[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4657351B2 - Reformer - Google Patents

Reformer Download PDF

Info

Publication number
JP4657351B2
JP4657351B2 JP2009085975A JP2009085975A JP4657351B2 JP 4657351 B2 JP4657351 B2 JP 4657351B2 JP 2009085975 A JP2009085975 A JP 2009085975A JP 2009085975 A JP2009085975 A JP 2009085975A JP 4657351 B2 JP4657351 B2 JP 4657351B2
Authority
JP
Japan
Prior art keywords
reforming
receiving plate
raw material
flow path
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009085975A
Other languages
Japanese (ja)
Other versions
JP2010235403A (en
Inventor
信 稲垣
学 野口
浩 八鍬
敬祐 早房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2009085975A priority Critical patent/JP4657351B2/en
Publication of JP2010235403A publication Critical patent/JP2010235403A/en
Application granted granted Critical
Publication of JP4657351B2 publication Critical patent/JP4657351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は改質装置に関し、特に温度変化によって部材が伸縮しても改質触媒が脱落することを防止する改質装置に関する。   The present invention relates to a reforming apparatus, and more particularly to a reforming apparatus that prevents a reforming catalyst from dropping even when a member expands or contracts due to a temperature change.

近年普及が期待されている燃料電池は、水素と酸素とを導入してこれらの電気化学的反応により発電する装置である。燃料電池は発電に水素を必要とするが、水素自体を供給するインフラが普及していないことから入手が比較的困難であるため、都市ガスや灯油等の炭化水素系の原料を水蒸気改質して水素リッチな改質ガスを生成する改質装置を燃料電池に併設した燃料電池システムを構築することが多い。例えば家庭に設置される出力1kw程度の燃料電池に併設される小型の改質装置には、コンパクト化の要請から、複数の管を同心円状に間隔を空けて配置し、最も内側の管の内部に燃焼室を形成し、燃焼室の外側の管と管との間に原料及び水蒸気を通過させて高温下で触媒に接触させることにより水素リッチな改質ガスを生成する多重円筒式としたものがある(例えば、特許文献1参照。)。   A fuel cell that is expected to spread in recent years is a device that introduces hydrogen and oxygen and generates electric power through these electrochemical reactions. Fuel cells require hydrogen for power generation, but they are relatively difficult to obtain because the infrastructure for supplying hydrogen itself is not widespread. Therefore, steam reforming of hydrocarbon-based raw materials such as city gas and kerosene is performed. In many cases, a fuel cell system is constructed in which a reformer that generates hydrogen-rich reformed gas is provided in the fuel cell. For example, in a small reformer that is installed in a fuel cell with an output of about 1 kW installed in a home, a plurality of tubes are arranged concentrically at intervals from the request for downsizing, and the inside of the innermost tube A multi-cylinder type that forms a hydrogen-rich reformed gas by forming a combustion chamber and passing the raw material and water vapor between the tubes outside the combustion chamber and contacting the catalyst at a high temperature (For example, refer to Patent Document 1).

特開2008−63159号公報(図1等)JP 2008-63159 A (FIG. 1 etc.)

上述の多重円筒式の改質装置において、一般に、触媒は球状あるいは円柱状等のアルミナ担体に担持されて管と管との間の流路に充填され、充填された触媒の落下防止のためにガスが流通可能な多孔板が管の底部に取り付けられる。このとき、多重円筒式改質装置の構造上、同心円状に配置された複数の管は、内側に配置されたものほど温度が高くなるため、同一の材料で形成されている場合は熱膨張により伸びる長さが異なることとなる。このため、触媒の落下防止用の多孔板は、流路を形成する内外筒のいずれか一方に固定するのが好ましい。しかしながら、触媒落下防止用の多孔板を内外筒の一方に固定して他方に固定しない構造としても、熱膨張により一旦伸びた円筒が温度低下に伴い縮む際に、充填された触媒が抵抗となって多孔板を相対的に押し下げようとする力が生じて多孔板が曲げられて、触媒が内外筒間の流路から脱落する場合があった。   In the above-described multi-cylinder reforming apparatus, the catalyst is generally supported on a spherical or cylindrical alumina support and filled in a flow path between the tubes, and the filled catalyst is prevented from falling. A perforated plate through which gas can flow is attached to the bottom of the tube. At this time, due to the structure of the multi-cylindrical reformer, the plurality of tubes arranged concentrically increases in temperature as they are arranged on the inner side. The extending length will be different. For this reason, it is preferable to fix the porous plate for preventing the fall of the catalyst to either one of the inner and outer cylinders forming the flow path. However, even when the perforated plate for preventing the fall of the catalyst is fixed to one of the inner and outer cylinders and not fixed to the other, the packed catalyst becomes a resistance when the cylinder once extended due to thermal expansion contracts as the temperature decreases. As a result, a force to push the porous plate relatively down is generated, the porous plate is bent, and the catalyst may fall out of the flow path between the inner and outer cylinders.

本発明は上述の課題に鑑み、温度変化によって部材が伸縮しても改質触媒が脱落することを防止する改質装置を提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a reforming device that prevents a reforming catalyst from dropping even when a member expands or contracts due to a temperature change.

上記目的を達成するために、本発明の第1の態様に係る改質装置は、例えば図1乃至図3に示すように、炭化水素系の原料rを改質して水素を主成分とする水素含有ガスgを生成する改質装置10であって;原料rの改質に用いられる熱を発生させる発熱装置12と;第1の筒状部材16と、第1の筒状部材16を内部に収容する第2の筒状部材17とを有する流路形成部材15であって、発熱装置12を第1の筒状部材16の内部に収容し、第1の筒状部材16と第2の筒状部材17との間に原料rが流れる原料流路18が形成された流路形成部材15と;原料rの改質を促進させる改質触媒RCであって、原料流路18に充填された改質触媒RCと;改質触媒RCの落下を防止しつつ流体r、s、jを通過させる受板31であって、第1の筒状部材16に固定されて第2の筒状部材17に固定されずに設けられた受板31と;流路形成部材15の軸方向への受板31の変形を抑制する補強部材32であって、第1の筒状部材16と受板31とに固定された補強部材32とを備え;補強部材32が、受板31に固定された受板固定部32sと、改質触媒RCが充填されている側の第1の筒状部材16に固定された筒状部材固定部32tと、を有する平板状に形成されている。   In order to achieve the above object, the reforming apparatus according to the first aspect of the present invention reforms a hydrocarbon-based raw material r to have hydrogen as a main component, for example, as shown in FIGS. A reforming device 10 for generating a hydrogen-containing gas g; a heating device 12 for generating heat used for reforming the raw material r; and a first cylindrical member 16 and a first cylindrical member 16 inside. A flow path forming member 15 having a second cylindrical member 17 accommodated in the first cylindrical member 16, the heat generating device 12 being accommodated in the first cylindrical member 16, and the second cylindrical member 17. A flow path forming member 15 in which a raw material flow path 18 through which the raw material r flows is formed between the cylindrical member 17 and a reforming catalyst RC that promotes reforming of the raw material r, and is filled in the raw material flow path 18 A reforming catalyst RC; a receiving plate 31 that allows fluids r, s, and j to pass through while preventing the reforming catalyst RC from falling; A receiving plate 31 fixed to the cylindrical member 16 and not fixed to the second cylindrical member 17; and a reinforcing member 32 that suppresses deformation of the receiving plate 31 in the axial direction of the flow path forming member 15. A reinforcing member 32 fixed to the first tubular member 16 and the receiving plate 31; a reinforcing plate 32 having a receiving plate fixing portion 32s fixed to the receiving plate 31; and a reforming catalyst RC. It is formed in a flat plate shape having a cylindrical member fixing portion 32t fixed to the first cylindrical member 16 on the filled side.

このように構成すると、流路形成部材の軸方向への受板の変形を抑制する補強部材であって第1の筒状部材と受板とに固定された補強部材を備えるので、温度変化によって筒状部材が伸縮しても受板が変形することを抑制することができ、流路形成部材と受板とに囲まれた空間内の改質触媒が脱落することを防止することができる。また、補強部材が受板に固定された受板固定部と改質触媒が充填されている側の第1の筒状部材に固定された筒状部材固定部とを有する平板状に形成されているので、発熱装置から受熱して温度が上昇した第1の筒状部材が保有する熱を、補強部材を介して改質触媒に伝達することができ、原料の改質反応を促進させることができる。   If comprised in this way, since it is a reinforcement member which suppresses a deformation | transformation of the receiving plate to the axial direction of a flow-path formation member, Comprising: It equips with a 1st cylindrical member and a receiving plate, By temperature change, Even if the tubular member expands and contracts, the receiving plate can be prevented from being deformed, and the reforming catalyst in the space surrounded by the flow path forming member and the receiving plate can be prevented from falling off. The reinforcing member is formed in a flat plate shape having a receiving plate fixing portion fixed to the receiving plate and a cylindrical member fixing portion fixed to the first cylindrical member on the side filled with the reforming catalyst. Therefore, the heat possessed by the first tubular member that has received the heat from the heat generating device and has risen in temperature can be transmitted to the reforming catalyst via the reinforcing member, and the reforming reaction of the raw material can be promoted. it can.

また、本発明の第2の態様に係る改質装置は、例えば図7に示すように、上記本発明の第1の態様に係る改質装置10Aにおいて、補強部材32Aが、第1の筒状部材16と実質的に同じ線膨張係数の材料で形成され、第1の筒状部材16の軸方向における長さが改質触媒RCが充填されている部分全体にわたって構成されている。   Moreover, the reformer according to the second aspect of the present invention is, for example, as shown in FIG. 7, in the reformer 10A according to the first aspect of the present invention, the reinforcing member 32A is a first cylindrical shape. The first cylindrical member 16 is formed of a material having substantially the same linear expansion coefficient as that of the member 16, and the length in the axial direction of the first cylindrical member 16 is configured over the entire portion filled with the reforming catalyst RC.

このように構成すると、第1の筒状部材の軸方向における補強部材の長さが改質触媒が充填されている部分全体にわたって構成されているので、第1の筒状部材から補強部材への伝達熱量を増加させることができ、原料の改質反応をより促進させることができる。   If comprised in this way, since the length of the reinforcement member in the axial direction of the 1st cylindrical member is comprised over the whole part with which the reforming catalyst is filled, it is from a 1st cylindrical member to a reinforcement member. The amount of heat transferred can be increased, and the reforming reaction of the raw material can be further promoted.

また、上記本発明の第1の態様又は第2の態様に係る改質装置と;前記改質装置で生成された水素含有ガスと、酸素を含有する酸化剤ガスとの電気化学的反応により発電する燃料電池とを備える燃料電池システムとしてもよい。   Further, power generation is performed by an electrochemical reaction between the reformer according to the first or second aspect of the present invention and a hydrogen-containing gas generated by the reformer and an oxidant gas containing oxygen. It is good also as a fuel cell system provided with the fuel cell to perform.

本発明によれば、流路形成部材の軸方向への受板の変形を抑制する補強部材であって第1の筒状部材と受板とに固定された補強部材を備えるので、温度変化によって筒状部材が伸縮しても受板が変形することを抑制することができ、流路形成部材と受板とに囲まれた空間内の改質触媒が脱落することを防止することができる。また、補強部材が受板に固定された受板固定部と改質触媒が充填されている側の第1の筒状部材に固定された筒状部材固定部とを有する平板状に形成されているので、発熱装置から受熱して温度が上昇した第1の筒状部材が保有する熱を、補強部材を介して改質触媒に伝達することができ、原料の改質反応を促進させることができる。   According to the present invention, since the reinforcing member for suppressing the deformation of the receiving plate in the axial direction of the flow path forming member is provided with the reinforcing member fixed to the first tubular member and the receiving plate, Even if the tubular member expands and contracts, the receiving plate can be prevented from being deformed, and the reforming catalyst in the space surrounded by the flow path forming member and the receiving plate can be prevented from falling off. The reinforcing member is formed in a flat plate shape having a receiving plate fixing portion fixed to the receiving plate and a cylindrical member fixing portion fixed to the first cylindrical member on the side filled with the reforming catalyst. Therefore, the heat possessed by the first tubular member that has received the heat from the heat generating device and has risen in temperature can be transmitted to the reforming catalyst via the reinforcing member, and the reforming reaction of the raw material can be promoted. it can.

本発明の実施の形態に係る改質装置の縦断面図である。It is a longitudinal cross-sectional view of the reformer which concerns on embodiment of this invention. 本発明の実施の形態に係る改質装置の流路形成部材まわりの部分縦断面図である。It is a fragmentary longitudinal cross-sectional view around the flow-path formation member of the reformer which concerns on embodiment of this invention. 図2におけるIII−III矢視図である。It is the III-III arrow line view in FIG. 応力解析のモデルの構成を示す模式的断面図である。(a)は実施例モデルを示す図、(b)は比較例モデルを示す図である。It is a typical sectional view showing composition of a model of stress analysis. (A) is a figure which shows an Example model, (b) is a figure which shows a comparative example model. 実施例モデルの解析結果を示す応力分布図である。It is a stress distribution figure which shows the analysis result of an Example model. 比較例モデルの解析結果を示す応力分布図である。It is a stress distribution figure which shows the analysis result of a comparative example model. 本発明の実施の形態に係る改質装置の変形例の流路形成部材まわりの部分縦断面図である。It is a fragmentary longitudinal cross-sectional view around the flow-path formation member of the modification of the reformer which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の実施の形態に係る改質装置10を説明する。図1は、改質装置10の縦断面図である。改質装置10は、コンパクト化を図る観点から、複数の管を同心円状に間隔を空けて配置して、各管の間に流体が通過する流路が形成された多重円筒式の改質装置である。改質装置10は、炭化水素系原料としての原料ガスrの水蒸気改質に用いる改質熱を発生させる発熱装置としてのバーナー12と、原料ガスrが改質熱を受けながら通過する原料流路18を形成する流路形成部材15と、原料流路18に充填された改質触媒RCと、改質触媒RCの原料流路18からの落下を防ぐ受板31(図2及び図3参照)と、補強部材32(図2及び図3参照)とを備えている。   First, a reformer 10 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a longitudinal sectional view of the reformer 10. The reformer 10 is a multi-cylinder reformer in which a plurality of tubes are arranged concentrically at intervals from the viewpoint of achieving compactness, and a flow path through which a fluid passes is formed between the tubes. It is. The reformer 10 includes a burner 12 as a heat generating device for generating reforming heat used for steam reforming of the raw material gas r as a hydrocarbon-based raw material, and a raw material flow path through which the raw material gas r passes while receiving the reforming heat. 18, a reforming catalyst RC filled in the raw material flow path 18, and a receiving plate 31 that prevents the reforming catalyst RC from falling from the raw material flow path 18 (see FIGS. 2 and 3). And a reinforcing member 32 (see FIGS. 2 and 3).

改質触媒RCが充填された原料流路18は、典型的には改質部21を構成している。改質部21は、原料ガスrを水蒸気改質して水素を主成分とするが一酸化炭素を10体積%程度含んでいる準改質ガスjを生成する部分である。改質部21の下流には、準改質ガスjから一酸化炭素濃度を低減した水素含有ガスとしての改質ガスgを生成する一酸化炭素低減部22が設けられている。一酸化炭素低減部22は、準改質ガスj中の一酸化炭素を変成して準改質ガスjから一酸化炭素が低減した変成ガスhとする変成部23と、変成ガスh中の一酸化炭素を選択酸化して変成ガスhからさらに一酸化炭素が低減した改質ガスgを生成する選択酸化部24とを有している。改質部21と一酸化炭素低減部22とで改質ガス生成部20を構成している。   The raw material flow path 18 filled with the reforming catalyst RC typically constitutes a reforming unit 21. The reforming part 21 is a part that generates a semi-reformed gas j containing steam as a main component but containing about 10% by volume of carbon monoxide by steam reforming the raw material gas r. Downstream of the reforming unit 21, a carbon monoxide reduction unit 22 that generates a reformed gas g as a hydrogen-containing gas with a reduced carbon monoxide concentration from the semi-reformed gas j is provided. The carbon monoxide reducing unit 22 converts the carbon monoxide in the semi-reformed gas j into a modified gas h in which the carbon monoxide is reduced from the semi-reformed gas j, and a carbon monoxide reducing unit 22 in the modified gas h. A selective oxidation unit 24 that selectively oxidizes carbon oxide to generate a reformed gas g in which carbon monoxide is further reduced from the modified gas h. The reforming unit 21 and the carbon monoxide reduction unit 22 constitute a reformed gas generation unit 20.

上記の炭化水素系原料(本実施の形態では原料ガスrとして説明している)は、炭化水素あるいは炭化水素を主成分とする混合物の総称であり、典型的には、メタン、エタン等の鎖式炭化水素(天然ガスも含む)、あるいはメタノール、石油製品(灯油、ガソリン、ナフサ、LPG等)等の炭化水素を主成分とする炭化水素系の原料である。また、準改質ガスjは、水素を主成分とするガスであり、水素を40体積%以上、典型的には70〜80体積%程度含んでいる。準改質ガスjの水素濃度は80体積%以上でもよく、例えば燃料電池(不図示)に供給したときに酸素との電気化学的反応により発電可能な濃度であればよい。準改質ガスjには、典型的には、一酸化炭素が10体積%程度含まれている。   The hydrocarbon-based raw material (described in the present embodiment as the raw material gas r) is a general term for a hydrocarbon or a mixture containing hydrocarbon as a main component, and typically includes a chain of methane, ethane, or the like. Hydrocarbons (including natural gas) or hydrocarbon-based raw materials mainly composed of hydrocarbons such as methanol and petroleum products (kerosene, gasoline, naphtha, LPG, etc.). The semi-reformed gas j is a gas containing hydrogen as a main component, and contains 40% by volume or more, typically about 70 to 80% by volume of hydrogen. The hydrogen concentration of the semi-reformed gas j may be 80% by volume or more, for example, as long as it can be generated by an electrochemical reaction with oxygen when supplied to a fuel cell (not shown). The semi-reformed gas j typically contains about 10% by volume of carbon monoxide.

バーナー12は、燃焼用燃料としての燃焼燃料fを燃焼させることで改質熱を発生するように構成されている。バーナー12は、ステンレス鋼製の筒状部材である燃焼室区画筒14の内部に収容され、バーナー12の先端の空間が燃焼室区画筒14に囲まれることによって燃焼室13が形成されている。バーナー12及び燃焼室13で燃焼部11を構成している。本実施の形態では、燃焼室区画筒14は、その軸が略鉛直になるように配設されている。バーナー12は、火炎が下向きに形成されるように燃焼室区画筒14内に配設されている。燃焼室区画筒14は、上端14aが閉塞されて筐体に固定されており、下端が開口になっていると共に温度変化による収縮が妨げられないように自由端となっている。バーナー12の、火炎が形成されるのと反対側は、燃焼室区画筒14の上端14aを貫通して空気燃料導入管29に接続されている。空気燃料導入管29は、燃焼空気a及び燃焼燃料fを流す流路を形成している。燃焼室区画筒14は、側面周囲を流路形成部材15に囲まれている。   The burner 12 is configured to generate reforming heat by burning a combustion fuel f as a combustion fuel. The burner 12 is housed inside a combustion chamber compartment cylinder 14 which is a cylindrical member made of stainless steel, and the combustion chamber 13 is formed by the space at the tip of the burner 12 being surrounded by the combustion chamber compartment cylinder 14. The burner 12 and the combustion chamber 13 constitute a combustion section 11. In the present embodiment, the combustion chamber partition tube 14 is disposed so that its axis is substantially vertical. The burner 12 is disposed in the combustion chamber partition tube 14 so that the flame is formed downward. The combustion chamber section cylinder 14 is closed at the upper end 14a and is fixed to the casing, and the lower end is an open end and is a free end so that contraction due to temperature change is not hindered. The side of the burner 12 opposite to where the flame is formed penetrates the upper end 14 a of the combustion chamber partition tube 14 and is connected to the air fuel introduction pipe 29. The air fuel introduction pipe 29 forms a flow path through which the combustion air a and the combustion fuel f flow. The combustion chamber section cylinder 14 is surrounded by a flow path forming member 15 around the side surface.

ここで図2及び図3を図1と共に参照して、流路形成部材15まわりの詳細を説明する。図2は、流路形成部材15の部分縦断面図である。図3は、図2におけるIII−III矢視図である。流路形成部材15は、第1の筒状部材としての内筒16と、第2の筒状部材としての外筒17とを有している。内筒16及び外筒17は、共にステンレス鋼で形成されている。内筒16は、燃焼室区画筒14より一回り大きい筒状部材で形成されており、その軸が燃焼室区画筒14の軸と略一致するように配設されている。これにより、燃焼室区画筒14の外側と内筒16の内側との間に、バーナー12で燃焼燃料fを燃焼させた後の排ガスeを流す排ガス流路11rが形成される。内筒16は、上端が軸直角断面外側に伸びて他の部材(本実施の形態では後述するCO低減触媒保持筒19c(図1参照))に固定されており、下端16bが燃焼室区画筒14よりも下方で閉塞されていると共に温度変化による収縮が妨げられないように自由端となっている。   2 and 3 together with FIG. 1, the details around the flow path forming member 15 will be described. FIG. 2 is a partial longitudinal sectional view of the flow path forming member 15. 3 is a view taken in the direction of arrows III-III in FIG. The flow path forming member 15 has an inner cylinder 16 as a first cylindrical member and an outer cylinder 17 as a second cylindrical member. Both the inner cylinder 16 and the outer cylinder 17 are formed of stainless steel. The inner cylinder 16 is formed of a cylindrical member that is slightly larger than the combustion chamber section cylinder 14, and is arranged so that its axis substantially coincides with the axis of the combustion chamber section cylinder 14. Thus, an exhaust gas passage 11r is formed between the outer side of the combustion chamber section cylinder 14 and the inner side of the inner cylinder 16 for flowing the exhaust gas e after the combustion fuel f is burned by the burner 12. The inner cylinder 16 has an upper end that extends outward in a cross section perpendicular to the axis and is fixed to another member (a CO reduction catalyst holding cylinder 19c (see FIG. 1 described later) in the present embodiment), and a lower end 16b that is a combustion chamber partition cylinder. It is closed below 14 and has a free end so that shrinkage due to temperature change is not hindered.

外筒17は、内筒16より一回り大きい筒状部材で形成されており、その軸が内筒16の軸と略一致するように配設されている。外筒17は、上端が軸直角方向中心に向かって伸びて内筒16の外側面に固定されており(図1参照)、下端が内筒16の下端と略同じ位置で開口していると共に温度変化による収縮が妨げられないように自由端となっている。外筒17の上端が内筒16の外側面に固定される位置は、バーナー12の火炎の位置よりも上方になっている(図1参照)。外筒17が内筒16の周囲を囲むように配設されていることにより、内筒16の外側面と外筒17の内側面との間に原料流路18が形成されている。本実施の形態では、原料流路18の幅(軸直角方向における内筒16の外側面と外筒17の内側面との距離)が、約5〜8mmに形成されている。   The outer cylinder 17 is formed of a cylindrical member that is slightly larger than the inner cylinder 16, and is arranged so that its axis substantially coincides with the axis of the inner cylinder 16. The outer cylinder 17 has an upper end that extends toward the center in the direction perpendicular to the axis and is fixed to the outer surface of the inner cylinder 16 (see FIG. 1), and a lower end that opens at substantially the same position as the lower end of the inner cylinder 16. It is a free end so that shrinkage due to temperature change is not hindered. The position where the upper end of the outer cylinder 17 is fixed to the outer surface of the inner cylinder 16 is higher than the flame position of the burner 12 (see FIG. 1). By disposing the outer cylinder 17 so as to surround the inner cylinder 16, a raw material flow path 18 is formed between the outer surface of the inner cylinder 16 and the inner surface of the outer cylinder 17. In the present embodiment, the width of the raw material flow path 18 (the distance between the outer surface of the inner cylinder 16 and the inner surface of the outer cylinder 17 in the direction perpendicular to the axis) is formed to be about 5 to 8 mm.

原料流路18には、原料ガスrの水蒸気改質反応を促進させるための改質触媒RCが充填されている。本実施の形態の改質触媒RCは、直径約3mmの球状に形成されたアルミナ担体に、ニッケルあるいはルテニウムが担持されたものが、複数充填されて構成されている。このように構成されていることで、原料流路18内における改質触媒RCの各球状担体同士の間に隙間が形成され、この隙間を通って原料ガスrが原料流路18を流れるようになっている。なお、担体は、球状以外の、円柱状等に形成されていてもよい。改質触媒RCは、典型的には、外筒17の軸方向の長さ略全体にわたって充填されている(図1参照)。この改質触媒RCが充填されている部分が、改質部21を構成している。改質部21における水蒸気改質反応は吸熱反応であるために、燃焼部11において燃焼燃料fを燃焼させて改質熱を発生させるように構成されている。改質部21とバーナー12との位置関係は、改質部21の鉛直方向の略中央にバーナー12の火炎が位置するように構成されている。このような位置関係とすると、改質部21全体を加熱することができる。   The raw material flow path 18 is filled with a reforming catalyst RC for promoting the steam reforming reaction of the raw material gas r. The reforming catalyst RC of the present embodiment is configured by filling a plurality of nickel supports or ruthenium supported on a spherical alumina support having a diameter of about 3 mm. By being configured in this way, a gap is formed between the spherical carriers of the reforming catalyst RC in the raw material flow path 18 so that the raw material gas r flows through the raw material flow path 18 through this gap. It has become. The carrier may be formed in a columnar shape or the like other than the spherical shape. The reforming catalyst RC is typically filled over substantially the entire axial length of the outer cylinder 17 (see FIG. 1). The portion filled with the reforming catalyst RC constitutes the reforming unit 21. Since the steam reforming reaction in the reforming unit 21 is an endothermic reaction, the combustion unit 11 is configured to generate reforming heat by burning the combustion fuel f. The positional relationship between the reforming unit 21 and the burner 12 is configured such that the flame of the burner 12 is positioned approximately at the center in the vertical direction of the reforming unit 21. With such a positional relationship, the entire reforming unit 21 can be heated.

受板31は、上述のように構成された改質触媒RCが原料流路18から落下しないようにするために、内筒16の下部に取り付けられている。受板31は、円形平板の中心部分が円形にくり貫かれてドーナツ状に形成されている。受板31は、中心部分開口の直径が内筒16の外径と略等しく、外周の直径が、外周と外筒17との間に隙間が形成されるように、外筒17の内径よりも小さく形成されている。受板31は、典型的には中心部開口の周囲が内筒16の下部外側面に固定されているが、内筒16の下端に固定されていてもよい。受板31の面には、原料ガスr等の流体は通過できるが改質触媒RCは通過できない大きさの通過孔31hが複数形成されている。   The receiving plate 31 is attached to the lower portion of the inner cylinder 16 so that the reforming catalyst RC configured as described above does not fall from the raw material flow path 18. The receiving plate 31 is formed in a donut shape in which a central portion of a circular flat plate is cut into a circular shape. The receiving plate 31 has a diameter at the center portion that is substantially equal to the outer diameter of the inner cylinder 16, and the outer diameter is larger than the inner diameter of the outer cylinder 17 so that a gap is formed between the outer periphery and the outer cylinder 17. It is formed small. The receiving plate 31 is typically fixed to the lower outer surface of the inner cylinder 16 around the central opening, but may be fixed to the lower end of the inner cylinder 16. On the surface of the receiving plate 31, a plurality of passage holes 31 h that are large enough to allow a fluid such as the raw material gas r to pass but not the reforming catalyst RC.

補強部材32は、受板31が内筒16から剥がれ落ちるのを防ぐために設けられた部材である。補強部材32を設けることとしたのは、以下の理由による。改質装置10は、停止時に常温(周囲環境温度)となっている部材が、運転時には原料ガスrが改質ガスgに改質される工程に適した温度に上昇する。特に、改質部21は、一般に800℃程度に上昇する。このとき、より燃焼部11に近い内筒16の温度が、原料流路18(吸熱反応を行う原料ガスrが流れる)を介して外側に配設された外筒17の温度よりも高くなり、内筒16と外筒17とに温度差が生じる。そのため、熱膨張及び内筒16と外筒17との温度差を考慮して、流路形成部材15は下端が自由端に構成されると共に、受板31は内筒16に固定されるが外筒17には固定されないようになっている。しかし、このような熱膨張の対策を取っても、受板31が内筒16から剥がれて改質触媒RCが脱落する場合があった。この原因を明確に特定することは困難であるが、本発明者らが鋭意研究したところ、改質装置10が運転されることにより運転温度に上昇すると、内筒16及び外筒17が熱膨張により伸び、これに伴って受板31の位置が下がると共に改質触媒RCも重力で下がり、この状態から改質装置10が停止されて温度が低下すると、内筒16及び外筒17が収縮し、これに伴って受板31の位置が上がり、受板31に支持されている改質触媒RCの位置も上がるのであるが、充填された改質触媒RCの各球状担体間に上昇を妨げる方向の摩擦力が生じ、上昇する受板31を相対的に押し下げようとする応力(受板31が内筒16に固定されている部分を破損に至らせる応力)が、片持梁のように内筒16に固定された部分に生じることが原因の1つに考えられるという知見を得た。   The reinforcing member 32 is a member provided to prevent the receiving plate 31 from peeling off from the inner cylinder 16. The reason why the reinforcing member 32 is provided is as follows. In the reformer 10, a member that is at room temperature (ambient environmental temperature) when stopped is raised to a temperature suitable for a process in which the raw material gas r is reformed to the reformed gas g during operation. In particular, the reforming section 21 generally rises to about 800 ° C. At this time, the temperature of the inner cylinder 16 closer to the combustion unit 11 becomes higher than the temperature of the outer cylinder 17 disposed outside via the raw material flow path 18 (the raw material gas r that performs endothermic reaction flows), A temperature difference occurs between the inner cylinder 16 and the outer cylinder 17. Therefore, in consideration of thermal expansion and the temperature difference between the inner cylinder 16 and the outer cylinder 17, the flow path forming member 15 is configured at the lower end at the free end, and the receiving plate 31 is fixed to the inner cylinder 16. The cylinder 17 is not fixed. However, even if such measures against thermal expansion are taken, the receiving plate 31 may be peeled off from the inner cylinder 16 and the reforming catalyst RC may drop off. Although it is difficult to specify the cause clearly, the present inventors have conducted intensive research. As a result, when the reforming device 10 is operated and the operating temperature rises, the inner cylinder 16 and the outer cylinder 17 are thermally expanded. Accordingly, the position of the receiving plate 31 is lowered and the reforming catalyst RC is also lowered by gravity. When the reforming apparatus 10 is stopped and the temperature is lowered from this state, the inner cylinder 16 and the outer cylinder 17 contract. Along with this, the position of the receiving plate 31 is raised, and the position of the reforming catalyst RC supported by the receiving plate 31 is also raised, but the rise is prevented between the spherical carriers of the filled reforming catalyst RC. Is generated, and the stress to cause the rising receiving plate 31 to be relatively pushed down (stress that causes the portion where the receiving plate 31 is fixed to the inner cylinder 16 to be damaged) is internal like a cantilever beam. 1 of the cause that occurs in the part fixed to the tube 16 To obtain a finding that is considered to.

上記の事情に鑑みて、補強部材32は、受板31に固定される受板固定部としての受板固定辺32sと、内筒16の外側面に固定される筒状部材固定部としての筒状部材固定辺32tとを有する平板状に形成されている。受板固定辺32s及び筒状部材固定辺32tは、厳密な直線状の辺だけでなく、途中に突起などがあっても全体として直線状の辺と見ることができるもの(大部分が直線状の辺であるもの)も含まれる。本実施の形態では、補強部材32が矩形平板状に形成されている。これは、本実施の形態では受板31の上面と内筒16の外側面とが直交していると共に、矩形平板状とすると加工が容易だからである。しかしながら、補強部材32は、受板固定辺32sと筒状部材固定辺32tとを有していれば、矩形以外の例えば三角形やその他の多角形の平板に形成されていてもよい。平板に形成されていることで、原料流路18への改質触媒RCの充填及び原料ガスrの流通の妨げとなることを軽減することができる。   In view of the above circumstances, the reinforcing member 32 includes a receiving plate fixing side 32s as a receiving plate fixing portion fixed to the receiving plate 31, and a cylinder as a cylindrical member fixing portion fixed to the outer surface of the inner cylinder 16. It is formed in a flat plate shape having a fixed member fixing side 32t. The receiving plate fixing side 32s and the cylindrical member fixing side 32t are not only strictly linear sides but can be viewed as linear sides as a whole even if there are protrusions in the middle (mostly linear) Which is the side of). In the present embodiment, the reinforcing member 32 is formed in a rectangular flat plate shape. This is because, in the present embodiment, the upper surface of the receiving plate 31 and the outer surface of the inner cylinder 16 are orthogonal to each other, and processing is easy when the rectangular flat plate shape is used. However, as long as the reinforcing member 32 has the receiving plate fixing side 32s and the cylindrical member fixing side 32t, the reinforcing member 32 may be formed on a flat plate other than a rectangle, for example, a triangle or other polygons. By being formed in a flat plate, it is possible to reduce the hindrance of filling the reforming catalyst RC into the raw material flow path 18 and the flow of the raw material gas r.

また、補強部材32は、平面視(図3参照)において、原料流路18を周方向に等分するようにして、8個が設けられている。補強部材32を周方向に等分して取り付けることで、内筒16の収縮時に受板31に生ずる応力を均等に分散させることができる。なお、設置される補強部材32の数は、8個に限らず、原料流路18の大きさや、熱応力により内筒16が伸びる長さを勘案して適宜決定するとよい。   Further, eight reinforcing members 32 are provided so as to equally divide the raw material flow path 18 in the circumferential direction in a plan view (see FIG. 3). By attaching the reinforcing member 32 equally in the circumferential direction, the stress generated in the receiving plate 31 when the inner cylinder 16 contracts can be evenly dispersed. Note that the number of reinforcing members 32 to be installed is not limited to eight, and may be appropriately determined in consideration of the size of the raw material flow path 18 and the length that the inner cylinder 16 extends due to thermal stress.

流路形成部材15まわりの典型的な構築手順は、次のようになる。まず、内筒16の下部外側面に補強部材32の筒状部材固定辺32tを固定する。次に、外筒17を内筒16に被せて外筒17の上部を内筒16の外側面に固定する。その後、外筒17が取り付けられた内筒16を天地逆にして、形成された原料流路18に改質触媒RCを充填する。そして、受板31を、補強部材32の受板固定辺32s上に載置して、内筒16外側面及び受板固定辺32sに固定する。受板31の補強部材32への固定は、受板31の通過孔31hを利用して溶接するとよい。例えば、補強部材32の受板固定辺32sに、通過孔31hを通過できる突起を形成しておき、受板31を補強部材32上に載置する際にその突起を通過孔31hから飛び出させ、この飛び出させた突起を溶かすように溶接すると、補強部材32と受板31との固定が強固になって好ましい。また、受板31の内筒16への固定は、典型的には、隣り合う補強部材32間の中点を点溶接することにより行われる(これにより本実施の形態では8箇所で点溶接することとなる)。点溶接とすることにより、溶接の手間を軽減することができる。あるいは、内筒16との接続部の受板31への発生応力をさらに低減する観点から、点溶接の数を増やしてもよく、全周溶接としてもよい。   A typical construction procedure around the flow path forming member 15 is as follows. First, the cylindrical member fixing side 32t of the reinforcing member 32 is fixed to the lower outer surface of the inner cylinder 16. Next, the outer cylinder 17 is put on the inner cylinder 16, and the upper portion of the outer cylinder 17 is fixed to the outer surface of the inner cylinder 16. Thereafter, the inner cylinder 16 to which the outer cylinder 17 is attached is turned upside down, and the formed raw material flow path 18 is filled with the reforming catalyst RC. Then, the receiving plate 31 is placed on the receiving plate fixing side 32s of the reinforcing member 32 and fixed to the outer surface of the inner cylinder 16 and the receiving plate fixing side 32s. The receiving plate 31 may be fixed to the reinforcing member 32 by welding using the passage hole 31h of the receiving plate 31. For example, a protrusion that can pass through the passage hole 31h is formed on the receiving plate fixing side 32s of the reinforcing member 32, and when the receiving plate 31 is placed on the reinforcing member 32, the protrusion protrudes from the passage hole 31h. It is preferable to weld the protruding protrusions so as to melt the reinforcing member 32 and the receiving plate 31 firmly. Further, the fixing of the receiving plate 31 to the inner cylinder 16 is typically performed by spot-welding midpoints between adjacent reinforcing members 32 (with this embodiment, spot welding is performed at eight locations). Will be). By using spot welding, the labor of welding can be reduced. Alternatively, from the viewpoint of further reducing the generated stress on the receiving plate 31 at the connection portion with the inner cylinder 16, the number of spot weldings may be increased or all-around welding may be performed.

再び図1を主に参照して改質装置10の構成を説明する。外筒17の下端は開口になっている。この開口により改質部21は変成部23と連通している。他方、外筒17の上端は閉塞しており、この上端の一部に原料ガスrを改質部21に導入する原料ガス導入管26が接続されている。改質部21の上部には、原料ガス導入管26を介して導入した原料ガスrが外筒17の上部全体に行き渡るように改質触媒が充填されていない空間が形成されている。原料ガス導入管26は、燃焼部11と反対方向に(すなわち外側に)向かって延びている。原料ガス導入管26には、後に詳説する改質用水管25が接続されている。   The configuration of the reformer 10 will be described with reference mainly to FIG. 1 again. The lower end of the outer cylinder 17 is an opening. The reforming part 21 communicates with the transformation part 23 through this opening. On the other hand, the upper end of the outer cylinder 17 is closed, and a raw material gas introduction pipe 26 for introducing the raw material gas r into the reforming section 21 is connected to a part of the upper end. A space not filled with the reforming catalyst is formed in the upper part of the reforming unit 21 so that the source gas r introduced through the source gas introduction pipe 26 reaches the entire upper part of the outer cylinder 17. The source gas introduction pipe 26 extends in the direction opposite to the combustion unit 11 (that is, outward). A reforming water pipe 25, which will be described in detail later, is connected to the raw material gas introduction pipe 26.

変成部23は、内筒16の上部を残して、改質部21より上方の内筒16の外周に変成触媒が設けられることにより構成されている。変成触媒は、外筒17の上部をも覆っている。この変成触媒が外筒17を覆っている部分は、外筒17で区画されているため改質部21とは接触していない。上述のように、変成部23は外筒17の下端の開口により改質部21と連通している。変成触媒は、改質部21における水蒸気改質反応によって生成された準改質ガスjに含まれる一酸化炭素を水と反応させる変成反応を促進させる触媒であり、典型的には、鉄−クロム系変成触媒、銅−亜鉛系変成触媒、白金系変成触媒等が用いられる。また、変成触媒の形状は、変成反応を効率的に行うため、粒状、円柱状、ハニカム状やモノリス状とするとよい。変成反応は、一酸化炭素を二酸化炭素にシフトする。変成反応は発熱反応である。   The shift section 23 is configured by providing a shift catalyst on the outer periphery of the inner cylinder 16 above the reforming section 21 while leaving the upper portion of the inner cylinder 16. The shift catalyst also covers the upper part of the outer cylinder 17. The portion where the shift catalyst covers the outer cylinder 17 is partitioned by the outer cylinder 17 and is not in contact with the reforming unit 21. As described above, the transformation section 23 communicates with the reforming section 21 through the opening at the lower end of the outer cylinder 17. The shift catalyst is a catalyst that promotes a shift reaction in which carbon monoxide contained in the semi-reformed gas j generated by the steam reforming reaction in the reforming section 21 is reacted with water, and typically iron-chromium. A system shift catalyst, a copper-zinc shift catalyst, a platinum shift catalyst, or the like is used. Further, the shape of the shift catalyst is preferably granular, columnar, honeycomb, or monolithic in order to efficiently perform the shift reaction. The metamorphic reaction shifts carbon monoxide to carbon dioxide. The modification reaction is an exothermic reaction.

選択酸化部24は、変成部23より上方の内筒16の外周に選択酸化触媒が設けられることにより構成されている。選択酸化部24と変成部23との境界は、パンチングメタル等で区画されていてもよいが、選択酸化部24と変成部23とは連通するように構成される。選択酸化触媒は、変成部23における変成反応によって生成された変成ガスhに含まれる一酸化炭素を酸素と反応させる選択酸化反応を促進させる触媒であり、典型的には、白金系選択酸化触媒、ルテニウム系選択酸化触媒、白金−ルテニウム系選択酸化触媒等が用いられる。また、選択酸化触媒の形状は、選択酸化反応を効率的に行うため、粒状、円柱状、ハニカム状やモノリス状とするとよい。選択酸化反応は発熱反応である。   The selective oxidation unit 24 is configured by providing a selective oxidation catalyst on the outer periphery of the inner cylinder 16 above the shift unit 23. The boundary between the selective oxidation unit 24 and the transformation unit 23 may be partitioned by punching metal or the like, but the selective oxidation unit 24 and the transformation unit 23 are configured to communicate with each other. The selective oxidation catalyst is a catalyst that promotes a selective oxidation reaction in which carbon monoxide contained in the shift gas h generated by the shift reaction in the shift section 23 is reacted with oxygen, typically a platinum-based selective oxidation catalyst, A ruthenium-based selective oxidation catalyst, a platinum-ruthenium-based selective oxidation catalyst, or the like is used. Further, the shape of the selective oxidation catalyst is preferably a granular shape, a cylindrical shape, a honeycomb shape, or a monolith shape in order to efficiently perform a selective oxidation reaction. The selective oxidation reaction is an exothermic reaction.

変成触媒及び選択酸化触媒は、燃焼室区画筒14等と同軸の筒状部材であるCO低減触媒保持筒19cによって保持されている。言い換えると、内筒16及び外筒17の一部とCO低減触媒保持筒19cとの間に変成触媒が充填されており、内筒16の上部とCO低減触媒保持筒19cとの間に選択酸化触媒が充填されている。CO低減触媒保持筒19cは、変成部23の下方にも延びており、改質部21の下部を覆っている。変成部23より下方のCO低減触媒保持筒19cは、外筒17より一回り大きく形成されている。CO低減触媒保持筒19cの下端19bは閉塞されている。外筒17の下端はCO低減触媒保持筒19cの下端19bに接触しないように配設される。これにより改質部21と変成部23とが連通する。変成部23より下方の、外筒17の外側とCO低減触媒保持筒19cの内側との間には、準改質ガスjを流す準改質ガス流路19が形成されている。準改質ガス流路19は、変成触媒の直下で、変成触媒の下面全体に準改質ガスjが行き渡るように、外側に向けて放射状に広がっている。外筒17よりも一回り大きいCO低減触媒保持筒19cのサイズは、準改質ガス流路19を流れる準改質ガスjの流量を勘案して適宜決定すればよい。   The shift catalyst and the selective oxidation catalyst are held by a CO reduction catalyst holding cylinder 19c that is a cylindrical member coaxial with the combustion chamber partition cylinder 14 and the like. In other words, the shift catalyst is filled between a part of the inner cylinder 16 and the outer cylinder 17 and the CO reduction catalyst holding cylinder 19c, and selective oxidation is performed between the upper part of the inner cylinder 16 and the CO reduction catalyst holding cylinder 19c. Packed with catalyst. The CO reducing catalyst holding cylinder 19 c extends also below the shift unit 23 and covers the lower part of the reforming unit 21. The CO reducing catalyst holding cylinder 19 c below the shift section 23 is formed to be slightly larger than the outer cylinder 17. The lower end 19b of the CO reducing catalyst holding cylinder 19c is closed. The lower end of the outer cylinder 17 is disposed so as not to contact the lower end 19b of the CO reduction catalyst holding cylinder 19c. As a result, the reforming unit 21 and the transformation unit 23 communicate with each other. A quasi-reformed gas flow path 19 through which the quasi-reformed gas j flows is formed between the outer side of the outer cylinder 17 and the inner side of the CO reduction catalyst holding cylinder 19c below the shift portion 23. The quasi-reformed gas flow path 19 extends radially outward so that the quasi-reformed gas j is distributed directly below the shift catalyst and over the entire lower surface of the shift catalyst. The size of the CO reduction catalyst holding cylinder 19c that is slightly larger than the outer cylinder 17 may be determined as appropriate in consideration of the flow rate of the semi-reformed gas j flowing through the semi-reformed gas flow path 19.

CO低減触媒保持筒19cには、変成部23直近の選択酸化部24で、選択酸化空気cを選択酸化部24に導入する選択酸化空気導入管27が接続されている。選択酸化空気導入管27は、外側に向かって延びている。また、CO低減触媒保持筒19cには、変成部23に隣接する側とは反対側の選択酸化部24で、改質ガスgを導出する改質ガス管28が接続されている。改質ガス管28は、外側に向かって延びている。   A selective oxidation air introduction pipe 27 that introduces selective oxidation air c into the selective oxidation unit 24 is connected to the CO reduction catalyst holding cylinder 19 c at the selective oxidation unit 24 immediately adjacent to the shift unit 23. The selective oxidation air introduction pipe 27 extends outward. Further, the reformed gas pipe 28 for leading the reformed gas g is connected to the CO reducing catalyst holding cylinder 19c at the selective oxidation unit 24 on the side opposite to the side adjacent to the shift unit 23. The reformed gas pipe 28 extends outward.

改質用水管25は、以下のように配設されている。選択酸化部24の上方からCO低減触媒保持筒19cの外側に接触し、選択酸化部24の上部からCO低減触媒保持筒19cの外側を螺旋状に下方に巻いていく。螺旋状に下方に巻いていって変成部23の上から2/3程度の位置に至ったところでCO低減触媒保持筒19cから外側に離れ、さらに上方に向きを変えて原料ガス導入管26に接続する。改質用水管25が原料ガス導入管26に接続されることで改質用水管25は改質部21に連通している。このように、改質用水管25は、選択酸化部24及び変成部23に隣接する位置に、改質ガス生成部20の一酸化炭素低減部22から受熱するように配設されている。改質用水管25をこのように配設すると、改質用水sは選択酸化部24の傍らから変成部23の傍らを流れ、原料ガス導入管26に流入するまでに選択酸化部24及び変成部23から受熱して液体から気体となる。なお、図1に示すように、改質用水管25の一部が選択酸化部24及び/又は変成部23の内部を通り、内筒16に接触するように配設されることとすると、受熱量が増加するので好ましい。   The reforming water pipe 25 is arranged as follows. From the upper side of the selective oxidation unit 24, it contacts the outside of the CO reduction catalyst holding cylinder 19 c, and the outer side of the CO reduction catalyst holding cylinder 19 c is spirally wound downward from above the selective oxidation unit 24. When it is spirally wound downward and reaches a position about 2/3 from the top of the transformation section 23, it is separated from the CO reducing catalyst holding cylinder 19c and further turned upward to be connected to the raw material gas introduction pipe 26. To do. The reforming water pipe 25 communicates with the reforming unit 21 by connecting the reforming water pipe 25 to the raw material gas introduction pipe 26. As described above, the reforming water pipe 25 is disposed at a position adjacent to the selective oxidation unit 24 and the shift unit 23 so as to receive heat from the carbon monoxide reduction unit 22 of the reformed gas generation unit 20. When the reforming water pipe 25 is arranged in this way, the reforming water s flows from the side of the selective oxidation unit 24 to the side of the shift unit 23 and before flowing into the raw material gas introduction pipe 26, the selective oxidation unit 24 and the shift unit. It receives heat from 23 and changes from liquid to gas. As shown in FIG. 1, it is assumed that a part of the reforming water pipe 25 is disposed so as to pass through the selective oxidation unit 24 and / or the transformation unit 23 and to contact the inner cylinder 16. This is preferable because the amount of heat increases.

改質用水管25の最下部(本実施の形態では変成部23の上から2/3程度の位置)より下方の変成部23及び改質部21の外周は、断熱材46で覆われている。断熱材46よりも上方の変成部23及び選択酸化部24の外周は、断熱材47で覆われている。各部21、23、24が断熱材46、47で覆われていることにより、各部21、23、24を運転時における反応に適した温度に維持することができると共に、改質装置10外周の温度を各部21、23、24の温度よりも低くすることができて火傷防止等に寄与する。断熱材46、47は、表面材48で覆われており、改質装置10の外観は概ね円筒状に形成されている。   The outer periphery of the transformation unit 23 and the reforming unit 21 below the lowermost part of the reforming water pipe 25 (in this embodiment, about 2/3 from the top of the transformation unit 23) is covered with a heat insulating material 46. . The outer circumferences of the transformation section 23 and the selective oxidation section 24 above the heat insulating material 46 are covered with a heat insulating material 47. Since each part 21, 23, 24 is covered with the heat insulating materials 46, 47, each part 21, 23, 24 can be maintained at a temperature suitable for reaction during operation, and the temperature of the outer periphery of the reformer 10 Can be made lower than the temperature of each part 21, 23, 24, and contribute to burn prevention and the like. The heat insulating materials 46 and 47 are covered with a surface material 48, and the appearance of the reformer 10 is formed in a substantially cylindrical shape.

引き続き図1乃至図3を参照して、改質装置10の作用を説明する。改質装置10が運転を開始すると、燃焼燃料fが改質装置10内のバーナー12に供給されると共に、燃焼空気aもバーナー12に供給される。燃焼燃料f及び燃焼空気aがバーナー12に供給されたらバーナー12を点火する。これにより、改質部21が昇温すると共に、燃焼室区画筒14、内筒16及び外筒17も加熱されて温度が上昇するにつれ自由端側が伸びる。このとき、共に同じ材料で形成されている内筒16及び外筒17は、同じ温度とならないために熱膨張による伸びの量が異なるが、受板31は内筒16に固定されているが外筒17には固定されていないため、内筒16及び外筒17の温度差に起因する受板31への熱応力は生じない。なお、バーナー12における燃焼によって生じた排ガスeは、排ガス流路11rを流れて系外に排出される。改質装置10の温度が上昇してきたら、改質用水ポンプ(不図示)を起動して改質用水sを改質用水管25に送水する。   With continued reference to FIGS. 1 to 3, the operation of the reformer 10 will be described. When the reformer 10 starts operation, the combustion fuel f is supplied to the burner 12 in the reformer 10 and the combustion air a is also supplied to the burner 12. When the combustion fuel f and the combustion air a are supplied to the burner 12, the burner 12 is ignited. As a result, the temperature of the reforming unit 21 is increased, and the free end side is extended as the temperature of the combustion chamber partition cylinder 14, the inner cylinder 16, and the outer cylinder 17 is increased. At this time, the inner cylinder 16 and the outer cylinder 17 that are both formed of the same material do not have the same temperature, and therefore the amount of elongation due to thermal expansion is different. However, although the receiving plate 31 is fixed to the inner cylinder 16, Since it is not fixed to the cylinder 17, no thermal stress is generated on the receiving plate 31 due to the temperature difference between the inner cylinder 16 and the outer cylinder 17. The exhaust gas e generated by the combustion in the burner 12 flows through the exhaust gas passage 11r and is discharged out of the system. When the temperature of the reforming apparatus 10 increases, a reforming water pump (not shown) is activated to feed the reforming water s to the reforming water pipe 25.

改質用水sは、改質用水管25を流れて原料ガス導入管26に至るまでに改質ガス生成部20の一酸化炭素低減部22から受熱して水蒸気(この水蒸気も改質用水であるため、以下、水蒸気となった改質用水sを「水蒸気s」ということもある。)となる。水蒸気sが改質部21に供給され、改質部21内が水蒸気雰囲気になったら、原料ガスrを原料ガス導入管26に供給する。原料ガス導入管26に導入された水蒸気sと原料ガスrとは、原料ガス導入管26内で混合されて改質部21に到達する。改質部21では、原料ガスr中の炭化水素と改質用水sが気化した水蒸気sとが燃焼部11から改質熱を得ながら改質触媒RCの隙間を流れて反応し(水蒸気改質反応)、水素と一酸化炭素とを含む準改質ガスjが生成される。生成された準改質ガスjは、受板31の通過孔31hを通って、一酸化炭素濃度を低減するために変成部23に送られる。   The reforming water s receives heat from the carbon monoxide reduction unit 22 through the reforming water pipe 25 and reaches the raw material gas introduction pipe 26 to receive steam (this steam is also reforming water). Therefore, hereinafter, the reforming water s that has become steam is also referred to as “steam s”. When the steam s is supplied to the reforming unit 21 and the inside of the reforming unit 21 is in a steam atmosphere, the source gas r is supplied to the source gas introduction pipe 26. The water vapor s and the raw material gas r introduced into the raw material gas introduction pipe 26 are mixed in the raw material gas introduction pipe 26 and reach the reforming section 21. In the reforming unit 21, the hydrocarbon in the raw material gas r and the steam s vaporized from the reforming water s flow through the gap of the reforming catalyst RC while obtaining reforming heat from the combustion unit 11 (steam reforming). Reaction), semi-reformed gas j containing hydrogen and carbon monoxide is generated. The produced semi-reformed gas j passes through the passage hole 31h of the receiving plate 31 and is sent to the shift unit 23 in order to reduce the carbon monoxide concentration.

変成部23に送られた準改質ガスjでは、生成された一酸化炭素と残存していた水蒸気とが反応して(変成反応)、水素と二酸化炭素とになる。つまり、変成部23で生成される変成ガスhは、準改質ガスjに比べて、一酸化炭素が減少し、水素と二酸化炭素が増加している。変成ガスhは、準改質ガスjに比べて一酸化炭素濃度が低減しているものの、通常、定常運転時で5000〜10000ppm程度の一酸化炭素を含んでいるため、変成ガスh中の一酸化炭素濃度を低減するために変成部23で生成された変成ガスhは選択酸化部24に送られる。選択酸化部24に変成ガスhが送られるとき、選択酸化空気ブロワ(不図示)により、選択酸化空気cが選択酸化部24に供給される。選択酸化部24に送られた変成ガスhは、残存している一酸化炭素が、供給された選択酸化空気c中の酸素と反応して(選択酸化反応)二酸化炭素となる。選択酸化反応により生成された改質ガスgは、含有する一酸化炭素が、定常運転時で10ppm以下程度となる。この程度の一酸化炭素濃度になった改質ガスgは、改質ガス管28を介して、典型的には燃料電池(不図示)に供給される。   In the semi-reformed gas j sent to the shift unit 23, the generated carbon monoxide reacts with the remaining water vapor (the shift reaction) to become hydrogen and carbon dioxide. That is, in the metamorphic gas h generated in the metamorphic section 23, carbon monoxide is reduced and hydrogen and carbon dioxide are increased compared to the semi-reformed gas j. Although the shift gas h has a lower carbon monoxide concentration than the semi-reformed gas j, it usually contains about 5,000 to 10,000 ppm of carbon monoxide during steady operation, so The shift gas h generated in the shift unit 23 to reduce the carbon oxide concentration is sent to the selective oxidation unit 24. When the modified gas h is sent to the selective oxidation unit 24, the selective oxidation air c is supplied to the selective oxidation unit 24 by a selective oxidation air blower (not shown). In the modified gas h sent to the selective oxidation unit 24, the remaining carbon monoxide reacts with oxygen in the supplied selective oxidation air c (selective oxidation reaction) to become carbon dioxide. The reformed gas g produced by the selective oxidation reaction contains about 10 ppm or less of carbon monoxide in steady operation. The reformed gas g having such a carbon monoxide concentration is typically supplied to a fuel cell (not shown) via the reformed gas pipe 28.

なお、改質装置10の定常運転時とは、改質部21、変成部23、選択酸化部24の各部が、それぞれの部における反応に適した温度となっている状態である。定常運転時の各部の温度は、改質部21が約550℃〜800℃、変成部23が約160℃〜280℃、選択酸化部が約100℃〜250℃である。改質装置10の起動初期で、各部21、23、24が定常運転時の温度に達していないときは、改質ガス管28に導出される改質ガスgは組成が安定しておらず、高濃度の一酸化炭素を含んでいる。したがって、組成が安定していない改質ガスgは、燃焼部11に導いて、燃焼燃料fとして燃焼させるとよい。   In the steady operation of the reformer 10, the reforming unit 21, the shift unit 23, and the selective oxidation unit 24 are in a state where the temperatures are suitable for the reactions in the respective units. The temperature of each part at the time of steady operation is about 550 ° C. to 800 ° C. for the reforming unit 21, about 160 ° C. to 280 ° C. for the transformation unit 23, and about 100 ° C. to 250 ° C. for the selective oxidation unit. When each part 21, 23, 24 has not reached the temperature during steady operation at the start of the reformer 10, the composition of the reformed gas g led to the reformed gas pipe 28 is not stable, Contains high concentrations of carbon monoxide. Therefore, the reformed gas g whose composition is not stable may be guided to the combustion unit 11 and burned as the combustion fuel f.

改質装置10の運転が停止される際は、バーナー12への燃焼燃料fの供給を停止し、バーナー12の燃焼を停止する。併せて、改質装置10への改質用水s、原料ガスr、選択酸化空気cの供給を停止する。バーナー12の燃焼が停止されることにより、改質部21の加熱が停止され、時間経過と共に内筒16及び外筒17は温度が低下して縮む。このとき、改質触媒RC担体の摩擦力が、収縮する内筒16の下部に固定された受板31を相対的に押し下げる方向に作用すると考えられ、受板31と内筒16との接続部分に応力が生ずるが、補強部材32が設けられていることで、応力による受板31の変形が抑制される。このように本実施の形態に係る改質装置10では、運転・停止が繰り返されることで熱応力による伸縮が生じても、補強部材32により受板31の破損が防止され、改質触媒RCが原料流路18から脱落することが防止される。以下に参考として、受板31に生ずる応力の解析モデルを示す。   When the operation of the reformer 10 is stopped, the supply of the combustion fuel f to the burner 12 is stopped, and the combustion of the burner 12 is stopped. At the same time, the supply of the reforming water s, the raw material gas r, and the selective oxidation air c to the reformer 10 is stopped. When the combustion of the burner 12 is stopped, the heating of the reforming unit 21 is stopped, and the temperature of the inner cylinder 16 and the outer cylinder 17 decreases with time and shrinks. At this time, it is considered that the frictional force of the reforming catalyst RC carrier acts in a direction in which the receiving plate 31 fixed to the lower portion of the shrinking inner cylinder 16 is relatively pushed down, and the connection portion between the receiving plate 31 and the inner cylinder 16 Although the stress is generated, the reinforcement member 32 is provided, so that the deformation of the receiving plate 31 due to the stress is suppressed. As described above, in the reforming apparatus 10 according to the present embodiment, even if expansion and contraction due to thermal stress occurs due to repeated operation and stoppage, the reinforcing member 32 prevents the receiving plate 31 from being damaged, and the reforming catalyst RC is It is prevented from falling off the raw material flow path 18. For reference, an analysis model of stress generated in the receiving plate 31 is shown below.

図4に、応力解析のモデルとなる構成を示す。図4(a)は本実施の形態に係るモデル(以下「実施例モデル」という。)であり、図4(b)は比較例に係るモデル(以下「比較例モデル」という。)である。図4(a)に示す実施例モデルでは、補強部材32の受板固定辺32s(図4では省略しており、図2参照)に形成された突起を受板31の通過孔31hから改質触媒RC(図2参照)が充填されていない側に飛び出させ、この飛び出させた突起を溶かすように溶接して溶接点W32(計8箇所)とすると共に、隣り合う補強部材32間の中点を溶接点W16(計8箇所)で点溶接することで受板31と内筒16との固定をしている。図4(a)に示す実施例モデルでは、便宜上、溶接点W32における応力は、受板固定辺32s(図2参照)と接する受板31の上面(改質触媒RCが充填されている側)ではなく、受板31の下面(改質触媒RCが充填されていない側)に生じることとする。他方、図4(b)に示す比較例モデルでは、図4(a)に示す実施例モデルには設けられている溶接点W32が設けられておらず、受板31と内筒16とが溶接点W16(計8箇所)で点溶接されているだけであることとしている。   FIG. 4 shows a configuration as a model for stress analysis. FIG. 4A is a model according to the present embodiment (hereinafter referred to as “example model”), and FIG. 4B is a model according to a comparative example (hereinafter referred to as “comparative example model”). In the embodiment model shown in FIG. 4A, the protrusion formed on the receiving plate fixing side 32s of the reinforcing member 32 (not shown in FIG. 4, see FIG. 2) is modified from the passage hole 31h of the receiving plate 31. The catalyst RC (see FIG. 2) is ejected to the side not filled, and the projecting projections are welded so as to melt to form welding points W32 (8 locations in total), and the midpoint between the adjacent reinforcing members 32 Are fixed to the inner tube 16 by spot welding at a welding point W16 (total of 8 locations). In the embodiment model shown in FIG. 4A, for convenience, the stress at the welding point W32 is the upper surface of the receiving plate 31 in contact with the receiving plate fixing side 32s (see FIG. 2) (the side where the reforming catalyst RC is filled). Instead, it occurs on the lower surface of the receiving plate 31 (the side not filled with the reforming catalyst RC). On the other hand, in the comparative example model shown in FIG. 4B, the welding point W32 provided in the example model shown in FIG. 4A is not provided, and the receiving plate 31 and the inner cylinder 16 are welded. It is assumed that only point welding is performed at point W16 (total of 8 locations).

応力を解析する前提として、図4(b)に示す比較例モデルにおける受板31が破損した際に受板31に掛かっていた圧力p(受板31を相対的に押し下げようとする圧力)を推定することとする。なお、各解析モデルは、以下に示す条件において考察するものとする。溶接点W16における軸方向の固定部分W16vは、長さ0.2mm、幅2.0mmとなっており、半径方向の固定部分W16hは長さ0.5mm、幅2.0mmとなっている。また、溶接点W32における半径方向の固定部分W32hは、長さ1.5mm、幅2.0mmとなっている。さらに、受板31の通過孔31hは無視することとし、各溶接点W16、W32の固定部分の形状は直接考慮せず、各溶接点W16、W32の拘束(固定)は完全固定であるものと仮定する。そして、改質装置10の運転時は改質部21の温度が700℃になり、停止時は常温(周囲環境温度)になる運転及び停止の繰り返しを約1000回行った際に受板31が破損した実績(実体験)に、上記の条件を当てはめ、このときの受板31に作用する応力及びひずみを逆算し、応力ひずみ線図を仮定し、弾塑性解析を実施して、低サイクル疲労破損時の応力及びひずみの値となるように圧力pを探索した。その結果、図4(b)に示す比較例モデルにおいて溶接点W16に破損応力である245MPaが生ずるのは、受板31に掛かる圧力pが0.7MPaのときであるとの結論を得た。この圧力p=0.7MPaが受板31に掛かったときの固定部分(溶接点)に生ずる応力の解析結果を以下に示す。   As a premise for analyzing the stress, the pressure p applied to the receiving plate 31 when the receiving plate 31 in the comparative example model shown in FIG. We will estimate. Each analysis model is considered under the following conditions. A fixed portion W16v in the axial direction at the welding point W16 has a length of 0.2 mm and a width of 2.0 mm, and a fixed portion W16h in the radial direction has a length of 0.5 mm and a width of 2.0 mm. Further, the radial fixed portion W32h at the welding point W32 has a length of 1.5 mm and a width of 2.0 mm. Further, the passage hole 31h of the receiving plate 31 is ignored, the shape of the fixing portion of each welding point W16, W32 is not directly considered, and the restraint (fixation) of each welding point W16, W32 is completely fixed. Assume. When the reforming apparatus 10 is operated, the temperature of the reforming unit 21 is 700 ° C., and when the reforming apparatus 10 is stopped, when the operation and the stop are repeated about 1000 times at normal temperature (ambient environment temperature), the receiving plate 31 is Applying the above conditions to the actual result of damage (actual experience), back-calculating the stress and strain acting on the backing plate 31 at this time, assuming a stress-strain diagram, conducting elasto-plastic analysis, and low cycle fatigue The pressure p was searched so as to obtain stress and strain values at the time of breakage. As a result, it was concluded that in the comparative example model shown in FIG. 4B, the failure stress 245 MPa occurs at the welding point W16 when the pressure p applied to the receiving plate 31 is 0.7 MPa. An analysis result of stress generated in the fixed portion (welding point) when the pressure p = 0.7 MPa is applied to the receiving plate 31 is shown below.

図5には、実施例モデルの溶接点W16、W32(図4(a)参照)に生ずる応力の解析結果を示す。なお、図では、8箇所ある溶接点W16のうちの隣接する2箇所の溶接点W16の間の受板31の部分を抜粋して示している。図から把握されるように、実施例モデルでは、最も大きな応力が生ずる溶接点W16の固定点の部分の応力が60MPaとなっている。これは、破損応力(245MPa)の4分の1を下回る。また、溶接点W32の部分の応力は約20MPaであり、破損応力(245MPa)の10分の1を下回る。この解析結果から分かるように、実施例モデルでは受板31の破損を抑制する効果が顕著である。   In FIG. 5, the analysis result of the stress which arises in the welding points W16 and W32 (refer FIG. 4A) of an Example model is shown. In addition, in the figure, the part of the receiving plate 31 between two adjacent welding points W16 out of the eight welding points W16 is extracted and shown. As can be seen from the figure, in the example model, the stress at the fixed point of the welding point W16 where the greatest stress occurs is 60 MPa. This is less than a quarter of the failure stress (245 MPa). Moreover, the stress of the part of the welding point W32 is about 20 MPa, and is less than 1/10 of the failure stress (245 MPa). As can be seen from the analysis result, the effect of suppressing the breakage of the receiving plate 31 is remarkable in the example model.

図6には、比較例モデルの溶接点W16(図4(b)参照)に生ずる応力の解析結果を示す。この比較例モデルの場合も実施例モデル(図5参照)の場合と同様に、8箇所ある溶接点W16のうちの隣接する2箇所の溶接点W16の間の受板31の部分を抜粋して示している。図から把握されるように、比較例モデルでは、最大応力245MPaが生ずる溶接点W16の固定点の部分を中心として、応力が生ずる範囲が実施例モデル(図5参照)よりも広範囲に及んでいる。この解析結果から分かるように、比較例モデルでは、改質装置10の運転及び停止の繰り返しにより受板31の破損に至る可能性が実施例モデル(図5参照)よりも高くなる。   In FIG. 6, the analysis result of the stress which arises in the welding point W16 (refer FIG.4 (b)) of a comparative example model is shown. In the case of this comparative example model, as in the case of the example model (see FIG. 5), the portion of the receiving plate 31 between the two adjacent welding points W16 out of the eight welding points W16 is extracted. Show. As can be seen from the figure, in the comparative example model, the range in which the stress is generated is wider than that in the example model (see FIG. 5), centering on the fixed point portion of the welding point W16 where the maximum stress is 245 MPa. . As can be seen from the analysis result, in the comparative example model, the possibility of the receiving plate 31 being damaged due to repeated operation and stop of the reformer 10 is higher than that in the example model (see FIG. 5).

次に図7を参照して、本発明の実施の形態の変形例に係る改質装置10Aを説明する。図7は、改質装置10Aの流路形成部材15まわりの部分縦断面図である。改質装置10Aの、改質装置10(図2参照)との異なる点は、補強部材32Aの軸方向における長さが、流路形成部材15の軸方向の改質触媒RCが充填されている部分全体にわたっている点である。また、補強部材32Aは、内筒16と実質的に同じ線膨張係数の材料で形成されている。実質的に同じ線膨張係数の材料とは、内筒16及び補強部材32Aが熱膨張しても熱応力により破損することがない関係にある材料である。本実施の形態では、内筒16と補強部材32Aとが同一材料で形成されている。改質装置10Aの上記以外の構成は、改質装置10(図2参照)と同様であるので説明は省略する。改質装置10Aは、内筒16と同一材料で形成された補強部材32Aの内筒16の軸方向における長さ(筒状部材固定辺32Atの長さ)が、改質触媒RCが充填されている部分全体にわたっているので、熱膨張による伸縮の際に過度の応力が生じることを回避しつつ、補強部材32Aを介して内筒16の熱を効率よく改質触媒RCに伝達することができるので、原料ガスrの水蒸気改質反応をより促進させることができる。なお、補強部材32Aの筒状部材固定辺32Atの内筒16外側面との固定箇所は、長手方向全体であってもよく、適切な間隔を空けて固定してもよい。いずれの場合も、内筒16から補強部材32Aへの熱伝達を多くする観点から、筒状部材固定辺32Atと内筒16とができるだけ多くの面積で接していることが好ましい。   Next, with reference to FIG. 7, a reformer 10A according to a modification of the embodiment of the present invention will be described. FIG. 7 is a partial longitudinal sectional view around the flow path forming member 15 of the reforming apparatus 10A. The difference between the reformer 10A and the reformer 10 (see FIG. 2) is that the length of the reinforcing member 32A in the axial direction is filled with the reforming catalyst RC in the axial direction of the flow path forming member 15. It is a point that covers the whole part. Further, the reinforcing member 32A is formed of a material having substantially the same linear expansion coefficient as that of the inner cylinder 16. The material having substantially the same linear expansion coefficient is a material having a relationship that the inner cylinder 16 and the reinforcing member 32A are not damaged by thermal stress even if they thermally expand. In the present embodiment, the inner cylinder 16 and the reinforcing member 32A are formed of the same material. Since the other configuration of the reformer 10A is the same as that of the reformer 10 (see FIG. 2), description thereof is omitted. In the reformer 10A, the length of the reinforcing member 32A formed of the same material as the inner cylinder 16 in the axial direction of the inner cylinder 16 (the length of the cylindrical member fixing side 32At) is filled with the reforming catalyst RC. Since it is over the entire portion, the heat of the inner cylinder 16 can be efficiently transmitted to the reforming catalyst RC via the reinforcing member 32A while avoiding the generation of excessive stress during expansion and contraction due to thermal expansion. The steam reforming reaction of the raw material gas r can be further promoted. The fixing portion of the reinforcing member 32A with the cylindrical member fixing side 32At and the outer surface of the inner cylinder 16 may be the entire longitudinal direction, or may be fixed with an appropriate interval. In any case, from the viewpoint of increasing heat transfer from the inner cylinder 16 to the reinforcing member 32A, it is preferable that the cylindrical member fixing side 32At and the inner cylinder 16 are in contact with each other as much as possible.

10、10A 改質装置
12 発熱装置
15 流路形成部材
16 内筒(第1の筒状部材)
17 外筒(第2の筒状部材)
18 原料流路
31 受板
32、32A 補強部材
32s 受板固定辺
32t、32At 筒状部材固定辺
RC 改質触媒
g 改質ガス
r 原料ガス
s 改質用水
10, 10A reformer 12 heat generating device 15 flow path forming member 16 inner cylinder (first cylindrical member)
17 Outer cylinder (second cylindrical member)
18 Raw material flow path 31 Receiving plate 32, 32A Reinforcing member 32s Receiving plate fixed side 32t, 32At Cylindrical member fixed side RC Reforming catalyst g Reforming gas r Raw material gas s Reforming water

Claims (2)

炭化水素系の原料を改質して水素を主成分とする水素含有ガスを生成する改質装置であって;
前記原料の改質に用いられる熱を発生させる発熱装置と;
第1の筒状部材と、前記第1の筒状部材を内部に収容する第2の筒状部材とを有する流路形成部材であって、前記発熱装置を前記第1の筒状部材の内部に収容し、前記第1の筒状部材と前記第2の筒状部材との間に前記原料が流れる原料流路が形成された流路形成部材と;
前記原料の改質を促進させる改質触媒であって、前記原料流路に充填された改質触媒と;
前記改質触媒の落下を防止しつつ流体を通過させる受板であって、前記第1の筒状部材に固定されて前記第2の筒状部材に固定されずに設けられた受板と;
前記流路形成部材の軸方向への前記受板の変形を抑制する補強部材であって、前記第1の筒状部材と前記受板とに固定された補強部材とを備え;
前記補強部材が、前記受板に固定された受板固定部と、前記改質触媒が充填されている側の前記第1の筒状部材に固定された筒状部材固定部と、を有する平板状に形成された; 改質装置。
A reformer for reforming a hydrocarbon-based raw material to produce a hydrogen-containing gas mainly containing hydrogen;
A heat generating device for generating heat used for reforming the raw material;
A flow path forming member having a first tubular member and a second tubular member that accommodates the first tubular member therein, wherein the heat generating device is disposed inside the first tubular member. And a flow path forming member in which a raw material flow path through which the raw material flows is formed between the first cylindrical member and the second cylindrical member;
A reforming catalyst for promoting reforming of the raw material, the reforming catalyst filled in the raw material flow path;
A receiving plate that allows fluid to pass through while preventing the reforming catalyst from falling, the receiving plate being fixed to the first cylindrical member and not fixed to the second cylindrical member;
A reinforcing member that suppresses deformation of the receiving plate in the axial direction of the flow path forming member, the reinforcing member being fixed to the first tubular member and the receiving plate;
The reinforcing member has a receiving plate fixing portion fixed to the receiving plate, and a cylindrical member fixing portion fixed to the first cylindrical member on the side filled with the reforming catalyst. A reformer.
前記補強部材が、前記第1の筒状部材と実質的に同じ線膨張係数の材料で形成され、前記第1の筒状部材の軸方向における長さが前記改質触媒が充填されている部分全体にわたって構成された;
請求項1に記載の改質装置。
The reinforcing member is formed of a material having substantially the same linear expansion coefficient as that of the first cylindrical member, and the axial length of the first cylindrical member is filled with the reforming catalyst. Composed throughout;
The reformer according to claim 1.
JP2009085975A 2009-03-31 2009-03-31 Reformer Active JP4657351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085975A JP4657351B2 (en) 2009-03-31 2009-03-31 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085975A JP4657351B2 (en) 2009-03-31 2009-03-31 Reformer

Publications (2)

Publication Number Publication Date
JP2010235403A JP2010235403A (en) 2010-10-21
JP4657351B2 true JP4657351B2 (en) 2011-03-23

Family

ID=43090110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085975A Active JP4657351B2 (en) 2009-03-31 2009-03-31 Reformer

Country Status (1)

Country Link
JP (1) JP4657351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073083A1 (en) 2011-11-16 2013-05-23 パナソニック株式会社 Fuel processor
JP2019210182A (en) * 2018-06-05 2019-12-12 パナソニックIpマネジメント株式会社 Hydrogen generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114730A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Catalytic reaction apparatus
JPH06115902A (en) * 1992-10-09 1994-04-26 Osaka Gas Co Ltd Reforming apparatus for fuel cell power generator
JPH08208202A (en) * 1995-01-30 1996-08-13 Fuji Electric Co Ltd Fuel reformer
JP2000247601A (en) * 1999-02-24 2000-09-12 Sanyo Electric Co Ltd Fuel reformer
JP2003226506A (en) * 2002-02-06 2003-08-12 Mitsubishi Electric Corp Reformer for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114730A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Catalytic reaction apparatus
JPH06115902A (en) * 1992-10-09 1994-04-26 Osaka Gas Co Ltd Reforming apparatus for fuel cell power generator
JPH08208202A (en) * 1995-01-30 1996-08-13 Fuji Electric Co Ltd Fuel reformer
JP2000247601A (en) * 1999-02-24 2000-09-12 Sanyo Electric Co Ltd Fuel reformer
JP2003226506A (en) * 2002-02-06 2003-08-12 Mitsubishi Electric Corp Reformer for fuel cell

Also Published As

Publication number Publication date
JP2010235403A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
WO2002098790A1 (en) Cylindrical water vapor reforming unit
EP2198951B1 (en) Reformer
EP2407224B1 (en) Catalytic Combustor for a Reformer for a Fuel Cell
EP2158962B1 (en) Method for forming a fuel cell reformer
JP2007091584A (en) Fuel reforming apparatus
JP6541729B2 (en) Fuel reformer
JP2009096705A (en) Reforming apparatus for fuel cell
JP4805736B2 (en) Indirect internal reforming type solid oxide fuel cell
JP4461439B2 (en) Fuel cell system reformer
JP4657351B2 (en) Reformer
JP5317080B2 (en) Reformer Burner
KR100993468B1 (en) Auto ignition type autothermal reformer and fuel cell system having the same
KR100814888B1 (en) Combustor, reforming apparatus and driving method of the same
US8690976B2 (en) Fuel reformer
JP5336696B2 (en) Fluid processing apparatus and manufacturing method thereof
JP4805735B2 (en) Indirect internal reforming type solid oxide fuel cell
JP5918593B2 (en) Fuel cell system
JP5244488B2 (en) Fuel cell reformer
JP5329944B2 (en) Steam reformer for fuel cell
US8029936B2 (en) Heater for fuel cell system
JP4480486B2 (en) Fuel cell reformer
KR101265198B1 (en) Apparatus for reforming fuel
KR100846715B1 (en) Apparatus for reforming fuel
JP5658897B2 (en) Reforming apparatus and fuel cell system
JP5274986B2 (en) Multi-cylinder steam reformer for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101015

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4657351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250