JP4660873B2 - Parallel system stereo microscope objective lens - Google Patents
Parallel system stereo microscope objective lens Download PDFInfo
- Publication number
- JP4660873B2 JP4660873B2 JP2000033829A JP2000033829A JP4660873B2 JP 4660873 B2 JP4660873 B2 JP 4660873B2 JP 2000033829 A JP2000033829 A JP 2000033829A JP 2000033829 A JP2000033829 A JP 2000033829A JP 4660873 B2 JP4660873 B2 JP 4660873B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- cemented
- lens group
- objective lens
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Microscoopes, Condenser (AREA)
- Lenses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、平行系単対物型双眼実体顕微鏡のための、特に色収差の発生を極力抑えたアポクロマートクラスの性能を有し、かつ像の平坦性に優れた対物レンズに関する。特に、焦点距離50mm程度の平行系実体顕微鏡用の高倍対物レンズに関するものである。
【0002】
【従来の技術】
実体顕微鏡は、凹凸のある物体を観察した場合、両目で見た場合と同じように立体感を持って観察できる。このため、顕微鏡下で作業する場合にピンセット等の工具と物体との距離関係を容易に把握することができる。したがって、精密機械工業、生物の解剖、手術等細かい処置が必要な分野で特に有効である。実体顕微鏡では、物体の立体感のための視差を得るため、左右2つの眼に入射する光束の光学系を少なくとも部分的には独立させ、その光軸が物体面上で交わるようにする。そして、異なった方向より見た物体の拡大像を作り、接眼レンズを通して観察することで微小物体の立体視を行なっている。実体顕微鏡の立体視を得る代表的方法として、平行系実体顕微鏡(平行系単対物型双眼顕微鏡)が挙げられる。平行系実体顕微鏡は、一つの対物レンズ系と、該対物レンズ系の光軸に平行に配置された右眼用と左眼用との二つの観察光学系を有している。
【0003】
【発明が解決しようとする課題】
平行系実体顕微鏡は、物体面にその焦点位置を一致させた一つの対物レンズが、その後に続く左右両眼用の変倍光学系にアフォーカル光束を導く役割を担っている。すなわち、対物レンズの光軸と実際に観察に使用される左右両眼用の変倍光学系の光軸とが異なることになる。このように、対物レンズを通る光束が対物レンズの回転中心に対して偏心しているため、光学設計をする際に大変難度の高いレンズ系になっている。
【0004】
実体顕微鏡の場合、観察像の明るさや分解能を決定する対物レンズのNAが、0.1前後と比較的小さいのが通常である。それは、総合の観察倍率が10倍ないし500倍程度の低倍率であることや、解像力よりも操作性を考慮して長い作動距離が重要視されてきたからである。単対物双眼実体顕微鏡の対物レンズの場合、一つの対物レンズで両眼用の必要なNAの光を導くため、倍のNAで収差補正する必要がある。
【0005】
さらに最近では、受精卵や細胞などより小さな物体を操作する研究が盛んであり、高倍・高NAの実体顕微鏡のニーズが高まっている。また、広い波長領域にわたって高い解像を得るため色収差補正の性能の良いアポクロマート級の対物レンズも求められている。加えて、標本の写真撮影なども必要となるため、システム性の高い平行系単対物双眼実体顕微鏡において、高倍・高NAのアポクロマート対物レンズが要求されることになる。
【0006】
また一台の顕微鏡で、全体像から部分拡大像まで観察するため変倍光学系のズーム比も大きくなり、対物レンズによる像をより高倍まで拡大して観察する傾向である。このような単対物双眼実体顕微鏡の対物レンズの例として、実公平7−60218号公報、特開平10−26729号公報に開示されたレンズ系が知られている。
【0007】
図11は、実公平7−60218号公報に開示されたレンズ系の構成を示す図である。上記公報に記載されている実施例では、基準波長に対し短波長の光線の球面収差が周辺で過剰補正になっている。また、後に続く変倍光学系で高倍に拡大するとき、色収差が目立ち解像の悪い像になってしまう。
【0008】
本発明は上記問題点にかんがみてなされたものであり、高倍率・高NAであり、色収差を徹底的に除去したアポクロマート級の平行系実体顕微鏡対物レンズを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明は、物体から遠い側より順に、正の屈折力を有し、両凸形状の接合レンズからなる第1レンズ群と、
接合レンズを少なくとも2群含む第2レンズ群と、
を有し、
以下の条件を満たすとともに、前記物体からの光は、前記第2レンズ群と前記第1レンズ群とを介して、前記第2レンズ群及び前記第1レンズ群の光軸に対して略平行な光軸をそれぞれ有する、少なくとも2つの観察光学系に向けて出射することを特徴とする平行系実体顕微鏡対物レンズを提供する。
(1) 0.1 <|r11/f1|< 1.0
ここで、
r11:前記第1レンズ群の前記接合レンズの接合面の曲率半径,
f1 :前記第1レンズ群の焦点距離.
【0011】
条件式(1)は軸上色収差の量を規定するものである。大きなNAを与える軸上光束はまず第1レンズ群を通り、そこで収束光束に曲げられる。そのため第1レンズ群で軸上の収差の補正作用を持たせることが望ましい。しかし、第1レンズ群の接合レンズのみに上記補正作用を持たせると、基準波長に対し長波長側の球面収差は補正不足、短波長側の球面収差は補正過剰となる。特に、ズーム高倍時、色収差が目立つようになる。
【0012】
条件式(1)の上限値を上回ると、軸上の収差補正が困難になり、明るさの増加による球面収差の変化の曲がりが大きくなってしまう。逆に、条件式(1)の下限値を下回ると、色収差の補正が困難になり、ズーム高倍時の色ずれが目立つようになる。さらに好ましくは、上限値を0.42、下限値を0.15とすることが望ましい。
【0013】
また、本発明は、前記第2レンズ群における前記2群の接合レンズのうちの第1の接合レンズは、物体から最も遠い側に配置されており、凹面を物体から遠い側に向けたメニスカス形状であり、以下の条件を満たすことが望ましい。
(2) 0.5 <|r21/f|< 80
ここで、
r21:該第1の接合レンズの接合面の曲率半径,
f :平行系実体顕微鏡対物レンズの全系の焦点距離である。
【0014】
条件式(2)は2次スペクトルと歪曲収差の量を規定するものである。2次スペクトルとは、基準波長に対してさらに別の2波長について色消しされている場合であっても、その他の波長については色消しは完全ではなく不十分であり、光軸上に像点のスペクトルが、ある波長を極小として折り返された形で生ずる現象のことである。アポクロマート対物レンズでは可視光の波長領域で色収差を補正するため、2次スペクトルを補正する必要がある。
【0015】
また、歪曲収差が残存している場合、特にズーム低倍時に像の左右の光束の対物レンズの通り方が異なるため、周辺を通った光束と中心付近を通った光束とで非対称な歪みを生じる。これにより、観察者の奥行知覚を乱し、平面の物体があたかも凸面状であるかのような錯覚を生じさせる。さらに、長時間にわたる観察では船酔いに似た現象を引き起こすことがわかっている。
【0016】
さて、ズーム低倍時の画角の大きな光は第1レンズ群の正の屈折力によって光軸と略平行に曲げられ、第2レンズ群の最初の凹面によって光軸から離れる方向へ跳ね上げられる。その際大きな正の歪曲収差の発生に寄与している。平行系実体顕微鏡対物レンズは瞳がレンズ系の外にあり、レンズ全体としては正の屈折力を有している。このため、そのままでは負の歪曲収差が発生する。特に高倍対物レンズでは焦点距離が短い、すなわち屈折力が強いため大きな負の歪曲収差を有している。それを上記凹面によって正の収差を発生させて補正しているのである。
【0017】
しかし、上記凹面は大きなNAの光をも跳ね上げてしまう。したがって、その後の接合面は色収差、特に2次スペクトルを補正し、また歪曲収差を悪化させないようにバランスをとる必要がある。
【0018】
条件式(2)の上限値を上回ると2次スペクトルが補正しきれず、ズーム高倍時に色ずれが目立ってしまう。逆に、条件式(2)の下限値を下回ると負の歪曲収差が発生し、像の左右で歪みが非対称になる。さらに好ましくは、上限値を15、下限値を0.7とすることが望ましい。
【0019】
また、本発明では、前記第2レンズ群における前記2群の接合レンズのうちの第2の接合レンズは、以下の条件を満たすことが望ましい。
(3) 0.1 <|r22/f|< 1.0
ここで、
r22:前記第2レンズ群の第2の接合レンズの接合面の曲率半径,
f :平行系実体顕微鏡対物レンズの全系の焦点距離である。
【0020】
条件式(3)はズーム低倍時の非点収差と、ズーム高倍時の軸上収差のバランスをとるものである。条件式(3)の上限値を上回ると接合面の色消しの力が弱くなり2次スペクトルが悪くなる。逆に、条件式(3)の下限値を下回ると比較的像面近くにきつい曲率半径の面が存在することになり、ズーム低倍時の非点収差が補正しきれなくなる。さらに好ましくは、上限値を0.75,下限値を0.4とすることが望ましい。
【0021】
【発明の実施の形態】
以下、本発明にかかる平行系実体顕微鏡対物レンズの数値実施例について添付図面を用いて説明する。
【0022】
(第1実施例)
図1は、本実施例にかかる平行系実体顕微鏡対物レンズのレンズ構成を示す図である。物体から遠い側より順に、正の屈折力を有し、レンズL1とレンズL2とからなる両凸形状の接合レンズを含む第1レンズ群G1と、複数の接合レンズ又は単レンズからなり、少なくとも2群の接合レンズを含む第2レンズ群G2とを有している。また、第2レンズ群G2は、最も物体から遠い側に、レンズL3とレンズL4とからなる凹面を物体から遠い側に向けたメニスカス形状の第1の接合レンズを有している。
【0023】
表1に本実施例の諸元値を掲げる。全体諸元において、fは対物レンズ全系の焦点距離、WDは作動距離、f1は第1レンズ群G1の焦点距離をそれぞれ示している。また、レンズデータにおいて、sは物体から遠い側から数えたレンズ面の順番、rは各レンズ面の曲率半径、dは面間隔、nd、vdは各レンズに使用された硝子のd線(λ=587.56nm)に対する屈折率およびアッベ数をそれぞれ表している。なお、長さ、曲率半径などの単位はmmである。また、観察光学系の光軸間距離は22mm、観察光学系の入射瞳位置はズーム低倍時41mm、ズーム高倍時165mmである。さらに、以下全ての実施例の諸元値において、本実施例の諸元値と同様の符号を用いる。
【0024】
【表1】
図2は、本実施例の諸収差を示す図である。諸収差はいずれも観察光学系側(物体より遠い側)より光線を入射させて追跡したもので、観察光学系の光軸を通る光線を基準にして表示してある。また、非点収差と歪曲収差はズーム低倍時、横収差はズーム高倍時の収差図である。なお、以下、全ての実施例の諸収差図は、本実施例の諸収差と同様の条件のものを示し、同様の符号を用いる。図からも明らかなように諸収差が良好に補正されていることがわかる。
【0025】
(第2実施例)
図3は、本実施例にかかる平行系実体顕微鏡対物レンズのレンズ構成を示す図である。物体から遠い側より順に、正の屈折力を有し、レンズL1とレンズL2とからなる両凸形状の接合レンズを含む第1レンズ群G1と、複数の接合レンズ又は単レンズからなり、少なくとも2群の接合レンズを含む第2レンズ群G2とを有している。また、第2レンズ群G2は、物体から最も遠い側に、レンズL3とレンズL4とからなり、凹面を物体から遠い側に向けたメニスカス形状の第1の接合レンズを有している。
【0026】
表2に本実施例の諸元値を掲げる。なお、観察光学系の光軸間距離は22mm、観察光学系の入射瞳位置はズーム低倍時41mm、ズーム高倍時165mmである。
【0027】
【表2】
図4は本実施例の諸収差を示す図である。図から明らかなように良好に諸収差が補正されていることがわかる。
【0028】
(第3実施例)
図5は、本実施例にかかる平行系実体顕微鏡対物レンズのレンズ構成を示す図である。物体から遠い側より順に、正の屈折力を有し、レンズL1とレンズL2とからなる両凸形状の接合レンズを含む第1レンズ群G1と、複数の接合レンズ又は単レンズからなり、少なくとも2群の接合レンズを含む第2レンズ群G2とを有している。また、第2レンズ群G2は、物体から最も遠い側に、レンズL3とレンズL4とからなる凹面を物体から遠い側に向けたメニスカス形状の第1の接合レンズを有している。
【0029】
表3に本実施例の諸元値を掲げる。なお、観察光学系の光軸間距離は22mm、観察光学系の入射瞳位置はズーム低倍時41mm、ズーム高倍時165mmである。
【0030】
【表3】
図6は本実施例の諸収差を示す図である。図から明らかなように良好に諸収差が補正されていることがわかる。
【0031】
(第4実施例)
図7は、本実施例にかかる平行系実体顕微鏡対物レンズのレンズ構成を示す図である。物体から遠い側より順に、正の屈折力を有し、レンズL1とレンズL2とからなる両凸形状の接合レンズを含む第1レンズ群G1と、複数の接合レンズ又は単レンズからなり、少なくとも2群の接合レンズを含む第2レンズ群G2とを有している。また、第2レンズ群G2は、物体から最も遠い側に、レンズL3とレンズL4とからなる凹面を物体から遠い側に向けたメニスカス形状の第1の接合レンズを有している。
【0032】
表4に本実施例の諸元値を掲げる。なお、観察光学系の光軸間距離は22mm、観察光学系の入射瞳位置はズーム低倍時41mm、ズーム高倍時165mmである。
【0033】
【表4】
図8は本実施例の諸収差を示す図である。図から明らかなように良好に諸収差が補正されていることがわかる。
【0034】
(第5実施例)
図9は、本実施例にかかる平行系実体顕微鏡対物レンズのレンズ構成を示す図である。物体から遠い側より順に、正の屈折力を有し、レンズL1とレンズL2とからなる両凸形状の接合レンズを含む第1レンズ群G1と、複数の接合レンズ又は単レンズからなり、少なくとも2群の接合レンズを含む第2レンズ群G2とを有している。また、第2レンズ群G2は、物体から最も遠い側に、レンズL3とレンズL4とからなる凹面を物体から遠い側に向けたメニスカス形状の第1の接合レンズを有している。
【0035】
表5に本実施例の諸元値を掲げる。なお、観察光学系の光軸間距離は22mm、観察光学系の入射瞳位置はズーム低倍時41mm、ズーム高倍時165mmである。
【0036】
【表5】
図10は本実施例の諸収差を示す図である。図から明らかなように良好に諸収差が補正されていることがわかる。
【0037】
【発明の効果】
以上説明したように、本発明によれば、高倍率、高NAでアポクロマート級の性能を有する平行系実体顕微鏡対物レンズを提供することができる。
【図面の簡単な説明】
【図1】第1実施例のレンズ構成及び光路を示す図である。
【図2】第1実施例の諸収差を示す図である。
【図3】第2実施例のレンズ構成及び光路を示す図である。
【図4】第2実施例の諸収差を示す図である。
【図5】第3実施例のレンズ構成及び光路を示す図である。
【図6】第3実施例の諸収差を示す図である。
【図7】第4実施例のレンズ構成及び光路を示す図である。
【図8】第4実施例の諸収差を示す図である。
【図9】第5実施例のレンズ構成及び光路を示す図である。
【図10】第5実施例の諸収差を示す図である。
【図11】従来の平行系実体顕微鏡レンズの構成を示す図である。
【符号の説明】
G1 第1レンズ群
G2 第2レンズ群
L1〜L8 各レンズ成分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an objective lens for a parallel single-objective binocular stereomicroscope that has an apochromat class performance that suppresses the occurrence of chromatic aberration as much as possible and that has excellent image flatness. In particular, the present invention relates to a high-magnification objective lens for a parallel stereomicroscope having a focal length of about 50 mm.
[0002]
[Prior art]
With a stereomicroscope, when an uneven object is observed, it can be observed with a three-dimensional effect in the same way as when viewed with both eyes. For this reason, when working under a microscope, it is possible to easily grasp the distance relationship between a tool such as tweezers and an object. Therefore, it is particularly effective in fields requiring fine treatment such as precision machine industry, biological dissection, and surgery. In a stereomicroscope, in order to obtain a parallax for a stereoscopic effect of an object, the optical systems of light beams incident on the left and right eyes are at least partially independent so that their optical axes intersect on the object plane. Then, a magnified image of the object viewed from different directions is created, and the object is viewed through an eyepiece lens, thereby stereoscopically viewing the minute object. As a typical method for obtaining stereoscopic vision of a stereomicroscope, there is a parallel stereo microscope (parallel single objective binocular microscope). The parallel system stereomicroscope has one objective lens system and two observation optical systems for the right eye and for the left eye arranged in parallel to the optical axis of the objective lens system.
[0003]
[Problems to be solved by the invention]
In the parallel system stereomicroscope, one objective lens whose focal position coincides with the object plane plays a role of guiding an afocal light beam to the subsequent variable power optical system for both eyes. That is, the optical axis of the objective lens is different from the optical axis of the zoom optical system for the left and right eyes actually used for observation. Thus, since the light beam passing through the objective lens is decentered with respect to the center of rotation of the objective lens, the lens system has a very high degree of difficulty in optical design.
[0004]
In the case of a stereomicroscope, the NA of an objective lens that determines the brightness and resolution of an observation image is usually relatively small, around 0.1. This is because the overall observation magnification is as low as 10 to 500 times, and a long working distance has been regarded as important in consideration of operability rather than resolving power. In the case of an objective lens of a single objective binocular stereomicroscope, it is necessary to correct aberrations with a double NA since a single objective lens guides light of the necessary NA for both eyes.
[0005]
In recent years, research on manipulating smaller objects such as fertilized eggs and cells has been actively conducted, and the need for high-magnification and high-NA stereomicroscopes is increasing. There is also a need for an apochromatic objective lens with good chromatic aberration correction performance in order to obtain high resolution over a wide wavelength region. In addition, since it is also necessary to take a photograph of a specimen, a high-magnification and high-NA apochromatic objective lens is required for a parallel single objective binocular stereomicroscope with high system characteristics.
[0006]
In addition, since the zoom ratio of the variable magnification optical system is increased by observing from the whole image to the partially magnified image with one microscope, the image by the objective lens tends to be magnified to a higher magnification. As examples of the objective lens of such a single objective binocular stereomicroscope, the lens systems disclosed in Japanese Utility Model Publication Nos. 7-60218 and 10-26729 are known.
[0007]
FIG. 11 is a diagram showing a configuration of a lens system disclosed in Japanese Utility Model Publication No. 7-60218. In the embodiment described in the above publication, the spherical aberration of a light beam having a short wavelength with respect to the reference wavelength is excessively corrected in the periphery. Further, when enlarging at a high magnification by the subsequent variable magnification optical system, the chromatic aberration becomes conspicuous and the resolution is poor.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an apochromat-type parallel stereomicroscope objective lens that has a high magnification and a high NA, and has thoroughly eliminated chromatic aberration.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes, in order from the side farther from the object, a first lens group having a positive refractive power and composed of a biconvex cemented lens;
A second lens group including at least two cemented lenses;
Have
While satisfying the following conditions , the light from the object is substantially parallel to the optical axes of the second lens group and the first lens group via the second lens group and the first lens group. A parallel stereomicroscope objective lens is provided that emits light toward at least two observation optical systems each having an optical axis .
(1) 0.1 <| r11 / f1 | <1.0
here,
r11: radius of curvature of the cemented surface of the cemented lens of the first lens group,
f1: focal length of the first lens group.
[0011]
Conditional expression (1) defines the amount of axial chromatic aberration. The on-axis light beam that gives a large NA first passes through the first lens group, where it is bent into a convergent light beam. Therefore, it is desirable that the first lens group has an axial aberration correcting action. However, if only the cemented lens of the first lens group has the above correction action, the spherical aberration on the long wavelength side is insufficiently corrected and the spherical aberration on the short wavelength side is excessively corrected with respect to the reference wavelength. In particular, chromatic aberration becomes conspicuous at zoom high magnification.
[0012]
If the upper limit value of conditional expression (1) is exceeded, axial aberration correction becomes difficult, and the bending of the change in spherical aberration due to the increase in brightness becomes large. On the other hand, if the lower limit of conditional expression (1) is not reached, it becomes difficult to correct chromatic aberration, and color misregistration at the time of zoom high magnification becomes conspicuous. More preferably, the upper limit value is 0.42 and the lower limit value is 0.15.
[0013]
According to the present invention, the first cemented lens of the two groups of cemented lenses in the second lens group is disposed on the side farthest from the object, and has a meniscus shape with the concave surface facing the side far from the object. It is desirable to satisfy the following conditions.
(2) 0.5 <| r21 / f | <80
here,
r21: radius of curvature of the cemented surface of the first cemented lens,
f: The focal length of the entire system of the parallel stereomicroscope objective lens.
[0014]
Conditional expression (2) defines the amount of the secondary spectrum and distortion. The secondary spectrum is a case where the other two wavelengths are achromatic with respect to the reference wavelength, but the achromaticity is not complete and insufficient for the other wavelengths, and the image point is on the optical axis. Is a phenomenon that occurs in a folded form with a certain wavelength as a minimum. Since an apochromatic objective lens corrects chromatic aberration in the wavelength region of visible light, it is necessary to correct the secondary spectrum.
[0015]
Also, when distortion remains, especially when zooming is low, the objective lens passes through the left and right beams of the image, causing asymmetric distortion between the beam passing through the periphery and the beam passing near the center. . As a result, the depth perception of the observer is disturbed, and the illusion that a planar object is convex is generated. Furthermore, observation over a long period of time has been shown to cause a phenomenon similar to seasickness.
[0016]
Now, the light with a large angle of view at the time of zoom low magnification is bent substantially parallel to the optical axis by the positive refractive power of the first lens group, and jumped up away from the optical axis by the first concave surface of the second lens group. . At that time, it contributes to the generation of large positive distortion. The parallel stereomicroscope objective lens has a pupil outside the lens system, and the entire lens has a positive refractive power. For this reason, a negative distortion aberration occurs as it is. In particular, a high-magnification objective lens has a large negative distortion due to its short focal length, that is, its strong refractive power. This is corrected by generating a positive aberration by the concave surface.
[0017]
However, the concave surface also bounces large NA light. Therefore, it is necessary to balance the subsequent joint surfaces so as to correct chromatic aberration, particularly the secondary spectrum, and not to deteriorate the distortion.
[0018]
If the upper limit of conditional expression (2) is exceeded, the secondary spectrum cannot be corrected, and color misregistration becomes conspicuous at zoom magnification. Conversely, if the lower limit of conditional expression (2) is not reached, negative distortion occurs, and the distortion becomes asymmetric on the left and right sides of the image. More preferably, the upper limit value is 15 and the lower limit value is 0.7.
[0019]
In the present invention, it is desirable that the second cemented lens of the two groups of cemented lenses in the second lens group satisfies the following conditions.
(3) 0.1 <| r22 / f | <1.0
here,
r22: radius of curvature of the cemented surface of the second cemented lens of the second lens group,
f: The focal length of the entire system of the parallel stereomicroscope objective lens.
[0020]
Conditional expression (3) balances astigmatism at the time of zoom low magnification and axial aberration at the time of zoom high magnification. If the upper limit of conditional expression (3) is exceeded, the achromatic power of the joint surface will be weakened and the secondary spectrum will be poor. On the other hand, if the lower limit of conditional expression (3) is not reached, a surface with a tight radius of curvature exists relatively near the image surface, and astigmatism at the time of zoom low magnification cannot be corrected. More preferably, the upper limit value is 0.75 and the lower limit value is 0.4.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, numerical examples of a parallel stereomicroscope objective lens according to the present invention will be described with reference to the accompanying drawings.
[0022]
(First embodiment)
FIG. 1 is a diagram illustrating a lens configuration of a parallel stereomicroscope objective lens according to the present embodiment. In order from the side farthest from the object, the first lens group G1 including a biconvex cemented lens having a positive refractive power and including a lens L1 and a lens L2, and a plurality of cemented lenses or a single lens, and at least 2 And a second lens group G2 including a cemented lens of the group. The second lens group G2 has a meniscus first cemented lens having a concave surface composed of the lens L3 and the lens L4 facing away from the object on the side farthest from the object.
[0023]
Table 1 lists the specification values of this example. In the overall specifications, f represents the focal length of the entire objective lens system, WD represents the working distance, and f1 represents the focal length of the first lens group G1. In the lens data, s is the order of the lens surfaces counted from the side far from the object, r is the radius of curvature of each lens surface, d is the surface interval, nd and vd are the d lines (λ of the glass used for each lens) = 587.56 nm) and the Abbe number, respectively. Units such as length and radius of curvature are mm. The distance between the optical axes of the observation optical system is 22 mm, and the entrance pupil position of the observation optical system is 41 mm when the zoom is low and 165 mm when the zoom is high. Further, in the specification values of all the examples below, the same symbols as those of the specification values of this example are used.
[0024]
[Table 1]
FIG. 2 is a diagram showing various aberrations of this example. All the aberrations are tracked by entering light rays from the observation optical system side (the side farther from the object) and are displayed with reference to the light rays passing through the optical axis of the observation optical system. Further, astigmatism and distortion are aberration diagrams at zoom low magnification, and lateral aberration is at zoom high magnification. In the following, the aberration diagrams of all the examples show the same conditions as the aberrations of the present example, and the same reference numerals are used. As is apparent from the figure, it can be seen that various aberrations are well corrected.
[0025]
(Second embodiment)
FIG. 3 is a diagram illustrating a lens configuration of a parallel system stereomicroscope objective lens according to the present embodiment. In order from the side farthest from the object, the first lens group G1 including a biconvex cemented lens having a positive refractive power and including a lens L1 and a lens L2, and a plurality of cemented lenses or a single lens, and at least 2 And a second lens group G2 including a cemented lens of the group. The second lens group G2 includes a lens L3 and a lens L4 on the side farthest from the object, and a first meniscus cemented lens having a concave surface facing the side far from the object.
[0026]
Table 2 lists the specification values of this example. The distance between the optical axes of the observation optical system is 22 mm, and the entrance pupil position of the observation optical system is 41 mm when the zoom is low and 165 mm when the zoom is high.
[0027]
[Table 2]
FIG. 4 is a diagram showing various aberrations of this embodiment. As can be seen from the figure, various aberrations are corrected satisfactorily.
[0028]
(Third embodiment)
FIG. 5 is a diagram showing a lens configuration of the parallel system stereomicroscope objective lens according to the present embodiment. In order from the side farthest from the object, the first lens group G1 including a biconvex cemented lens having a positive refractive power and including a lens L1 and a lens L2, and a plurality of cemented lenses or a single lens, and at least 2 And a second lens group G2 including a cemented lens of the group. In addition, the second lens group G2 has a meniscus first cemented lens with a concave surface made up of the lens L3 and the lens L4 facing away from the object on the side farthest from the object.
[0029]
Table 3 lists the specification values of this example. The distance between the optical axes of the observation optical system is 22 mm, and the entrance pupil position of the observation optical system is 41 mm when the zoom is low and 165 mm when the zoom is high.
[0030]
[Table 3]
FIG. 6 is a diagram showing various aberrations of this embodiment. As can be seen from the figure, various aberrations are corrected satisfactorily.
[0031]
(Fourth embodiment)
FIG. 7 is a diagram showing a lens configuration of the parallel-system stereomicroscope objective lens according to the present example. In order from the side farthest from the object, the first lens group G1 including a biconvex cemented lens having a positive refractive power and including a lens L1 and a lens L2, and a plurality of cemented lenses or a single lens, and at least 2 And a second lens group G2 including a cemented lens of the group. The second lens group G2 has a first meniscus cemented lens having a concave surface composed of the lens L3 and the lens L4 facing away from the object on the side farthest from the object.
[0032]
Table 4 lists the specification values of this example. The distance between the optical axes of the observation optical system is 22 mm, and the entrance pupil position of the observation optical system is 41 mm when the zoom is low and 165 mm when the zoom is high.
[0033]
[Table 4]
FIG. 8 is a diagram showing various aberrations of this embodiment. As can be seen from the figure, various aberrations are corrected satisfactorily.
[0034]
(5th Example)
FIG. 9 is a diagram illustrating a lens configuration of the parallel-system stereomicroscope objective lens according to the present example. In order from the side farthest from the object, the first lens group G1 includes a biconvex cemented lens having a positive refractive power and composed of a lens L1 and a lens L2, and a plurality of cemented lenses or a single lens. And a second lens group G2 including a cemented lens of the group. In addition, the second lens group G2 has a meniscus first cemented lens with a concave surface made up of the lens L3 and the lens L4 facing away from the object on the side farthest from the object.
[0035]
Table 5 lists the specification values of this example. The distance between the optical axes of the observation optical system is 22 mm, and the entrance pupil position of the observation optical system is 41 mm when the zoom is low and 165 mm when the zoom is high.
[0036]
[Table 5]
FIG. 10 is a diagram showing various aberrations in this embodiment. As can be seen from the figure, various aberrations are corrected satisfactorily.
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a parallel stereomicroscope objective lens having a high magnification, high NA, and apochromat class performance.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a lens configuration and an optical path of a first example.
FIG. 2 is a diagram showing various aberrations of the first example.
FIG. 3 is a diagram illustrating a lens configuration and an optical path of a second example.
FIG. 4 is a diagram illustrating various aberrations of the second example.
FIG. 5 is a diagram illustrating a lens configuration and an optical path of a third example.
FIG. 6 is a diagram showing various aberrations of the third example.
FIG. 7 is a diagram illustrating a lens configuration and an optical path of a fourth example.
FIG. 8 is a diagram showing various aberrations of the fourth example.
FIG. 9 is a diagram illustrating a lens configuration and an optical path of a fifth example.
FIG. 10 is a diagram showing various aberrations of the fifth example.
FIG. 11 is a diagram showing a configuration of a conventional parallel stereomicroscope lens.
[Explanation of symbols]
G1 First lens group G2 Second lens group L1 to L8 Each lens component
Claims (3)
接合レンズを少なくとも2群含む第2レンズ群と、
を有し、
以下の条件を満たすとともに、前記物体からの光は、前記第2レンズ群と前記第1レンズ群とを介して、前記第2レンズ群及び前記第1レンズ群の光軸に対して略平行な光軸をそれぞれ有する、少なくとも2つの観察光学系に向けて出射することを特徴とする平行系実体顕微鏡対物レンズ。
(1) 0.1 <|r11/f1|< 1.0
ここで、
r11:前記第1レンズ群の前記接合レンズの接合面の曲率半径,
f1 :前記第1レンズ群の焦点距離.A first lens group having a positive refractive power and a biconvex cemented lens in order from the side farthest from the object;
A second lens group including at least two cemented lenses;
Have
While satisfying the following conditions , the light from the object is substantially parallel to the optical axes of the second lens group and the first lens group via the second lens group and the first lens group. A parallel stereomicroscope objective lens, characterized by being emitted toward at least two observation optical systems each having an optical axis .
(1) 0.1 <| r11 / f1 | <1.0
here,
r11: radius of curvature of the cemented surface of the cemented lens of the first lens group,
f1: focal length of the first lens group.
(2) 0.5 <|r21/f|< 80
ここで、
r21:前記第1の接合レンズの接合面の曲率半径,
f :前記平行系実体顕微鏡対物レンズの全系の焦点距離.The first cemented lens among the two groups of cemented lenses in the second lens group is arranged on the side farthest from the object, has a meniscus shape with the concave surface facing the side far from the object, and the following conditions The parallel stereomicroscope objective lens according to claim 1, wherein:
(2) 0.5 <| r21 / f | <80
here,
r21: radius of curvature of the cemented surface of the first cemented lens,
f: Focal length of the entire system of the parallel stereomicroscope objective lens.
(3) 0.1 <|r22/f|< 1.0
ここで、
r22:前記第2の接合レンズの接合面の曲率半径,
f :前記平行系実体顕微鏡対物レンズの全系の焦点距離.3. The parallel-system stereomicroscope objective lens according to claim 1, wherein a second cemented lens among the two groups of cemented lenses in the second lens group satisfies the following condition.
(3) 0.1 <| r22 / f | <1.0
here,
r22: radius of curvature of the cemented surface of the second cemented lens,
f: Focal length of the entire system of the parallel stereomicroscope objective lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000033829A JP4660873B2 (en) | 2000-02-10 | 2000-02-10 | Parallel system stereo microscope objective lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000033829A JP4660873B2 (en) | 2000-02-10 | 2000-02-10 | Parallel system stereo microscope objective lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001221955A JP2001221955A (en) | 2001-08-17 |
JP4660873B2 true JP4660873B2 (en) | 2011-03-30 |
Family
ID=18558254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000033829A Expired - Fee Related JP4660873B2 (en) | 2000-02-10 | 2000-02-10 | Parallel system stereo microscope objective lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4660873B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10225192B4 (en) * | 2002-06-06 | 2004-09-09 | Leica Microsystems (Schweiz) Ag | Objective for stereomicroscopes of the telescope type and stereomicroscope with such an objective |
DE10344943A1 (en) * | 2003-09-27 | 2005-04-21 | Zeiss Carl Jena Gmbh | Stereoscopic microscope objective |
DE102004048298A1 (en) * | 2004-10-01 | 2006-04-06 | Carl Zeiss Jena Gmbh | Lens for stereo microscopes |
DE102005046476A1 (en) | 2004-10-01 | 2006-04-13 | Carl Zeiss Jena Gmbh | microscope objective |
CN105700117B (en) * | 2016-04-26 | 2018-05-29 | 中山联合光电科技股份有限公司 | A kind of optical imaging system |
CN113376809B (en) * | 2021-06-28 | 2022-08-09 | 天津欧菲光电有限公司 | Optical lens, camera module, electronic equipment and automobile |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5846311A (en) * | 1981-09-14 | 1983-03-17 | Olympus Optical Co Ltd | Photomicrographic lens |
JPH06175035A (en) * | 1992-12-10 | 1994-06-24 | Olympus Optical Co Ltd | Microscope objective lens |
JPH06281865A (en) * | 1993-03-26 | 1994-10-07 | Olympus Optical Co Ltd | Photographic lens for microscope |
JPH08313814A (en) * | 1995-05-18 | 1996-11-29 | Olympus Optical Co Ltd | Objective lens for microscope |
JPH11174338A (en) * | 1997-12-05 | 1999-07-02 | Nikon Engineering:Kk | Objective lens of microscope |
-
2000
- 2000-02-10 JP JP2000033829A patent/JP4660873B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5846311A (en) * | 1981-09-14 | 1983-03-17 | Olympus Optical Co Ltd | Photomicrographic lens |
JPH06175035A (en) * | 1992-12-10 | 1994-06-24 | Olympus Optical Co Ltd | Microscope objective lens |
JPH06281865A (en) * | 1993-03-26 | 1994-10-07 | Olympus Optical Co Ltd | Photographic lens for microscope |
JPH08313814A (en) * | 1995-05-18 | 1996-11-29 | Olympus Optical Co Ltd | Objective lens for microscope |
JPH11174338A (en) * | 1997-12-05 | 1999-07-02 | Nikon Engineering:Kk | Objective lens of microscope |
Also Published As
Publication number | Publication date |
---|---|
JP2001221955A (en) | 2001-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004004827A (en) | Afocal zoom system used in microscope | |
US8199408B2 (en) | Immersion microscope objective lens | |
JP3752356B2 (en) | Stereo microscope | |
US5701196A (en) | Stereomicroscope | |
US6271971B1 (en) | Microscope objective, and single objective type binocular stereomicroscope system cross | |
JPH0760218B2 (en) | Single objective binocular stereo microscope | |
JP4660873B2 (en) | Parallel system stereo microscope objective lens | |
JP2001147378A (en) | Objective lens system for parallel system stereomicroscope | |
JPH1195117A (en) | High magnification objective optical system for binocular stereomicroscope | |
JP6185787B2 (en) | Eyepiece lens system and image observation apparatus | |
JP2014048413A (en) | Objective optical system for three-dimensional observation device | |
US5394267A (en) | Stereomicroscope | |
JP2000105339A (en) | Objective optical system for stereomicroscope | |
WO2019008618A1 (en) | Stereoscopic optical system and imaging device provided therewith | |
JP4517422B2 (en) | Afocal zoom lens and microscope equipped with the lens | |
JP4949729B2 (en) | Stereoscopic microscope objective lens and stereomicroscope including the same | |
JP5836087B2 (en) | Microscope relay optical system | |
JP4685399B2 (en) | Objective lens with correction mechanism | |
JP2000089127A (en) | Adapter lens and twin objective stereomicroscope provided with the same | |
JP3093017B2 (en) | Stereo microscope | |
JPS62178918A (en) | Objective lens of galilean type stereomicroscope | |
JP2009198955A (en) | Relay optical system | |
SU1645925A1 (en) | Binocular instrument optical system | |
JP7214192B2 (en) | Immersion microscope objective lens, imaging lens and microscope device | |
JP5387960B2 (en) | Objective lens for parallel stereo microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100428 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100824 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20101021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4660873 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |