameras, headphone stereos, and portable terminals. Technical demands for higher energy and higher capacity of secondary batteries, which serve as drive power sources for time operation, are further increasing.

これらの技術的要求に対応するため、リチウム金属、リチウム合金、もしくは炭素質材料のようなリチウムを吸蔵、放出できる物質を負極材料に使用した非水電解液二次電池の開発が活発に進められるようになった。この非水電解液二次電池のなかでも、電池の発電要素以外が占める体積を減少させることが、電池の高エネルギー化および小型化に有利であるという技術的観点から、従来から電池外装材として使用されていた鉄やアルミニウム製の金属缶の代わりに、より薄肉化が可能な金属ラミネート樹脂フィルムを外装材に使用した密閉型電池が注目されている。   In order to meet these technical demands, the development of non-aqueous electrolyte secondary batteries using materials that can occlude and release lithium, such as lithium metal, lithium alloys, or carbonaceous materials, is actively promoted. It became so. Among these non-aqueous electrolyte secondary batteries, from the technical point of view that reducing the volume occupied by elements other than the power generation element of the battery is advantageous for increasing the energy and size of the battery, it has been conventionally used as a battery exterior material. Instead of the metal cans made of iron or aluminum, a sealed battery using a metal laminate resin film that can be made thinner as an exterior material has been attracting attention.

上記金属ラミネート樹脂フィルムは、電解液や水分およびガスの透過を防止することが可能なアルミニウム箔などの軟質金属膜とナイロン、ポリエチレン、ポリプロピレンなどのプラスチックフィルムとを貼り合わせて積層して構成される。この金属ラミネート樹脂フィルムが電池外装材として使用される場合には、発電要素を収納した状態で外装材周縁部が熱融着により封止される構造が一般的に採用されている。   The metal laminate resin film is formed by laminating and laminating a soft metal film such as an aluminum foil capable of preventing permeation of electrolyte solution, moisture and gas, and a plastic film such as nylon, polyethylene, and polypropylene. . When this metal laminate resin film is used as a battery exterior material, a structure in which the outer periphery of the exterior material is sealed by thermal fusion in a state where the power generation element is accommodated is generally employed.

上記封止構造を採用する場合、金属ラミネート樹脂フィルムの形態には大きく分けて2種類に分かれ、一つの従来の形態としては積層シート状の金属ラミネート樹脂フィルムをそのまま袋状に形成して、その内部に発電要素(電池本体)を収納する形態が採用されている(例えば、特許文献1参照)。   When adopting the above sealing structure, the form of the metal laminate resin film is roughly divided into two types, and as one conventional form, a laminated sheet metal laminate resin film is formed as a bag as it is, A configuration is adopted in which a power generation element (battery body) is housed inside (see, for example, Patent Document 1).

他の一つの形態としては、金属ラミネート樹脂フィルムに絞り成形加工を施し、その絞り成形部分に発電要素を収納する形態である。この場合、後者の形態では、収納される発電要素の形状に合致した絞り成形部分を形成しているために、前者の袋状の外装材と比較して電池全体の体積に占める発電要素の割合を大きくすることができ、電池容量を高められるという利点がある。
特開平11−40114号公報(第1−3頁、第3図)
Another form is a form in which the metal laminate resin film is subjected to a drawing process, and the power generation element is housed in the drawing part. In this case, in the latter form, since the drawn portion that matches the shape of the power generation element to be accommodated is formed, the ratio of the power generation element to the entire battery volume compared to the former bag-shaped exterior material There is an advantage that the battery capacity can be increased.
Japanese Patent Laid-Open No. 11-40114 (page 1-3, FIG. 3)

このように、密閉型電池の高容量化を実現するためには、限られた電池容積内に占める発電要素の体積割合を最大限に大きく設定することが有効であり、絞り成形を施した金属ラミネート樹脂フィルムを使用した密閉型電池においても、絞り成形部の内容積に対する発電要素の占める割合は、ほぼ限界近くまで高められているのが実情である。さらに、正極板および負極板に付着される正負極活物質の単位体積当たりの付着量を増大化させるために、正負極活物質には予め高圧力でプレス処理が施されて圧密化する工程が導入され、正負極はより高密度に形成される傾向になってきている。   As described above, in order to realize a high capacity of the sealed battery, it is effective to set the volume ratio of the power generation element occupying the limited battery volume to the maximum, and the metal subjected to the draw forming Even in a sealed battery using a laminate resin film, the ratio of the power generation element to the inner volume of the drawn portion is increased to almost the limit. Furthermore, in order to increase the adhesion amount per unit volume of the positive and negative electrode active materials attached to the positive electrode plate and the negative electrode plate, the positive and negative electrode active materials are preliminarily pressed at a high pressure to be consolidated. With the introduction, positive and negative electrodes are becoming more densely formed.

しかしながら、このような電池体積内における発電要素容積の増量や正負極活物質の高密度化による高容量化の過程で電解液の注液工程に係る問題が提起されつつある。すなわち、電池内の正負極活物質の充填量が増加するに伴って、その活物質による電池反応を円滑に推進するために必要な電解液量も必然的に増加しなければ満足な電池特性は得られないことになる。   However, problems related to the electrolyte injection process are being raised in the process of increasing the capacity by increasing the volume of the power generation element in the battery volume and increasing the density of the positive and negative electrode active materials. In other words, as the amount of positive and negative electrode active material in the battery increases, the amount of electrolyte required to smoothly promote the battery reaction by the active material does not necessarily increase. It will not be obtained.

ところが、電池内に電解液を充填保持するための空間も減少しており、電解液の注入が困難になっている。同時に、正負極活物質も高密度に形成されているため、活物質層自体にも電解液が浸透しにくい状態になっている。その結果、電解液の浸透不足による電池性能低下や電解液の注液工程の長時間化による生産性の低下が解決すべき問題点としてクローズアップされている。   However, the space for filling and holding the electrolyte in the battery is also reduced, making it difficult to inject the electrolyte. At the same time, since the positive and negative electrode active materials are also formed at a high density, the electrolyte solution is less likely to penetrate into the active material layer itself. As a result, battery performance degradation due to insufficient penetration of the electrolytic solution and productivity degradation due to the prolonged time of the electrolytic solution pouring process are highlighted as problems to be solved.

一方で、絞り成形を施す金属ラミネート樹脂フィルム製外装材には、絞り深さに限界があるため、市場で要求される全てのサイズに対応できない不都合がある。また、絞り深さの限界に近い深絞り加工領域で外装材の成形を実施した場合には、金属ラミネート樹脂フィルムの軟質金属層にピンホールと呼ばれるピンで刺したような小さな穴が開いてしまう危険性があり、その場合には外装材の防湿性が失われて水分が電池内に侵入して電池反応が阻害される等の問題点も提起されていた。このため、絞り成形を施した金属ラミネート樹脂フィルムを外装材に使用した密閉型電池では、ピンホール等の欠陥を発生させること無く、絞り成形をより深くし安定して実施できるように工夫することがより重要となっているが、現実にはピンホールの発生を防止し成形性を優先すると、電解液の充填性が低下し電池特性が低下するなどの弊害が発生する問題点があった。   On the other hand, the metal laminate resin film exterior material to be drawn has a disadvantage in that it cannot accommodate all sizes required in the market because of the limited drawing depth. In addition, when the exterior material is molded in the deep drawing region close to the limit of the drawing depth, a small hole called a pinhole is opened in the soft metal layer of the metal laminate resin film. In such a case, there has been a problem that the moisture-proof property of the exterior material is lost and moisture enters the battery to inhibit the battery reaction. For this reason, in a sealed battery that uses a metal-laminated resin film that has been subjected to drawing molding as an exterior material, it should be devised so that drawing can be deeper and more stable without causing defects such as pinholes. However, in reality, if pinholes are prevented from being generated and formability is given priority, there is a problem that problems such as deterioration of the filling properties of the electrolyte and deterioration of battery characteristics occur.

本発明は上記従来の問題点を解決するためになされたものであり、絞り成形された金属ラミネート樹脂フィルム製外装材の絞り成形部に発電要素を収納した後に外装材の周縁部を封止した密閉型電池であり、金属ラミネート樹脂フィルム製外装材の絞り成形時にピンホール等の欠陥を生じることが少なく、電解液の注入浸透量が高まり、また電池の高容量化および生産性の向上を図ることが可能な密閉型電池を提供することを目的とする。   The present invention has been made to solve the above-mentioned conventional problems, and after the power generation element is housed in the drawn portion of the drawn metal laminated resin film outer package, the peripheral portion of the outer package is sealed. It is a sealed battery, and there are few defects such as pinholes when drawing metal laminate resin film exterior materials, increasing the amount of electrolyte penetration, increasing battery capacity, and improving productivity. It is an object of the present invention to provide a sealed battery that can be used.

上記目的を達成するために本発明者らは、金属ラミネート樹脂フィルム製の外装材を絞り成形加工するに際して、絞り成形部の各部を成形するための金型の形状が、外装材の成形性、ピンホールの発生の有無、電解液の充填浸透性に及ぼす影響を種々の実験により比較検討した結果、以下のような知見を得た。   In order to achieve the above object, the inventors of the present invention, when drawing a metal laminate resin film exterior material, the shape of the mold for forming each part of the draw molding portion, the moldability of the exterior material, The following findings were obtained as a result of comparative examination of various effects on the presence / absence of pinholes and the effect on electrolyte penetration.

すなわち、上記外装材の絞り成形加工を実施する方法としては、目的とする絞り成形部の形状に対応した形状に形成されたダイスとポンチとから成る金型に金属ラミネート樹脂フィルムを挟み込んだ状態でポンチをダイス方向に押圧して絞り成形加工を実施することが一般的である。この場合、より安定した状態で絞り成形を実施するためには、金属ラミネート樹脂フィルムと金型との間の滑り性が極めて重要であり、金型作用部を形作る辺や角部の曲率半径の大小によっては成形性が全く異なることが判明した。つまり、曲率半径が小さい部位において、その部位に成形時に大きな滑り抵抗が発生し、金属ラミネート樹脂フィルムが絞り部分に十分滑り込まずに、ピンホールの発生確率が増加するなどの不具合が発生することが確認された。したがって、ピンホールの発生を防止し成形性を高める観点のみからは、金型を形作る辺や角部の曲率半径は大きいことが望ましい。   That is, as a method for carrying out the drawing process of the exterior material, in a state where the metal laminate resin film is sandwiched between a die formed of a die and a punch formed in a shape corresponding to the shape of the target drawing part. In general, the punching is performed by pressing the punch in the die direction. In this case, in order to carry out the drawing in a more stable state, the slipperiness between the metal laminate resin film and the mold is extremely important, and the curvature radius of the side or corner that forms the mold action part is very important. It was found that the moldability was completely different depending on the size. In other words, in a portion where the radius of curvature is small, a large slip resistance is generated at the time of molding, and the metal laminate resin film is not sufficiently slid into the narrowed portion, resulting in an increase in the probability of occurrence of pinholes. confirmed. Therefore, it is desirable that the radius of curvature of the sides and corners forming the mold is large only from the viewpoint of preventing the generation of pinholes and improving the moldability.

一方で、上記のように安定した成形性を実現するために絞り成形部を形成する全ての辺および角部の曲率半径を大きくした場合には、絞り成形部の内容積は減少する方向に変化すると共に、発電要素の捲回軸と平行な側面と、曲率半径が大きい外装材の辺内面とが密着するために、その間に電解液を保持したり発電要素内に電解液を浸透させたりすることが困難になる。   On the other hand, when the radius of curvature of all sides and corners forming the draw-formed part is increased to achieve stable formability as described above, the internal volume of the draw-formed part changes in a decreasing direction. In addition, since the side surface parallel to the winding axis of the power generation element and the side inner surface of the exterior material having a large curvature radius are in close contact with each other, the electrolyte solution is held between them or the electrolyte solution penetrates into the power generation element. It becomes difficult.

そこで、成形時に外装材の成形量が大きくなる角部(コーナー部)における内面の曲率半径を大きくして外装材の成形性を良好に維持する一方、成形量が相対的に小さくなる辺中央部の内面の曲率半径を小さくして外装材と発電要素との間に電解液を収容保持できる空間を形成することにより、外装材の成形性と電池の高容量化と注液工程の生産性向上と電解液の注液性とを共に満足する密閉型電池が初めて得られるという知見が得られた。本発明は上記知見に基づいて完成されたものである。   Therefore, while increasing the curvature radius of the inner surface at the corner (corner portion) where the molding amount of the exterior material increases during molding, the moldability of the exterior material is maintained well, while the side center portion where the molding amount becomes relatively small By forming a space that can accommodate and hold the electrolyte between the exterior material and the power generation element by reducing the curvature radius of the inner surface of the battery, it is possible to increase the formability of the exterior material, increase the capacity of the battery, and improve the productivity of the liquid injection process As a result, it was found that a sealed battery satisfying both the electrolyte and the electrolyte pouring property can be obtained for the first time. The present invention has been completed based on the above findings.

すなわち、本発明に係る密閉型電池は、断面が略矩形状の絞り成形部を突出するように形成した金属ラミネート樹脂フィルム製外装材の上記絞り成形部に発電要素を収納した後に外装材の周縁部を封止した密閉型電池において、上記突出した絞り成形部の側面から端面に移る境界である辺の中央部内面の曲率半径が、前記辺のコーナー付近内面の曲率半径より小さいことを特徴とする。 That is, the sealed battery according to the present invention has a peripheral edge of the outer packaging material after the power generation element is housed in the drawing molded portion of the metal laminate resin film outer packaging material formed so as to protrude from the drawn molding portion having a substantially rectangular cross section. In a sealed battery with a sealed portion, the radius of curvature of the inner surface of the central portion of the side that is the boundary from the side surface of the protruding drawn portion to the end surface is smaller than the radius of curvature of the inner surface near the corner of the side. To do.

すなわち、本発明においては、外装材として使用する金属ラミネート樹脂フィルムに絞り成形法によって形成される矩形状の絞り成形部の凸面を形成する各辺の中央部内面の曲率半径を、コーナー部内面の曲率半径より相対的に小さくすることにより、絞り成形性を低下させること無く、絞り成形部内の体積を大きくでき注液工程の生産性を向上させることができる。   That is, in the present invention, the radius of curvature of the inner surface of the central portion of each side forming the convex surface of the rectangular drawn portion formed by the drawing method on the metal laminate resin film used as the exterior material is set on the inner surface of the corner portion. By making it relatively smaller than the radius of curvature, the volume in the drawn portion can be increased without lowering the drawability, and the productivity of the liquid injection process can be improved.

本発明において、突出した絞り成形部の側面から端面に移る境界である辺の「コーナー付近」とは、突出した矩形状の絞り成形部の平面方向の2辺と高さ方向の1辺とが交わる点(コーナー部、角部)から長さが10mm以内の領域を意味する一方、「中央部」とは矩形をなす4つの各辺の全長から上記コーナー部の長さを除いた領域を意味する。   In the present invention, the “near the corner” of the side that is a boundary that moves from the side surface to the end surface of the protruding drawing portion is two sides in the planar direction and one side in the height direction of the protruding rectangular drawing portion. Meaning the area within 10mm from the intersecting point (corner, corner), while "center" means the area excluding the length of the corner from the total length of each of the four sides of the rectangle To do.

上記密閉型電池において、ピンホール欠陥等が形成されない安定した絞り成形を実現するためには、外装材の上記コーナー付近内面の曲率半径は1mm以上であることが望ましく、より望ましいのは2.5mm以上の範囲である。コーナー付近内面の曲率半径が1mm以上であれば、成形時にコーナー部での滑り抵抗が過大にならず、ピンホール等の欠陥を発生することなく外装材を安定した状態で成形できる。   In the sealed battery, in order to realize a stable draw forming in which no pinhole defect or the like is formed, the curvature radius of the inner surface near the corner of the exterior material is preferably 1 mm or more, and more preferably 2.5 mm. It is the above range. When the radius of curvature of the inner surface near the corner is 1 mm or more, the slip resistance at the corner portion does not become excessive at the time of molding, and the exterior material can be molded in a stable state without causing defects such as pinholes.

一方、突出した絞り成形部の凸面(端面)を区画する4辺の各中央部内面における曲率半径は、電解液の注入空間を増大させるために絞り成形が可能な範囲で可及的に小さく設定することが望ましく、具体的には0.5mmから1.5mmの範囲が望ましい。上記各辺の中央部内面における曲率半径を上記のようにコーナー部内面の曲率半径より小さくすることにより、外装材と発電要素との間に電解液を収容保持できる空間が形成でき、電池内の空間容量を増加させることが可能になり電池の高容量化と注液工程の生産性向上と電解液の注液性とを同時に満足する密閉型電池が得られる。   On the other hand, the radius of curvature at the inner surface of each central part of the four sides defining the convex surface (end surface) of the protruding drawn part is set as small as possible within the range where drawing can be performed in order to increase the injection space for the electrolyte. Specifically, a range of 0.5 mm to 1.5 mm is desirable. By making the curvature radius at the inner surface of the central portion of each side smaller than the curvature radius of the inner surface of the corner portion as described above, a space capable of accommodating and holding the electrolytic solution can be formed between the exterior material and the power generation element, It is possible to increase the space capacity, and it is possible to obtain a sealed battery that simultaneously satisfies a high capacity of the battery, an improvement in productivity of the liquid injection process, and a liquid injection property of the electrolytic solution.

さらに、上記密閉型電池において、前記金属ラミネート樹脂フィルム製外装材に収納される発電要素として、セパレータを介して正極板と負極板とを組み合わせた積層体を長円筒状に捲回した後に扁平状に形成した発電要素を収納することが好ましい。   Further, in the above sealed battery, as a power generation element housed in the metal laminate resin film exterior material, a laminate in which a positive electrode plate and a negative electrode plate are combined via a separator is wound into a long cylindrical shape and then flattened. It is preferable to store the power generation element formed in the above.

上記扁平状に形成した発電要素の側面と、曲率半径を小さく形成した絞り成形部の両辺の中央部内面との間には、絞り成形部と発電要素との間に電解液を収容保持できる空間が形成でき、電池内の空間容量を増加させることが可能になる。   Between the side surface of the power generation element formed in the above flat shape and the inner surface of the central part of both sides of the draw forming part formed with a small radius of curvature, a space that can accommodate and hold the electrolyte between the draw forming part and the power generation element It becomes possible to increase the space capacity in the battery.

また、上記密閉型電池において、前記絞り成形部内に発電要素を収納した金属ラミネート樹脂フィルム製外装材の周縁部を熱融着により封止する際に、上記金属ラミネート樹脂フィルム製外装材に形成した絞り成形部内が減圧された状態で封止されていることが好ましい。   Further, in the sealed battery, when the peripheral portion of the metal laminate resin film exterior material containing the power generation element in the drawing portion is sealed by thermal fusion, the metal laminate resin film exterior material is formed. It is preferable that the inside of the drawn portion is sealed in a state where the pressure is reduced.

上記のように、封止作業を減圧環境下で実施するなど、外装材に形成した絞り成形部内を予め減圧した状態で封止することにより、電池内部の無駄な空間を極力小さくでき、さらには電池製造段階から電池内に残留する気体成分等の影響が効果的に回避でき、特に電池の経年変化に伴う内圧上昇による電池の変形を効果的に防止する効果も得られる。   As described above, by performing sealing work in a reduced pressure environment and sealing the inside of the drawn-formed part formed on the exterior material in a pre-reduced state, the useless space inside the battery can be reduced as much as possible. The effects of gas components and the like remaining in the battery from the battery manufacturing stage can be effectively avoided, and in particular, the effect of effectively preventing the deformation of the battery due to the increase in internal pressure accompanying the aging of the battery can be obtained.

本発明に係る密閉型電池によれば、絞り成形時に外装材の成形量が大きくなる角部(コーナー部)における内面の曲率半径を大きくしているため、外装材の成形性を良好に維持できる一方、成形量が相対的に小さくなる辺中央部の内面の曲率半径を小さくしているため、外装材と発電要素との間に電解液を収容保持できる空間を形成することが可能になる。その結果、外装材の成形性と電池の高容量化と注液工程の生産性向上と電解液の注液性とを共に満足する密閉型電池が初めて得られ、生産性の高い安定した品質を有する密閉型電池を得ることができる。   According to the sealed battery of the present invention, since the radius of curvature of the inner surface at the corner (corner portion) where the molding amount of the exterior material becomes large at the time of drawing, the formability of the exterior material can be maintained well. On the other hand, since the radius of curvature of the inner surface of the side central portion where the molding amount is relatively small is made small, it is possible to form a space that can accommodate and hold the electrolytic solution between the exterior material and the power generation element. As a result, a sealed battery that satisfies both the moldability of the outer packaging material, the high capacity of the battery, the improvement of the productivity of the injection process and the injection of the electrolyte can be obtained for the first time, and the stable quality with high productivity can be achieved. A sealed battery can be obtained.

以下、本発明に係る密閉型電池の実施形態の一例について添付図面を参照してより具体的に説明する。   Hereinafter, an example of an embodiment of a sealed battery according to the present invention will be described more specifically with reference to the accompanying drawings.

図1に本発明が適用される密閉型電池を構成する発電要素1と外装材4とを組立てる状態を示す斜視分解図である。発電要素1は、負極材料をその支持体である負極集電体に保持してなる負極板と、正極活物質をその支持体である正極集電体に保持してなる正極板と、この負極板と正極板との間に介在して電解液を保持しつつ両極の短絡を防止するセパレータとから成る。上記負極板、正極板、およびセパレータは、いずれも薄いシート状もしくは箔状に成形されており、これらの積層体が所定の捲回軸周りに捲回された後に押圧されて扁平な長円筒状に形成される。また、上記発電要素1には負極と電気的に接続される負極リード2と、正極と電気的に接続される正極リード3とが設けられており、共に捲回軸と平行な方向で上記発電要素1より延出されている。   FIG. 1 is an exploded perspective view showing a state where a power generation element 1 and an exterior material 4 constituting a sealed battery to which the present invention is applied are assembled. The power generation element 1 includes a negative electrode plate in which a negative electrode material is held on a negative electrode current collector that is a support, a positive electrode plate in which a positive electrode active material is held on a positive electrode current collector that is a support, and the negative electrode The separator is interposed between the plate and the positive electrode plate to hold the electrolytic solution and prevent a short circuit between the two electrodes. The negative electrode plate, the positive electrode plate, and the separator are all formed into a thin sheet shape or foil shape, and these laminated bodies are pressed around a predetermined winding axis and then pressed into a flat long cylindrical shape. Formed. The power generation element 1 is provided with a negative electrode lead 2 electrically connected to the negative electrode and a positive electrode lead 3 electrically connected to the positive electrode, both of which generate the power generation in a direction parallel to the winding axis. It extends from element 1.

上記発電要素1を収納する外装材4としては、絞り成形加工を施した金属ラミネート樹脂フィルムを使用している。この金属ラミネート樹脂フィルムは、アルミニウムなどの軟質金属薄膜に、上記発電要素1を収納した後に熱融着するためのポリエチレン、ポリプロピレン、ナイロンなど熱可塑性プラスチックフィルムを貼り合わせて形成されている。   As the exterior material 4 that houses the power generation element 1, a metal laminate resin film that has been subjected to a drawing process is used. The metal laminate resin film is formed by bonding a thermoplastic metal film such as polyethylene, polypropylene, nylon, etc., for heat-sealing after housing the power generating element 1 to a soft metal thin film such as aluminum.

上記金属ラミネート樹脂フィルム製外装材4に上記発電要素1を収納する方法は、図1に示すように、矩形状の絞り成形部7を形成した外装材4の一辺を谷折りし、その谷折りした辺と反対側の辺から負極リード2と正極リード3とが引き出される向きとなるように発電要素1を収納し、谷折りした辺以外の3辺の周縁部を熱融着することにより最終的に封止する方法とした。   As shown in FIG. 1, the method of housing the power generating element 1 in the metal laminate resin film exterior material 4 is to fold one side of the exterior material 4 on which the rectangular drawn portion 7 is formed, The power generation element 1 is housed so that the negative electrode lead 2 and the positive electrode lead 3 are pulled out from the opposite side to the opposite side, and the peripheral portions of the three sides other than the valley-folded side are thermally fused. It was set as the method of sealing automatically.

なお、上記した3辺の融着処理においては、まず正負極リード2,3を引き出す辺(トップシール部)と正負極リード2,3と平行な2辺の内の1辺(サイドシール部)を熱融着した段階で、熱融着を実施していない残る1辺(サイドシール部)側から電解液を注入する。さらに、電解液注入後における未融着の辺(サイドシール部)の熱融着を実施するに際して、例えば減圧環境下で熱融着を実施するなどの方法を採用して電池内部を減圧状態にして封止することにより、電池内部の無駄な空間を極力小さくした。   In the above-described three-side fusion process, first, a side (top seal portion) from which the positive and negative electrode leads 2 and 3 are drawn and one side (side seal portion) of the two sides parallel to the positive and negative electrode leads 2 and 3 are used. At the stage of heat sealing, the electrolyte is injected from the remaining one side (side seal part) side where heat sealing is not performed. Furthermore, when performing the thermal fusion of the unfused side (side seal part) after the electrolyte injection, the inside of the battery is brought into a decompressed state by adopting a method such as thermal fusion in a reduced pressure environment. The useless space inside the battery was reduced as much as possible.

外装材として金属ラミネート樹脂フィルムを使用した電池では、負極端子2および正極端子3は、図2に示すように、外装材4の熱融着する部分(トップシール部)を経由して外部に引き出され、外部端子としての役割を果たす。この負極端子2および正極端子3の融着部分は金属と樹脂とを融着する弱い接合構造であるため、外装材の樹脂同士を融着する強固な接合構造部分と比較して封止性が劣る。このため、外部端子を引き出す辺については、電解液注入前に封止することが望ましい。   In a battery using a metal laminate resin film as an exterior material, the negative electrode terminal 2 and the positive electrode terminal 3 are pulled out to the outside via a heat-sealed portion (top seal portion) of the exterior material 4 as shown in FIG. It serves as an external terminal. Since the fused portion of the negative electrode terminal 2 and the positive electrode terminal 3 has a weak joint structure in which a metal and a resin are fused, sealing performance is improved as compared with a strong joint structure portion in which the resin of the exterior material is fused. Inferior. For this reason, it is desirable to seal the side from which the external terminal is drawn out before injecting the electrolyte.

次に、上記外装材4に絞り成形部7を形成するために施す絞り成形加工の方法について図5を参照して説明する。上記絞り成形処理は金属ラミネート樹脂フィルムを皺抑え13とダイス12とで挟み込み、同時にポンチ11をダイス12の凹部に押圧して加工する。このとき、ポンチ11の先端押圧部の形状が上記外装材4の絞り成形部7の内面形状を決定する。そのポンチ11に組み合わされて使用されるダイス12の凹部の形状が絞り成形部7の立ち上がり部分の形状を決定する。つまり、上記外装材4に形成される絞り成形部(凸部)7の突出端面の矩形を形成する4辺5の内面の曲率半径は、ポンチ11の稜部の辺6の曲率半径が直接的に反映される。   Next, a drawing forming method applied to form the drawing portion 7 on the exterior material 4 will be described with reference to FIG. In the drawing process, the metal laminate resin film is sandwiched between the punch 13 and the die 12, and at the same time, the punch 11 is pressed into the concave portion of the die 12 for processing. At this time, the shape of the tip pressing portion of the punch 11 determines the shape of the inner surface of the drawing portion 7 of the exterior material 4. The shape of the concave portion of the die 12 used in combination with the punch 11 determines the shape of the rising portion of the drawing portion 7. That is, the radius of curvature of the inner surface of the four sides 5 forming the rectangle of the protruding end surface of the drawing portion (convex portion) 7 formed on the outer packaging material 4 is directly equal to the radius of curvature of the side 6 of the ridge portion of the punch 11. It is reflected in.

したがって、本発明では外装材4として使用する金属ラミネート樹脂フィルムの絞り成形部(凸部)7を形成する辺5の中央部内面の曲率半径を、コーナー周辺の曲率半径より小さくすることを特徴としているが、各実施例等で具体的に絞り成形部7の各部において曲率半径を変える操作は、絞り成形加工を施すポンチ11の稜部の辺6の曲率半径を変えることによって調整実行される。具体的には、コーナー周辺の曲率半径より辺中央部の方を小さくすることにより実現している。   Therefore, in the present invention, the radius of curvature of the inner surface of the central portion of the side 5 forming the drawn portion (convex portion) 7 of the metal laminate resin film used as the exterior material 4 is made smaller than the radius of curvature around the corner. However, the operation of changing the radius of curvature specifically in each part of the drawing portion 7 in each embodiment or the like is adjusted and executed by changing the radius of curvature of the side 6 of the ridge portion of the punch 11 to which the drawing processing is performed. Specifically, this is realized by making the central part of the side smaller than the radius of curvature around the corner.

次に、本発明を適用した実施形態について、以下の実施例および比較例を参照して、より具体的に説明する。   Next, embodiments to which the present invention is applied will be described more specifically with reference to the following examples and comparative examples.

[実施例1]
外装材として使用する金属ラミネート樹脂フィルムとして、厚さ25μmのナイロン層と、厚さ40μmの軟質アルミニウム層と、厚さ30μmのポリプロピレン層との3層から成るアルミラミネートフィルムを用意した。次にこの外装材に対して図5に示すようなポンチ11とダイス12とから成る絞り成形機を使用し、ナイロン層が外側になるように絞り成形を施した。絞り成形加工を施すポンチ11としては、縦が60mmで横が40mmのサイズを有するポンチ11を準備した。ポンチ11稜部の辺6の曲率半径は、4つのコーナーの頂点から8mmの範囲X1の部分では3mmとし、60mm長さの辺の中点から両側にそれぞれ18mmの範囲X2および40mm長さの辺の中点から両側にそれぞれ8mmの範囲X3は1mmとし、曲率半径が異なるX1とX2とを繋ぐ部分およびX1とX3とを繋ぐX4の部分は、その曲率半径が3mmから1mmへと滑らかに変化する形状とした。それ以外のポンチ11の辺や角部の曲率半径は全て3mmとした。また、絞り成形部の深さについては、発電要素が収納される内側の寸法が6mmとなるように成形した。
[Example 1]
As a metal laminate resin film used as an exterior material, an aluminum laminate film composed of a nylon layer having a thickness of 25 μm, a soft aluminum layer having a thickness of 40 μm, and a polypropylene layer having a thickness of 30 μm was prepared. Next, a drawing machine comprising a punch 11 and a die 12 as shown in FIG. 5 was used to draw the exterior material so that the nylon layer was on the outside. A punch 11 having a size of 60 mm in length and 40 mm in width was prepared as the punch 11 subjected to the drawing process. The radius of curvature of the side 6 of the edge of the punch 11 is 3 mm in the range X1 of 8 mm from the apex of the four corners, the range X2 of 18 mm and the side of 40 mm length on both sides from the midpoint of the side of 60 mm The range X3 of 8mm on each side from the middle point is 1mm, and the curvature radius of the part connecting X1 and X2 with different curvature radii and the part of X4 connecting X1 and X3 changes smoothly from 3mm to 1mm The shape was The other curvature radii of the sides and corners of the punch 11 were all 3 mm. Moreover, about the depth of the drawing forming part, it shape | molded so that the inner dimension in which an electric power generation element is accommodated might be 6 mm.

上述したポンチ11により絞り成形された外装材4の絞り成形部(凸部)7の辺5は、図1に示すように、ポンチ稜部の辺6の曲率半径が反映されており、コーナー付近Y1では曲率半径が3mmである一方、辺5の中央部付近Y2、Y3では1mmとなっている。   As shown in FIG. 1, the side 5 of the drawn portion (convex portion) 7 of the exterior material 4 drawn by the punch 11 reflects the radius of curvature of the side 6 of the punch ridge, and is near the corner. Y1 has a radius of curvature of 3 mm, while Y2 and Y3 near the center of side 5 have a radius of 1 mm.

[比較例1]
使用するポンチ11の稜部(辺)の曲率半径が全辺に亘って全て3mmであるポンチ11を使用した点以外は全て実施例1と同一の外装材を使用し、また実施例1と略同一の外形寸法を有する絞り成形部を備えた外装材を調製した。
[Comparative Example 1]
Except for using the punch 11 in which the radii of curvature of the ridges (sides) of the punch 11 to be used are all 3 mm over the entire side, the same exterior material as that of the first embodiment is used, and is substantially the same as the first embodiment. The exterior material provided with the drawing forming part which has the same external dimension was prepared.

[比較例2]
使用するポンチ11の稜部(辺)の曲率半径が全辺に亘って全て1mmであるポンチ11を使用した点以外は全て実施例1と同一の外装材を使用し、また実施例1と略同一の外形寸法を有する絞り成形部を備えた外装材を調製した。
[Comparative Example 2]
Except for using the punch 11 in which the radii of curvature (edges) of the punch 11 to be used are all 1 mm over the entire side, the same exterior material as that in Example 1 is used, and it is abbreviated as Example 1. The exterior material provided with the drawing forming part which has the same external dimension was prepared.

上記のように絞り成形加工を施して調製した実施例用および各比較例用の外装材100個について、絞り成形によるピンホールの発生状況を確認して、表1に示す結果を得た。   About 100 exterior materials for examples and comparative examples prepared by drawing as described above, the occurrence of pinholes by drawing was confirmed, and the results shown in Table 1 were obtained.

また、ピンホールが発生しなかった実施例用の外装材の絞り成形部7に、図1に示すように発電要素1を収容した後に、外装材4の外周縁(3辺)を熱融着した。3辺の融着処理においては、まず大気圧下において正負極リード2,3と平行な2辺(サイドシール部)を熱融着した後に、圧力を100Torrに調整した減圧チャンバー内に外装材ごと移送し、熱融着を実施していない残る1辺側から約4ccの電解液を注入すると共に、電解液注入後における未融着の辺(トップシール部)の熱融着を実施することにより、実施例1に係る密閉型電池を作製した。   In addition, after the power generation element 1 is accommodated in the drawing portion 7 of the exterior material for the example in which no pinhole was generated, the outer peripheral edge (3 sides) of the exterior material 4 is heat-sealed as shown in FIG. did. In the fusion process on the three sides, first, two sides (side seal portions) parallel to the positive and negative electrode leads 2 and 3 are thermally fused at atmospheric pressure, and then the exterior material is placed in a decompression chamber whose pressure is adjusted to 100 Torr. By transferring and injecting about 4 cc of electrolyte from the remaining one side that has not been heat-sealed, and by heat-sealing the unfused side (top seal portion) after the electrolyte is injected A sealed battery according to Example 1 was produced.

一方、前記のように押圧部の形状が異なったポンチをそれぞれ使用して絞り成形部を形成した比較例1,2用の外装材を使用し、発電要素1を絞り成形部に収容した後に、大気圧下で電解液を注入すると共に、外装材4の外周縁を熱融着した点以外は実施例と同一条件で処理することにより、それぞれ比較例1,2に係る密閉型電池を作製した。   On the other hand, after using the outer packaging material for Comparative Examples 1 and 2 in which the drawn portions were formed using the punches having different shapes of the pressing portions as described above, the power generation element 1 was accommodated in the drawn portions, A sealed battery according to each of Comparative Examples 1 and 2 was produced by injecting an electrolytic solution under atmospheric pressure and processing under the same conditions as in the Examples except that the outer peripheral edge of the outer packaging material 4 was thermally fused. .

上記のように調製した実施例および各比較例に係る密閉型電池に電解液を4ccだけ注入するために要する注入時間を測定すると共に、電池内の空間容積を測定し、下記表1に示す結果を得た。なお、上記電解液の注入時間の平均値および電池内の空間容積の平均値は比較例1を基準値(100)として相対的に表示した。

Figure 0004664614
The results shown in Table 1 below were measured while measuring the injection time required for injecting only 4 cc of the electrolyte into the sealed batteries according to the examples and comparative examples prepared as described above, and measuring the space volume in the battery. Got. In addition, the average value of the injection time of the electrolytic solution and the average value of the space volume in the battery were relatively displayed with Comparative Example 1 as a reference value (100).
Figure 0004664614

外装材に対して前記のような絞り成形方法により絞り成形を行う場合、ピンホールが発生する箇所は絞り成形部(凸部)のコーナー周辺である。また、コーナー周辺において成形時の滑り抵抗が大きくなり、材料の回り込み量が少なくなるため、コーナー付近は他の部分より薄く形成されやすい傾向がある。   In the case where the exterior material is subjected to the drawing by the drawing method as described above, the portion where the pinhole is generated is around the corner of the drawing portion (convex portion). In addition, slip resistance at the time of molding increases around the corner, and the amount of material wraparound decreases, so that the vicinity of the corner tends to be thinner than other portions.

そのため、コーナー付近の曲率半径を大きくしたポンチを使用して絞り成形部を形成した実施例用の外装材では、絞り部分のコーナー部に金属ラミネート樹脂フィルムが滑り込み易くなったため、上記表1に示す結果からも明らかなように、深さが6mmの絞り成形部をそれぞれ形成した100枚の外装材を成形した場合においても、ピンホールの発生は皆無であり、優れた成形性が得られた。   Therefore, in the exterior material for the example in which the drawn portion was formed using the punch having a larger curvature radius near the corner, the metal laminate resin film easily slipped into the corner portion of the drawn portion. As is clear from the results, even when 100 exterior members each having a 6 mm deep drawn part were formed, no pinholes were generated, and excellent formability was obtained.

また、実施例においては、電解液の注入および封止部の熱融着を減圧環境下で実施しているために、電解液の注入作業が迅速に進行し注液工程における生産性の向上が図られると共に、電池内部に残存する気体成分が減少し電池内部の無駄な空間を極力小さくすることができ、従来の比較例1の電池と比較して電池内容積を5%程度高めることが可能であった。   In addition, in the examples, since the injection of the electrolytic solution and the thermal fusion of the sealing portion are performed in a reduced pressure environment, the injection operation of the electrolytic solution proceeds quickly, and the productivity in the injection process is improved. As a result, the gas component remaining inside the battery is reduced, and a useless space inside the battery can be reduced as much as possible, and the internal volume of the battery can be increased by about 5% compared to the battery of the comparative example 1 of the related art. Met.

これに対して、ポンチ稜部の辺の曲率半径をコーナー付近も含めて全て3mmと大きく設定したポンチを使用して絞り成形した比較例1の外装材の場合においても、ピンホールの発生は皆無であった。しかしながら、発電要素と外装材の両縁部とが密着する構造となり、実施例と比較して電池内容積が相対的に減少した。   On the other hand, even in the case of the exterior material of Comparative Example 1 that was drawn and formed using punches in which the radius of curvature of the side of the punch ridge part was set to 3 mm including the vicinity of the corner, there was no occurrence of pinholes. Met. However, the power generation element and the both edges of the exterior material are in close contact with each other, and the battery internal volume is relatively reduced as compared with the example.

一方、稜部(辺)の曲率半径を全て1mmに設定したポンチポンチを使用して絞り成形部を形成した比較例2に係る電池の外装材では、絞り成形した100枚の外装材のうち、37枚の外装材でピンホールが発生しており、成形性の大幅な低下が再確認され、製造歩留りが急激に低下することが実証された。   On the other hand, in the battery outer packaging material according to Comparative Example 2 in which the draw-molded portion is formed using punch punches in which the radii of curvature of the ridges (sides) are all set to 1 mm, out of 100 draw-molded outer packaging materials, 37 Pinholes were generated in the outer packaging material, and a significant decrease in formability was reconfirmed, demonstrating that the production yield dropped sharply.

上記の比較から明らかなように、本実施例に係る密閉型電池によれば、絞り成形部(凸部)のコーナー付近の曲率半径を大きくすることにより、辺中央部の曲率半径を小さくした場合においても、安定した深絞り成形が可能であることが実証された。   As is clear from the above comparison, according to the sealed battery according to the present example, when the radius of curvature near the corner of the drawn portion (convex portion) is increased, the radius of curvature at the center of the side is reduced. It has also been demonstrated that stable deep-drawing is possible.

加えて、実施例に係る密閉型電池においては、絞り成形部の長さ60mmの辺の中央部36mmの領域と、長さ40mmの辺の中央部16mmの領域とにおける外装材内面の曲率半径が1mmとなっているために、各外装材を剛体と仮定して計算すると比較例1の電池と比較して内容積が約200mm増加している。本サイズの密閉型電池においては約4ccの電解液を注液するため、この容積増加分は電解液量の約5%に相当する容積であり、その容積相当量の電解液を増量することが可能となる。また、電池内に電解液を保持する空間が大きくなるため、高容量化に伴う注液工程での生産性の向上に対しても有利に働くことが明白である。 In addition, in the sealed battery according to the example, the radius of curvature of the inner surface of the exterior material in the region of the central part 36 mm of the side with the length of 60 mm of the drawn portion and the region of the central part 16 mm of the side with the length of 40 mm is Since the thickness is 1 mm, the calculation is performed assuming that each exterior material is a rigid body, and the internal volume is increased by about 200 mm 3 compared to the battery of Comparative Example 1. In a sealed battery of this size, about 4 cc of electrolyte is injected, and this volume increase is equivalent to about 5% of the amount of electrolyte, and the volume of electrolyte corresponding to the volume can be increased. It becomes possible. In addition, since the space for holding the electrolytic solution in the battery becomes large, it is obvious that it also works to improve the productivity in the liquid injection process accompanying the increase in capacity.

このように本実施例に係る密閉型電池によれば、絞り成形時に外装材4の成形量が大きくなる角部(コーナー部)における内面の曲率半径を大きくしているため、外装材4の成形性を良好に維持できる一方、成形量が相対的に小さくなる辺中央部の内面の曲率半径を小さくしているため、外装材4と発電要素1との間に電解液を収容保持できる空間を形成することが可能になる。その結果、外装材4の成形性と電池の高容量化と注液工程の生産性向上と電解液の注液性とを共に満足する密閉型電池が初めて得られ、生産性の高い安定した品質を有する密閉型電池を得ることができる。   As described above, according to the sealed battery according to the present embodiment, since the radius of curvature of the inner surface of the corner portion (corner portion) where the molding amount of the outer packaging material 4 becomes large at the time of drawing molding is increased, the molding of the outer packaging material 4 is performed. Since the curvature radius of the inner surface of the side central portion where the molding amount is relatively small can be reduced while maintaining good performance, a space in which the electrolytic solution can be accommodated between the exterior material 4 and the power generation element 1 is provided. It becomes possible to form. As a result, for the first time, a sealed battery satisfying both the moldability of the outer packaging 4, the high capacity of the battery, the productivity improvement of the liquid injection process, and the liquid injection property of the electrolytic solution can be obtained. A sealed battery having the following can be obtained.

本発明が適用される密閉型電池を構成する発電要素と外装材とを組立てる状態を示す分解斜視図。The disassembled perspective view which shows the state which assembled the electric power generation element and exterior material which comprise the sealed battery to which this invention is applied. 本発明が適用される密閉型電池の外形構造を概略的に示す斜視図。The perspective view which shows roughly the external structure of the sealed battery to which this invention is applied. 図1に示す外装材の絞り成形部におけるIII−III矢視部分断面図。The III-III arrow partial sectional view in the draw forming part of the exterior material shown in FIG. 図1に示す外装材の絞り成形部におけるIV−IV矢視部分断面図。FIG. 4 is a partial cross-sectional view taken along the arrow IV-IV in the drawing portion of the exterior material shown in FIG. 1. ダイスとポンチとから成る絞り成形機の構成例およびこの絞り成形機を使用して外装材を絞り成形する状態を示す斜視分解図。The perspective exploded view which shows the example of a structure of the drawing machine which consists of a die | dye and a punch, and the state which draw-molds an exterior material using this drawing machine.

符号の説明Explanation of symbols

1 発電要素
2 負極リード(負極端子)
3 正極リード(正極端子)
4 外装材(金属ラミネート樹脂フィルム)
5 絞り成形凸部の辺
6 ポンチ稜部の辺
7 絞り成形部
11 ポンチ
13 皺押さえ
1 Power generation element 2 Negative electrode lead (negative electrode terminal)
3 Positive lead (positive terminal)
4 Exterior material (metal laminate resin film)
5 Sides of the draw forming convex part 6 Sides of the punch ridge 7 Drawing part 11 Punch 13

Claims (6)

断面が略矩形状の絞り成形部を突出するように形成した金属ラミネート樹脂フィルム製外装材の上記絞り成形部に発電要素を収納した後に外装材の周縁部を封止した密閉型電池において、上記突出した絞り成形部の側面から端面に移る境界である辺の中央部内面の曲率半径が、前記辺のコーナー付近内面の曲率半径より小さいことを特徴とする密閉型電池。 In a sealed battery in which a power generation element is housed in the drawing part of the metal laminate resin film exterior member formed so as to protrude from the drawing part having a substantially rectangular cross section, and the peripheral part of the exterior member is sealed, A sealed battery characterized in that the radius of curvature of the inner surface of the central portion of the side, which is a boundary from the side surface of the projecting drawn portion to the end surface, is smaller than the radius of curvature of the inner surface near the corner of the side . 前記金属ラミネート樹脂フィルム製外装材に収納される発電要素として、セパレータを介して正極板と負極板とを組み合わせた積層体を長円筒状に捲回した後に扁平状に形成した発電要素を収納することを特徴とする請求項1記載の密閉型電池。 As a power generation element housed in the metal laminate resin film exterior material, a power generation element formed into a flat shape after winding a laminated body in which a positive electrode plate and a negative electrode plate are combined through a separator is housed. The sealed battery according to claim 1. 前記絞り成形部内に発電要素を収納した金属ラミネート樹脂フィルム製外装材の周縁部を熱融着により封止する際に、上記金属ラミネート樹脂フィルム製外装材に形成した絞り成形部内が減圧された状態で封止されていることを特徴とする請求項1または2記載の密閉型電池。 When the periphery of the metal laminate resin film exterior material containing the power generation element in the draw molding portion is sealed by heat sealing, the inside of the draw molding portion formed in the metal laminate resin film exterior material is decompressed The sealed battery according to claim 1, wherein the sealed battery is sealed with. 前記絞り成形部のコーナー付近内面の曲率半径が1mm以上であることを特徴とする請求項1記載の密閉型電池。 2. The sealed battery according to claim 1, wherein the radius of curvature of the inner surface near the corner of the drawn portion is 1 mm or more. 前記絞り成形部の側面から端面に移る境界である辺の中央部内面の曲率半径が0.5〜1.5mmの範囲であることを特徴とする請求項1記載の密閉型電池。 2. The sealed battery according to claim 1, wherein the radius of curvature of the inner surface of the central portion of the side that is a boundary that moves from the side surface to the end surface of the drawn portion is in the range of 0.5 to 1.5 mm. 曲率半径が異なる辺の中央部内面とコーナー付近の内面とを繋ぐ部分の曲率半径が滑らかに変化する形状としたことを特徴とする請求項1記載の密閉型電池。2. The sealed battery according to claim 1, wherein the curvature radius of the portion connecting the inner surface of the central portion and the inner surface near the corner of the sides having different curvature radii changes smoothly.
JP2004111308A 2004-04-05 2004-04-05 Sealed battery Expired - Fee Related JP4664614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004111308A JP4664614B2 (en) 2004-04-05 2004-04-05 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111308A JP4664614B2 (en) 2004-04-05 2004-04-05 Sealed battery

Publications (2)

Publication Number Publication Date
JP2005294212A JP2005294212A (en) 2005-10-20
JP4664614B2 true JP4664614B2 (en) 2011-04-06

Family

ID=35326880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111308A Expired - Fee Related JP4664614B2 (en) 2004-04-05 2004-04-05 Sealed battery

Country Status (1)

Country Link
JP (1) JP4664614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170091938A (en) * 2016-02-02 2017-08-10 주식회사 엘지화학 Secondary Battery Cell Case Having Round Edge and Apparatus for Manufacturing the Same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776408B2 (en) * 2006-03-20 2011-09-21 三洋電機株式会社 Laminated battery
JP2010232067A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Laminate outer packaging battery
JP2011243522A (en) * 2010-05-21 2011-12-01 Showa Denko Packaging Co Ltd Laminate battery pack and laminate exterior material for battery pack
KR101623106B1 (en) * 2013-05-06 2016-05-20 주식회사 엘지화학 Formimg apparatus for pouch film
KR20140147041A (en) * 2013-06-18 2014-12-29 주식회사 엘지화학 Cell packing material and method for manufacturing the same
KR102566302B1 (en) * 2016-06-27 2023-08-11 삼성에스디아이 주식회사 Secondary battery
JP6837320B2 (en) * 2016-11-22 2021-03-03 昭和電工パッケージング株式会社 Exterior case for power storage device and its manufacturing method
JP6741123B1 (en) * 2019-06-07 2020-08-19 大日本印刷株式会社 Power storage device and container
ES2970536T3 (en) * 2019-09-17 2024-05-29 Lg Energy Solution Ltd Bag-type battery box and apparatus for making the same, and bag-type secondary battery
JP2023539537A (en) * 2020-10-06 2023-09-14 エルジー エナジー ソリューション リミテッド Pouch-type battery case, its molding device, and pouch-type secondary battery
WO2023113472A1 (en) * 2021-12-16 2023-06-22 주식회사 엘지에너지솔루션 Pouch-type battery case and secondary battery including same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133216A (en) * 1998-10-23 2000-05-12 Sony Corp Nonaqueous electrolyte battery and manufacture of same
JP2002075299A (en) * 2000-09-05 2002-03-15 At Battery:Kk Sealed secondary battery and manufacturing method therefor
JP2002208384A (en) * 2001-01-11 2002-07-26 Sony Corp Nonaqueous electrolyte battery and its manufacturing method
JP2003303577A (en) * 2002-04-11 2003-10-24 Toshiba Corp Enclosed battery
JP2004095333A (en) * 2002-08-30 2004-03-25 Sony Corp Laminate film for battery and non-aqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133216A (en) * 1998-10-23 2000-05-12 Sony Corp Nonaqueous electrolyte battery and manufacture of same
JP2002075299A (en) * 2000-09-05 2002-03-15 At Battery:Kk Sealed secondary battery and manufacturing method therefor
JP2002208384A (en) * 2001-01-11 2002-07-26 Sony Corp Nonaqueous electrolyte battery and its manufacturing method
JP2003303577A (en) * 2002-04-11 2003-10-24 Toshiba Corp Enclosed battery
JP2004095333A (en) * 2002-08-30 2004-03-25 Sony Corp Laminate film for battery and non-aqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170091938A (en) * 2016-02-02 2017-08-10 주식회사 엘지화학 Secondary Battery Cell Case Having Round Edge and Apparatus for Manufacturing the Same
KR102143366B1 (en) * 2016-02-02 2020-08-12 주식회사 엘지화학 Secondary Battery Cell Case Having Round Edge and Apparatus for Manufacturing the Same

Also Published As

Publication number Publication date
JP2005294212A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
KR102109926B1 (en) Pouch case for secondary battery, pouch type secondary battery and manufacturing method thereof using the same
KR102064460B1 (en) Pouch case for secondary battery, pouch type secondary battery and manufacturing method thereof using the same
JP6284248B1 (en) Electrochemical cell and method for producing electrochemical cell
KR100917736B1 (en) Pouch for battery and pouch type secondary battery
US7736801B2 (en) Film covered electric device and method of manufacturing the same
JP7046158B2 (en) Battery cell
JP4664614B2 (en) Sealed battery
JP6743664B2 (en) Power storage device and method of manufacturing power storage device
JP2000067821A (en) Prism type battery
EP3800690B1 (en) Secondary battery
JP2009026707A (en) Battery case and battery with sealing plate
JP2007200589A (en) Laminate battery
JP2022548229A (en) Pouch-type battery case, manufacturing equipment for manufacturing the same, and pouch-type secondary battery
JP6128497B2 (en) Laminated battery and manufacturing method thereof
CN112736288B (en) Battery packaging method, battery and electronic equipment
JP4233830B2 (en) Flat rectangular battery
JP2005228573A (en) Closed type battery
JP4660112B2 (en) Sealed battery
JP5213024B2 (en) Stacked sealed battery
JP4172224B2 (en) Battery packaging
JP6972834B2 (en) Power storage element
JP6062197B2 (en) battery
JP2003007340A (en) Secondary battery and manufacturing method of the same
US20220181726A1 (en) Secondary battery and method of manufacturing the same
JP2022068882A (en) Power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R150 Certificate of patent or registration of utility model

Ref document number: 4664614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees