[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4656074B2 - Electro-optical device and method of manufacturing electro-optical device - Google Patents

Electro-optical device and method of manufacturing electro-optical device Download PDF

Info

Publication number
JP4656074B2
JP4656074B2 JP2007061514A JP2007061514A JP4656074B2 JP 4656074 B2 JP4656074 B2 JP 4656074B2 JP 2007061514 A JP2007061514 A JP 2007061514A JP 2007061514 A JP2007061514 A JP 2007061514A JP 4656074 B2 JP4656074 B2 JP 4656074B2
Authority
JP
Japan
Prior art keywords
layer
refractive index
electro
light emitting
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007061514A
Other languages
Japanese (ja)
Other versions
JP2007184290A (en
Inventor
貴士 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007061514A priority Critical patent/JP4656074B2/en
Publication of JP2007184290A publication Critical patent/JP2007184290A/en
Application granted granted Critical
Publication of JP4656074B2 publication Critical patent/JP4656074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、電気光学装置、この電気光学装置に設けられて好適な膜状部材、積層膜、低屈折率膜、多層積層膜、この電気光学装置を備えた電子機器に関するものである。   The present invention relates to an electro-optical device, a film-like member suitable for the electro-optical device, a laminated film, a low refractive index film, a multilayer laminated film, and an electronic apparatus including the electro-optical device.

各画素に対応して有機エレクトロルミネッセンス(Electroluminescence)素子を備えた有機エレクトロルミネッセンス表示装置(電気光学装置)は、高輝度で自発光であること、直流低電圧駆動が可能であること、応答が高速であること、などから表示性能に優れており、また、表示装置の薄型化、軽量化、低消費電力化が可能であるため、将来的に液晶表示装置に続く表示装置として期待されている。   An organic electroluminescence display device (electro-optical device) equipped with an organic electroluminescence element corresponding to each pixel is self-luminous with high brightness, can be driven at a low voltage, and has a high response speed. Therefore, it is expected to be a display device that will follow the liquid crystal display device in the future because the display device is excellent in display performance and the display device can be made thinner, lighter and consume less power.

図16は模式的な有機エレクトロルミネッセンス表示装置の一例を示す断面図である。この有機エレクトロルミネッセンス表示装置100においては、ガラス基板101上に、発光層102と正孔輸送層103とが金属電極(陰極)104と透明電極(陽極)105との間に挟持された有機エレクトロルミネッセンス素子106が形成されている。図示しないが、アクティブマトリクス型の有機エレクトロルミネッセンス表示装置の場合、実際には複数のデータ線と複数の走査線とが格子状に配置され、これらデータ線や走査線に区画されたマトリクス状に配置された各画素毎に、スイッチングトランジスタやドライビングトランジスタ等の駆動用トランジスタと上記の有機エレクトロルミネッセンス素子106とが配置されている。そして、データ線や走査線を介して駆動信号が供給されると電極間に電流が流れ、有機エレクトロルミネッセンス素子106が発光してガラス基板101の外面側に光が出射され、その画素が点灯する。   FIG. 16 is a cross-sectional view showing an example of a schematic organic electroluminescence display device. In this organic electroluminescence display device 100, an organic electroluminescence in which a light emitting layer 102 and a hole transport layer 103 are sandwiched between a metal electrode (cathode) 104 and a transparent electrode (anode) 105 on a glass substrate 101. An element 106 is formed. Although not shown, in the case of an active matrix type organic electroluminescence display device, a plurality of data lines and a plurality of scanning lines are actually arranged in a grid pattern, and are arranged in a matrix partitioned by these data lines and scanning lines. A driving transistor such as a switching transistor or a driving transistor and the organic electroluminescence element 106 are disposed for each pixel. When a drive signal is supplied via the data line or the scanning line, a current flows between the electrodes, the organic electroluminescence element 106 emits light, light is emitted to the outer surface side of the glass substrate 101, and the pixel is turned on. .

ところで、発光層102においては全方向にわたって発光が生じるが、広角(例えば、臨界角以上)に出射した光は、図17に示す模式図のように、ガラス基板101内で導波し、ガラス基板101の外部に取り出すことができない。すなわち、光の取り出し効率が悪いために、発光層102に所定の電流を供給して発光が生じても、そのうちの一部の光しか表示に寄与しないことになり、視認性の低下につながる。   By the way, although light emission occurs in all directions in the light emitting layer 102, light emitted at a wide angle (for example, a critical angle or more) is guided in the glass substrate 101 as shown in the schematic diagram of FIG. It cannot be taken out of the 101. That is, since the light extraction efficiency is poor, even if light is emitted by supplying a predetermined current to the light emitting layer 102, only a part of the light contributes to display, leading to a decrease in visibility.

一方で、有機エレクトロルミネッセンス素子や、有機エレクトロルミネッセンス素子を挟持する電極は酸素や水蒸気(水分)などの素子劣化の要因となる物質によって劣化する。また、トランジスタなどの能動素子を備えた、いわゆるアクティブ型電気光学装置においては、酸素や水蒸気(水分)、さらには種々のイオン種が能動素子に到達することにより能動素子が劣化することがある。   On the other hand, an organic electroluminescent element and an electrode sandwiching the organic electroluminescent element are deteriorated by a substance that causes element deterioration such as oxygen or water vapor (moisture). In a so-called active electro-optical device including an active element such as a transistor, the active element may be deteriorated when oxygen, water vapor (moisture), or various ion species reach the active element.

本発明はこのような事情に鑑みてなされたものであって、本発明の一つの目的は封止性を維持しつつ光の外部取り出し効率を向上させ、高い視認性が実現される電気光学装置を提供することである。   The present invention has been made in view of such circumstances, and one object of the present invention is to improve the external extraction efficiency of light while maintaining sealing performance, and to achieve high visibility. Is to provide.

上記の課題を解決するため、本発明に係る電気光学装置は、基板上に、前記基板より低い屈折率を有する低屈折率層と、前記低屈折率層上に設けられた封止層と、前記封止層上に設けられたポリマー層と、前記ポリマー層上に設けられた発光素子と、を有し、前記発光素子は、第1電極、第2電極、および前記第1電極と前記第2電極との間に配置された発光層を有し、前記発光層から発した光は、前記基板側に出射することを特徴とする。
上記の電気光学装置において、前記低屈折率層と前記封止層の間に、樹脂層が設けられていることを特徴とする。
上記の電気光学装置において、前記発光素子上に、前記発光素子を覆うように封止部材が設けられていることを特徴とする。
上記の電気光学装置において、前記封止層の厚さは、前記電気光学素子より発光される光の波長より小さいことを特徴とする。
上記の電気光学装置において、前記封止層の厚さは、前記発光素子より発光される光の波長より小さいことを特徴とする。
上記の電気光学装置において、前記封止層は、セラミック、窒化珪素、酸化窒化珪素、及び酸化珪素の少なくともいずれか1つを含むこと、を特徴とする。
上記の電気光学装置において、前記封止層は、ホウ素、炭素、窒素、アルミニウム、ケイ素、リン、イッテルビウム、サマリウム、エルビウム、イットリウム、ガドリニウム、ジスプロシウム、及びネオジウムから選ばれた少なくとも1つの元素を含むこと、を特徴とする。
上記の電気光学装置において、前記低屈折率層および前記封止層の少なくともどちらか一方は、乾燥剤または吸着剤を含んでいること、を特徴とする。
上記の電気光学装置において、前記低屈折率層は、エアロゲル、多孔質シリカ、及びフッ化マグネシウムから選ばれた少なくとも1つの材料を含むことを特徴とする。
上記の電気光学装置において、前記低屈折率層の屈折率は、1.2以下であることを特徴とする。
上記の電気光学装置において、前記低屈折率層および前記封止層は、光を透過することを特徴とする。
上記の電気光学装置において、前記封止層は、物質の透過を抑制することを特徴とする。
上記の課題を解決するため、本発明に係る電気光学装置の製造方法は、基板上に、前記基板より低い屈折率を有する低屈折層を形成する第1の工程と、前記低屈折層上に、封止層を形成する第2の工程と、前記封止層上にポリマー層を形成する第3の工程と、前記ポリマー層上に発光素子を形成する第4の工程と、を有し、前記発光素子は、第1電極、第2電極、および前記第1電極と前記第2電極との間に配置された発光層を有し、前記発光層から発した光は、前記基板側に出射することを特徴とする。
上記の電気光学装置の製造方法において、前記第1の工程は、湿潤ゲルを塗布する工程と、超臨界乾燥法を用いて前記湿潤ゲルを乾燥させる乾燥工程と、を含み、前記湿潤ゲルには、樹脂が混合されていることを特徴とする。
上記の電気光学装置の製造方法において、前記低屈折層と前記封止層との間に樹脂層を形成する工程を含むことを特徴とする。
上記の電気光学装置の製造方法において、前記発光素子上に、前記発光素子を覆うように封止部材を設ける工程を含むことを特徴とする。
上記の電気光学装置の製造方法において、前記封止の厚さは、前記電気光学素子より発光される光の波長より小さいことを特徴とする。
上記の電気光学装置の製造方法において、前記封止層の厚さは、前記発光素子より発光される光の波長より小さいことを特徴とする。
本発明に係る膜状部材の製造方法は、第1の膜と絶縁膜である第2の膜とを含む膜状部材の製造方法であって、前記第1の膜を形成する第1の工程と、前記第2の膜を形成する第2の工程と、を含み、前記第1の工程は、超臨界乾燥法を用いた乾燥工程を含むことを特徴とする。
上記の膜状部材の製造方法において、前記第1の膜は、低屈折率材料により構成されていてもよい。
上記の膜状部材の製造方法において、前記第2の膜は、セラミック、窒化珪素、酸化窒化珪素、及び酸化珪素の少なくともいずれか1つを含むようにしてもよい。
上記の膜状部材の製造方法において、前記第1の膜と前記第2の膜のうち、少なくとも一つは乾燥剤及び吸着剤のうち少なくとも一方を含んでいてもよい。
上記の膜状部材の製造方法において、前記第2の膜は、ホウ素、炭素、窒素、アルミニウム、ケイ素、リン、イッテルビウム、サマリウム、エルビウム、イットリウム、ガドリニウム、ジスプロシウム、及びネオジウムから選ばれた少なくとも1つの元素を含むようにしてもよい。
上記の膜状部材の製造方法において、前記第1の膜は、エアロゲル、多孔質シリカ、及びフッ化マグネシウムから選ばれた少なくとも1つの材料を含むようにしてもよい。
上記の膜状部材の製造方法において、前記第1の膜の屈折率は、1.2以下であってもよい。
上記の膜状部材の製造方法において、前記第1の膜は、光を透過するようにしてもよい。
上記の膜状部材の製造方法において、前記第1の工程は、さらに湿潤ゲルを塗布する塗布工程を含み、前記乾燥工程において、前記湿潤ゲルを乾燥するようにしてもよい。
上記の膜状部材の製造方法において、前記第2の膜は、物質の透過を抑制するようにしてもよい。
上記の膜状部材の製造方法において、前記第1の膜及び前記第2の膜は、ともに光を透過するようにしてもよい。
上記の膜状部材の製造方法において、前記第1の膜は、SiO2膜であってもよい。
上記の膜状部材の製造方法において、前記第1の膜は、基板の上に形成され、前記第1の膜の屈折率は、前記基板の屈折率より低くしてもよい。
上記の膜状部材の製造方法において、前記第1の膜は、前記第2の膜と前記基板との間に配置されていてもよい。
本発明に係る電気光学装置の製造方法であって、電気光学素子を含む電気光学装置の製造方法であって、上記の膜状部材の製造方法を含むことを特徴とする。
本発明に係る他の電気光学装置の製造方法は、基板と電気光学素子と第1の膜と絶縁膜である第2の膜とを含む電気光学装置の製造方法であって、前記第1の膜を形成する第1の工程と、前記第2の膜を形成する第2の工程と、を含み、前記第1の工程は、超臨界乾燥法を用いた乾燥工程を含むことを特徴とする。
上記の電気光学装置の製造方法において、前記第1の膜の屈折率は、前記基板の屈折率より低くくしてもよい。
上記の電気光学装置の製造方法において、前記第2の膜は、物質の透過を抑制するようにしてもよい。
上記の電気光学装置の製造方法において、前記第2の膜は、前記電気光学素子と前記第1の膜との間に配置されていてもよい。
上記の課題を解決するため、本発明の電気光学装置は、発光素子を有する電気光学装置であって、物質の透過を遮断する封止層を備え、前記発光素子の発した光が取り出される方向に低屈折率層が配置されていることを特徴とする。
封止層は、透過を抑制すべき物質によって適宜選択することが可能である。例えば、酸素や水の浸透の抑制には、例えば、セラミック、特に窒化ケイ素、酸窒化ケイ素、酸化ケイ素などが好ましい。また、有機材料や無機材料に乾燥剤及び吸着剤の少なくとも一方を分散したものであってもよい。金属イオンの浸透の抑制には、例えば、絶縁膜に種々の元素を添加したものが好ましい。
ここでは、低屈折率層の屈折率としては1.5以下であることが好ましく、1.2以下であることがさらに好ましい。なお、光の取り出し方向において空気と界面をなす部材を備えている場合は、低屈折率層の屈折率はその部材より低ければ良い場合がある。
In order to solve the above problems, an electro-optical device according to the present invention includes a low refractive index layer having a lower refractive index than the substrate, a sealing layer provided on the low refractive index layer, on the substrate, A polymer layer provided on the sealing layer; and a light-emitting element provided on the polymer layer, wherein the light-emitting element includes a first electrode, a second electrode, and the first electrode and the first electrode. It has a light emitting layer arranged between two electrodes, and light emitted from the light emitting layer is emitted to the substrate side.
In the above electro-optical device, a resin layer is provided between the low refractive index layer and the sealing layer.
In the electro-optical device, a sealing member is provided on the light emitting element so as to cover the light emitting element.
In the electro-optical device, the thickness of the sealing layer is smaller than the wavelength of light emitted from the electro-optical element.
In the above electro-optical device, the thickness of the sealing layer is smaller than the wavelength of light emitted from the light emitting element.
In the above electro-optical device, the sealing layer includes at least one of ceramic, silicon nitride, silicon oxynitride, and silicon oxide.
In the above electro-optical device, the sealing layer contains at least one element selected from boron, carbon, nitrogen, aluminum, silicon, phosphorus, ytterbium, samarium, erbium, yttrium, gadolinium, dysprosium, and neodymium. It is characterized by.
In the above electro-optical device, at least one of the low refractive index layer and the sealing layer includes a desiccant or an adsorbent.
In the above electro-optical device, the low refractive index layer includes at least one material selected from aerogel, porous silica, and magnesium fluoride.
In the above electro-optical device, the refractive index of the low refractive index layer is 1.2 or less.
In the above electro-optical device, the low refractive index layer and the sealing layer transmit light.
In the above electro-optical device, the sealing layer suppresses the transmission of a substance.
In order to solve the above-described problem, an electro-optical device manufacturing method according to the present invention includes a first step of forming a low refractive layer having a lower refractive index than the substrate on the substrate, and the low refractive layer on the low refractive layer. A second step of forming a sealing layer, a third step of forming a polymer layer on the sealing layer, and a fourth step of forming a light emitting element on the polymer layer, The light emitting element includes a first electrode, a second electrode, and a light emitting layer disposed between the first electrode and the second electrode, and light emitted from the light emitting layer is emitted to the substrate side. It is characterized by doing.
In the method of manufacturing the electro-optical device, the first step includes a step of applying a wet gel and a drying step of drying the wet gel using a supercritical drying method. The resin is mixed.
The method of manufacturing the electro-optical device includes a step of forming a resin layer between the low refractive layer and the sealing layer.
The method of manufacturing the electro-optical device includes a step of providing a sealing member on the light emitting element so as to cover the light emitting element.
In the electro-optical device manufacturing method, the sealing thickness is smaller than the wavelength of light emitted from the electro-optical element.
In the electro-optical device manufacturing method, the sealing layer has a thickness smaller than a wavelength of light emitted from the light emitting element.
The method for manufacturing a film-shaped member according to the present invention is a method for manufacturing a film-shaped member including a first film and a second film that is an insulating film, and includes a first step of forming the first film. And a second step of forming the second film, wherein the first step includes a drying step using a supercritical drying method.
In the method for manufacturing a film-shaped member, the first film may be made of a low refractive index material.
In the method for manufacturing a film-like member, the second film may include at least one of ceramic, silicon nitride, silicon oxynitride, and silicon oxide.
In the method for manufacturing a film-shaped member, at least one of the first film and the second film may include at least one of a desiccant and an adsorbent.
In the method for manufacturing a film-shaped member, the second film is at least one selected from boron, carbon, nitrogen, aluminum, silicon, phosphorus, ytterbium, samarium, erbium, yttrium, gadolinium, dysprosium, and neodymium. You may make it contain an element.
In the method for manufacturing a film-shaped member, the first film may include at least one material selected from airgel, porous silica, and magnesium fluoride.
In the method for manufacturing a film-like member, the refractive index of the first film may be 1.2 or less.
In the method for manufacturing a film-like member, the first film may transmit light.
In the method for manufacturing a film-shaped member, the first step may further include an application step of applying a wet gel, and the wet gel may be dried in the drying step.
In the method for manufacturing a film-shaped member, the second film may suppress the permeation of a substance.
In the method for manufacturing a film-shaped member, the first film and the second film may both transmit light.
In the method for manufacturing a film-shaped member, the first film may be a SiO 2 film.
In the method for manufacturing a film-shaped member, the first film may be formed on a substrate, and the refractive index of the first film may be lower than the refractive index of the substrate.
In the method for manufacturing a film-shaped member, the first film may be disposed between the second film and the substrate.
A method for manufacturing an electro-optical device according to the present invention, the method for manufacturing an electro-optical device including an electro-optical element, including the method for manufacturing a film-like member described above.
Another electro-optical device manufacturing method according to the present invention is a method for manufacturing an electro-optical device including a substrate, an electro-optical element, a first film, and a second film that is an insulating film. A first step of forming a film; and a second step of forming the second film, wherein the first step includes a drying step using a supercritical drying method. .
In the method for manufacturing the electro-optical device, the refractive index of the first film may be lower than the refractive index of the substrate.
In the method for manufacturing the electro-optical device, the second film may suppress transmission of a substance.
In the above method for manufacturing an electro-optical device, the second film may be disposed between the electro-optical element and the first film.
In order to solve the above problems, an electro-optical device of the present invention is an electro-optical device having a light-emitting element, including a sealing layer that blocks transmission of a substance, and a direction in which light emitted from the light-emitting element is extracted. A low refractive index layer is disposed on the substrate.
The sealing layer can be appropriately selected depending on the substance whose transmission should be suppressed. For example, ceramics, particularly silicon nitride, silicon oxynitride, silicon oxide, and the like are preferable for suppressing oxygen and water permeation. Moreover, what disperse | distributed at least one of the desiccant and the adsorption agent to the organic material or the inorganic material may be used. In order to suppress the penetration of metal ions, for example, it is preferable to add various elements to the insulating film.
Here, the refractive index of the low refractive index layer is preferably 1.5 or less, and more preferably 1.2 or less. In addition, when the member which makes an interface with air in the light extraction direction is provided, the refractive index of the low refractive index layer may be lower than that member.

本発明によれば、発光層から射出した光は、低屈折率層を通過するので、空気中に光が出る際の反射が低減され、光の取り出し効率が向上するが、さらに封止層を、光を取り出す方向に配置することによって、光を取り出す方向から侵入する、酸素や水などの発光素子の劣化因子を封止層で遮断することが可能となる。   According to the present invention, since the light emitted from the light emitting layer passes through the low refractive index layer, reflection when the light is emitted into the air is reduced and the light extraction efficiency is improved. By disposing in the light extraction direction, it becomes possible to block deterioration factors of the light emitting element such as oxygen and water entering from the light extraction direction by the sealing layer.

低屈折率層としては、例えば、光を透過可能な多孔質体、エアロゲル、多孔質シリカ、フッ化マグネシウムあるいはこれを含む材料、フッ化マグネシウムの微粒子を分散したゲル、フッ素系ポリマーあるいはこれを含む材料、デンドリマーなど分岐構造を有するような多孔性ポリマー、所定の材料に無機微粒子及び有機微粒子の少なくともいずれか一方を含有した材料などが挙げられる。   Examples of the low refractive index layer include a porous body that can transmit light, aerogel, porous silica, magnesium fluoride or a material containing the same, a gel in which fine particles of magnesium fluoride are dispersed, a fluorine-based polymer, or the like. Examples thereof include a material, a porous polymer having a branched structure such as a dendrimer, and a material containing at least one of inorganic fine particles and organic fine particles in a predetermined material.

発光素子を配置するための基板として一般的に用いられるガラス基板の側から光を取り出す場合は、ガラスの屈折率は1.54であるので、低屈折率層は、屈折率がおよそ1.5以下に設定されていることが望ましい。1.2以下であることがさらに好ましい。   In the case where light is extracted from the side of a glass substrate that is generally used as a substrate for arranging a light emitting element, the refractive index of the glass is 1.54. Therefore, the low refractive index layer has a refractive index of about 1.5. It is desirable to set as follows. More preferably, it is 1.2 or less.

上記の電気光学装置において、前記発光素子の通電制御を行う通電制御部が基板上に配置されていても良い。この場合、前記発光素子の発した光は前記通電制御部が配置された基板から取り出すことが可能であり、さらに前記発光素子の、前記基板の反対側からも、前記発光素子の発した光を取り出すことができる。
前記通電制御部としては、例えば、トランジスタやダイオードが使用可能である。特に、薄膜トランジスタは光透過性を有し、しかも安価なガラス基板上に形成することができるので、前記通電制御部として好適である。
In the electro-optical device, an energization control unit that performs energization control of the light emitting element may be disposed on the substrate. In this case, the light emitted from the light-emitting element can be taken out from the substrate on which the energization control unit is disposed, and the light emitted from the light-emitting element is also emitted from the opposite side of the light-emitting element to the substrate. It can be taken out.
For example, a transistor or a diode can be used as the energization control unit. In particular, the thin film transistor is suitable for the energization control unit because it is light transmissive and can be formed on an inexpensive glass substrate.

本発明の電気光学装置は、発光素子を備えた電気光学装置であって、前記発光素子の発した光が取り出される方向には、乾燥剤及び吸着剤のうち少なくとも一方が分散された低屈折率層が配置されていることを特徴とする。   The electro-optical device of the present invention is an electro-optical device including a light-emitting element, and has a low refractive index in which at least one of a desiccant and an adsorbent is dispersed in a direction in which light emitted from the light-emitting element is extracted. It is characterized in that the layers are arranged.

上記の電気光学装置は、乾燥剤または吸着剤が分散された低屈折率層を備えているので、光の取り出し効率が高く、しかも、発光素子や電極などの劣化因子となる物質の透過を抑制することができる。   The electro-optical device includes a low refractive index layer in which a desiccant or an adsorbent is dispersed, so that the light extraction efficiency is high, and the transmission of substances that cause deterioration such as light-emitting elements and electrodes is suppressed. can do.

上記の電気光学装置において、前記発光素子は有機エレクトロルミネッセンス素子であっても良い。有機エレクトロルミネッセンス素子は水や酸素などとの接触により発光効率や素子寿命が短くなることがあるので、封止層を設けることにより素子の劣化を低減することができる。また、一般的には、有機エレクトロルミネッセンスを挟持する電極の少なくとも一方は、水や酸素などによって容易に劣化する金属で形成されるので、電極の劣化を低減することが可能となる。   In the above electro-optical device, the light-emitting element may be an organic electroluminescence element. Since the organic electroluminescence element may have a reduction in light emission efficiency and element lifetime due to contact with water, oxygen, or the like, deterioration of the element can be reduced by providing a sealing layer. In general, at least one of the electrodes sandwiching the organic electroluminescence is formed of a metal that easily deteriorates due to water, oxygen, or the like, so that deterioration of the electrode can be reduced.

本発明の膜状部材は、低屈折率層と、物質の透過を抑制する封止層とを有することを特徴とする。ここで、低屈折率層とは、屈折率が1.5以下である層を意味する。特に低屈折率層の屈折率が1.2以下であることが好ましい場合がある。例えば、電気光学的な機能を有する素子や装置は本発明の膜状部材により被覆されることにより長時間、所望の機能を保持することができる。   The film-like member of the present invention is characterized by having a low refractive index layer and a sealing layer that suppresses permeation of a substance. Here, the low refractive index layer means a layer having a refractive index of 1.5 or less. In particular, the refractive index of the low refractive index layer may be preferably 1.2 or less. For example, an element or device having an electro-optical function can be maintained for a long time by being covered with the film-like member of the present invention.

上記の膜状部材において、前記低屈折率と前記封止層とのうち少なくともいずれか一つに乾燥剤及び吸着剤のうち少なくとも一方が分散されていても良い。   In the film member, at least one of a desiccant and an adsorbent may be dispersed in at least one of the low refractive index and the sealing layer.

本発明の積層膜は、低屈折率層と物質の透過を抑制する封止層とを有することを特徴とする。ここで、低屈折率層とは、屈折率が1.5以下である層を意味する。特に低屈折率層の屈折率が1.2以下であることが好ましい場合がある。例えば、電気光学的な機能を有する素子や装置は本発明の積層膜により被覆されることにより長時間、所望の機能を保持することができる。   The laminated film of the present invention is characterized by having a low refractive index layer and a sealing layer that suppresses permeation of a substance. Here, the low refractive index layer means a layer having a refractive index of 1.5 or less. In particular, the refractive index of the low refractive index layer may be preferably 1.2 or less. For example, an element or device having an electro-optical function can be maintained for a long time by being covered with the laminated film of the present invention.

上記の積層膜の、前記低屈折率層としては、多孔質体を利用することができる。多孔質体は空隙の占有率が高いために、十分屈折率を低くすることができる。   A porous body can be used as the low refractive index layer of the laminated film. Since the porous body has a high void ratio, the refractive index can be sufficiently lowered.

上記の積層膜の、前記低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウムあるいはこれを含む材料、フッ化マグネシウムの微粒子を分散したゲル、フッ素系ポリマーあるいはこれを含む材料、分岐構造を有するような多孔性ポリマー、所定の材料に無機微粒子及び有機微粒子の少なくともいずれか一方を含有した材料などが挙げられる。つまり、空隙の占有率が高い材料、あるいは低密度材料、または原子屈折率や分子屈折率が低い材料が採用可能である。   As the low refractive index layer of the above laminated film, for example, aerogel, porous silica, magnesium fluoride or a material containing this, a gel in which fine particles of magnesium fluoride are dispersed, a fluorine-based polymer or a material containing this, Examples thereof include a porous polymer having a branched structure, and a material containing at least one of inorganic fine particles and organic fine particles in a predetermined material. That is, a material having a high void occupation ratio, a low density material, or a material having a low atomic refractive index or molecular refractive index can be employed.

本発明の低屈折率膜は、低屈折率材料に乾燥剤及び吸着剤のうち少なくとも一方が分散されていることを特徴とする。   The low refractive index film of the present invention is characterized in that at least one of a desiccant and an adsorbent is dispersed in a low refractive index material.

本発明によれば、低屈折率材料に乾燥剤あるいは吸着剤を分散することにより、低屈折率膜は物質の透過を抑制することができる。したがって、本発明の低屈折率膜は電気光学素子や電気光学装置に好適である。   According to the present invention, the low refractive index film can suppress the permeation of the substance by dispersing the desiccant or the adsorbent in the low refractive index material. Therefore, the low refractive index film of the present invention is suitable for an electro-optical element and an electro-optical device.

本発明の多層積層膜は、上記積層膜と、上記低屈折率膜とを備えたことを特徴とする。本発明のように膜を多層化することにより、物質の透過をさらに抑制することができる。また、複数の封止層のそれぞれに異なる物質の透過を抑制させることも可能である。   The multilayer laminated film of the present invention includes the laminated film and the low refractive index film. Permeation of a substance can be further suppressed by multilayering the film as in the present invention. In addition, it is possible to suppress the transmission of different substances in each of the plurality of sealing layers.

したがって、本発明の多層積層膜は電気光学素子または電気光学装置に好適である。   Therefore, the multilayer laminated film of the present invention is suitable for an electro-optical element or an electro-optical device.

本発明の電気光学装置は、電気光学素子と、上記積層膜、低屈折率膜、多層積層膜のうち少なくともいずれか1つを備えたことを特徴とする。   An electro-optical device according to the present invention includes an electro-optical element and at least one of the laminated film, the low refractive index film, and the multilayer laminated film.

本発明によれば、上記膜を備えることにより、光の取り出し効率を向上できるとともに、種々の電気光学素子や電気光学装置の劣化を防止できる。   According to the present invention, by providing the film, it is possible to improve the light extraction efficiency and prevent deterioration of various electro-optical elements and electro-optical devices.

上記の電気光学装置は、さらに前記電気光学素子の通電制御を行う通電制御部と、前記通電制御部を支持する基板と、を備えていることを特徴とする。
前記積層膜、前記低屈折率膜、前記多層積層膜のうち少なくとも1つが前記基板の少なくともいずれかの主面に配置されていても良い。このような場合、前記基板側から侵入する物質をブロックあるいは吸着することにより上記の電気光学装置の劣化を防止することができる。
The electro-optical device further includes an energization control unit that performs energization control of the electro-optical element, and a substrate that supports the energization control unit.
At least one of the laminated film, the low refractive index film, and the multilayer laminated film may be disposed on at least one main surface of the substrate. In such a case, the deterioration of the electro-optical device can be prevented by blocking or adsorbing a substance entering from the substrate side.

前記電気光学素子の、前記基板とは反対側に、前記膜状部材、前記積層膜、前記低屈折率膜、及び前記多層積層膜のうち少なくともいずれか一つが配置されていても良い。このような場合、前記電気光学素子の上方から侵入する物質をブロックあるいは吸着することができるので、上記の電気光学装置の劣化を防止することができる。   At least one of the film member, the laminated film, the low refractive index film, and the multilayer laminated film may be arranged on the opposite side of the electro-optic element from the substrate. In such a case, a substance that enters from above the electro-optical element can be blocked or adsorbed, so that the electro-optical device can be prevented from deteriorating.

前記通電制御部としては、例えば、トランジスタやダイオードが使用可能である。特に、薄膜トランジスタは、光透過性を有し、しかも安価なガラス基板上に形成することができるので、前記通電制御部として好適である。   For example, a transistor or a diode can be used as the energization control unit. In particular, the thin film transistor is suitable for the energization control unit because it can be formed on an inexpensive glass substrate having light transmittance.

前記電気光学素子は有機エレクトロルミネッセンス素子であってもよい。   The electro-optic element may be an organic electroluminescence element.

本発明の電子機器は、上記本発明の電気光学装置を備えたことを特徴とする。   An electronic apparatus according to the present invention includes the electro-optical device according to the present invention.

本発明によれば、表示品位に優れ、所望の機能を長時間保持できる電子機器を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the electronic device which is excellent in display quality and can hold | maintain a desired function for a long time is realizable.

《第1実施形態》
以下、本発明の電気光学装置について図1を参照しながら説明する。図1は本発明の電気光学装置である有機エレクトロルミネッセンス表示装置の第1実施形態の一例を示す断面図である。
図1において、有機エレクトロルミネッセンス表示装置1は、光を透過可能な基板(光透過層)2と、基板2の一方の面側に設けられ一対の陰極(電極)7及び陽極(電極)8に狭持された有機エレクトロルミネッセンス材料からなる発光層5と正孔輸送層6とからなる有機エレクトロルミネッセンス素子(発光素子)9と、基板1と有機エレクトロルミネッセンス素子9との間に積層されている低屈折率層3及び封止層4とを備えている。低屈折率層3は封止層4より基板2側に設けられている。
<< First Embodiment >>
Hereinafter, the electro-optical device of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing an example of a first embodiment of an organic electroluminescence display device which is an electro-optical device of the present invention.
In FIG. 1, an organic electroluminescence display device 1 includes a substrate (light transmission layer) 2 capable of transmitting light, and a pair of cathode (electrode) 7 and anode (electrode) 8 provided on one surface side of the substrate 2. An organic electroluminescent element (light emitting element) 9 comprising a light emitting layer 5 and a hole transport layer 6 made of a sandwiched organic electroluminescent material, and a low layer laminated between the substrate 1 and the organic electroluminescent element 9. A refractive index layer 3 and a sealing layer 4 are provided. The low refractive index layer 3 is provided closer to the substrate 2 than the sealing layer 4.

ここで、図1に示す有機エレクトロルミネッセンス表示装置1は、発光層5からの発光を基板2側から装置外部に取り出す形態であり、基板2の形成材料としては、光を透過可能な透明あるいは半透明材料、例えば、透明なガラス、石英、サファイア、あるいはポリエステル、ポリアクリレート、ポリカーボネート、ポリエーテルケトンなどの透明な合成樹脂などが挙げられる。特に、基板2の形成材料としては、安価なソーダガラスが好適に用いられる。
一方、基板と反対側から発光を取り出す形態の場合には、基板は不透明であってもよく、その場合、アルミナ等のセラミック、ステンレス等の金属シートに表面酸化などの絶縁処理を施したもの、熱硬化性樹脂、熱可塑性樹脂などを用いることができる。
Here, the organic electroluminescence display device 1 shown in FIG. 1 has a form in which light emitted from the light emitting layer 5 is extracted from the substrate 2 side to the outside of the device, and the forming material of the substrate 2 is transparent or semi-transparent capable of transmitting light. Transparent materials such as transparent glass, quartz, sapphire, or transparent synthetic resins such as polyester, polyacrylate, polycarbonate, polyether ketone, and the like can be given. In particular, an inexpensive soda glass is preferably used as a material for forming the substrate 2.
On the other hand, in the form of taking out light emission from the opposite side of the substrate, the substrate may be opaque, in which case, ceramic such as alumina, metal sheet such as stainless steel subjected to insulation treatment such as surface oxidation, A thermosetting resin, a thermoplastic resin, or the like can be used.

陽極8は、インジウム錫酸化物(ITO:Indium Tin Oxide)等からなる透明電極であって光を透過可能である。正孔輸送層6は、例えば、トリフェニルアミン誘導体(TPD)、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体等からなる。具体的には、特開昭63−70257号、同63−175860号公報、特開平2−135359号、同2−135361号、同2−209988号、同3−37992号、同3−152184号公報に記載されているもの等が例示されるが、トリフェニルジアミン誘導体が好ましく、中でも4,4'−ビス(N(3−メチルフェニル)−N−フェニルアミノ)ビフェニルが好適とされる。ポリエチレンジオキシチオフェンまたはポリエチレンジオキシチオフェンとポリスチレンスルホン酸との混合物などの高分子系材料も使用可能である。   The anode 8 is a transparent electrode made of indium tin oxide (ITO) or the like, and can transmit light. The hole transport layer 6 is made of, for example, a triphenylamine derivative (TPD), a pyrazoline derivative, an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, or the like. Specifically, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-209998, JP-A-3-37992, and JP-A-3-152184. Examples described in the publication are exemplified, but a triphenyldiamine derivative is preferable, and 4,4′-bis (N (3-methylphenyl) -N-phenylamino) biphenyl is particularly preferable. Polymeric materials such as polyethylene dioxythiophene or a mixture of polyethylene dioxythiophene and polystyrene sulfonic acid can also be used.

なお、正孔輸送層に代えて正孔注入層を形成するようにしてもよく、さらに正孔注入層と正孔輸送層を両方形成するようにしてもよい。その場合、正孔注入層の形成材料としては、例えば銅フタロシアニン(CuPc)や、ポリテトラヒドロチオフェニルフェニレンであるポリフェニレンビニレン、1,1−ビス−(4−N,N−ジトリルアミノフェニル)シクロヘキサン、トリス(8−ヒドロキシキノリノール)アルミニウム等が挙げられるが、特に銅フタロシアニン(CuPc)を用いるのが好ましい。   Note that a hole injection layer may be formed instead of the hole transport layer, and both the hole injection layer and the hole transport layer may be formed. In this case, as a material for forming the hole injection layer, for example, copper phthalocyanine (CuPc), polytetravinylthiophene polyphenylene vinylene, 1,1-bis- (4-N, N-ditolylaminophenyl) cyclohexane , Tris (8-hydroxyquinolinol) aluminum and the like, and copper phthalocyanine (CuPc) is particularly preferable.

発光層5の形成材料としては、低分子の有機発光色素や高分子発光体、すなわち各種の蛍光物質や燐光物質などの発光物質、Alq3(アルミキレート錯体)などの有機エレクトロルミネッセンス材料が使用可能である。発光物質となる共役系高分子の中ではアリーレンビニレン又はポリフルオレン構造を含むものなどが特に好ましい。低分子発光体では、例えばナフタレン誘導体、アントラセン誘導体、ペリレン誘導体、ポリメチン系、キサテン系、クマリン系、シアニン系などの色素類、8−ヒドロキノリンおよびその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエン誘導体等、または特開昭57−51781、同59−194393号公報等に記載されている公知のものが使用可能である。陰極7はアルミニウム(Al)やマグネシウム(Mg)、金(Au)、銀(Ag)等からなる金属電極である。また、これらの金属を積層したものも陰極として使用可能である。 As a material for forming the light emitting layer 5, low molecular organic light emitting dyes and polymer light emitting materials, that is, light emitting materials such as various fluorescent materials and phosphorescent materials, and organic electroluminescent materials such as Alq 3 (aluminum chelate complexes) can be used. It is. Among the conjugated polymers that serve as the light-emitting substance, those containing an arylene vinylene or polyfluorene structure are particularly preferable. Examples of the low-molecular light emitters include naphthalene derivatives, anthracene derivatives, perylene derivatives, polymethine-based, xanthene-based, coumarin-based, cyanine-based pigments, 8-hydroquinoline and its metal complexes, aromatic amines, tetraphenylcyclo Pentadiene derivatives and the like, or known ones described in JP-A-57-51781 and 59-194393 can be used. The cathode 7 is a metal electrode made of aluminum (Al), magnesium (Mg), gold (Au), silver (Ag), or the like. Moreover, what laminated | stacked these metals can also be used as a cathode.

なお、陰極7と発光層5との間に、電子輸送層や電子注入層を設けることができる。電子輸送層の形成材料としては、特に限定されることなく、オキサジアゾール誘導体、アントラキノジメタンおよびその誘導体、ベンゾキノンおよびその誘導体、ナフトキノンおよびその誘導体、アントラキノンおよびその誘導体、テトラシアノアンスラキノジメタンおよびその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンおよびその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリンおよびその誘導体の金属錯体等が例示される。具体的には、先の正孔輸送層の形成材料と同様に、特開昭63−70257号、同63−175860号公報、特開平2−135359号、同2−135361号、同2−209988号、同3−37992号、同3−152184号公報に記載されているもの等が例示され、特に2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウムが好適とされる。   An electron transport layer or an electron injection layer can be provided between the cathode 7 and the light emitting layer 5. The material for forming the electron transport layer is not particularly limited, and is an oxadiazole derivative, anthraquinodimethane and its derivative, benzoquinone and its derivative, naphthoquinone and its derivative, anthraquinone and its derivative, tetracyanoanthraquinodimethane And derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, and the like. Specifically, as with the material for forming the hole transport layer, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, and JP-A-2-209888 are disclosed. And the like described in JP-A-3-379992 and 3-152184, particularly 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4. -Oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum are preferred.

低屈折率層3は、基板2より光の透過屈折率が低い層であり、シリカエアロゲルによって構成されている。シリカエアロゲルとは、シリコンアルコキシドのゾルゲル反応により形成される湿潤ゲルを超臨界乾燥することによって得られる均一な超微細構造を持った光透過性の多孔質体である。シリカエアロゲルは体積の90%以上を空隙が占め、残りが樹枝状に凝集した数十nmの微細なSiO2粒子で構成された材料であり、粒子径が光の波長よりも小さいため、光透過性を有し、その屈折率は1.2以下である。また、空隙率を変化させることによって屈折率を調整できる。ここで、基板2の材料であるガラスの屈折率は1.54、石英の屈折率は1.45である。 The low refractive index layer 3 is a layer having a light transmission refractive index lower than that of the substrate 2 and is made of silica aerogel. Silica aerogel is a light-transmitting porous material having a uniform ultrafine structure obtained by supercritical drying of a wet gel formed by a sol-gel reaction of silicon alkoxide. Silica airgel is a material composed of fine SiO 2 particles of several tens of nanometers, with the voids occupying 90% or more of the volume, and the remainder agglomerated in a dendritic manner. The refractive index is 1.2 or less. Further, the refractive index can be adjusted by changing the porosity. Here, the refractive index of glass, which is the material of the substrate 2, is 1.54, and the refractive index of quartz is 1.45.

シリカエアロゲルは、ゾル−ゲル法により湿潤ゲルを作製する工程、湿潤ゲルを熟成させる工程、及び超臨界乾燥法により湿潤ゲルを乾燥してエアロゲルを得る超臨界乾燥工程を経て製造される。超臨界乾燥法は、固相と液相とからなるゼリー状のゲル物質中の液体を超臨界流体と置換、除去することにより、ゲルを収縮させることなくゲル物質を乾燥するのに適した方法であって、高い空隙率を有するエアエロゲルが得られる。   Silica airgel is manufactured through a step of producing a wet gel by a sol-gel method, a step of aging the wet gel, and a supercritical drying step of drying the wet gel by a supercritical drying method to obtain an airgel. The supercritical drying method is a method suitable for drying a gel material without contracting the gel by replacing and removing the liquid in the jelly-like gel material consisting of a solid phase and a liquid phase with a supercritical fluid. Thus, an airgel having a high porosity can be obtained.

なお、低屈折率層3を、超臨界乾燥法を用いたシリカエアロゲル層とせずに、多孔性を有するSiO2膜としてもよい。このSiO2膜は、プラズマCVD法(プラズマ化学的気相成長法)により形成され、反応ガスとしてSiH4とN2Oを用いる。さらに、このSiO2膜の上に、多孔性を有するSiO2膜を形成する。このSiO2膜は常圧CVD法(常圧化学的気相成長法)により形成され、TEOS(テトラエトキシシラン)とO2(酸素)と低濃度のO3(オゾン)とを含む反応ガスを用いる。ここで、低濃度のO3とは、上記TEOSの酸化に必要な濃度よりも低い濃度のO3を言うものである。 The low refractive index layer 3 may be a porous SiO 2 film instead of the silica airgel layer using the supercritical drying method. This SiO 2 film is formed by a plasma CVD method (plasma chemical vapor deposition method), and SiH 4 and N 2 O are used as reaction gases. Furthermore, on this SiO 2 film, a SiO 2 film having a porosity. This SiO 2 film is formed by an atmospheric pressure CVD method (atmospheric pressure chemical vapor deposition method), and a reactive gas containing TEOS (tetraethoxysilane), O 2 (oxygen), and a low concentration of O 3 (ozone) is used. Use. Here, the low concentration of O 3 means a concentration of O 3 lower than the concentration necessary for the oxidation of TEOS.

封止層4は、基板2側の外部から電極7,8を含む有機エレクトロルミネッセンス素子9に対して大気が侵入するのを遮断するものであって、膜厚や材料を適宜選択することにより光を透過可能となっている。封止層4を構成する材料としては、例えばセラミックや窒化珪素、酸化窒化珪素、酸化珪素などの透明な材料が用いられ、中でも酸化窒化珪素が透明性、ガスバリア性の観点から好ましい。金属イオンなども素子の劣化の原因となることがあるが、そのような場合、例えば、ホウ素、炭素、窒素、アルミニウム、ケイ素、リン、イッテルビウム、サマリウム、エルビウム、イットリウム、ガドリニウム、ジスプロシウム、ネオジウム、などの元素から選ばれた少なくとも1つの元素を含む絶縁膜を封止層4として利用することもできる。例えば、酸化マグネシウム、炭酸マグネシウム、酸化鉄、酸化チタン、ベントナイト、酸性白土、モンモリナイト、珪藻土、活性アルミナ、シリカアルミナ、ゼオライト、シリカ、ジルコニア、酸化バリウムなどの乾燥剤または吸着剤から選ばれた少なくとも一つ材料を含むものも、酸素や水分を吸着または吸蔵するので、封止層4として利用することもできる。なお、封止層4の厚さは発光層5から射出される光の波長より小さくなるように設定されることが好ましい(例えば0.1μm)。   The sealing layer 4 blocks air from entering the organic electroluminescence element 9 including the electrodes 7 and 8 from the outside on the substrate 2 side. Can be transmitted. As a material constituting the sealing layer 4, for example, a transparent material such as ceramic, silicon nitride, silicon oxynitride, or silicon oxide is used, and among these, silicon oxynitride is preferable from the viewpoints of transparency and gas barrier properties. Metal ions may cause deterioration of the device. In such a case, for example, boron, carbon, nitrogen, aluminum, silicon, phosphorus, ytterbium, samarium, erbium, yttrium, gadolinium, dysprosium, neodymium, etc. An insulating film containing at least one element selected from these elements can also be used as the sealing layer 4. For example, at least one selected from desiccants or adsorbents such as magnesium oxide, magnesium carbonate, iron oxide, titanium oxide, bentonite, acid clay, montmorillonite, diatomaceous earth, activated alumina, silica alumina, zeolite, silica, zirconia, and barium oxide. Those containing one material can also be used as the sealing layer 4 because they adsorb or occlude oxygen and moisture. The thickness of the sealing layer 4 is preferably set so as to be smaller than the wavelength of light emitted from the light emitting layer 5 (for example, 0.1 μm).

有機エレクトロルミネッセンス表示装置1はアクティブマトリクス型である場合は、図示してはいないが、複数のデータ線と複数の走査線とが格子状に配置され、これらデータ線及び走査線に区画されたマトリクス状に配置された各画素毎に、スイッチングトランジスタやドライビングトランジスタ等のトランジスタによって有機エレクトロルミネッセンス素子9が駆動される。そして、データ線や走査線を介して駆動信号が供給されると電極間に電流が流れ、有機エレクトロルミネッセンス素子9の発光層5が発光して基板2の外面側に光が射出され、その画素が点灯する。   When the organic electroluminescence display device 1 is of an active matrix type, although not shown, a plurality of data lines and a plurality of scanning lines are arranged in a lattice pattern, and the matrix is divided into these data lines and scanning lines. For each pixel arranged in a shape, the organic electroluminescence element 9 is driven by a transistor such as a switching transistor or a driving transistor. When a drive signal is supplied via the data line or the scanning line, a current flows between the electrodes, the light emitting layer 5 of the organic electroluminescence element 9 emits light, and light is emitted to the outer surface side of the substrate 2. Lights up.

また、有機エレクトロルミネッセンス表示装置1のうち、有機エレクトロルミネッセンス素子9を挟んで封止層4と反対側の表面にも、電極7,8を含む有機エレクトロルミネッセンス素子9に対して大気が侵入するのを遮断する封止部材10が形成されている。   Further, in the organic electroluminescence display device 1, the atmosphere enters the organic electroluminescence element 9 including the electrodes 7 and 8 on the surface opposite to the sealing layer 4 with the organic electroluminescence element 9 interposed therebetween. The sealing member 10 which interrupts | blocks is formed.

有機エレクトロルミネッセンス表示装置1を製造する際には、まず、基板2上にエアロゲルの原料である湿潤ゲルをコーティングし、超臨界乾燥して低屈折率層3を形成する。なお、一般的にエアロゲルは吸湿性が高いので、吸湿性を低減したい場合は、コーティングによって形成された湿潤ゲルの薄膜をヘキサメチルジシラザンなどにより疎水化した後、超臨界乾燥を行っても良い。次いで、低屈折率層3上にプラズマCVD法によって封止層4として窒化シリコン膜を形成する。なお、低屈折率層と封止層との間には密着性改善のために樹脂などからなる緩衝層を設けてもよい。そして、封止層4上にスパッタリングやイオンプレーティング、真空蒸着法などを用いて陽極8を形成し、陽極8上に順次、正孔輸送層6、発光層5、陰極7を蒸着して積層することにより、有機エレクトロルミネッセンス表示装置1が製造される。   When the organic electroluminescence display device 1 is manufactured, first, a wet gel, which is an airgel raw material, is coated on the substrate 2 and is supercritically dried to form the low refractive index layer 3. In general, aerogel has high hygroscopicity, and if it is desired to reduce hygroscopicity, the supergel drying may be performed after hydrophobizing the thin film of the wet gel formed by coating with hexamethyldisilazane or the like. . Next, a silicon nitride film is formed on the low refractive index layer 3 as the sealing layer 4 by plasma CVD. A buffer layer made of a resin or the like may be provided between the low refractive index layer and the sealing layer in order to improve adhesion. Then, the anode 8 is formed on the sealing layer 4 by sputtering, ion plating, vacuum deposition, or the like, and the hole transport layer 6, the light emitting layer 5, and the cathode 7 are sequentially deposited on the anode 8 and laminated. Thus, the organic electroluminescence display device 1 is manufactured.

上記構成の有機エレクトロルミネッセンス表示装置1においては、発光層5から射出した光は透明電極8を透過し、封止層4、低屈折率層3を経て基板2に入射する。この時、シリカエアロゲルからなる低屈折率層3の方がガラスや石英からなる基板2よりも屈折率が低いため、光は低屈折率材料から高屈折率材料に入射することになり、臨界角以上の角度で低屈折率層3に入射した光が基板2との界面で臨界角以下となる方向に屈折し、基板2内での全反射条件から外れるため、光の取り出し効率を向上させることができる。   In the organic electroluminescence display device 1 configured as described above, the light emitted from the light emitting layer 5 passes through the transparent electrode 8 and enters the substrate 2 through the sealing layer 4 and the low refractive index layer 3. At this time, since the refractive index of the low refractive index layer 3 made of silica airgel is lower than that of the substrate 2 made of glass or quartz, light is incident on the high refractive index material from the low refractive index material. The light incident on the low-refractive index layer 3 at the above angle is refracted in a direction equal to or less than the critical angle at the interface with the substrate 2 and deviates from the total reflection condition in the substrate 2, thereby improving the light extraction efficiency. Can do.

以上説明したように、発光層5から射出した光は、基板2より低屈折率な低屈折率層3を通過してから基板2に入射するので、臨界角以上の角度で低屈折率層3に入射した光は基板2との界面で臨界角以下となる方向に屈折し、基板2内での全反射条件から外れ、外部に取り出される。これにより、光の取り出し効率が向上し、高い視認性を得ることができる。また、低屈折率層3がシリカエアロゲルのような通気性の高い材料で構成されていても、封止層4によって基板2側からの大気の侵入が抑えられるので、電極7,8を含む有機エレクトロルミネッセンス素子9は大気に晒されず、劣化を防止される。したがって、有機エレクトロルミネッセンス表示装置1は良好な発光特性を維持できる。また、低屈折率層3を基板2に近接して設けることにより、基板2側から外光が照射されても、内側からの反射が抑えられ、有機エレクトロルミネッセンス素子9からの光の高い視認性を維持できる。   As described above, the light emitted from the light emitting layer 5 passes through the low refractive index layer 3 having a lower refractive index than that of the substrate 2 and then enters the substrate 2, so that the low refractive index layer 3 has an angle greater than the critical angle. The light incident on the substrate 2 is refracted in the direction of the critical angle or less at the interface with the substrate 2, deviates from the total reflection condition in the substrate 2, and is extracted outside. Thereby, the light extraction efficiency is improved and high visibility can be obtained. Further, even if the low refractive index layer 3 is made of a material having high air permeability such as silica airgel, the intrusion of air from the substrate 2 side is suppressed by the sealing layer 4. The electroluminescence element 9 is not exposed to the atmosphere and is prevented from being deteriorated. Therefore, the organic electroluminescence display device 1 can maintain good light emission characteristics. In addition, by providing the low refractive index layer 3 close to the substrate 2, reflection from the inside is suppressed even when external light is irradiated from the substrate 2 side, and high visibility of light from the organic electroluminescence element 9 is achieved. Can be maintained.

なお、本実施形態において、低屈折率層3や封止層4を含む各層は、プラスマCVD法やスパッタ法、または蒸着法によって順次積層することによって形成されるが、図2に示すように、低屈折率層3と封止層4とを有する膜状部材(積層膜)20を予め形成しておき、この膜状部材を基板2と陽極8との間に配置させるようにしてもよい。   In this embodiment, each layer including the low refractive index layer 3 and the sealing layer 4 is formed by sequentially laminating by a plasma CVD method, a sputtering method, or a vapor deposition method, but as shown in FIG. A film-like member (laminated film) 20 having the low refractive index layer 3 and the sealing layer 4 may be formed in advance, and this film-like member may be disposed between the substrate 2 and the anode 8.

本実施形態においては、基板2上に低屈折率層3を設け、低屈折率層3上に封止層4を設けた構成であるが、基板2上に封止層4を設け、封止層4上に低屈折率層3を設ける構成としてもよい。このように、陽極8(有機エレクトロルミネッセンス素子9)と基板2との間における層構成は、基板2/低屈折率層3/封止層4/陽極8でもよいし、基板2/封止層4/低屈折率層3/陽極8でもよい。更には、基板2/封止層4/低屈折率層3/封止層4/陽極8と封止層を複数層設けてもよい。   In this embodiment, the low refractive index layer 3 is provided on the substrate 2 and the sealing layer 4 is provided on the low refractive index layer 3. However, the sealing layer 4 is provided on the substrate 2 and sealed. The low refractive index layer 3 may be provided on the layer 4. Thus, the layer configuration between the anode 8 (organic electroluminescence element 9) and the substrate 2 may be substrate 2 / low refractive index layer 3 / sealing layer 4 / anode 8 or substrate 2 / sealing layer. 4 / low refractive index layer 3 / anode 8 may be used. Furthermore, a plurality of sealing layers may be provided such as substrate 2 / sealing layer 4 / low refractive index layer 3 / sealing layer 4 / anode 8 and sealing layer.

封止層(バリア層)4と陽極8との間、あるいは低屈折率層3と封止層4との間にポリマー層を介在させてもよい。このポリマー層を構成する材料としては、ポリエチレン、ポリスチレン、ポリプロピレンなど、一般的な炭化水素系高分子が使用可能である。モノマーの重合反応(例えば乳化重合法)などにより合成されるポリマー微粒子も使用可能である。フッ素原子を含む含フッ素高分子も使用可能である。含フッ素ポリマーを合成するために用いるフッ素原子を含むモノマーの例には、フルオロオレフィン類(例、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、アクリル酸またはメタクリル酸のフッ素化アルキルエステル類およびフッ素化ビニルエーテル類が含まれる。フッ素原子を含むモノマーとフッ素原子を含まないモノマーとのコポリマーを用いてもよい。フッ素原子を含まないモノマーの例には、オレフィン類(例、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル類(例、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(例、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル)、スチレン類(例、スチレン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル類(例、メチルビニルエーテル)、ビニルエステル類(例、酢酸ビニル、プロピオン酸ビニル)、アクリルアミド類(例、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド類およびアクリルニトリル類が含まれる。     A polymer layer may be interposed between the sealing layer (barrier layer) 4 and the anode 8 or between the low refractive index layer 3 and the sealing layer 4. As a material constituting the polymer layer, general hydrocarbon polymers such as polyethylene, polystyrene, and polypropylene can be used. Polymer fine particles synthesized by monomer polymerization reaction (for example, emulsion polymerization method) can also be used. A fluorine-containing polymer containing a fluorine atom can also be used. Examples of the monomer containing a fluorine atom used for synthesizing the fluorine-containing polymer include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1 , 3-dioxole), fluorinated alkyl esters of acrylic acid or methacrylic acid and fluorinated vinyl ethers. A copolymer of a monomer containing a fluorine atom and a monomer not containing a fluorine atom may be used. Examples of monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate). , Methacrylates (eg, methyl methacrylate, ethyl methacrylate, butyl methacrylate), styrenes (eg, styrene, vinyl toluene, α-methyl styrene), vinyl ethers (eg, methyl vinyl ether), vinyl esters ( Examples include vinyl acetate, vinyl propionate), acrylamides (eg, N-tert-butylacrylamide, N-cyclohexylacrylamide), methacrylamides and acrylonitriles.

低屈折率層3をシリカエアロゲルによって形成する際、基板2にスピンコートなどによって湿潤ゲルを塗布した後、超臨界乾燥するが、湿潤ゲルに合成樹脂(有機物)を混合しておいてもよい。この場合の合成樹脂は、その熱変性温度が超臨界流体の臨界温度よりも高く光を透過可能な合成樹脂であることが好ましい。超臨界流体として例えばアルコールを用いた場合、その熱変性温度がアルコールの臨界温度よりも高く光を透過可能な合成樹脂としては、ヒドロキシルプロピルセルロース(HPC),ポリビニルブチラール(PVB),エチルセルロース(EC)等が挙げられる(なお、PVB及びECはアルコールに可溶で水には不溶)。溶媒としてエーテルを用いる場合には樹脂として塩素系ポリエチレン等を選択し、またCO2を溶媒として用いる場合にはHPC等を選択することが望ましい。 When the low refractive index layer 3 is formed of silica aerogel, a wet gel is applied to the substrate 2 by spin coating or the like, followed by supercritical drying. However, a synthetic resin (organic substance) may be mixed in the wet gel. The synthetic resin in this case is preferably a synthetic resin having a heat denaturation temperature higher than the critical temperature of the supercritical fluid and capable of transmitting light. For example, when alcohol is used as a supercritical fluid, the heat denaturation temperature is higher than the critical temperature of alcohol, and synthetic resins capable of transmitting light include hydroxylpropyl cellulose (HPC), polyvinyl butyral (PVB), and ethyl cellulose (EC). (In addition, PVB and EC are soluble in alcohol and insoluble in water). When ether is used as the solvent, chlorine-based polyethylene or the like is preferably selected as the resin, and when CO 2 is used as the solvent, HPC or the like is preferably selected.

本実施形態における低屈折率層3はシリカエアロゲルであるが、アルミナを基調としたエアロゲルでもよく、基板2より低屈折率で光を透過可能な多孔質体であればよい。そして、多孔質体(エアロゲル)は密度が0.4g/cm3以下であることが好ましい。 The low refractive index layer 3 in the present embodiment is a silica airgel, but may be an airgel based on alumina as long as it is a porous body that can transmit light with a lower refractive index than the substrate 2. The porous body (aerogel) preferably has a density of 0.4 g / cm 3 or less.

一方、低屈折率層3としては多孔質体でなくてもよく、エポキシ系接着剤(屈折率:1.42)やアクリル系接着剤(屈折率:1.43)など、光を透過可能で基板2より低屈折率な高分子材料からなる接着剤でもよい。これらの接着剤を単独で使用した場合であっても、基板2を構成するガラスや石英よりも屈折率が低いため、光の取り出し効率を向上できる。また、これらの接着剤を使用する場合には、基板2と封止層4とを貼り合わせることによって有機エレクトロルミネッセンス表示装置1を製造できる。   On the other hand, the low refractive index layer 3 may not be a porous body, and can transmit light such as an epoxy adhesive (refractive index: 1.42) or an acrylic adhesive (refractive index: 1.43). An adhesive made of a polymer material having a lower refractive index than that of the substrate 2 may be used. Even when these adhesives are used alone, the light extraction efficiency can be improved because the refractive index is lower than that of glass or quartz constituting the substrate 2. Moreover, when using these adhesives, the organic electroluminescent display apparatus 1 can be manufactured by bonding the board | substrate 2 and the sealing layer 4 together.

更に、低屈折率層3としては、多孔質シリカでもよいし、フッ化マグネシウム(屈折率:1.38)あるいはこれを含む材料でもよい。フッ化マグネシウムによる低屈折率層3はスパッタリングによって形成可能である。あるいは、フッ化マグネシウムの微粒子を分散したゲルでもよい。あるいは、フッ素系ポリマー又はこれを含む材料、例えば、パーフルオロアルキル−ポリエーテル、パーフルオロアルキルアミン、またはパーフルオロアルキル−ポリエーテル−パーフルオロアルキルアミン混合フィルムでもよい。   Further, the low refractive index layer 3 may be porous silica, magnesium fluoride (refractive index: 1.38) or a material containing the same. The low refractive index layer 3 made of magnesium fluoride can be formed by sputtering. Alternatively, a gel in which fine particles of magnesium fluoride are dispersed may be used. Alternatively, it may be a fluorine-based polymer or a material containing the same, for example, a perfluoroalkyl-polyether, a perfluoroalkylamine, or a perfluoroalkyl-polyether-perfluoroalkylamine mixed film.

更には、所定のポリマーバインダーに、可溶性もしくは分散性である低屈折率のフルオロカーボン化合物を混在したものでもよい。
ポリマーバインダーとしては、ポリビニルアルコール、ポリアクリル酸、ポリビニルピロリドン、ポリビニルスルホン酸ナトリウム塩、ポリビニルメチルエーテル、ポリエチレングリコール、ポリα−トリフルオロメチルアクリル酸、ポリビニルメチルエーテル−コ−無水マレイン酸、ポリエチレングリコール−コ−プロピレングリコール、ポリメタアクリル酸などが挙げられる。
また、フルオロカーボン化合物としては、パーフルオロオクタン酸−アンモニウム塩、パーフルオロオクタン酸−テトラメチルアンモニウム塩、C−7とC−10のパーフルオロアルキルスルホン酸アンモニウム塩、C−7とC−10のパーフルオロアルキルスルホン酸テトラメチルアンモニウム塩、フッ素化アルキル第4級アンモニウムアイオダイド、パーフルオロアジピン酸、およびパーフルオロアジピン酸の第4級アンモニウム塩などが挙げられる。
Furthermore, a predetermined polymer binder may be mixed with a soluble or dispersible low refractive index fluorocarbon compound.
As the polymer binder, polyvinyl alcohol, polyacrylic acid, polyvinyl pyrrolidone, polyvinyl sulfonic acid sodium salt, polyvinyl methyl ether, polyethylene glycol, poly α-trifluoromethyl acrylic acid, polyvinyl methyl ether-co-maleic anhydride, polyethylene glycol- Examples include co-propylene glycol and polymethacrylic acid.
Examples of the fluorocarbon compound include perfluorooctanoic acid-ammonium salt, perfluorooctanoic acid-tetramethylammonium salt, perfluoroalkylsulfonic acid ammonium salt of C-7 and C-10, and perfluorooctanoic acid ammonium salt of C-7 and C-10. Examples include tetramethylammonium fluoroalkylsulfonic acid salts, fluorinated alkyl quaternary ammonium iodides, perfluoroadipic acid, and quaternary ammonium salts of perfluoroadipic acid.

更に、低屈折率層3として空隙を導入する方法が有効であるため、上記エアロゲルの他に、微粒子を用いて微粒子間または微粒子内のミクロボイドとして空隙を形成してもよい。微粒子としては、無機微粒子あるいは有機微粒子を低屈折率層に用いることができる。
無機微粒子は、非晶質であることが好ましい。無機微粒子は、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、金属酸化物または金属ハロゲン化物からなることがさらに好ましく、金属酸化物または金属フッ化物からなることが最も好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、PbおよびNiが好ましく、Mg、Ca、BおよびSiがさらに好ましい。二種類の金属を含む無機化合物を用いてもよい。特に好ましい無機化合物は、二酸化ケイ素、すなわちシリカである。
Furthermore, since a method of introducing voids as the low refractive index layer 3 is effective, in addition to the airgel, voids may be formed as microvoids between or within the fine particles. As the fine particles, inorganic fine particles or organic fine particles can be used for the low refractive index layer.
The inorganic fine particles are preferably amorphous. The inorganic fine particles are preferably made of a metal oxide, nitride, sulfide or halide, more preferably a metal oxide or metal halide, and most preferably a metal oxide or metal fluoride. . As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb and Ni are preferred, and Mg, Ca, B and Si are more preferred. An inorganic compound containing two kinds of metals may be used. A particularly preferred inorganic compound is silicon dioxide, ie silica.

無機微粒子内ミクロボイドは、例えば、粒子を形成するシリカの分子を架橋させることにより形成することができる。シリカの分子を架橋させると体積が縮小し、粒子が多孔質になる。ミクロボイドを有する(多孔質)無機微粒子は、ゾル−ゲル法(特開昭53−112732号、特公昭57−9051号の各公報記載)または析出法(APPLIED OPTICS、27、3356頁(1988)記載)により、分散物として直接合成することができる。また、乾燥・沈澱法で得られた粉体を、機械的に粉砕して分散物を得ることもできる。市販の多孔質無機微粒子(例えば、二酸化ケイ素ゾル)を用いてもよい。ミクロボイドを有する無機微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例、メタノール、エタノール、イソプロピルアルコール)およびケトン(例、メチルエチルケトン、メチルイソブチルケトン)が好ましい。   The microvoids in the inorganic fine particles can be formed, for example, by cross-linking silica molecules forming the particles. Crosslinking silica molecules reduces the volume and makes the particles porous. (Porous) inorganic fine particles having microvoids are described in the sol-gel method (described in JP-A Nos. 53-112732 and 57-9051) or the precipitation method (APPLIED OPTICS, 27, page 3356 (1988)). ) Can be directly synthesized as a dispersion. Further, the powder obtained by the drying / precipitation method can be mechanically pulverized to obtain a dispersion. Commercially available porous inorganic fine particles (for example, silicon dioxide sol) may be used. The inorganic fine particles having microvoids are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (eg, methanol, ethanol, isopropyl alcohol) and ketone (eg, methyl ethyl ketone, methyl isobutyl ketone) are preferable.

有機微粒子も、非晶質であることが好ましい。有機微粒子は、モノマーの重合反応(例えば乳化重合法)により合成されるポリマー微粒子であることが好ましい。有機微粒子のポリマーはフッ素原子を含むことが好ましい。含フッ素ポリマーを合成するために用いるフッ素原子を含むモノマーの例には、フルオロオレフィン類(例、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、アクリル酸またはメタクリル酸のフッ素化アルキルエステル類およびフッ素化ビニルエーテル類が含まれる。フッ素原子を含むモノマーとフッ素原子を含まないモノマーとのコポリマーを用いてもよい。フッ素原子を含まないモノマーの例には、オレフィン類(例、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル類(例、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(例、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル)、スチレン類(例、スチレン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル類(例、メチルビニルエーテル)、ビニルエステル類(例、酢酸ビニル、プロピオン酸ビニル)、アクリルアミド類(例、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド類およびアクリルニトリル類が含まれる。   The organic fine particles are also preferably amorphous. The organic fine particles are preferably polymer fine particles synthesized by polymerization reaction of monomers (for example, emulsion polymerization method). The organic fine particle polymer preferably contains a fluorine atom. Examples of the monomer containing a fluorine atom used for synthesizing the fluorine-containing polymer include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1 , 3-dioxole), fluorinated alkyl esters of acrylic acid or methacrylic acid and fluorinated vinyl ethers. A copolymer of a monomer containing a fluorine atom and a monomer not containing a fluorine atom may be used. Examples of monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate). , Methacrylates (eg, methyl methacrylate, ethyl methacrylate, butyl methacrylate), styrenes (eg, styrene, vinyl toluene, α-methyl styrene), vinyl ethers (eg, methyl vinyl ether), vinyl esters ( Examples include vinyl acetate, vinyl propionate), acrylamides (eg, N-tert-butylacrylamide, N-cyclohexylacrylamide), methacrylamides and acrylonitriles.

有機微粒子内ミクロボイドは、例えば、粒子を形成するポリマーを架橋させることにより形成することができる。ポリマーを架橋させると体積が縮小し、粒子が多孔質になる。粒子を形成するポリマーを架橋させるためには、ポリマーを合成するためのモノマーの20モル%以上を多官能モノマーとすることが好ましい。多官能モノマーの割合は、30乃至80モル%であることがさらに好ましく、35乃至50モル%であることが最も好ましい。多官能モノマーの例には、ジエン類(例、ブタジエン、ペンタジエン)、多価アルコールとアクリル酸とのエステル(例、エチレングリコールジアクリレート、1,4−シクロヘキサンジアクリレート、ジペンタエリスリトールヘキサアクリレート)、多価アルコールとメタクリル酸とのエステル(例、エチレングリコールジメタクリレート、1,2,4−シクロヘキサンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート)、ジビニル化合物(例、ジビニルシクロヘキサン、1,4−ジビニルベンゼン)、ジビニルスルホン、ビスアクリルアミド類(例、メチレンビスアクリルアミド)およびビスメタクリルアミド類が含まれる。粒子間のミクロボイドは、微粒子を少なくとも2個以上積み重ねることにより形成することができる。   The microvoids in the organic fine particles can be formed, for example, by crosslinking a polymer that forms the particles. Crosslinking the polymer reduces the volume and makes the particles porous. In order to crosslink the polymer forming the particles, it is preferable to use 20 mol% or more of the monomer for synthesizing the polymer as a polyfunctional monomer. The ratio of the polyfunctional monomer is more preferably 30 to 80 mol%, and most preferably 35 to 50 mol%. Examples of polyfunctional monomers include dienes (eg, butadiene, pentadiene), esters of polyhydric alcohols and acrylic acid (eg, ethylene glycol diacrylate, 1,4-cyclohexane diacrylate, dipentaerythritol hexaacrylate), Esters of polyhydric alcohol and methacrylic acid (eg, ethylene glycol dimethacrylate, 1,2,4-cyclohexanetetramethacrylate, pentaerythritol tetramethacrylate), divinyl compounds (eg, divinylcyclohexane, 1,4-divinylbenzene), divinyl Sulfones, bisacrylamides (eg, methylene bisacrylamide) and bismethacrylamides are included. Microvoids between particles can be formed by stacking at least two fine particles.

低屈折率層3を、微細空孔と微粒子状無機物とを有する材料によって構成してもよい。この場合、低屈折率層3はコーティングにより形成され、微細空孔は層の塗布後に活性化ガス処理を行ない、ガスが層から離脱することによって形成される。あるいは、2種類以上の超微粒子(例えば、MgF2とSiO2)を混在させて、膜厚方向にその混合比を変化させることによって低屈折率層3を形成してもよい。混合比を変化させることにより屈折率が変化する。超微粒子は、エチルシリケートの熱分解で生じたSiO2により接着している。エチルシリケートの熱分解では、エチル部分の燃焼によって、二酸化炭素と水蒸気も発生する。二酸化炭素と水蒸気が層から離脱することにより、超微粒子の間に間隙が生じている。あるいは、多孔質シリカよりなる無機微粉末とバインダーとを含有して低屈折率層3を形成してもよいし、含フッ素ポリマーからなる微粒子を2個以上積み重ねることにより、微粒子間に空隙を形成した低屈折率層3を形成してもよい。 The low refractive index layer 3 may be made of a material having fine pores and fine inorganic particles. In this case, the low-refractive index layer 3 is formed by coating, and the fine pores are formed by performing an activated gas treatment after applying the layer, and the gas is released from the layer. Alternatively, the low refractive index layer 3 may be formed by mixing two or more types of ultrafine particles (for example, MgF 2 and SiO 2 ) and changing the mixing ratio in the film thickness direction. The refractive index changes by changing the mixing ratio. The ultrafine particles are bonded by SiO 2 generated by the thermal decomposition of ethyl silicate. In the thermal decomposition of ethyl silicate, carbon dioxide and water vapor are also generated by combustion of the ethyl portion. Since carbon dioxide and water vapor are separated from the layer, a gap is formed between the ultrafine particles. Alternatively, the low refractive index layer 3 may be formed by containing inorganic fine powder made of porous silica and a binder, and voids are formed between the fine particles by stacking two or more fine particles made of a fluorine-containing polymer. The low refractive index layer 3 may be formed.

分子構造レベルで空隙率を向上させることもできる。例えばデンドリマーなどの分岐構造を有するポリマーを用いても低屈折率が得られる。   Porosity can also be improved at the molecular structure level. For example, a low refractive index can be obtained by using a polymer having a branched structure such as a dendrimer.

そして、上記の材料を用いて、低屈折率層3は、屈折率が1.5以下に設定されていることが望ましく、1.2以下であることがさらに好ましい。   The low refractive index layer 3 is desirably set to have a refractive index of 1.5 or less, and more preferably 1.2 or less, using the above materials.

《第2実施形態》
図3に本発明の有機エレクトロルミネッセンス表示装置の第2実施形態を示す。なお、図3を用いた説明において上記第1実施形態と同一あるいは同等の構成部分については説明を省略する。
図3において、有機エレクトロルミネッセンス表示装置1は、光を透過可能な基板2と、基板2の一方の面に設けられ一対の電極7,8に挟持された発光層5及び正孔輸送層6を備える有機エレクトロルミネッセンス素子9と、基板2と有機エレクトロルミネッセンス素子9のうち陽極8との間に設けられ、基板2より屈折率が低い低屈折率層(低屈折率膜)11とを備えている。低屈折率層11には、乾燥剤及び吸着剤の少なくとも一方が分散されている。
すなわち、本実施形態では封止層が無く、本実施形態に係る低屈折率層11は、第1実施形態で説明した低屈折率層を構成する材料に、乾燥剤あるいは吸着剤を分散したものである。
<< Second Embodiment >>
FIG. 3 shows a second embodiment of the organic electroluminescence display device of the present invention. In the description using FIG. 3, the description of the same or equivalent components as those in the first embodiment is omitted.
In FIG. 3, the organic electroluminescence display device 1 includes a substrate 2 capable of transmitting light, and a light emitting layer 5 and a hole transport layer 6 provided on one surface of the substrate 2 and sandwiched between a pair of electrodes 7 and 8. An organic electroluminescent element 9 provided, and a low refractive index layer (low refractive index film) 11 provided between the substrate 2 and the anode 8 of the organic electroluminescent element 9 and having a refractive index lower than that of the substrate 2 are provided. . In the low refractive index layer 11, at least one of a desiccant and an adsorbent is dispersed.
That is, in this embodiment, there is no sealing layer, and the low refractive index layer 11 according to this embodiment is obtained by dispersing a desiccant or an adsorbent in the material constituting the low refractive index layer described in the first embodiment. It is.

低屈折率層11は、例えばアクリル樹脂やエポキシ樹脂などの光透過可能且つ基板2より低い屈折率を有する合成樹脂に粉末乾燥剤を混入したものである。合成樹脂に乾燥剤の粉末が混入されているので、低屈折率層11を透過する水分を低減することができる。また、樹脂としては、エポキシ樹脂など2液混合もしくは紫外線照射によって硬化するタイプのものを用いるのがよい。加熱によって有機エレクトロルミネッセンス素子9が劣化する恐れがない場合は、加熱して硬化させるタイプのものを用いても良い。乾燥剤は、低屈折率層11を硬化させる前に混入し、充分に練り合わせてから樹脂を硬化させると、低屈折率層11中に均等に混入させることができる。乾燥剤としては、化学吸着性の物質を用いることができる。化学吸着性の乾燥剤の例としては、例えば酸化カルシウム、酸化バリウム等のアルカリ土類金属の酸化物、塩化カルシウム等のアルカリ土類金属のハロゲン化物、五酸化リンなどが挙げられる。この他、例えば、酸性白土、モンモリナイト、珪藻土、活性アルミナ、シリカアルミナ、ゼオライト、シリカ、ジルコニアなども使用可能である。   The low refractive index layer 11 is obtained by mixing a powder desiccant with a synthetic resin that can transmit light and has a refractive index lower than that of the substrate 2 such as an acrylic resin or an epoxy resin. Since the powder of the desiccant is mixed in the synthetic resin, the moisture that permeates the low refractive index layer 11 can be reduced. As the resin, it is preferable to use a resin that is cured by mixing two liquids such as an epoxy resin or by ultraviolet irradiation. When there is no fear that the organic electroluminescence element 9 is deteriorated by heating, a type that is cured by heating may be used. The desiccant is mixed before the low refractive index layer 11 is cured, and can be evenly mixed into the low refractive index layer 11 when the resin is cured after sufficiently kneading. As the desiccant, a chemisorbable substance can be used. Examples of the chemisorbing desiccant include oxides of alkaline earth metals such as calcium oxide and barium oxide, halides of alkaline earth metals such as calcium chloride, and phosphorus pentoxide. In addition, for example, acid clay, montmorillonite, diatomaceous earth, activated alumina, silica alumina, zeolite, silica, zirconia and the like can be used.

以上説明したように、低屈折率層11の主成分が合成樹脂など通気性の高いものであっても、乾燥剤の粒子を分散させることによって、低屈折率層11に封止機能(バリア機能)を付与できる。したがって、基板側2からの酸素や水分などの素子劣化の要因となる成分の侵入を低屈折率層11によって抑えることができ、良好な発光特性を維持できる。   As described above, even if the main component of the low refractive index layer 11 is a highly breathable material such as a synthetic resin, a sealing function (barrier function) is formed in the low refractive index layer 11 by dispersing the desiccant particles. ). Therefore, intrusion of components such as oxygen and moisture from the substrate side 2 that cause deterioration of the element can be suppressed by the low refractive index layer 11, and good light emission characteristics can be maintained.

そして、本実施形態においても、乾燥剤を含む低屈折率層11を膜状部材(低屈折率膜)として予め形成しておき、この膜状部材を基板2と陽極8との間に配置させるようにしてもよい。   Also in the present embodiment, the low refractive index layer 11 containing the desiccant is formed in advance as a film member (low refractive index film), and this film member is disposed between the substrate 2 and the anode 8. You may do it.

更に、第1実施形態で示した低屈折率層と封止層とを有する積層膜と、第2実施形態で示した乾燥剤あるいは吸着剤が分散された低屈折率膜とを組み合わせて多層積層膜として用いることももちろん可能である。   Further, the multilayer film having the low refractive index layer and the sealing layer shown in the first embodiment and the low refractive index film in which the desiccant or the adsorbent dispersed in the second embodiment is combined to form a multilayer stack. Of course, it can be used as a film.

《第3実施形態》
次に、第3実施形態として、本発明に係る電気光学装置の具体的な構成例について図4,図5,図6を参照しながら説明する。
図4,図5は本発明に係る電気光学装置を、有機エレクトロルミネッセンス素子を用いたアクティブマトリクス型の表示装置に適用した場合の一例を示すものである。
<< Third Embodiment >>
Next, as a third embodiment, a specific configuration example of the electro-optical device according to the invention will be described with reference to FIGS. 4, 5, and 6.
4 and 5 show an example in which the electro-optical device according to the present invention is applied to an active matrix display device using an organic electroluminescence element.

この有機エレクトロルミネッセンス表示装置S1は、回路図である図4に示すように基板上に、複数の走査線131と、これら走査線131に対して交差する方向に延びる複数の信号線132と、これら信号線132に並列に延びる複数の共通給電線133とがそれぞれ配線されたもので、走査線131及び信号線132の各交点毎に、画素(画素領域素)ARが設けられて構成されたものである。   As shown in FIG. 4 which is a circuit diagram, the organic electroluminescence display device S1 includes a plurality of scanning lines 131, a plurality of signal lines 132 extending in a direction intersecting with the scanning lines 131, and these. A plurality of common power supply lines 133 extending in parallel to the signal line 132 are respectively wired, and each pixel has a pixel (pixel area element) AR at each intersection of the scanning line 131 and the signal line 132. It is.

信号線132に対しては、シフトレジスタ、レベルシフタ、ビデオライン、アナログスイッチを備えるデータ線駆動回路90が設けられている。
一方、走査線131に対しては、シフトレジスタ及びレベルシフタを備える走査線駆動回路80が設けられている。また、画素領域ARの各々には、走査線131を介して走査信号がゲート電極に供給される第1の薄膜トランジスタ22と、この第1の薄膜トランジスタ22を介して信号線132から供給される画像信号を保持する保持容量capと、保持容量capによって保持された画像信号がゲート電極に供給される第2の薄膜トランジスタ24と、この第2の薄膜トランジスタ24を介して共通給電線133に電気的に接続したときに共通給電線133から駆動電流が流れ込む画素電極23と、この画素電極(陽極)23と対向電極(陰極)222との間に挟み込まれる発光部(発光層)60とが設けられている。
For the signal line 132, a data line driving circuit 90 including a shift register, a level shifter, a video line, and an analog switch is provided.
On the other hand, for the scanning line 131, a scanning line driving circuit 80 including a shift register and a level shifter is provided. Further, in each of the pixel regions AR, a first thin film transistor 22 to which a scanning signal is supplied to the gate electrode via the scanning line 131 and an image signal supplied from the signal line 132 via the first thin film transistor 22. Is electrically connected to the common power supply line 133 through the second thin film transistor 24, the second thin film transistor 24 to which the image signal held by the storage capacitor cap is supplied to the gate electrode, and the second thin film transistor 24. A pixel electrode 23 into which a driving current sometimes flows from the common power supply line 133 and a light emitting portion (light emitting layer) 60 sandwiched between the pixel electrode (anode) 23 and the counter electrode (cathode) 222 are provided.

このような構成のもとに、走査線131が駆動されて第1の薄膜トランジスタ22がオンとなると、そのときの信号線132の電位が保持容量capに保持され、該保持容量capの状態に応じて、第2の薄膜トランジスタ24の導通状態が決まる。そして、第2の薄膜トランジスタ24のチャネルを介して共通給電線133から画素電極23に電流が流れ、さらに発光層60を通じて対向電極222に電流が流れることにより、発光層60は、これを流れる電流量に応じて発光するようになる。   Under such a configuration, when the scanning line 131 is driven and the first thin film transistor 22 is turned on, the potential of the signal line 132 at that time is held in the holding capacitor cap, and according to the state of the holding capacitor cap. Thus, the conduction state of the second thin film transistor 24 is determined. Then, a current flows from the common power supply line 133 to the pixel electrode 23 through the channel of the second thin film transistor 24, and further, a current flows to the counter electrode 222 through the light emitting layer 60, whereby the light emitting layer 60 has an amount of current flowing therethrough. In response to the light emission.

ここで、各画素ARの平面構造は、対向電極や有機エレクトロルミネッセンス素子を取り除いた状態での拡大平面図である図5に示すように、平面形状が長方形の画素電極23の四辺が、信号線132、共通給電線133、走査線131及び図示しない他の画素電極用の走査線によって囲まれた配置となっている。   Here, the planar structure of each pixel AR is an enlarged plan view with the counter electrode and the organic electroluminescence element removed, as shown in FIG. 132, the common power supply line 133, the scanning line 131, and other pixel electrode scanning lines (not shown).

図6は図5のA−A矢視断面図である。ここで、図6に示す有機エレクトロルミネッセンス表示装置は、薄膜トランジスタ(TFT:Thin Film Transistor)が配置された基板2側とは反対側から光を取り出す形態を採っている。
図6に示すように、有機エレクトロルミネッセンス表示装置S1は、基板2と、インジウム錫酸化物(ITO:Indium Tin Oxide)等の透明電極材料からなる陽極(画素電極)23と、陽極23から正孔を輸送可能な正孔輸送層70と、電気光学物質の1つである有機エレクトロルミネッセンス物質を含む発光層(有機エレクトロルミネッセンス層、電気光学素子)60と、発光層60の上面に設けられている電子輸送層50と、電子輸送層50の上面に設けられているアルミニウム(Al)やマグネシウム(Mg)、金(Au)、銀(Ag)、カルシウム(Ca)等の金属のうち少なくとも1つからなる陰極(対向電極)222と、基板2上に形成され、画素電極23にデータ信号を書き込むか否かを制御する通電制御部としての薄膜トランジスタ(以下、「TFT」と称する)24とを有している。更に、陰極222の上層、すなわち発光層60からの光が外部に取り出される側には、低屈折率層3及び封止層4からなる積層膜20が設けられている。なお、図6では、低屈折率層3が陰極222の上層に配置され、最上層に封止層4が配置されている構成であるが、陰極222の上層に封止層4を配置し、この封止層4の上層に低屈折率層3を配置する構成としてもよい。また、陰極222上に有機材料または無機材料からなるパッシベーション膜あるいは保護膜、または平坦化膜を形成し、その上に低屈折率層3あるいは封止層4を設けても良い。TFT24は、走査線駆動回路80及びデータ線駆動回路90からの作動指令信号に基づいて作動し、画素電極23への通電制御を行う。
6 is a cross-sectional view taken along arrow AA in FIG. Here, the organic electroluminescence display device shown in FIG. 6 takes a form in which light is extracted from the side opposite to the substrate 2 side where a thin film transistor (TFT) is disposed.
As shown in FIG. 6, the organic electroluminescence display device S 1 includes a substrate 2, an anode (pixel electrode) 23 made of a transparent electrode material such as indium tin oxide (ITO), and holes from the anode 23. Are provided on the upper surface of the light emitting layer 60, a light emitting layer (organic electroluminescent layer, electrooptical element) 60 containing an organic electroluminescent material that is one of the electrooptical materials, and a light emitting layer 60. From the electron transport layer 50 and at least one of metals such as aluminum (Al), magnesium (Mg), gold (Au), silver (Ag), and calcium (Ca) provided on the upper surface of the electron transport layer 50 A cathode (counter electrode) 222 formed on the substrate 2 and a thin film transistor as an energization control unit for controlling whether or not to write a data signal to the pixel electrode 23 (Hereinafter referred to as “TFT”) 24. Further, the laminated film 20 including the low refractive index layer 3 and the sealing layer 4 is provided on the upper layer of the cathode 222, that is, on the side from which the light from the light emitting layer 60 is extracted. In FIG. 6, the low refractive index layer 3 is arranged on the upper layer of the cathode 222 and the sealing layer 4 is arranged on the uppermost layer. However, the sealing layer 4 is arranged on the upper layer of the cathode 222, The low refractive index layer 3 may be disposed on the upper layer of the sealing layer 4. Alternatively, a passivation film, a protective film, or a planarizing film made of an organic material or an inorganic material may be formed on the cathode 222, and the low refractive index layer 3 or the sealing layer 4 may be provided thereon. The TFT 24 operates based on an operation command signal from the scanning line driving circuit 80 and the data line driving circuit 90 and performs energization control to the pixel electrode 23.

TFT24は、SiO2を主体とする下地保護層281を介して基板2の表面に設けられている。このTFT24は、下地保護層281の上層に形成されたシリコン層241と、シリコン層241を覆うように下地保護層281の上層に設けられたゲート絶縁層282と、ゲート絶縁層282の上面のうちシリコン層241に対向する部分に設けられたゲート電極242と、ゲート電極242を覆うようにゲート絶縁層282の上層に設けられた第1層間絶縁層283と、ゲート絶縁層282及び第1層間絶縁層283にわたって開孔するコンタクトホールを介してシリコン層241と接続するソース電極243と、ゲート電極242を挟んでソース電極243と対向する位置に設けられ、ゲート絶縁層282及び第1層間絶縁層283にわたって開孔するコンタクトホールを介してシリコン層241と接続するドレイン電極244と、ソース電極243及びドレイン電極244を覆うように第1層間絶縁層283の上層に設けられた第2層間絶縁層284とを備えている。 The TFT 24 is provided on the surface of the substrate 2 via a base protective layer 281 mainly composed of SiO 2 . The TFT 24 includes a silicon layer 241 formed on the base protective layer 281, a gate insulating layer 282 provided on the base protective layer 281 so as to cover the silicon layer 241, and an upper surface of the gate insulating layer 282. A gate electrode 242 provided in a portion facing the silicon layer 241; a first interlayer insulating layer 283 provided above the gate insulating layer 282 so as to cover the gate electrode 242; a gate insulating layer 282 and a first interlayer insulating layer A source electrode 243 connected to the silicon layer 241 through a contact hole opened over the layer 283, and a position facing the source electrode 243 with the gate electrode 242 interposed therebetween. The gate insulating layer 282 and the first interlayer insulating layer 283 are provided. A drain electrode 244 connected to the silicon layer 241 through a contact hole opened over the And a second interlayer insulating layer 284 provided on an upper layer of the first interlayer insulating layer 283 to cover the source electrode 243 and drain electrode 244.

そして、第2層間絶縁層284の上面に画素電極23が配置され、画素電極23とドレイン電極244とは、第2層間絶縁層284に設けられたコンタクトホール23aを介して接続されている。また、第2層間絶縁層284の表面のうち有機エレクトロルミネッセンス素子が設けられている以外の部分と陰極222との間には、合成樹脂などからなる第3絶縁層(バンク層)221が設けられている。   The pixel electrode 23 is disposed on the upper surface of the second interlayer insulating layer 284, and the pixel electrode 23 and the drain electrode 244 are connected through a contact hole 23 a provided in the second interlayer insulating layer 284. Further, a third insulating layer (bank layer) 221 made of a synthetic resin or the like is provided between a portion of the surface of the second interlayer insulating layer 284 other than the portion where the organic electroluminescence element is provided and the cathode 222. ing.

なお、シリコン層241のうち、ゲート絶縁層282を挟んでゲート電極242と重なる領域がチャネル領域とされている。また、シリコン層241のうち、チャネル領域のソース側にはソース領域が設けられている一方、チャネル領域のドレイン側にはドレイン領域が設けられている。このうち、ソース領域が、ゲート絶縁層282と第1層間絶縁層283とにわたって開孔するコンタクトホールを介して、ソース電極243に接続されている。一方、ドレイン領域が、ゲート絶縁層282と第1層間絶縁層283とにわたって開孔するコンタクトホールを介して、ソース電極243と同一層からなるドレイン電極244に接続されている。画素電極23は、ドレイン電極244を介して、シリコン層241のドレイン領域に接続されている。   Note that a region of the silicon layer 241 that overlaps with the gate electrode 242 with the gate insulating layer 282 interposed therebetween is a channel region. In the silicon layer 241, a source region is provided on the source side of the channel region, and a drain region is provided on the drain side of the channel region. Among these, the source region is connected to the source electrode 243 through a contact hole that opens over the gate insulating layer 282 and the first interlayer insulating layer 283. On the other hand, the drain region is connected to the drain electrode 244 made of the same layer as the source electrode 243 through a contact hole that extends through the gate insulating layer 282 and the first interlayer insulating layer 283. The pixel electrode 23 is connected to the drain region of the silicon layer 241 through the drain electrode 244.

本例では、TFT24が設けられている基板2とは反対側から発光光を取り出す構成であるため、基板2は不透明であってもよく、その場合、アルミナ等のセラミック、ステンレス等の金属シートに表面酸化などの絶縁処理を施したもの、熱硬化性樹脂、熱可塑性樹脂などを用いることができる。   In this example, since the emitted light is extracted from the side opposite to the substrate 2 on which the TFT 24 is provided, the substrate 2 may be opaque. In this case, a ceramic sheet such as alumina or a metal sheet such as stainless steel is used. An insulating treatment such as surface oxidation, a thermosetting resin, a thermoplastic resin, or the like can be used.

一方、有機エレクトロルミネッセンス素子では後述するような、発光層からの発光光をTFTが設けられている基板側から取り出す構成とすることも可能である。発光光を基板側から取り出す構成とする場合、基板材料としてはガラスや石英、樹脂等の透明ないし半透明なものが用いられるが、特に安価なソーダガラスが好適に用いられる。ソーダガラスを用いた場合、これにシリカコートを施すのが、酸アルカリに弱いソーダガラスを保護する効果を有し、さらに基板の平坦性をよくする効果も有するため好ましい。
また、基板に色フィルター膜や発光性物質を含む色変換膜、あるいは誘電体反射膜を配置して、発光色を制御するようにしてもよい。
On the other hand, the organic electroluminescence element can be configured to take out light emitted from the light emitting layer from the substrate side on which the TFT is provided, as will be described later. In the case where the emitted light is extracted from the substrate side, transparent or translucent materials such as glass, quartz, and resin are used as the substrate material, but particularly inexpensive soda glass is preferably used. When soda glass is used, it is preferable to apply silica coating to the soda glass because it has an effect of protecting the soda glass that is weak against acid-alkali and further has an effect of improving the flatness of the substrate.
In addition, a color filter film, a color conversion film containing a luminescent substance, or a dielectric reflection film may be disposed on the substrate to control the emission color.

下地保護層281を形成する際には、基板2に対し、TEOS(テトラエトキシシラン)や酸素ガスなどを原料としてプラズマCVD法によって製膜することにより、下地保護層281として厚さ約200〜500nmのシリコン酸化膜が形成される。   When forming the base protective layer 281, the base protective layer 281 has a thickness of about 200 to 500 nm by forming a film on the substrate 2 by plasma CVD using TEOS (tetraethoxysilane) or oxygen gas as a raw material. A silicon oxide film is formed.

シリコン層241を形成する際には、まず、基板2の温度を約350℃に設定して、下地保護膜281の表面にプラズマCVD法あるいはICVD法により厚さ約30〜70nmのアモルファスシリコン層を形成する。次いで、このアモルファスシリコン層に対してレーザアニール法、急速加熱法、または固相成長法などによって結晶化工程を行い、アモルファスシリコン層をポリシリコン層に結晶化する。レーザアニール法では、例えばエキシマレーザでビームの長寸が400mmのラインビームを用い、その出力強度は例えば200mJ/cm2とする。ラインビームについては、その短寸方向におけるレーザ強度のピーク値の90%に相当する部分が各領域毎に重なるようにラインビームを走査する。次いで、ポリシリコン層をフォトリソグラフィ法によってパターンニングして、島状のシリコン層241とする。 When forming the silicon layer 241, first, the temperature of the substrate 2 is set to about 350 ° C., and an amorphous silicon layer having a thickness of about 30 to 70 nm is formed on the surface of the base protective film 281 by plasma CVD or ICVD. Form. Next, a crystallization process is performed on the amorphous silicon layer by a laser annealing method, a rapid heating method, a solid phase growth method, or the like to crystallize the amorphous silicon layer into a polysilicon layer. In the laser annealing method, for example, a line beam having a beam length of 400 mm is used with an excimer laser, and the output intensity is set to 200 mJ / cm 2 , for example. With respect to the line beam, the line beam is scanned so that a portion corresponding to 90% of the peak value of the laser intensity in the short dimension direction overlaps each region. Next, the polysilicon layer is patterned by a photolithography method to form an island-shaped silicon layer 241.

なお、シリコン層241は、図4に示した第2の薄膜トランジスタ24のチャネル領域及びソース・ドレイン領域となるものであるが、異なる断面位置においては第1の薄膜トランジスタ22のチャネル領域及びソース・ドレイン領域となる半導体膜も形成されている。つまり、二種類のトランジスタ22、24は同時に形成されるが、同じ手順で作られるため、以下の説明において、トランジスタに関しては、第2の薄膜トランジスタ24についてのみ説明し、第1の薄膜トランジスタ22についてはその説明を省略する。   Note that the silicon layer 241 serves as the channel region and the source / drain region of the second thin film transistor 24 shown in FIG. 4, but the channel region and the source / drain region of the first thin film transistor 22 at different cross-sectional positions. A semiconductor film is also formed. That is, the two types of transistors 22 and 24 are formed at the same time, but are manufactured in the same procedure. Therefore, in the following description, only the second thin film transistor 24 will be described with respect to the transistor, and the first thin film transistor 22 will be Description is omitted.

ゲート絶縁層282を形成する際には、シリコン層241の表面に対して、TEOSや酸素ガスなどを原料としてプラズマCVD法を用いて製膜することにより、厚さ約60〜150nmのシリコン酸化膜または窒化膜からなるゲート絶縁層282が形成される。また、ゲート絶縁層282を、多孔性を有するシリコン酸化膜(SiO2膜)としてもよい。多孔性を有するSiO2膜からなるゲート絶縁層282は、反応ガスとしてSi26とO3とを用いて、CVD法(化学的気相成長法)により形成される。これらの反応ガスを用いると、気相中に粒子の大きいSiO2が形成され、この粒子の大きいSiO2がシリコン層241や下地保護層281の上に堆積する。そのため、ゲート絶縁層282は、層中に多くの空隙を有し、多孔質体となる。そして、ゲート絶縁層282は多孔質体となることによって低誘電率を有するようになる。 When forming the gate insulating layer 282, a silicon oxide film having a thickness of about 60 to 150 nm is formed on the surface of the silicon layer 241 by using a plasma CVD method using TEOS or oxygen gas as a raw material. Alternatively, a gate insulating layer 282 made of a nitride film is formed. The gate insulating layer 282 may be a porous silicon oxide film (SiO 2 film). The gate insulating layer 282 made of a porous SiO 2 film is formed by CVD (chemical vapor deposition) using Si 2 H 6 and O 3 as reaction gases. Using these reaction gases, high SiO 2 particles in the gas phase is formed, a large SiO 2 of the particles are deposited on the silicon layer 241 and protective underlayer 281. Therefore, the gate insulating layer 282 has a large number of voids in the layer and becomes a porous body. The gate insulating layer 282 has a low dielectric constant by becoming a porous body.

なお、ゲート絶縁層282の表面にH(水素)プラズマ処理をしてもよい。これにより、空隙の表面のSi−O結合中のダングリングボンドがSi−H結合に置き換えられ、膜の耐吸湿性が良くなる。そして、このプラズマ処理されたゲート絶縁層282の表面に別のSiO2層を設けてもよい。こうすることにより、誘電率な絶縁層が形成できる。
また、ゲート絶縁層282をCVD法で形成する際の反応ガスは、Si26+O3の他に、Si26+O2、Si38+O3、Si38+O2としてもよい。更に、上記の反応ガスに加えて、B(ホウ素)含有の反応ガス、F(フッ素)含有の反応ガスを用いてもよい。
Note that the surface of the gate insulating layer 282 may be subjected to H (hydrogen) plasma treatment. Thereby, dangling bonds in Si—O bonds on the surface of the voids are replaced with Si—H bonds, and the moisture absorption resistance of the film is improved. Then, another SiO 2 layer may be provided on the surface of the plasma-treated gate insulating layer 282. By doing so, an insulating layer having a dielectric constant can be formed.
In addition to Si 2 H 6 + O 3 , the reaction gas for forming the gate insulating layer 282 by the CVD method may be Si 2 H 6 + O 2 , Si 3 H 8 + O 3 , or Si 3 H 8 + O 2. Good. Furthermore, in addition to the above reaction gas, a reaction gas containing B (boron) or a reaction gas containing F (fluorine) may be used.

更に、多孔質体であるゲート絶縁層282を形成する際、多孔性を有するSiO2膜と、通常の減圧化学的気相成長法により形成されたSiO2膜とを積層することにより、膜質の安定した多孔質体としてのゲート絶縁層282を形成することもできる。そして、これらの膜を積層するには、減圧下におけるSiH4とO2の雰囲気中において、プラズマを断続的、又は周期的に発生させることによって可能となる。具体的には、ゲート絶縁層282は、基板2を所定のチャンバ内に収容し、例えば400℃に保持しながら、反応ガスとしてSiH4とO2を用い、RF電圧(高周波電圧)をチャンバに印加することにより形成される。成膜中においては、SiH4流量、O2流量が一定であるのに対し、RF電圧は10秒の周期でチャンバに印加される。これにともない、プラズマが10秒の周期で発生、消滅する。このように、時間変化するプラズマを用いることにより、1つのチャンバー内で、減圧CVDを用いるプロセスと、減圧下におけるプラズマCVDを用いるプロセスとを繰り返し行うことができる。そして、減圧CVDと減圧下におけるプラズマCVDとを繰り返し行うことにより、膜中に多数の空隙を有するSiO2膜が形成される。すなわち、ゲート絶縁層282は多孔性を有することになる。 Furthermore, when forming the gate insulating layer 282 is a porous material, and the SiO 2 film having a porosity, by laminating a SiO 2 film formed by normal pressure chemical vapor deposition, the film quality The gate insulating layer 282 as a stable porous body can also be formed. These films can be laminated by generating plasma intermittently or periodically in an atmosphere of SiH 4 and O 2 under reduced pressure. Specifically, the gate insulating layer 282 contains the substrate 2 in a predetermined chamber, and keeps the substrate 2 at, for example, 400 ° C., and uses SiH 4 and O 2 as reaction gases, and supplies an RF voltage (high frequency voltage) to the chamber. It is formed by applying. During film formation, the SiH 4 flow rate and the O 2 flow rate are constant, whereas the RF voltage is applied to the chamber at a cycle of 10 seconds. As a result, plasma is generated and extinguished at a cycle of 10 seconds. In this manner, by using time-varying plasma, a process using low-pressure CVD and a process using plasma CVD under reduced pressure can be repeatedly performed in one chamber. Then, by repeating the low pressure CVD and the plasma CVD under the reduced pressure, a SiO 2 film having a large number of voids in the film is formed. That is, the gate insulating layer 282 is porous.

ゲート電極242は、ゲート絶縁層282上にアルミニウム、タンタル、モリブデン、チタン、タングステンなどの金属を含む導電膜をスパッタ法により形成した後、これをパターニングすることにより形成される。   The gate electrode 242 is formed by forming a conductive film containing a metal such as aluminum, tantalum, molybdenum, titanium, or tungsten over the gate insulating layer 282 by sputtering and then patterning the conductive film.

シリコン層241にソース領域及びドレイン領域を形成するには、ゲート電極242を形成した後、このゲート電極242をパターニング用マスクとして用い、この状態でリンイオンを注入する。その結果、ゲート電極242に対してセルフアライン的に高濃度不純物が導入されて、シリコン層241中にソース領域及びドレイン領域が形成される。なお、不純物が導入されなかった部分がチャネル領域となる。   In order to form the source region and the drain region in the silicon layer 241, after forming the gate electrode 242, the gate electrode 242 is used as a patterning mask, and phosphorus ions are implanted in this state. As a result, high-concentration impurities are introduced in a self-aligned manner with respect to the gate electrode 242, so that a source region and a drain region are formed in the silicon layer 241. Note that a portion where no impurity is introduced becomes a channel region.

第1層間絶縁層283は、ゲート絶縁層282同様、シリコン酸化膜または窒化膜、多孔性を有するシリコン酸化膜などによって構成され、ゲート絶縁層282の形成方法と同様の手順でゲート絶縁層282の上層に形成される。   The first interlayer insulating layer 283 is composed of a silicon oxide film or a nitride film, a porous silicon oxide film, etc., like the gate insulating layer 282, and is formed of the gate insulating layer 282 in the same procedure as the method for forming the gate insulating layer 282. It is formed in the upper layer.

ソース電極243及びドレイン電極244を形成するには、まず、第1層間絶縁層283にフォトリソグラフィ法を用いてパターニングすることにより、ソース電極及びドレイン電極に対応するコンタクトホールを形成する。次に、第1層間絶縁層283を覆うように、アルミニウムやクロム、タンタル等の金属からなる導電層を形成した後、この導電層のうち、ソース電極及びドレイン電極が形成されるべき領域を覆うようにパターニング用マスクを設けるとともに、導電層をパターニングすることにより、ソース電極243及びドレイン電極244が形成される。   In order to form the source electrode 243 and the drain electrode 244, first, contact holes corresponding to the source electrode and the drain electrode are formed by patterning the first interlayer insulating layer 283 using a photolithography method. Next, a conductive layer made of a metal such as aluminum, chromium, or tantalum is formed so as to cover the first interlayer insulating layer 283, and then a region in which the source electrode and the drain electrode are to be formed is covered. The source electrode 243 and the drain electrode 244 are formed by providing a patterning mask and patterning the conductive layer.

第2層間絶縁層284は、第1層間絶縁層283同様、シリコン酸化膜または窒化膜、多孔性を有するシリコン酸化膜などによって構成され、第1層間絶縁層283の形成方法と同様の手順で第1層間絶縁層283の上層に形成される。ここで、第2層間絶縁層284を形成したら、第2層間絶縁層284のうちドレイン電極244に対応する部分にコンタクトホール23aを形成する。   Like the first interlayer insulating layer 283, the second interlayer insulating layer 284 is composed of a silicon oxide film or a nitride film, a porous silicon oxide film, and the like. The second interlayer insulating layer 284 is formed in the same procedure as the method for forming the first interlayer insulating layer 283. It is formed in the upper layer of one interlayer insulating layer 283. Here, when the second interlayer insulating layer 284 is formed, a contact hole 23 a is formed in a portion corresponding to the drain electrode 244 in the second interlayer insulating layer 284.

有機エレクトロルミネッセンス素子に接続する陽極23は、ITOやフッ素をドープしてなるSnO2、更にZnOやポリアミン等の透明電極材料からなり、コンタクトホール23aを介してTFT24のドレイン電極244に接続されている。陽極23を形成するには、前記透明電極材料からなる膜を第2層間絶縁層284上面に形成し、この膜をパターニングすることにより形成される。 The anode 23 connected to the organic electroluminescence element is made of transparent electrode material such as SnO 2 doped with ITO or fluorine, ZnO or polyamine, and is connected to the drain electrode 244 of the TFT 24 through the contact hole 23a. . In order to form the anode 23, a film made of the transparent electrode material is formed on the upper surface of the second interlayer insulating layer 284, and this film is patterned.

第3絶縁層221はアクリル樹脂、ポリイミド樹脂などの合成樹脂によって構成されている。第3絶縁層221は、陽極23が形成された後に形成される。具体的な第3絶縁層221の形成方法としては、例えば、アクリル樹脂、ポリイミド樹脂などのレジストを溶媒に融かしたものを、スピンコート、ディップコート等により塗布して絶縁層を形成する。なお、絶縁層の構成材料は、後述するインクの溶媒に溶解せず、しかもエッチング等によってパターニングしやすいものであればどのようなものでもよい。更に、絶縁層をフォトリソグラフィ技術等により同時にエッチングして、開口部221aを形成することにより、開口部221aを備えた第3絶縁層221が形成される。   The third insulating layer 221 is made of a synthetic resin such as an acrylic resin or a polyimide resin. The third insulating layer 221 is formed after the anode 23 is formed. As a specific method for forming the third insulating layer 221, for example, an insulating layer is formed by applying a resist such as acrylic resin or polyimide resin melted in a solvent by spin coating, dip coating, or the like. The constituent material of the insulating layer may be any material as long as it does not dissolve in the ink solvent described below and can be easily patterned by etching or the like. Further, the insulating layer is simultaneously etched by a photolithography technique or the like to form the opening 221a, whereby the third insulating layer 221 having the opening 221a is formed.

ここで、第3絶縁層221の表面には、親インク性を示す領域と、撥インク性を示す領域とが形成される。本実施形態においてはプラズマ処理工程により、各領域を形成するものとしている。具体的にプラズマ処理工程は、予備加熱工程と、開口部221aの壁面並びに画素電極23の電極面を親インク性にする親インク化工程と、第3絶縁層221の上面を撥インク性にする撥インク化工程と、冷却工程とを有している。
すなわち、基材(第3絶縁層等を含む基板2)を所定温度(例えば70〜80土程度)に加熱し、次いで親インク化工程として大気雰囲気中で酸素を反応ガスとするプラズマ処理(O2プラスマ処理)を行う。続いて、撥インク化工程として大気雰囲気中で4フッ化メタンを反応ガスとするプラスマ処理(CF4プラスマ処理)を行い、プラズマ処理のために加熱された基材を室温まで冷却することで、親インク性及び撥インク性が所定箇所に付与されることとなる。なお、画素電極23の電極面についても、このCF4プラスマ処理の影響を多少受けるが、画素電極23の材料であるITO等はフッ素に対する親和性に乏しいため、親インク化工程で付与された水酸基がフッ素基で置換されることがなく、親インク性が保たれる。
Here, a region showing ink affinity and a region showing ink repellency are formed on the surface of the third insulating layer 221. In the present embodiment, each region is formed by a plasma treatment process. Specifically, the plasma treatment process includes a preliminary heating process, an ink repellency process for making the wall surface of the opening 221a and the electrode surface of the pixel electrode 23 ink-philic, and an upper surface of the third insulating layer 221 having ink repellency. It has an ink repellent process and a cooling process.
That is, the base material (the substrate 2 including the third insulating layer and the like) is heated to a predetermined temperature (for example, about 70 to 80 soils), and then plasma treatment using oxygen as a reactive gas in an atmospheric atmosphere (O 2 Plasma processing). Subsequently, a plasma treatment (CF 4 plasma treatment) using methane tetrafluoride as a reactive gas in an air atmosphere as an ink repellent process is performed, and the substrate heated for the plasma treatment is cooled to room temperature. Ink affinity and ink repellency are imparted to predetermined locations. The electrode surface of the pixel electrode 23 is also somewhat affected by this CF 4 plasma treatment. However, since ITO or the like, which is the material of the pixel electrode 23, has a poor affinity for fluorine, the hydroxyl group imparted in the ink-philic step is used. Is not substituted with a fluorine group, and ink affinity is maintained.

正孔輸送層70は陽極23の上面に形成されている。ここで、正孔輸送層70の形成材料としては、特に限定されることなく公知のものが使用可能であり、例えばピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体等が挙げられる。具体的には、特開昭63−70257号、同63−175860号公報、特開平2−135359号、同2−135361号、同2−209988号、同3−37992号、同3−152184号公報に記載されているもの等が例示されるが、トリフェニルジアミン誘導体が好ましく、中でも4,4'−ビス(N(3−メチルフェニル)−N−フェニルアミノ)ビフェニルが好適とされる。   The hole transport layer 70 is formed on the upper surface of the anode 23. Here, the material for forming the hole transport layer 70 is not particularly limited, and known materials can be used, and examples thereof include pyrazoline derivatives, arylamine derivatives, stilbene derivatives, and triphenyldiamine derivatives. Specifically, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, JP-A-2-209998, JP-A-3-37992, and JP-A-3-152184. Examples described in the publication are exemplified, but a triphenyldiamine derivative is preferable, and 4,4′-bis (N (3-methylphenyl) -N-phenylamino) biphenyl is particularly preferable.

なお、正孔輸送層に代えて正孔注入層を形成するようにしてもよく、さらに正孔注入層と正孔輸送層を両方形成するようにしてもよい。その場合、正孔注入層の形成材料としては、例えば銅フタロシアニン(CuPc)や、ポリテトラヒドロチオフェニルフェニレンであるポリフェニレンビニレン、1,1−ビス−(4−N,N−ジトリルアミノフェニル)シクロヘキサン、トリス(8−ヒドロキシキノリノール)アルミニウム等が挙げられるが、特に銅フタロシアニン(CuPc)を用いるのが好ましい。   Note that a hole injection layer may be formed instead of the hole transport layer, and both the hole injection layer and the hole transport layer may be formed. In this case, as a material for forming the hole injection layer, for example, copper phthalocyanine (CuPc), polytetravinylthiophene polyphenylene vinylene, 1,1-bis- (4-N, N-ditolylaminophenyl) cyclohexane , Tris (8-hydroxyquinolinol) aluminum and the like, and copper phthalocyanine (CuPc) is particularly preferable.

正孔注入/輸送層70を形成する際には、インクジェット法を用いることができる。すなわち、上述した正孔注入/輸送層材料を含む組成物インクを陽極23の電極面上に吐出した後に、乾燥処理及び熱処理を行うことにより、電極23上に正孔注入/輸送層70が形成される。なお、この正孔注入/輸送層形成工程以降は、正孔注入/輸送層70及び発光層(有機エレクトロルミネッセンス層)60の酸化を防止すべく、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気で行うことが好ましい。例えば、インクジェットヘッド(不図示)に正孔注入/輸送層材料を含む組成物インクを充填し、インクジェットヘッドの吐出ノズルを陽極23の電極面に対向させ、インクジェットヘッドと基材(基板2)とを相対移動させながら、吐出ノズルから1滴当たりの液量が制御されたインキ滴を電極面に吐出する。次に、吐出後のインク滴を乾燥処理して組成物インクに含まれる極性溶媒を蒸発させることにより、正孔注入/輸送層70が形成される。   When the hole injection / transport layer 70 is formed, an ink jet method can be used. That is, after discharging the composition ink containing the hole injection / transport layer material described above onto the electrode surface of the anode 23, the hole injection / transport layer 70 is formed on the electrode 23 by performing a drying process and a heat treatment. Is done. After the hole injection / transport layer forming step, in order to prevent oxidation of the hole injection / transport layer 70 and the light emitting layer (organic electroluminescence layer) 60, an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere is used. Preferably it is done. For example, an inkjet head (not shown) is filled with a composition ink containing a hole injection / transport layer material, and the ejection nozzle of the inkjet head is made to face the electrode surface of the anode 23, and the inkjet head and the base material (substrate 2) While the ink is relatively moved, ink droplets whose liquid amount per droplet is controlled are ejected from the ejection nozzle onto the electrode surface. Next, the hole injection / transport layer 70 is formed by drying the ejected ink droplets to evaporate the polar solvent contained in the composition ink.

なお、組成物インクとしては、例えば、ポリエチレンジオキシチオフェン等のポリチオフェン誘導体と、ポリスチレンスルホン酸等との混合物を、イソプロピルアルコール等の極性溶媒に溶解させたものを用いることができる。ここで、吐出されたインク滴は、親インク処理された陽極23の電極面上に広がり、開口部221aの底部近傍に満たされる。その一方で、撥インク処理された第3絶縁層221の上面にはインク滴がはじかれて付着しない。したがって、インク滴が所定の吐出位置からはずれて第3絶縁層221の上面に吐出されたとしても、該上面がインク滴で濡れることがなく、はじかれたインク滴が第3絶縁層221の開口部221a内に転がり込むものとされている。   In addition, as a composition ink, what melt | dissolved the mixture of polythiophene derivatives, such as polyethylene dioxythiophene, polystyrene sulfonic acid, etc. in polar solvents, such as isopropyl alcohol, can be used, for example. Here, the ejected ink droplet spreads on the electrode surface of the anode 23 that has been subjected to the affinity ink treatment, and fills the vicinity of the bottom of the opening 221a. On the other hand, ink droplets are repelled and do not adhere to the upper surface of the third insulating layer 221 that has been subjected to ink repellent treatment. Therefore, even if the ink droplet is deviated from the predetermined ejection position and ejected onto the upper surface of the third insulating layer 221, the upper surface does not get wet with the ink droplet, and the repelled ink droplet is opened to the third insulating layer 221. It is supposed to roll into the portion 221a.

発光層60は、正孔注入/輸送層70上面に形成される。発光層60の形成材料としては、特に限定されることなく、低分子の有機発光色素や高分子発光体、すなわち各種の蛍光物質や燐光物質からなる発光物質が使用可能である。発光物質となる共役系高分子の中ではアリーレンビニレン構造を含むものが特に好ましい。低分子蛍光体では、例えばナフタレン誘導体、アントラセン誘導体、ペリレン誘導体、ポリメチン系、キサテン系、クマリン系、シアニン系などの色素類、8−ヒドロキノリンおよびその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエン誘導体等、または特開昭57−51781、同59−194393号公報等に記載されている公知のものが使用可能である。   The light emitting layer 60 is formed on the upper surface of the hole injection / transport layer 70. The material for forming the light emitting layer 60 is not particularly limited, and low molecular organic light emitting dyes and polymer light emitting materials, that is, light emitting materials composed of various fluorescent materials and phosphorescent materials can be used. Among conjugated polymers that serve as luminescent materials, those containing an arylene vinylene structure are particularly preferred. Examples of the low-molecular phosphors include naphthalene derivatives, anthracene derivatives, perylene derivatives, polymethine series, xanthene series, coumarin series, cyanine series pigments, 8-hydroquinoline and its metal complexes, aromatic amines, tetraphenylcyclo Pentadiene derivatives and the like, or known ones described in JP-A-57-51781 and 59-194393 can be used.

発光層60の形成材料として高分子蛍光体を用いる場合には、側鎖に蛍光基を有する高分子を用いることができるが、好ましくは共役系構造を主鎖に含むもので、特に、ポリチオフェン、ポリ−p−フェニレン、ポリアリーレンビニレン、ポリフルオレンおよびその誘導体が好ましい。中でもポリアリーレンビニレンおよびその誘導体が好ましい。該ポリアリーレンビニレンおよびその誘導体は、下記化学式(1)で示される繰り返し単位を全繰り返し単位の50モル%以上含む重合体である。繰り返し単位の構造にもよるが、化学式(1)で示される繰り返し単位が全繰り返し単位の70%以上であることがさらに好ましい。
−Ar−CR=CR'− (1)
〔ここで、Arは、共役結合に関与する炭素原子数が4個以上20個以下からなるアリーレン基または複素環化合物基、R、R'はそれぞれ独立に水素、炭素数1〜20のアルキル基、炭素数6〜20のアリール基、炭素数4〜20の複素環化合物、シアノ基からなる群から選ばれた基を示す。〕
In the case of using a polymeric fluorescent substance as a material for forming the light emitting layer 60, a polymer having a fluorescent group in the side chain can be used, but preferably includes a conjugated structure in the main chain, and in particular, polythiophene, Poly-p-phenylene, polyarylene vinylene, polyfluorene and derivatives thereof are preferred. Of these, polyarylene vinylene and its derivatives are preferred. The polyarylene vinylene and its derivatives are polymers containing 50 mol% or more of the repeating units represented by the following chemical formula (1) based on the total repeating units. Although it depends on the structure of the repeating unit, it is more preferable that the repeating unit represented by the chemical formula (1) is 70% or more of the entire repeating unit.
-Ar-CR = CR'- (1)
[Wherein Ar is an arylene group or heterocyclic compound group having 4 to 20 carbon atoms involved in the conjugated bond, R and R ′ are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms. , A group selected from the group consisting of an aryl group having 6 to 20 carbon atoms, a heterocyclic compound having 4 to 20 carbon atoms, and a cyano group. ]

該高分子蛍光体は、化学式(1)で示される繰り返し単位以外の繰り返し単位として、芳香族化合物基またはその誘導体、複素環化合物基またはその誘導体、およびそれらを組み合わせて得られる基などを含んでいてもよい。また、化学式(1)で示される繰り返し単位や他の繰り返し単位が、エーテル基、エステル基、アミド基、イミド基などを有する非共役の単位で連結されていてもよいし、繰り返し単位にそれらの非共役部分が含まれていてもよい。   The polymeric fluorescent substance includes an aromatic compound group or a derivative thereof, a heterocyclic compound group or a derivative thereof, and a group obtained by combining them as a repeating unit other than the repeating unit represented by the chemical formula (1). May be. In addition, the repeating unit represented by the chemical formula (1) and other repeating units may be linked by a non-conjugated unit having an ether group, an ester group, an amide group, an imide group, or the like, Non-conjugated moieties may be included.

前記高分子蛍光体において化学式(1)のArとしては、共役結合に関与する炭素原子数が4個以上20個以下からなるアリーレン基または複素環化合物基であり、下記の化学式(2)で示す芳香族化合物基またはその誘導体基、複素環化合物基またはその誘導体基、およびそれらを組み合わせて得られる基などが例示される。   In the polymer fluorescent substance, Ar in the chemical formula (1) is an arylene group or a heterocyclic compound group having 4 to 20 carbon atoms involved in the conjugated bond, and is represented by the following chemical formula (2). Examples include an aromatic compound group or a derivative group thereof, a heterocyclic compound group or a derivative group thereof, and a group obtained by combining them.

Figure 0004656074
(R1〜R92は、それぞれ独立に、水素、炭素数1〜20のアルキル基、アルコキシ基およびアルキルチオ基;炭素数6〜18のアリール基およびアリールオキシ基;ならびに炭素数4〜14の複素環化合物基からなる群から選ばれた基である。)
Figure 0004656074
(R1 to R92 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group and an alkylthio group; an aryl group and aryloxy group having 6 to 18 carbon atoms; and a heterocyclic compound having 4 to 14 carbon atoms. A group selected from the group consisting of groups.)

これらのなかでフェニレン基、置換フェニレン基、ビフェニレン基、置換ビフェニレン基、ナフタレンジイル基、置換ナフタレンジイル基、アントラセン−9,10−ジイル基、置換アントラセン−9,10−ジイル基、ピリジン−2,5−ジイル基、置換ピリジン−2,5−ジイル基、チエニレン基および置換チエニレン基が好ましい。さらに好ましくは、フェニレン基、ビフェニレン基、ナフタレンジイル基、ピリジン−2,5−ジイル基、チエニレン基である。   Among these, phenylene group, substituted phenylene group, biphenylene group, substituted biphenylene group, naphthalenediyl group, substituted naphthalenediyl group, anthracene-9,10-diyl group, substituted anthracene-9,10-diyl group, pyridine-2, 5-diyl group, substituted pyridine-2,5-diyl group, thienylene group and substituted thienylene group are preferred. More preferred are a phenylene group, a biphenylene group, a naphthalenediyl group, a pyridine-2,5-diyl group, and a thienylene group.

化学式(1)のR、R'が水素またはシアノ基以外の置換基である場合について述べると、炭素数1〜20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ラウリル基などが挙げられ、メチル基、エチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基が好ましい。アリール基としては、フェニル基、4−C1〜C12アルコキシフェニル基(C1〜C12は炭素数1〜12であることを示す。以下も同様である。)、4−C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基などが例示される。   When R and R ′ in the chemical formula (1) are hydrogen or a substituent other than a cyano group, the alkyl group having 1 to 20 carbon atoms includes a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Hexyl group, heptyl group, octyl group, decyl group, lauryl group and the like, and methyl group, ethyl group, pentyl group, hexyl group, heptyl group and octyl group are preferable. Examples of the aryl group include a phenyl group, a 4-C1-C12 alkoxyphenyl group (C1-C12 indicates that the number of carbon atoms is 1-12, and the same shall apply hereinafter), a 4-C1-C12 alkylphenyl group, 1 -A naphthyl group, 2-naphthyl group, etc. are illustrated.

溶媒可溶性の観点からは化学式(1)のArが、1つ以上の炭素数4〜20のアルキル基、アルコキシ基およびアルキルチオ基、炭素数6〜18のアリール基およびアリールオキシ基ならびに炭素数4〜14の複素環化合物基から選ばれた基を有していることが好ましい。   From the viewpoint of solvent solubility, Ar in the chemical formula (1) is one or more alkyl groups having 4 to 20 carbon atoms, alkoxy groups and alkylthio groups, aryl groups and aryloxy groups having 6 to 18 carbon atoms, and 4 to 4 carbon atoms. It preferably has a group selected from 14 heterocyclic compound groups.

これらの置換基としては以下のものが例示される。炭素数4〜20のアルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ラウリル基などが挙げられ、ペンチル基、ヘキシル基、ヘプチル基、オクチル基が好ましい。また、炭素数4〜20のアルコキシ基としては、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、デシルオキシ基、ラウリルオキシ基などが挙げられ、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基が好ましい。炭素数4〜20のアルキルチオ基としては、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、デシルオキシ基、ラウリルチオ基などが挙げられ、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基が好ましい。アリール基としては、フェニル基、4−C1〜C12アルコキシフェニル基、4−C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基などが例示される。アリールオキシ基としては、フェノキシ基が例示される。複素環化合物基としては2−チエニル基、2−ピロリル基、2−フリル基、2−、3−または4−ピリジル基などが例示される。これら置換基の数は、該高分子蛍光体の分子量と繰り返し単位の構成によっても異なるが、溶解性の高い高分子蛍光体を得る観点から、これらの置換基が分子量600当たり1つ以上であることがより好ましい。   Examples of these substituents are as follows. Examples of the alkyl group having 4 to 20 carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, and a lauryl group, and a pentyl group, a hexyl group, a heptyl group, and an octyl group are preferable. Examples of the alkoxy group having 4 to 20 carbon atoms include a butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, a decyloxy group, a lauryloxy group, and the like, such as a pentyloxy group and a hexyloxy group. , A heptyloxy group and an octyloxy group are preferable. Examples of the alkylthio group having 4 to 20 carbon atoms include a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, an octylthio group, a decyloxy group, and a laurylthio group, and a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group are preferable. Examples of the aryl group include a phenyl group, a 4-C1-C12 alkoxyphenyl group, a 4-C1-C12 alkylphenyl group, a 1-naphthyl group, and a 2-naphthyl group. A phenoxy group is illustrated as an aryloxy group. Examples of the heterocyclic compound group include a 2-thienyl group, 2-pyrrolyl group, 2-furyl group, 2-, 3- or 4-pyridyl group. The number of these substituents varies depending on the molecular weight of the polymeric fluorescent substance and the constitution of the repeating unit, but from the viewpoint of obtaining a highly soluble polymeric fluorescent substance, these substituents are one or more per 600 molecular weight. It is more preferable.

なお、前記高分子蛍光体は、ランダム、ブロックまたはグラフト共重合体であってもよいし、それらの中間的な構造を有する高分子、例えばブロック性を帯びたランダム共重合体であってもよい。蛍光の量子収率の高い高分子蛍光体を得る観点からは完全なランダム共重合体よりブロック性を帯びたランダム共重合体やブロックまたはグラフト共重合体が好ましい。また、ここで形成する有機エレクトロルミネッセンス素子は、薄膜からの蛍光を利用することから、該高分子蛍光体は固体状態で蛍光を有するものが用いられる。   The polymeric fluorescent substance may be a random, block or graft copolymer, or may be a polymer having an intermediate structure thereof, for example, a random copolymer having a block property. . From the viewpoint of obtaining a polymer fluorescent substance having a high fluorescence quantum yield, a random copolymer having a block property and a block or graft copolymer are preferable to a complete random copolymer. Moreover, since the organic electroluminescent element formed here utilizes fluorescence from a thin film, the polymer fluorescent substance having fluorescence in a solid state is used.

該高分子蛍光体に対して溶媒を使用する場合に、好適なものとしては、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、トルエン、キシレンなどが例示される。高分子蛍光体の構造や分子量にもよるが、通常はこれらの溶媒に0.1wt%以上溶解させることができる。
また、前記高分子蛍光体としては、分子量がポリスチレン換算で103〜107であることが好ましく、それらの重合度は繰り返し構造やその割合によっても変わる。成膜性の点から一般には繰り返し構造の合計数で好ましくは4〜10000、さらに好ましくは5〜3000、特に好ましくは10〜2000である。
When a solvent is used for the polymeric fluorescent substance, preferred examples include chloroform, methylene chloride, dichloroethane, tetrahydrofuran, toluene, xylene and the like. Although depending on the structure and molecular weight of the polymeric fluorescent substance, it can usually be dissolved in these solvents in an amount of 0.1 wt% or more.
Moreover, as said polymeric fluorescent substance, it is preferable that molecular weight is 10 < 3 > -10 < 7 > in polystyrene conversion, Their polymerization degree changes also with a repeating structure and its ratio. In general, the total number of repeating structures is preferably 4 to 10000, more preferably 5 to 3000, and particularly preferably 10 to 2000 from the viewpoint of film formability.

このような高分子蛍光体の合成法としては、特に限定されないものの、例えばアリーレン基にアルデヒド基が2つ結合したジアルデヒド化合物と、アリーレン基にハロゲン化メチル基が2つ結合した化合物とトリフェニルホスフィンとから得られるジホスホニウム塩からのWittig反応が例示される。また、他の合成法としては、アリーレン基にハロゲン化メチル基が2つ結合した化合物からの脱ハロゲン化水素法が例示される。さらに、アリーレン基にハロゲン化メチル基が2つ結合した化合物のスルホニウム塩をアルカリで重合して得られる中間体から熱処理により該高分子蛍光体を得るスルホニウム塩分解法が例示される。いずれの合成法においても、モノマーとして、アリーレン基以外の骨格を有する化合物を加え、その存在割合を変えることにより、生成する高分子蛍光体に含まれる繰り返し単位の構造を変えることができるので、化学式(1)で示される繰り返し単位が50モル%以上となるように加減して仕込み、共重合してもよい。これらのうち、Wittig反応による方法が、反応の制御や収率の点で好ましい。   The method for synthesizing such a polymeric fluorescent substance is not particularly limited. For example, a dialdehyde compound in which two aldehyde groups are bonded to an arylene group, a compound in which two halogenated methyl groups are bonded to an arylene group, and triphenyl A Wittig reaction from a diphosphonium salt obtained from phosphine is exemplified. As another synthesis method, a dehydrohalogenation method from a compound in which two halogenated methyl groups are bonded to an arylene group is exemplified. Further, a sulfonium salt decomposition method for obtaining the polymeric fluorescent substance by heat treatment from an intermediate obtained by polymerizing a sulfonium salt of a compound having two halogenated methyl groups bonded to an arylene group with an alkali is exemplified. In any of the synthesis methods, a compound having a skeleton other than an arylene group is added as a monomer, and by changing the abundance ratio, the structure of the repeating unit contained in the generated polymeric fluorescent substance can be changed. The repeating unit represented by (1) may be added and adjusted so as to be 50 mol% or more and copolymerized. Among these, the method by Wittig reaction is preferable in terms of reaction control and yield.

さらに具体的に、前記高分子蛍光体の1つの例であるアリーレンビニレン系共重合体の合成法を説明する。例えば、Wittig反応により高分子蛍光体を得る場合には、例えばまず、ビス(ハロゲン化メチル)化合物、より具体的には、例えば2,5−ジオクチルオキシ−p−キシリレンジブロミドをN,N−ジメチルホルムアミド溶媒中、トリフェニルホスフィンと反応させてホスホニウム塩を合成し、これとジアルデヒド化合物、より具体的には、例えば、テレフタルアルデヒドとを、例えばエチルアルコール中、リチウムエトキシドを用いて縮合させるWittig反応により、フェニレンビニレン基と2,5−ジオクチルオキシ−p−フェニレンビニレン基を含む高分子蛍光体が得られる。このとき、共重合体を得るために2種類以上のジホスホニウム塩および/または2種類以上のジアルデヒド化合物を反応させてもよい。
これらの高分子蛍光体を発光層の形成材料として用いる場合、その純度が発光特性に影響を与えるため、合成後、再沈精製、クロマトグラフによる分別等の純化処理をすることが望ましい。
More specifically, a method for synthesizing an arylene vinylene copolymer, which is one example of the polymeric fluorescent substance, will be described. For example, when obtaining a polymeric fluorescent substance by Wittig reaction, for example, first, a bis (halogenated methyl) compound, more specifically, for example, 2,5-dioctyloxy-p-xylylene dibromide is converted to N, N- A phosphonium salt is synthesized by reacting with triphenylphosphine in a dimethylformamide solvent, and this is condensed with a dialdehyde compound, more specifically, for example, terephthalaldehyde using, for example, lithium ethoxide in ethyl alcohol. By the Wittig reaction, a polymeric fluorescent substance containing a phenylene vinylene group and a 2,5-dioctyloxy-p-phenylene vinylene group is obtained. At this time, in order to obtain a copolymer, two or more kinds of diphosphonium salts and / or two or more kinds of dialdehyde compounds may be reacted.
When these polymeric fluorescent substances are used as the material for forming the light emitting layer, the purity affects the light emission characteristics, and therefore it is desirable to carry out a purification treatment such as reprecipitation purification and fractionation by chromatography after synthesis.

また、前記の高分子蛍光体からなる発光層の形成材料としては、フルカラー表示をなすため、赤、緑、青の三色の発光層形成材料が用いられ、それぞれが所定のパターニング装置(インクジェット装置)によって予め設定された位置の画素ARに射出され、パターニングされる。
なお、前記の発光物質としては、ホスト材料にゲスト材料を添加した形態のものを用いることもできる。
Further, as the material for forming the light emitting layer made of the above-described polymeric fluorescent material, light emitting layer forming materials of three colors of red, green, and blue are used for full color display, each of which is a predetermined patterning device (inkjet device). ) To the pixel AR at a preset position and patterned.
Note that as the light-emitting substance, a host material added with a guest material can be used.

このような発光材料としては、ホスト材料として例えば高分子有機化合物や低分子材料が、またゲスト材料として得られる発光層の発光特性を変化させるための蛍光色素、あるいは燐光物質を含んでなるものが好適に用いられる。
高分子有機化合物としては、溶解性の低い材料の場合、例えば前駆体が塗布された後、以下の化学式(3)に示すように加熱硬化されることによって共役系高分子有機エレクトロルミネッセンス層となる発光層を生成し得るものがある。例えば、前駆体のスルホニウム塩の場合、加熱処理されることによりスルホニウム基が脱離し、共役系高分子有機化合物となるもの等がある。
また、溶解性の高い材料では、材料をそのまま塗布した後、溶媒を除去して発光層にし得るものもある。
As such a light emitting material, for example, a high molecular organic compound or a low molecular weight material as a host material, or a fluorescent dye or a phosphorescent material for changing the light emitting characteristics of a light emitting layer obtained as a guest material is used. Preferably used.
As the polymer organic compound, in the case of a material having low solubility, for example, after a precursor is applied, the polymer organic compound becomes a conjugated polymer organic electroluminescence layer by being heated and cured as shown in the following chemical formula (3). Some can produce a light emitting layer. For example, in the case of a sulfonium salt as a precursor, there are those in which a sulfonium group is eliminated by heat treatment to become a conjugated polymer organic compound.
In addition, some highly soluble materials can be used as a light emitting layer by applying the material as it is and then removing the solvent.

Figure 0004656074
Figure 0004656074

前記の高分子有機化合物は固体で強い蛍光を持ち、均質な固体超薄膜を形成することができる。しかも、形成能に富みITO電極との密着性も高く、さらに、固化した後は強固な共役系高分子膜を形成する。   The polymer organic compound is solid and has strong fluorescence, and can form a uniform solid ultrathin film. In addition, it has high forming ability and high adhesion to the ITO electrode, and further, after solidification, forms a strong conjugated polymer film.

このような高分子有機化合物としては、例えばポリアリーレンビニレンが好ましい。ポリアリーレンビニレンは水系溶媒あるいは有機溶媒に可溶で第2の基体11に塗布する際の塗布液への調製が容易であり、さらに一定条件下でポリマー化することができるため、光学的にも高品質の薄膜を得ることができる。
このようなポリアリーレンビニレンとしては、PPV(ポリ(パラ−フェニレンビニレン))、MO−PPV(ポリ(2,5−ジメトキシ−1,4−フェニレンビニレン))、CN−PPV(ポリ(2,5−ビスヘキシルオキシ−1,4−フェニレン−(1−シアノビニレン)))、MEH−PPV(ポリ[2−メトキシ−5−(2'−エチルヘキシルオキシ)]−パラ−フェニレンビニレン)、等のPPV誘導体、PTV(ポリ(2,5−チエニレンビニレン))等のポリ(アルキルチオフェン)、PFV(ポリ(2,5−フリレンビニレン))、ポリ(パラフェニレン)、ポリアルキルフルオレン等が挙げられるが、なかでも化学式(4)に示すようなPPVまたはPPV誘導体の前駆体からなるものや、化学式(5)に示すようなポリアルキルフルオレン(具体的には化学式(6)に示すようなポリアルキルフルオレン系共重合体)が特に好ましい。
PPV等は強い蛍光を持ち、二重結合を形成するπ電子がポリマー鎖上で非極在化している導電性高分子でもあるため、高性能の有機エレクトロルミネッセンス素子を得ることができる。
As such a high molecular organic compound, for example, polyarylene vinylene is preferable. Since polyarylene vinylene is soluble in an aqueous solvent or an organic solvent, it can be easily prepared into a coating solution when applied to the second substrate 11, and can be polymerized under certain conditions. A high-quality thin film can be obtained.
Examples of such polyarylene vinylene include PPV (poly (para-phenylene vinylene)), MO-PPV (poly (2,5-dimethoxy-1,4-phenylene vinylene)), CN-PPV (poly (2,5 -Bishexyloxy-1,4-phenylene- (1-cyanovinylene))), MEH-PPV (poly [2-methoxy-5- (2′-ethylhexyloxy)]-para-phenylenevinylene), etc. , Poly (alkylthiophene) such as PTV (poly (2,5-thienylenevinylene)), PFV (poly (2,5-furylenevinylene)), poly (paraphenylene), polyalkylfluorene, and the like. Among them, those composed of precursors of PPV or PPV derivatives as shown in chemical formula (4), and polymers as shown in chemical formula (5) Rukirufluorene (specifically, a polyalkylfluorene copolymer as shown in chemical formula (6)) is particularly preferred.
Since PPV or the like is a conductive polymer having strong fluorescence and π electrons forming a double bond being nonpolarized on the polymer chain, a high-performance organic electroluminescence device can be obtained.

Figure 0004656074
Figure 0004656074

Figure 0004656074
Figure 0004656074

Figure 0004656074
Figure 0004656074

なお、前記PPV薄膜の他に発光層を形成し得る高分子有機化合物や低分子材料、すなわち本例においてホスト材料として用いられるものは、例えばアルミキノリノール錯体(Alq3)やジスチリルビフェニル、さらに化学式(7)に示すBeBq2やZn(OXZ)2、そしてTPD、ALO、DPVBi等の従来より一般的に用いられているものに加え、ピラゾリンダイマー、キノリジンカルボン酸、ベンゾピリリウムパークロレート、ベンゾピラノキノリジン、ルブレン、フェナントロリンユウロピウム錯体等が挙げられ、これらの1種または2種以上を含む有機エレクトロルミネッセンス素子用組成物を用いることができる。 In addition to the PPV thin film, a high molecular organic compound or a low molecular material capable of forming a light emitting layer, that is, a material used as a host material in this example is, for example, an aluminum quinolinol complex (Alq3), distyryl biphenyl, a chemical formula ( 7) BeBq2, Zn (OXZ) 2 , and TPD, ALO, DPVBi, and other commonly used ones, pyrazoline dimer, quinolidinecarboxylic acid, benzopyrylium perchlorate, benzopyra Noquinolidine, rubrene, phenanthroline europium complex, and the like can be mentioned, and a composition for an organic electroluminescence device containing one or more of these can be used.

Figure 0004656074
Figure 0004656074

一方、このようなホスト材料に添加されるゲスト材料としては、前記したように蛍光色素や燐光物質が挙げられる。特に蛍光色素は、発光層の発光特性を変化させることができ、例えば、発光層の発光効率の向上、または光吸収極大波長(発光色)を変えるための手段としても有効である。すなわち、蛍光色素は単に発光層材料としてではなく、発光機能そのものを担う色素材料として利用することができる。例えば、共役系高分子有機化合物分子上のキャリア再結合で生成したエキシトンのエネルギーを蛍光色素分子上に移すことができる。この場合、発光は蛍光量子効率が高い蛍光色素分子からのみ起こるため、発光層の電流量子効率も増加する。したがって、発光層の形成材料中に蛍光色素を加えることにより、同時に発光層の発光スペクトルも蛍光分子のものとなるので、発光色を変えるための手段としても有効となる。   On the other hand, examples of the guest material added to such a host material include fluorescent dyes and phosphorescent substances as described above. In particular, the fluorescent dye can change the light emission characteristics of the light emitting layer, and is effective, for example, as a means for improving the light emission efficiency of the light emitting layer or changing the light absorption maximum wavelength (light emission color). That is, the fluorescent dye can be used not only as a light emitting layer material but also as a dye material having a light emitting function itself. For example, the energy of exciton generated by carrier recombination on a conjugated polymer organic compound molecule can be transferred onto the fluorescent dye molecule. In this case, since light emission occurs only from fluorescent dye molecules having high fluorescence quantum efficiency, the current quantum efficiency of the light emitting layer is also increased. Therefore, by adding a fluorescent dye to the material for forming the light emitting layer, the emission spectrum of the light emitting layer simultaneously becomes that of the fluorescent molecule, which is effective as a means for changing the emission color.

なお、ここでいう電流量子効率とは、発光機能に基づいて発光性能を考察するための尺度であって、下記式により定義される。
ηE=放出されるフォトンのエネルギー/入力電気エネルギー
そして、蛍光色素のドープによる光吸収極大波長の変換によって、例えば赤、青、緑の3原色を発光させることができ、その結果フルカラー表示体を得ることが可能となる。
さらに蛍光色素をドーピングすることにより、エレクトロルミネッセンス素子の発光効率を大幅に向上させることができる。
The current quantum efficiency here is a scale for considering the light emission performance based on the light emission function, and is defined by the following equation.
ηE = energy of emitted photons / input electric energy And, by converting the light absorption maximum wavelength by doping with a fluorescent dye, it is possible to emit, for example, three primary colors of red, blue and green, resulting in a full color display It becomes possible.
Furthermore, the luminous efficiency of the electroluminescence element can be significantly improved by doping with a fluorescent dye.

蛍光色素としては、赤色の発色光を発光する発光層を形成する場合、レーザー色素のDCM−1、あるいはローダミンまたはローダミン誘導体、ペニレン等を用いるのが好ましい。これらの蛍光色素をPPVなどホスト材料にドープすることにより、発光層を形成することができるが、これらの蛍光色素は水溶性のものが多いので、水溶性を有するPPV前駆体であるスルホニウム塩にドープし、その後、加熱処理すれば、より均一な発光層の形成が可能になる。このような蛍光色素として具体的には、ローダミンB、ローダミンBベース、ローダミン6G、ローダミン101過塩素酸塩等が挙げられ、これらを2種以上混合したものであってもよい。   As the fluorescent dye, in the case of forming a light emitting layer that emits red colored light, it is preferable to use the laser dye DCM-1, rhodamine or rhodamine derivative, penylene, or the like. A light emitting layer can be formed by doping a host material such as PPV with these fluorescent dyes. However, since many of these fluorescent dyes are water-soluble, they are added to a sulfonium salt that is a water-soluble PPV precursor. Doping and then heat treatment makes it possible to form a more uniform light emitting layer. Specific examples of such fluorescent dyes include rhodamine B, rhodamine B base, rhodamine 6G, rhodamine 101 perchlorate and the like, and a mixture of two or more thereof may be used.

また、緑色の発色光を発光する発光層を形成する場合、キナクリドン、ルブレン、DCJTおよびその誘導体を用いるのが好ましい。これらの蛍光色素についても、前記の蛍光色素と同様、PPVなどホスト材料にドープすることにより、発光層を形成することができるが、これらの蛍光色素は水溶性のものが多いので、水溶性を有するPPV前駆体であるスルホニウム塩にドープし、その後、加熱処理すれば、より均一な発光層の形成が可能になる。   Moreover, when forming the light emitting layer which emits green colored light, it is preferable to use quinacridone, rubrene, DCJT and derivatives thereof. For these fluorescent dyes, a light emitting layer can be formed by doping a host material such as PPV as in the case of the above fluorescent dyes. However, since these fluorescent dyes are often water-soluble, they are water-soluble. If a sulfonium salt, which is a PPV precursor, is doped and then heat-treated, a more uniform light emitting layer can be formed.

さらに、青色の発色光を発光する発光層を形成する場合、ジスチリルビフェニルおよびその誘導体を用いるのが好ましい。これらの蛍光色素についても、前記の蛍光色素と同様、PPVなどホスト材料にドープすることにより、発光層を形成することができるが、これらの蛍光色素は水溶性のものが多いので、水溶性を有するPPV前駆体であるスルホニウム塩にドープし、その後、加熱処理すれば、より均一な発光層の形成が可能になる。   Furthermore, when forming a light emitting layer that emits blue colored light, it is preferable to use distyrylbiphenyl and its derivatives. For these fluorescent dyes, a light emitting layer can be formed by doping a host material such as PPV as in the case of the above fluorescent dyes. However, since these fluorescent dyes are often water-soluble, they are water-soluble. If a sulfonium salt, which is a PPV precursor, is doped and then heat-treated, a more uniform light emitting layer can be formed.

また、青色の発色光を有する他の蛍光色素としては、クマリンおよびその誘導体を挙げることができる。これらの蛍光色素は、PPVと相溶性がよく発光層の形成が容易である。また、これらのうち特にクマリンは、それ自体は溶媒に不溶であるものの、置換基を適宜に選択することによって溶解性を増し、溶媒に可溶となるものもある。このような蛍光色素として具体的には、クマリン−1、クマリン−6、クマリン−7、クマリン120、クマリン138、クマリン152、クマリン153、クマリン311、クマリン314、クマリン334、クマリン337、クマリン343等が挙げられる。   In addition, examples of other fluorescent dyes having blue colored light include coumarin and derivatives thereof. These fluorescent dyes are compatible with PPV and can easily form a light emitting layer. Among these, particularly, coumarin is insoluble in a solvent itself, but there are some which become soluble in a solvent by increasing the solubility by appropriately selecting a substituent. Specific examples of such fluorescent dyes include coumarin-1, coumarin-6, coumarin-7, coumarin 120, coumarin 138, coumarin 152, coumarin 153, coumarin 311, coumarin 314, coumarin 334, coumarin 337, coumarin 343 and the like. Is mentioned.

さらに、別の青色の発色光を有する蛍光色素としては、テトラフェニルブタジエン(TPB)またはTPB誘導体、DPVBi等を挙げることができる。これらの蛍光色素は、前記赤色蛍光色素等と同様に水溶液に可溶であり、またPPVと相溶性がよく発光層の形成が容易である。
以上の蛍光色素については、各色ともに1種のみを用いてもよく、また2種以上を混合して用いてもよい。
なお、このような蛍光色素としては、化学式(8)に示すようなものや、化学式(9)に示すようなもの、さらに化学式(10)に示すようなものが用いられる。
Furthermore, examples of the fluorescent dye having another blue colored light include tetraphenylbutadiene (TPB) or a TPB derivative, DPVBi, and the like. These fluorescent dyes are soluble in an aqueous solution in the same manner as the red fluorescent dye and the like, have good compatibility with PPV, and can easily form a light emitting layer.
About the above fluorescent dye, only 1 type may be used for each color, and 2 or more types may be mixed and used for it.
In addition, as such a fluorescent dye, those shown in chemical formula (8), those shown in chemical formula (9), and those shown in chemical formula (10) are used.

Figure 0004656074
Figure 0004656074

Figure 0004656074
Figure 0004656074

Figure 0004656074
Figure 0004656074

これらの蛍光色素については、前記共役系高分子有機化合物等からなるホスト材料に対し、後述する方法によって0.5〜10wt%添加するのが好ましく、1.0〜5.0wt%添加するのがより好ましい。蛍光色素の添加量が多過ぎると得られる発光層の耐候性および耐久性の維持が困難となり、一方、添加量が少な過ぎると、前述したような蛍光色素を加えることによる効果が十分に得られないからである。   About these fluorescent dyes, it is preferable to add 0.5-10 wt% by the method mentioned later with respect to the host material consisting of the said conjugated polymer organic compound etc., and adding 1.0-5.0 wt%. More preferred. If the amount of fluorescent dye added is too large, it will be difficult to maintain the weather resistance and durability of the light-emitting layer obtained. On the other hand, if the amount added is too small, the effects of adding the fluorescent dye as described above will be sufficiently obtained. Because there is no.

また、ホスト材料に添加されるゲスト材料としての燐光物質としては、化学式(11)に示すIr(ppy)3、Pt(thpy)2、PtOEPなどが好適に用いられる。 In addition, Ir (ppy) 3 , Pt (thpy) 2 , PtOEP, or the like represented by the chemical formula (11) is preferably used as a phosphorescent material as a guest material added to the host material.

Figure 0004656074
Figure 0004656074

なお、前記の化学式(11)に示した燐光物質をゲスト材料とした場合、ホスト材料としては、特に化学式(12)に示すCBP、DCTA、TCPBや、前記したDPVBi、Alq3が好適に用いられる。
また、前記蛍光色素と燐光物質については、これらを共にゲスト材料としてホスト材料に添加するようにしてもよい。
Note that when the phosphor represented by the chemical formula (11) is used as a guest material, CBP, DCTA, TCPB, or the above-described DPVBi, Alq3 shown in the chemical formula (12) is particularly preferably used as the host material.
Further, both the fluorescent dye and the phosphor may be added to the host material as a guest material.

Figure 0004656074
Figure 0004656074

なお、このようなホスト/ゲスト系の発光物質によって発光層60を形成する場合、例えば予めパターニング装置(インクジェット装置)にノズル等の材料供給系を複数形成しておき、これらノズルからホスト材料とゲスト材料とを予め設定した量比で同時に吐出させることにより、ホスト材料に所望する量のゲスト材料が添加されてなる発光物質による、発光層60を形成することができる。   When the light emitting layer 60 is formed of such a host / guest luminescent material, for example, a plurality of material supply systems such as nozzles are formed in advance in a patterning device (inkjet device), and the host material and guest are formed from these nozzles. By simultaneously discharging the materials at a preset amount ratio, the light emitting layer 60 can be formed of a light emitting material in which a desired amount of guest material is added to the host material.

発光層60は、正孔注入/輸送層70の形成方法と同様の手順で形成される。すなわち、インクジェット法によって発光層材料を含む組成物インクを正孔注入/輸送層70の上面に吐出した後に、乾燥処理及び熱処理を行うことにより、第3絶縁層221に形成された開口部221a内部の正孔注入/輸送層70上に発光層60が形成される。この発光層形成工程も上述したように不活性ガス雰囲気化で行われる。吐出された組成物インクは撥インク処理された領域ではじかれるので、インク滴が所定の吐出位置からはずれたとしても、はじかれたインク滴が第3絶縁層221の開口部221a内に転がり込む。   The light emitting layer 60 is formed by the same procedure as the method for forming the hole injection / transport layer 70. That is, after the composition ink containing the light emitting layer material is ejected onto the upper surface of the hole injection / transport layer 70 by an ink jet method, the inside of the opening 221a formed in the third insulating layer 221 is performed by performing drying treatment and heat treatment. The light emitting layer 60 is formed on the hole injection / transport layer 70. This light emitting layer forming step is also performed in an inert gas atmosphere as described above. Since the ejected composition ink is repelled in the ink-repellent-treated region, even if the ink droplet deviates from a predetermined ejection position, the repelled ink droplet rolls into the opening 221a of the third insulating layer 221.

電子輸送層50は発光層60の上面に形成される。電子輸送層50も発光層60の形成方法と同様、インクジェット法により形成される。電子輸送層50の形成材料としては、特に限定されることなく、オキサジアゾール誘導体、アントラキノジメタンおよびその誘導体、ベンゾキノンおよびその誘導体、ナフトキノンおよびその誘導体、アントラキノンおよびその誘導体、テトラシアノアンスラキノジメタンおよびその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンおよびその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリンおよびその誘導体の金属錯体等が例示される。具体的には、先の正孔輸送層の形成材料と同様に、特開昭63−70257号、同63−175860号公報、特開平2−135359号、同2−135361号、同2−209988号、同3−37992号、同3−152184号公報に記載されているもの等が例示され、特に2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウムが好適とされる。   The electron transport layer 50 is formed on the upper surface of the light emitting layer 60. The electron transport layer 50 is also formed by the ink jet method in the same manner as the method for forming the light emitting layer 60. The material for forming the electron transport layer 50 is not particularly limited, and is an oxadiazole derivative, anthraquinodimethane and its derivative, benzoquinone and its derivative, naphthoquinone and its derivative, anthraquinone and its derivative, tetracyanoanthraquinodi. Examples include methane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, and the like. Specifically, as with the material for forming the hole transport layer, JP-A-63-70257, JP-A-63-175860, JP-A-2-135359, JP-A-2-135361, and JP-A-2-209888 are disclosed. And the like described in JP-A-3-379992 and 3-152184, particularly 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4. -Oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum are preferred.

なお、前述した正孔注入/輸送層70の形成材料や電子輸送層50の形成材料を発光層60の形成材料に混合し、発光層形成材料として使用してもよく、その場合に、正孔注入/輸送層形成材料や電子輸送層形成材料の使用量については、使用する化合物の種類等によっても異なるものの、十分な成膜性と発光特性を阻害しない量範囲でそれらを考慮して適宜決定される。通常は、発光層形成材料に対して1〜40重量%とされ、さらに好ましくは2〜30重量%とされる。   In addition, the hole injection / transport layer 70 forming material and the electron transport layer 50 forming material described above may be mixed with the light emitting layer 60 forming material and used as the light emitting layer forming material. Although the amount of the injection / transport layer forming material and the electron transport layer forming material used varies depending on the type of compound used, etc., it is appropriately determined in consideration of the amount within a range that does not impair sufficient film formability and light emission characteristics. Is done. Usually, it is 1 to 40 weight% with respect to the light emitting layer forming material, More preferably, it is 2 to 30 weight%.

陰極222は、電子輸送層50及び第3絶縁層221の表面全体、あるいはストライプ状に形成されている。陰極222については、もちろんAl、Mg、Li、Caなどの単体材料やMg:Ag(10:1合金)の合金材料からなる1層で形成してもよいが、2層あるいは3層からなる金属(合金を含む。)層として形成してもよい。具体的には、Li2O(0.5nm程度)/AlやLiF(0.5nm程度)/Al、MgF2/Alといった積層構造のものも使用可能である。陰極222は上述した金属からなる薄膜であり、光を透過可能である。 The cathode 222 is formed in the whole surface of the electron carrying layer 50 and the 3rd insulating layer 221, or stripe form. Of course, the cathode 222 may be formed of a single layer made of a single material such as Al, Mg, Li, or Ca, or an alloy material of Mg: Ag (10: 1 alloy). It may be formed as a layer (including an alloy). Specifically, a layered structure such as Li 2 O (about 0.5 nm) / Al, LiF (about 0.5 nm) / Al, or MgF 2 / Al can be used. The cathode 222 is a thin film made of the above-described metal and can transmit light.

低屈折率層3及び封止層4は陰極222の上面に形成される。これら低屈折率層3及び封止層4の形成材料、形成方法は上述した第1,第2実施形態と同等であるため、説明を省略する。   The low refractive index layer 3 and the sealing layer 4 are formed on the upper surface of the cathode 222. Since the forming material and forming method of the low refractive index layer 3 and the sealing layer 4 are the same as those in the first and second embodiments described above, description thereof is omitted.

以上説明したように、本発明の積層膜20をトップエミッション型の電気光学装置に適用することにより、視認性を大幅に向上できるとともに、素子劣化の要因となるガスの侵入を防止できる。   As described above, by applying the laminated film 20 of the present invention to a top emission type electro-optical device, the visibility can be greatly improved and the invasion of gas which causes the element deterioration can be prevented.

なお、図6に示した積層膜20にかえて、第2実施形態で説明した乾燥剤あるいは吸着剤を含む低屈折率膜11を適用することももちろん可能である。   Note that it is of course possible to apply the low refractive index film 11 containing the desiccant or the adsorbent described in the second embodiment instead of the laminated film 20 shown in FIG.

また、前記の正孔注入/輸送層70、発光層60、電子輸送層50に加えて、ホールブロッキング層を例えば発光層60の対向電極222側に形成して、発光層60の長寿命化を図ってもよい。このようなホールブロッキング層の形成材料としては、例えば化学式(13)に示すBCPや化学式(14)で示すBAlqが用いられるが、長寿命化の点ではBAlqの方が好ましい。   In addition to the hole injection / transport layer 70, the light emitting layer 60, and the electron transport layer 50, a hole blocking layer is formed, for example, on the counter electrode 222 side of the light emitting layer 60, thereby extending the life of the light emitting layer 60. You may plan. As a material for forming such a hole blocking layer, for example, BCP represented by the chemical formula (13) and BAlq represented by the chemical formula (14) are used, but BAlq is preferable in terms of extending the life.

Figure 0004656074
Figure 0004656074

Figure 0004656074
Figure 0004656074

《第4実施形態》
次に、本発明の第4実施形態として、上述した第3実施形態の変形例について図7を参照しながら説明する。ここで、図6と同一または同等の構成部分については同一の符号を付し、その説明を省略する。
<< 4th Embodiment >>
Next, as a fourth embodiment of the present invention, a modification of the above-described third embodiment will be described with reference to FIG. Here, components that are the same as or equivalent to those in FIG.

図7に示す表示装置S2は、トップエミッション型有機エレクトロルミネッセンス表示装置であって、発光層60からの発光光は基板2と反対側から装置外部に取り出される。そして、本実施形態に係る表示装置S2においては、積層膜20の表面に光を透過可能なポリマー層(光透過層)21が形成されている。
ポリマー層21の形成材料としては、In23、SnO3、ITO、SiO2、Al23、TiO2、AlN、SiN、SiC、SiON、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、あるいはこれらの混合物が挙げられる。ここで、低屈折率層3の透過屈折率はポリマー層21の透過屈折率より低く設定される。
The display device S2 shown in FIG. 7 is a top emission type organic electroluminescence display device, and light emitted from the light emitting layer 60 is extracted from the opposite side to the substrate 2 to the outside of the device. In the display device S <b> 2 according to the present embodiment, a polymer layer (light transmission layer) 21 capable of transmitting light is formed on the surface of the laminated film 20.
As a material for forming the polymer layer 21, In 2 O 3 , SnO 3 , ITO, SiO 2 , Al 2 O 3 , TiO 2 , AlN, SiN, SiC, SiON, acrylic resin, epoxy resin, polyimide resin, or these A mixture is mentioned. Here, the transmission refractive index of the low refractive index layer 3 is set lower than the transmission refractive index of the polymer layer 21.

以上説明したように、トップエミッション型の有機エレクトロルミネッセンス表示装置において、光の取り出し側にポリマー層21を設ける構成とすることもできる。   As described above, in the top emission type organic electroluminescence display device, the polymer layer 21 may be provided on the light extraction side.

《第5実施形態》
次に、本発明の第5実施形態として、上記第4実施形態の変形例を図8を参照しながら説明する。
図8に示す表示装置S3はトップエミッション型の有機エレクトロルミネッセンス表示装置である。この表示装置S3は、陰極222の上層に設けられ、この陰極222を保護する保護層51と、保護層51の上層に設けられた前記低屈折率層3及び前記封止層4からなる積層膜20と、積層膜20の上層に設けられ、接着層52を介して積層膜20に接着されている封止基板53とを有している。
<< 5th Embodiment >>
Next, as a fifth embodiment of the present invention, a modification of the fourth embodiment will be described with reference to FIG.
The display device S3 shown in FIG. 8 is a top emission type organic electroluminescence display device. This display device S3 is provided in the upper layer of the cathode 222, and is a laminated film comprising a protective layer 51 for protecting the cathode 222, and the low refractive index layer 3 and the sealing layer 4 provided in the upper layer of the protective layer 51. 20 and a sealing substrate 53 that is provided in the upper layer of the laminated film 20 and is bonded to the laminated film 20 through an adhesive layer 52.

保護層51は、セラミックや窒化珪素、酸化窒化珪素、酸化珪素など、封止層4と同等な材料からなり、陰極222表面にプラズマCVD法(プラズマ化学的気相成長法)により形成される。保護層51は、光を透過可能で接着層52や封止基板53より低い屈折率を有する。
接着層(光透過層)52は、例えばエポキシ樹脂やアクリル樹脂などの光透過可能な材料によって構成されている。なお、接着層用樹脂としては、エポキシ樹脂など2液混合もしくは紫外線照射によって硬化するタイプのものを用いるのがよい。加熱によって有機エレクトロルミネッセンス素子9が劣化する恐れがない場合は、加熱して硬化させるタイプのものを用いても良い。
封止基板(光透過層)53はバリア性を有し、光を透過可能な材料によって構成されている。封止基板53の形成材料としては、例えば封止層4同様、セラミックや窒化珪素、酸化窒化珪素、酸化珪素などの透明な材料が挙げられる。あるいは、上記材料からなる封止基板53のかわりに、所定の合成樹脂からなる保護用シートとしてもよい。
The protective layer 51 is made of a material equivalent to the sealing layer 4 such as ceramic, silicon nitride, silicon oxynitride, or silicon oxide, and is formed on the surface of the cathode 222 by a plasma CVD method (plasma chemical vapor deposition method). The protective layer 51 can transmit light and has a lower refractive index than the adhesive layer 52 and the sealing substrate 53.
The adhesive layer (light transmission layer) 52 is made of a light transmissive material such as an epoxy resin or an acrylic resin. In addition, as the resin for the adhesive layer, it is preferable to use a resin that is cured by mixing two liquids such as an epoxy resin or by ultraviolet irradiation. When there is no fear that the organic electroluminescence element 9 is deteriorated by heating, a type that is cured by heating may be used.
The sealing substrate (light transmission layer) 53 has a barrier property and is made of a material that can transmit light. Examples of the material for forming the sealing substrate 53 include transparent materials such as ceramic, silicon nitride, silicon oxynitride, and silicon oxide, similarly to the sealing layer 4. Alternatively, instead of the sealing substrate 53 made of the above material, a protective sheet made of a predetermined synthetic resin may be used.

以上説明したように、陰極222を保護する保護層51を設けるとともに、表示装置S3全体を保護しつつ素子劣化の要因となるガスの侵入を防ぐ封止基板53を設けることができる。この場合、表示装置S3においては十分なバリア効果が得られる。なお、保護層51を設けずに、封止基板53と積層膜20とを接着層52を介して接着させるだけでも、十分なバリア効果が得られる。   As described above, it is possible to provide the protective layer 51 that protects the cathode 222 and the sealing substrate 53 that protects the entire display device S3 and prevents the invasion of gas that causes element deterioration. In this case, a sufficient barrier effect can be obtained in the display device S3. A sufficient barrier effect can be obtained by simply bonding the sealing substrate 53 and the laminated film 20 via the adhesive layer 52 without providing the protective layer 51.

また、図7を用いて説明したポリマー層21の上層に、図8を用いて説明した封止基板53を接着層52を介して設けてもよい。   Further, the sealing substrate 53 described with reference to FIG. 8 may be provided on the polymer layer 21 described with reference to FIG.

《第6実施形態》
次に、本発明の第6実施形態に係る表示装置を図9を参照しながら説明する。ここで、以下の説明において、上述した実施形態と同一又は同等な構成部分については同一の符号を付すとともにその説明を簡略又は省略する。
図9に示す表示装置S4は、発光層60からの発光光をTFT24が設けられている基板2側から装置外部に取り出すいわゆるバックエミッション型の有機エレクトロルミネッセンス表示装置である。
<< 6th Embodiment >>
Next, a display device according to a sixth embodiment of the present invention will be described with reference to FIG. Here, in the following description, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
The display device S4 shown in FIG. 9 is a so-called back emission type organic electroluminescence display device that takes out light emitted from the light emitting layer 60 from the substrate 2 side where the TFT 24 is provided to the outside of the device.

図9に示すように、有機エレクトロルミネッセンス表示装置S4は、上記実施形態同様、有機エレクトロルミネッセンス素子の陽極23の下層に設けられている第2層間絶縁層284と、第2層間絶縁層284の下層に設けられている第1層間絶縁層283と、第1層間絶縁層283の下層に設けられているゲート絶縁層282と、ゲート絶縁層282の下層に設けられている下地保護層281とを備えている。そして、下地保護層281と基板2との間には、低屈折率層3及び封止層4からなる積層膜20が設けられている。   As shown in FIG. 9, the organic electroluminescence display device S4 includes a second interlayer insulating layer 284 provided under the anode 23 of the organic electroluminescence element and a lower layer of the second interlayer insulating layer 284, as in the above embodiment. A first interlayer insulating layer 283 provided on the gate insulating layer 283, a gate insulating layer 282 provided below the first interlayer insulating layer 283, and a base protective layer 281 provided below the gate insulating layer 282. ing. A laminated film 20 composed of the low refractive index layer 3 and the sealing layer 4 is provided between the base protective layer 281 and the substrate 2.

ここで、図9に示す有機エレクトロルミネッセンス表示装置S4はバックエミッション型であるため、基板2は光を透過可能な材料からなっており、基板2の形成材料としては、上述したように、ガラスや石英、樹脂等の透明ないし半透明なものが用いられるが、特に安価なソーダガラスが好適に用いられる。   Here, since the organic electroluminescence display device S4 shown in FIG. 9 is of a back emission type, the substrate 2 is made of a material that can transmit light. As a material for forming the substrate 2, as described above, glass, Transparent or translucent materials such as quartz and resin are used, but particularly inexpensive soda glass is preferably used.

一方、陰極222の上層には、EL素子に対する素子劣化に起因する物質(酸素、水分など)の侵入を防止する封止層54が形成されている。この封止層54としては、バリア性を有する金属膜(金属基板)、樹脂膜、セラミックや窒化珪素、酸化窒化珪素、酸化珪素、あるいは、本発明に係る積層膜20や低屈折率膜11を用いることができる。   On the other hand, a sealing layer 54 that prevents intrusion of a substance (oxygen, moisture, etc.) due to element deterioration with respect to the EL element is formed on the cathode 222. As the sealing layer 54, a metal film (metal substrate) having a barrier property, a resin film, ceramic, silicon nitride, silicon oxynitride, silicon oxide, or the laminated film 20 or the low refractive index film 11 according to the present invention is used. Can be used.

また、発光層60からの発光光が通過する第2層間絶縁層284、第1層間絶縁層283、ゲート絶縁層282などは、光を透過可能な材料からなっている。これら絶縁層の形成材料としては、シリコン酸化膜や多孔性を有するポリマー、シリカエアロゲルなどが挙げられる。   The second interlayer insulating layer 284, the first interlayer insulating layer 283, the gate insulating layer 282, and the like through which light emitted from the light emitting layer 60 passes are made of a material that can transmit light. Examples of the material for forming these insulating layers include silicon oxide films, porous polymers, and silica airgel.

以上説明したように、本発明の積層膜20はバックエミッション型の電気光学装置にも適用可能であり、素子劣化の要因となるガスの侵入を防止しつつ視認性を大幅に向上できる。   As described above, the laminated film 20 of the present invention can also be applied to a back emission type electro-optical device, and the visibility can be greatly improved while preventing the invasion of gas which causes the element deterioration.

なお、本実施形態において、封止層54と陰極222との間に光を反射可能な反射層を設けてもよい。反射層を設けることにより、発光層60から陰極222側に射出した光は反射層で反射して基板2側に進むので、光の取り出し効率を向上できる。   In the present embodiment, a reflective layer capable of reflecting light may be provided between the sealing layer 54 and the cathode 222. By providing the reflective layer, the light emitted from the light emitting layer 60 to the cathode 222 side is reflected by the reflective layer and proceeds to the substrate 2 side, so that the light extraction efficiency can be improved.

《第7実施形態》
次に、本発明の第7実施形態として、上記第6実施形態の変形例を図10を参照しながら説明する。
図10に示す表示装置S5はバックエミッション型の有機エレクトロルミネッセンス表示装置であって、最上層に封止層54を有している。そして、下地保護層281の下層には光を透過可能な基板2が設けられ、基板2の下層にはポリマー層55が設けられ、ポリマー層55の下層には封止層4及び低屈折率層3からなる積層膜20が設けられ、積層膜20の下層には封止基板53が設けられている。
<< 7th Embodiment >>
Next, as a seventh embodiment of the present invention, a modification of the sixth embodiment will be described with reference to FIG.
A display device S5 shown in FIG. 10 is a back-emission type organic electroluminescence display device, and has a sealing layer 54 as the uppermost layer. A substrate 2 capable of transmitting light is provided below the base protective layer 281, a polymer layer 55 is provided below the substrate 2, and a sealing layer 4 and a low refractive index layer are provided below the polymer layer 55. 3 is provided, and a sealing substrate 53 is provided below the stacked film 20.

ポリマー層55の形成材料としては、第4実施形態で説明したポリマー層21と同様、In23、SnO3、ITO、SiO2、Al23、TiO2、AlN、SiN、SiC、SiON、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、あるいはこれらの混合物が挙げられる。あるいは、ポリマー層55を低屈折率層3と同等の低屈折率材料によって形成してもよい。 As a material for forming the polymer layer 55, as in the polymer layer 21 described in the fourth embodiment, In 2 O 3 , SnO 3 , ITO, SiO 2 , Al 2 O 3 , TiO 2 , AlN, SiN, SiC, and SiON , Acrylic resin, epoxy resin, polyimide resin, or a mixture thereof. Alternatively, the polymer layer 55 may be formed of a low refractive index material equivalent to the low refractive index layer 3.

以上説明したように、ポリマー層や低屈折率層、封止層の層構成は任意に設定可能であり、高いバリア性を実現することができる。
なお、図10はバックエミッション型有機エレクトロルミネッセンス表示装置を示しているが、もちろん、図11に示すようなトップエミッション型有機エレクトロルミネッセンス表示装置S6においても、様々な層構成を採用することができる。こうすることにより、トップエミッション型有機エレクトロルミネッセンス表示装置においても、高いバリア性を実現でき、素子劣化を防止できる。ここで、陰極222の上層には低屈折率層3と封止層4とからなる積層膜20が形成されている。なお、図11に示すポリマー層55'は、低屈折率性を有している必要はなく、高いバリア性を有する所定の材料によって構成可能である。
As described above, the layer configuration of the polymer layer, the low refractive index layer, and the sealing layer can be arbitrarily set, and high barrier properties can be realized.
FIG. 10 shows a back emission type organic electroluminescence display device. Of course, various layer configurations can be adopted in the top emission type organic electroluminescence display device S6 as shown in FIG. By doing so, even in a top emission type organic electroluminescence display device, a high barrier property can be realized, and element deterioration can be prevented. Here, the laminated film 20 including the low refractive index layer 3 and the sealing layer 4 is formed on the cathode 222. Note that the polymer layer 55 ′ shown in FIG. 11 does not need to have a low refractive index, and can be formed of a predetermined material having a high barrier property.

《第8実施形態》
次に、本発明の第8実施形態について図12を参照しながら説明する。
図12に示す表示装置S7はパッシブマトリクス型の有機エレクトロルミネッセンス表示装置であって、図12(a)は平面図、図12(b)は図12(a)のB−B断面図である。パッシブマトリクス型有機エレクトロルミネッセンス表示装置S7は、基板121上に設けられた複数の第1のバス配線300と、これに直交する歩行に配設された複数の第2のバス配線310とを備えている。また、電子輸送層141と発光層142と正孔輸送層143とを有する発光素子(有機エレクトロルミネッセンス素子)140が配置される所定位置を取り囲むように、例えばSiO2等からなる絶縁膜320が配設されている。
<< Eighth Embodiment >>
Next, an eighth embodiment of the present invention will be described with reference to FIG.
A display device S7 shown in FIG. 12 is a passive matrix organic electroluminescence display device, in which FIG. 12A is a plan view and FIG. 12B is a cross-sectional view taken along line BB in FIG. The passive matrix organic electroluminescence display device S7 includes a plurality of first bus wirings 300 provided on the substrate 121, and a plurality of second bus wirings 310 disposed on a walk orthogonal to the first bus wirings 300. Yes. In addition, an insulating film 320 made of, for example, SiO 2 is disposed so as to surround a predetermined position where the light emitting element (organic electroluminescence element) 140 having the electron transport layer 141, the light emitting layer 142, and the hole transport layer 143 is disposed. It is installed.

そして、バス配線310の上層にはこのバス配線310を保護する保護層51が設けられ、保護層51の上層には低屈折率層3が設けられ、低屈折率層3の上層には封止層4が設けられ、封止層4の上層には接着層52を介して封止基板53が設けられている。   A protective layer 51 that protects the bus wiring 310 is provided above the bus wiring 310, a low refractive index layer 3 is provided above the protective layer 51, and a sealing layer is provided above the low refractive index layer 3. A layer 4 is provided, and a sealing substrate 53 is provided above the sealing layer 4 via an adhesive layer 52.

このように、本発明にかかる低屈折率層3及び封止層4は、パッシブマトリクス型の有機エレクトロルミネッセンス表示装置に対しても適用可能であり、低屈折率層3及び封止層4を設けることによって、素子劣化に起因するガスの侵入を防止しつつ良好な視認性を得ることができる。   As described above, the low refractive index layer 3 and the sealing layer 4 according to the present invention can be applied to a passive matrix organic electroluminescence display device, and the low refractive index layer 3 and the sealing layer 4 are provided. As a result, good visibility can be obtained while preventing intrusion of gas due to element degradation.

なお、上記各実施形態において、各層(各膜)や基板の側部にシール剤や合成樹脂を設けることが可能である。   In each of the above embodiments, a sealant or a synthetic resin can be provided on each layer (each film) or on the side of the substrate.

なお、上記各実施形態では、電気光学装置として有機エレクトロルミネッセンス表示装置を例としてとりあげたが、液晶表示装置はプラズマ表示装置などにも本発明の積層膜20(低屈折率膜11)を適用可能である。   In each of the above embodiments, an organic electroluminescence display device is taken as an example of an electro-optical device. However, the liquid crystal display device can also be applied to the laminated film 20 (low refractive index film 11) of the present invention in a plasma display device or the like. It is.

[電子機器]
上記実施の形態の有機エレクトロルミネッセンス表示装置を備えた電子機器の例について説明する。図13は、携帯電話の一例を示した斜視図である。図13において、符号1000は携帯電話本体を示し、符号1001は上記の有機エレクトロルミネッセンス表示装置を用いた表示部を示している。
[Electronics]
Examples of electronic devices provided with the organic electroluminescence display device of the above embodiment will be described. FIG. 13 is a perspective view showing an example of a mobile phone. In FIG. 13, reference numeral 1000 denotes a mobile phone body, and reference numeral 1001 denotes a display unit using the organic electroluminescence display device.

図14は、腕時計型電子機器の一例を示した斜視図である。図14において、符号1100は時計本体を示し、符号1101は上記の有機エレクトロルミネッセンス表示装置を用いた表示部を示している。   FIG. 14 is a perspective view showing an example of a wristwatch type electronic device. In FIG. 14, reference numeral 1100 indicates a watch body, and reference numeral 1101 indicates a display unit using the organic electroluminescence display device.

図15は、ワープロ、パソコンなどの携帯型情報処理装置の一例を示した斜視図である。図15において、符号1200は情報処理装置、符号1202はキーボードなどの入力部、符号1204は情報処理装置本体、符号1206は上記の有機エレクトロルミネッセンス表示装置を用いた表示部を示している。   FIG. 15 is a perspective view illustrating an example of a portable information processing apparatus such as a word processor or a personal computer. In FIG. 15, reference numeral 1200 denotes an information processing apparatus, reference numeral 1202 denotes an input unit such as a keyboard, reference numeral 1204 denotes an information processing apparatus body, and reference numeral 1206 denotes a display unit using the above organic electroluminescence display device.

図13〜図15に示す電子機器は、上記実施の形態の有機エレクトロルミネッセンス表示装置を備えているので、表示品位に優れ、明るい画面の有機エレクトロルミネッセンス表示部を備えた電子機器を実現することができる。   Since the electronic devices shown in FIGS. 13 to 15 include the organic electroluminescence display device according to the above-described embodiment, it is possible to realize an electronic device that has an organic electroluminescence display portion with a high display quality and a bright screen. it can.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能であり、実施の形態で挙げた具体的な材料や層構成などはほんの一例に過ぎず、適宜変更が可能である。   The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention, and the specific materials mentioned in the embodiment. The layer structure and the like are merely examples, and can be changed as appropriate.

本発明の電気光学装置によれば、光透過層と発光素子との間に光透過層より屈折率が低い低屈折率層とガスの侵入を遮断する封止層とを設けたことにより、低屈折率層によって光の取り出し効率を充分に向上でき、高い視認性を得ることができる。また、封止層によって発光素子が素子劣化に起因する物質に作用されることを防止できるので、良好な発光特性を長期間維持できる。   According to the electro-optical device of the present invention, the low refractive index layer having a refractive index lower than that of the light transmission layer and the sealing layer for blocking gas intrusion are provided between the light transmission layer and the light emitting element. The light extraction efficiency can be sufficiently improved by the refractive index layer, and high visibility can be obtained. In addition, since the light-emitting element can be prevented from being acted on by the sealing layer due to the element deterioration, good light-emitting characteristics can be maintained for a long time.

また、本発明の電気光学装置によれば、光透過層と発光素子との間に乾燥剤または吸着剤が分散された低屈折率層を設けたことによって、低屈折率層に封止機能(バリア機能)を付与できる。したがって、光透過層側からのガスの侵入を低屈折率層によって抑えることができ、発光素子が素子劣化に起因する物質に作用されることを防止できるので、良好な発光特性を長期間維持できる。   In addition, according to the electro-optical device of the present invention, the low refractive index layer is provided with a low refractive index layer in which a desiccant or an adsorbent is dispersed between the light transmission layer and the light emitting element. Barrier function). Accordingly, gas intrusion from the light transmission layer side can be suppressed by the low refractive index layer, and the light emitting element can be prevented from being acted on by a substance caused by element deterioration, so that good light emission characteristics can be maintained for a long time. .

本発明の膜状部材、積層膜、低屈折率膜、多層積層膜によれば、膜を透過する光は所望の状態に調整されるとともに、不要なガスの出入りが防止されるので、電気光学装置に適用した際、良好な性能が発揮される。   According to the film-like member, laminated film, low refractive index film, and multilayer laminated film of the present invention, the light transmitted through the film is adjusted to a desired state, and unnecessary gas can be prevented from entering and exiting. When applied to an apparatus, good performance is exhibited.

本発明の電子機器によれば、表示品位に優れ、明るい画面の表示部を備えた電子機器を実現できる。   According to the electronic device of the present invention, it is possible to realize an electronic device having a display portion with a bright screen and excellent display quality.

本発明の電気光学装置の第1実施形態を示す概略構成図である。1 is a schematic configuration diagram illustrating a first embodiment of an electro-optical device according to the invention. 本発明の膜状部材を示す断面図である。It is sectional drawing which shows the film-shaped member of this invention. 本発明の電気光学装置の第2実施形態を示す概略構成図である。FIG. 6 is a schematic configuration diagram illustrating a second embodiment of the electro-optical device according to the invention. アクティブマトリクス型有機エレクトロルミネッセンス表示装置を示す回路図である。It is a circuit diagram which shows an active matrix type organic electroluminescent display apparatus. 図4の表示装置における画素部の平面構造を示す拡大図である。FIG. 5 is an enlarged view showing a planar structure of a pixel portion in the display device of FIG. 4. 本発明の電気光学装置の第3実施形態を示す図であって、図5のA−A矢視断面図である。FIG. 6 is a diagram illustrating a third embodiment of the electro-optical device according to the invention, and is a cross-sectional view taken along line AA in FIG. 5. 本発明の電気光学装置の第4実施形態を示す断面図である。FIG. 6 is a cross-sectional view illustrating a fourth embodiment of an electro-optical device according to the invention. 本発明の電気光学装置の第5実施形態を示す断面図である。FIG. 9 is a cross-sectional view illustrating a fifth embodiment of an electro-optical device according to the invention. 本発明の電気光学装置の第6実施形態を示す断面図である。FIG. 10 is a cross-sectional view illustrating a sixth embodiment of an electro-optical device according to the invention. 本発明の電気光学装置の第7実施形態を示す断面図である。FIG. 10 is a cross-sectional view illustrating a seventh embodiment of the electro-optical device according to the invention. 本発明の電気光学装置の第7実施形態に関する他の例である。10 is another example related to the seventh embodiment of the electro-optical device of the invention. 本発明の電気光学装置の第8実施形態に係るパッシブマトリクス型有機エレクトロルミネッセンス表示装置を示す図であって、(a)は平面図、(b)は(a)のB−B断面図である。It is a figure which shows the passive matrix type organic electroluminescent display apparatus which concerns on 8th Embodiment of the electro-optical apparatus of this invention, Comprising: (a) is a top view, (b) is BB sectional drawing of (a). . 本発明の電気光学装置を備えた電子機器の一例を示す図である。FIG. 6 is a diagram illustrating an example of an electronic apparatus including the electro-optical device according to the invention. 本発明の電気光学装置を備えた電子機器の一例を示す図である。FIG. 6 is a diagram illustrating an example of an electronic apparatus including the electro-optical device according to the invention. 本発明の電気光学装置を備えた電子機器の一例を示す図である。FIG. 6 is a diagram illustrating an example of an electronic apparatus including the electro-optical device according to the invention. 従来の電気光学装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional electro-optical apparatus. 発光層からの光が基板によって屈折する様子を説明するための図である。It is a figure for demonstrating a mode that the light from a light emitting layer is refracted by a board | substrate.

符号の説明Explanation of symbols

1…有機エレクトロルミネッセンス表示装置(電気光学装置)、2…基板、3,11…低屈折率層、4…封止層、5…発光層、6…正孔輸送層、7…陰極(電極)、8…陽極(電極)、9…有機エレクトロルミネッセンス素子(発光素子)、11…低屈折率膜、20…積層膜。   DESCRIPTION OF SYMBOLS 1 ... Organic electroluminescence display device (electro-optical device), 2 ... Substrate, 3, 11 ... Low refractive index layer, 4 ... Sealing layer, 5 ... Light emitting layer, 6 ... Hole transport layer, 7 ... Cathode (electrode) , 8 ... anode (electrode), 9 ... organic electroluminescence element (light emitting element), 11 ... low refractive index film, 20 ... laminated film.

Claims (16)

基板上に、
前記基板より低い屈折率を有する低屈折率層と、
前記低屈折率層上に設けられた封止層と、
前記封止層上に設けられたポリマー層と、
前記ポリマー層上に設けられた発光素子と、を有し、
前記発光素子は、第1電極、第2電極、および前記第1電極と前記第2電極との間に配置された発光層を有し、
前記発光層から発した光は、前記基板側に出射することを特徴とする電気光学装置。
On the board
A low refractive index layer having a lower refractive index than the substrate;
A sealing layer provided on the low refractive index layer;
A polymer layer provided on the sealing layer;
A light emitting device provided on the polymer layer,
The light emitting element has a first electrode, a second electrode, and a light emitting layer disposed between the first electrode and the second electrode,
The light emitted from the light emitting layer is emitted to the substrate side.
前記低屈折率層と前記封止層の間に、樹脂層が設けられていることを特徴とする請求項1に記載の電気光学装置。 The electro-optical device according to claim 1, wherein a resin layer is provided between the low refractive index layer and the sealing layer. 前記発光素子上に、前記発光素子を覆うように封止部材が設けられていることを特徴とする請求項1または2に記載の電気光学装置。   The electro-optical device according to claim 1, wherein a sealing member is provided on the light emitting element so as to cover the light emitting element. 前記封止層の厚さは、前記発光素子より発光される光の波長より小さいことを特徴とする請求項1乃至3のいずれかに記載の電気光学装置。 The electro-optical device according to claim 1, wherein a thickness of the sealing layer is smaller than a wavelength of light emitted from the light emitting element. 前記封止層は、セラミック、窒化珪素、酸化窒化珪素、及び酸化珪素の少なくともいずれか1つを含むこと、
を特徴とする請求項1乃至4のいずれかに記載の電気光学装置。
The sealing layer includes at least one of ceramic, silicon nitride, silicon oxynitride, and silicon oxide;
The electro-optical device according to claim 1.
前記封止層は、ホウ素、炭素、窒素、アルミニウム、ケイ素、リン、イッテルビウム、サマリウム、エルビウム、イットリウム、ガドリニウム、ジスプロシウム、及びネオジウムから選ばれた少なくとも1つの元素を含むこと、を特徴とする請求項1乃至4のいずれかに記載の電気光学装置。   The sealing layer contains at least one element selected from boron, carbon, nitrogen, aluminum, silicon, phosphorus, ytterbium, samarium, erbium, yttrium, gadolinium, dysprosium, and neodymium. The electro-optical device according to any one of 1 to 4. 前記低屈折率層および前記封止層の少なくともどちらか一方は、乾燥剤または吸着剤を含んでいること、を特徴とする請求項1乃至6のいずれかに記載の電気光学装置。   The electro-optical device according to claim 1, wherein at least one of the low refractive index layer and the sealing layer contains a desiccant or an adsorbent. 前記低屈折率層は、エアロゲル、多孔質シリカ、及びフッ化マグネシウムから選ばれた少なくとも1つの材料を含むことを特徴とする請求項1乃至7のいずれかに記載の電気光学装置。   The electro-optical device according to claim 1, wherein the low refractive index layer includes at least one material selected from airgel, porous silica, and magnesium fluoride. 前記低屈折率層の屈折率は、1.2以下であることを特徴とする請求項1乃至8のいずれかに記載の電気光学装置。 The electro-optical device according to claim 1, wherein a refractive index of the low refractive index layer is 1.2 or less. 前記低屈折率層および前記封止層は、光を透過することを特徴とする請求項1乃至9のいずれかに記載の電気光学装置。   The electro-optical device according to claim 1, wherein the low refractive index layer and the sealing layer transmit light. 前記封止層は、物質の透過を抑制することを特徴とする請求項1乃至10のいずれかに記載の電気光学装置。   The electro-optical device according to claim 1, wherein the sealing layer suppresses transmission of a substance. 基板上に、前記基板より低い屈折率を有する低屈折層を形成する第1の工程と、
前記低屈折層上に、封止層を形成する第2の工程と、
前記封止層上にポリマー層を形成する第3の工程と、
前記ポリマー層上に発光素子を形成する第4の工程と、を有し、
前記発光素子は、第1電極、第2電極、および前記第1電極と前記第2電極との間に配置された発光層を有し、
前記発光層から発した光は、前記基板側に出射することを特徴とする電気光学装置の製造方法。
Forming a low refractive layer having a refractive index lower than that of the substrate on the substrate;
A second step of forming a sealing layer on the low refractive layer;
A third step of forming a polymer layer on the sealing layer;
A fourth step of forming a light emitting element on the polymer layer,
The light emitting element has a first electrode, a second electrode, and a light emitting layer disposed between the first electrode and the second electrode,
The light emitted from the light emitting layer is emitted to the substrate side.
前記第1の工程は、湿潤ゲルを塗布する工程と、超臨界乾燥法を用いて前記湿潤ゲルを乾燥させる乾燥工程と、を含み、
前記湿潤ゲルには、樹脂が混合されていることを特徴とする
を特徴とする請求項12に記載の電気光学装置の製造方法。
The first step includes a step of applying a wet gel, and a drying step of drying the wet gel using a supercritical drying method.
13. The method of manufacturing an electro-optical device according to claim 12, wherein the wet gel is mixed with a resin.
前記低屈折層と前記封止層との間に樹脂層を形成する工程を含むことを特徴とする請求項12または13に記載の電気光学装置の製造方法。 The method of manufacturing an electro-optical device according to claim 12 or 13, characterized in that it comprises a step of forming a resin layer between the sealing layer and the low refractive layer. 前記発光素子上に、前記発光素子を覆うように封止部材を設ける工程を含むことを特徴とする請求項12乃至14のいずれかに記載の電気光学装置の製造方法。 On the light emitting device, method of manufacturing an electro-optical device according to any one of claims 12 to 14, characterized in that it comprises the step of providing the sealing member so as to cover the light emitting element. 前記封止の厚さは、前記発光素子より発光される光の波長より小さいことを特徴とする請求項12から15のいずれかに記載の電気光学装置の製造方法。 The method of manufacturing an electro-optical device according to claim 12, wherein a thickness of the sealing layer is smaller than a wavelength of light emitted from the light emitting element.
JP2007061514A 2007-03-12 2007-03-12 Electro-optical device and method of manufacturing electro-optical device Expired - Fee Related JP4656074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061514A JP4656074B2 (en) 2007-03-12 2007-03-12 Electro-optical device and method of manufacturing electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061514A JP4656074B2 (en) 2007-03-12 2007-03-12 Electro-optical device and method of manufacturing electro-optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001340746A Division JP2003142262A (en) 2001-11-06 2001-11-06 Photoelectric device, film-shaped member, laminated film, film with low refractive index, multi-layered laminated film, and electronic device

Publications (2)

Publication Number Publication Date
JP2007184290A JP2007184290A (en) 2007-07-19
JP4656074B2 true JP4656074B2 (en) 2011-03-23

Family

ID=38340138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061514A Expired - Fee Related JP4656074B2 (en) 2007-03-12 2007-03-12 Electro-optical device and method of manufacturing electro-optical device

Country Status (1)

Country Link
JP (1) JP4656074B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158837B2 (en) 2019-07-22 2021-10-26 Samsung Display Co., Ltd. Display apparatus having a thin-film encapsulation layer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2091096A1 (en) * 2008-02-15 2009-08-19 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Encapsulated electronic device and method of manufacturing
TWI674671B (en) 2013-05-28 2019-10-11 日商新力股份有限公司 Display device and electronic device
WO2015079641A1 (en) 2013-11-26 2015-06-04 株式会社Joled Organic el panel, method for producing same, and color filter substrate
JP6684564B2 (en) * 2015-10-14 2020-04-22 株式会社ジャパンディスプレイ Organic EL display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034382A1 (en) * 1999-11-10 2001-05-17 Matsushita Electric Works, Ltd. Aerogel substrate and method for preparing the same
JP2001202827A (en) * 1999-11-10 2001-07-27 Matsushita Electric Works Ltd Method of manufacturing transparent conductive substrate, light emission device, plane light emission plate and manufacturing method of plane light emission plate, plane fluorescent lamp, and plasma display
JP2002278477A (en) * 2001-03-15 2002-09-27 Matsushita Electric Works Ltd Active matrix type light emitting element and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034382A1 (en) * 1999-11-10 2001-05-17 Matsushita Electric Works, Ltd. Aerogel substrate and method for preparing the same
JP2001202827A (en) * 1999-11-10 2001-07-27 Matsushita Electric Works Ltd Method of manufacturing transparent conductive substrate, light emission device, plane light emission plate and manufacturing method of plane light emission plate, plane fluorescent lamp, and plasma display
JP2002278477A (en) * 2001-03-15 2002-09-27 Matsushita Electric Works Ltd Active matrix type light emitting element and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158837B2 (en) 2019-07-22 2021-10-26 Samsung Display Co., Ltd. Display apparatus having a thin-film encapsulation layer

Also Published As

Publication number Publication date
JP2007184290A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP4182467B2 (en) Circuit board, electro-optical device and electronic apparatus
US6985275B2 (en) Electro-optical device, film member, laminated film, low refractivity film, laminated multilayer film and electronic appliances
KR100518162B1 (en) Method of producing laminated film, electro-optical device, method of producing electro-optical device, method of producing organic electroluminescence device, and electronic equipment
KR100508296B1 (en) Circuit board, electrooptical device and electronic appliances
US7696519B2 (en) Wiring substrate, electronic device, electro-optical device, and electronic apparatus
JP4015044B2 (en) WIRING BOARD, ELECTRONIC DEVICE, AND ELECTRONIC DEVICE
JP2014203707A (en) Method of manufacturing organic el display and organic el display
JP4656074B2 (en) Electro-optical device and method of manufacturing electro-optical device
JP4015045B2 (en) WIRING BOARD, ELECTRONIC DEVICE, AND ELECTRONIC DEVICE
JP2003323138A (en) Circuit substrate, electro-optical device and electronic apparatus
JP2006113598A (en) Circuit board, electro-optical device, and electronic device
JP2006309254A (en) Wiring board, electronic device and electronic apparatus
JP2006065325A (en) Circuit substrate, electro-optical device and electronic appliance
JP2011141981A (en) Organic electroluminescent element and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees