[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4655209B2 - Method for manufacturing bonded body, method for manufacturing semiconductor device, and semiconductor device - Google Patents

Method for manufacturing bonded body, method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
JP4655209B2
JP4655209B2 JP2005195098A JP2005195098A JP4655209B2 JP 4655209 B2 JP4655209 B2 JP 4655209B2 JP 2005195098 A JP2005195098 A JP 2005195098A JP 2005195098 A JP2005195098 A JP 2005195098A JP 4655209 B2 JP4655209 B2 JP 4655209B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor epitaxial
layer
semiconductor
bonding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005195098A
Other languages
Japanese (ja)
Other versions
JP2007013046A (en
Inventor
克弥 秋元
優洋 新井
泰一郎 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005195098A priority Critical patent/JP4655209B2/en
Publication of JP2007013046A publication Critical patent/JP2007013046A/en
Application granted granted Critical
Publication of JP4655209B2 publication Critical patent/JP4655209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、半導体基板上に形成された又は自立した半導体エピタキシャル基板を別の基体(貼り替え基板)と接合して得られる貼り合せ体、接合型半導体エピタキシャル基板、半導体装置及びそれらの製造方法に関するものである。   The present invention relates to a bonded body obtained by bonding a semiconductor epitaxial substrate formed on a semiconductor substrate or a self-supporting substrate to another substrate (replacement substrate), a bonded semiconductor epitaxial substrate, a semiconductor device, and a manufacturing method thereof. Is.

近年、発光ダイオード(Light Emitting Diode:LED)の応用分野の拡大に伴い、光出力の増大に対する要求が高まっている。   In recent years, with the expansion of application fields of light emitting diodes (LEDs), there has been an increasing demand for an increase in light output.

このような要求に対し、例えば特開2001−144322号公報(特許文献1)にて公知であるように、発光層を支持する基板を発光波長に対して透明な材料に置き換えるという方法が提案されている。従来、発光波長に対して不透明だった基板で吸収されていた光を外部へと取り出すことが可能となり、光取出効率が向上するのである。   In response to such a demand, for example, as known in Japanese Patent Application Laid-Open No. 2001-144322 (Patent Document 1), a method of replacing the substrate that supports the light emitting layer with a material that is transparent to the light emission wavelength is proposed. ing. Conventionally, light absorbed by a substrate that is opaque to the emission wavelength can be extracted to the outside, and the light extraction efficiency is improved.

また、例えば特開2004−055924号公報(特許文献2)にて公知であるように、発光層を支持する基板をより熱伝導率が大きい材料に置き換えるという方法も提案されている。一般に、発光ダイオードの発光量は印加電流に比例して増加するが、同時に発熱量も増加し、発光層あるいは素子全体を劣化させてしまう。そこで、従来よりも熱伝導率が大きい基板を用いることで素子の放熱性を向上させ、より大電流が印加可能となるのである。   In addition, as known in, for example, Japanese Patent Application Laid-Open No. 2004-055924 (Patent Document 2), a method of replacing the substrate supporting the light emitting layer with a material having higher thermal conductivity has also been proposed. In general, the light emission amount of the light emitting diode increases in proportion to the applied current, but at the same time, the heat generation amount also increases, deteriorating the light emitting layer or the entire device. Therefore, by using a substrate having a higher thermal conductivity than before, the heat dissipation of the element can be improved and a larger current can be applied.

特開2001−144322号公報(特許文献1)の方法と特開2004−055924号公報(特許文献2)の方法は、考え方は異なるものの、発光層を支持する基板を別の基板に貼り替えるという工程は共通である。例えば、一般的な赤色LEDの場合、発光層をガリウムヒ素(GaAs)基板にエピタキシャル成長させた後、特許文献1の方法では赤色を透過するガリウムリン(GaP)基板へ、特許文献2の方法では熱伝導率がより高いシリコン基板へと貼り替える。   Although the method of Japanese Patent Laid-Open No. 2001-144322 (Patent Document 1) and the method of Japanese Patent Laid-Open No. 2004-055924 (Patent Document 2) are different in concept, the substrate that supports the light-emitting layer is replaced with another substrate. The process is common. For example, in the case of a general red LED, after the light emitting layer is epitaxially grown on a gallium arsenide (GaAs) substrate, the method of Patent Document 1 changes to a gallium phosphide (GaP) substrate that transmits red, and the method of Patent Document 2 heats the light. Replace with a silicon substrate with higher conductivity.

このような貼り替え工程が必要な理由を以下に述べる。赤色の発光層として広く用いられるアルミニウム・ガリウム・ヒ素(AlGaAs)系化合物半導体またはアルミニウム・ガリウム・インジウム・リン(AlGaInP)系化合物半導体は、前述のGaP基板またはシリコン基板上へのエピタキシャル成長が困難である。そこで、エピタキシャル成長が容易なGaAs基板上に発光層を形成した後、機械的に基板の貼り替えを行うのである。
特開2001−144322号公報 特開2004−055924号公報
The reason why such a replacement process is necessary will be described below. Aluminum / gallium / arsenic (AlGaAs) compound semiconductors or aluminum / gallium / indium / phosphorus (AlGaInP) compound semiconductors widely used as red light emitting layers are difficult to epitaxially grow on the aforementioned GaP substrate or silicon substrate. . Therefore, after forming a light emitting layer on a GaAs substrate that can be easily epitaxially grown, the substrate is mechanically replaced.
JP 2001-144322 A JP 2004-055924 A

しかしながら、従来技術では、上記の貼り替え工程において問題が生じる。以下、この問題点について詳細を述べる。   However, in the prior art, a problem arises in the above-described re-sticking process. Hereinafter, this problem will be described in detail.

一般に、半導体基板上にエピタキシャル成長を行うと、半導体基板とエピタキシャル層の熱膨張率の違いにより、反りが発生する。一方、別に貼り替え用として用意される基板(貼り替え基板)は平坦である。そのため、少なくともどちらかの基板を変形させて接合する必要がある。   In general, when epitaxial growth is performed on a semiconductor substrate, warpage occurs due to a difference in thermal expansion coefficient between the semiconductor substrate and the epitaxial layer. On the other hand, the substrate (replacement substrate) prepared separately for replacement is flat. Therefore, it is necessary to deform and bond at least one of the substrates.

このとき、プレス装置等の機械的な手段を用いると、ほとんどの場合、変形するのは反った半導体エピタキシャル基板となる。ところが、半導体エピタキシャル基板は発光層を含むため、機械的な変形は発光層へのダメージを与え、結果として最終的に得られる発光ダイオードの特性が低下してしまう。   At this time, when a mechanical means such as a press device is used, in most cases, the warped semiconductor epitaxial substrate is deformed. However, since the semiconductor epitaxial substrate includes a light emitting layer, mechanical deformation damages the light emitting layer, and as a result, the characteristics of the finally obtained light emitting diode are degraded.

一方、この問題を回避するため、半導体エピタキシャル基板に加える力を弱めると、半導体エピタキシャル基板と貼り替え基板(基体)の間に空隙が生じてしまい、接合不良の原因となる。またこの空隙に残留したガスが不純物となり、特性低下の原因ともなり得る。   On the other hand, if the force applied to the semiconductor epitaxial substrate is weakened in order to avoid this problem, a gap is generated between the semiconductor epitaxial substrate and the replacement substrate (base), which causes a bonding failure. In addition, the gas remaining in the voids becomes an impurity, which may cause deterioration of characteristics.

本発明は、このような事情に鑑みてなされたもので、その目的とするところは、半導体エピタキシャル基板側に機械的な変形を施すことなく、半導体エピタキシャル基板と貼り替え基板(基体)を接合する貼り合せ体、接合型半導体エピタキシャル基板、半導体装置の構造及びそれらの製造方法を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to join a semiconductor epitaxial substrate and a replacement substrate (substrate) without mechanically deforming the semiconductor epitaxial substrate side. An object of the present invention is to provide a bonded body, a junction type semiconductor epitaxial substrate, a structure of a semiconductor device, and a manufacturing method thereof.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

本発明に係る貼り合せ体の製造方法は、半導体基板上に半導体エピタキシャル層を成長して、反りを有する半導体エピタキシャル基板を形成する工程と、熱膨張率が互いに異なる少なくとも2種類の材料を積層して、バイメタル機能を備える基体を形成する工程と、前記半導体エピタキシャル基板の前記半導体エピタキシャル層上に第1接合層を形成する工程と、前記基体上に第2接合層を形成する工程と、前記第1接合層と前記第2接合層とを向かい合うように重ね合わせ、熱処理を施す工程とを有し、前記熱処理を施すことで、前記基体に前記半導体エピタキシャル基板と同じ方向の反りを形成すると共に、前記基体の反り量を制御して、前記基体と前記半導体エピタキシャル基板とを面接触させ、前記面接触させた状態から温度を変化させることで、前記基体の反り量を変化させ、前記第1接合層と前記第2接合層とを接合することを特徴とする。 The method for manufacturing a bonded body according to the present invention includes a step of growing a semiconductor epitaxial layer on a semiconductor substrate to form a warped semiconductor epitaxial substrate , and laminating at least two kinds of materials having different thermal expansion coefficients. Forming a substrate having a bimetal function, forming a first bonding layer on the semiconductor epitaxial layer of the semiconductor epitaxial substrate, forming a second bonding layer on the substrate, The first bonding layer and the second bonding layer are stacked so as to face each other, and heat treatment is performed, and by performing the heat treatment, a warp in the same direction as the semiconductor epitaxial substrate is formed on the base body, The amount of warpage of the substrate is controlled to bring the substrate and the semiconductor epitaxial substrate into surface contact, and the temperature is changed from the surface contact state. By causing, by changing the amount of warpage of the substrate, characterized by bonding the second bonding layer and the first bonding layer.

また、前記反りを有する半導体エピタキシャル基板は、前記半導体エピタキシャル層側に凸状の反りを有する構成としてもよい。Moreover, the semiconductor epitaxial substrate having the warp may have a configuration having a convex warp on the semiconductor epitaxial layer side.

また、前記基体は、シリコン基板の一方の面にアルミニウム膜を設けて形成され、前記第2接合層は、前記シリコン基板の他方の面に形成される構成としてもよい。The base may be formed by providing an aluminum film on one surface of a silicon substrate, and the second bonding layer may be formed on the other surface of the silicon substrate.

前記半導体基板はGaAs基板であり、前記半導体エピタキシャル層はAlGaAs系化合物半導体、又はAlGaInP系化合物半導体であり、前記第1接合層及び前記第2接合層は、Au系金属材料からなる構成としてもよい。The semiconductor substrate may be a GaAs substrate, the semiconductor epitaxial layer may be an AlGaAs compound semiconductor or an AlGaInP compound semiconductor, and the first bonding layer and the second bonding layer may be made of an Au metal material. .

本発明に係る半導体装置の製造方法は、GaAs基板上にAlGaAs系化合物半導体又はAlGaInP系化合物半導体からなる半導体エピタキシャル層を成長して、前記半導体エピタキシャル層側に凸状の反りを有する半導体エピタキシャル基板を形成する工程と、シリコン基板の一方の面側にアルミニウム膜を形成し、バイメタル機能を備える基体を形成する工程と、前記半導体エピタキシャル基板の前記半導体エピタキシャル層上にAu系金属材料からなる第1接合層を形成する工程と、前記シリコン基板の他方の面側にAu系金属材料からなる第2接合層を形成する工程と、前記第1接合層と前記第2接合層とを向かい合うように重ね合わせ、熱処理を施す工程とを有し、前記熱処理を施すことで、前記基体に前記半導体エピタキシャル基板と同じ方向の反りを形成すると共に、前記基体の反り量を制御して、前記基体と前記半導体エピタキシャル基板とを面接触させ、A method of manufacturing a semiconductor device according to the present invention includes growing a semiconductor epitaxial layer made of an AlGaAs compound semiconductor or an AlGaInP compound semiconductor on a GaAs substrate, and forming a semiconductor epitaxial substrate having a convex warpage on the semiconductor epitaxial layer side. A step of forming an aluminum film on one side of the silicon substrate to form a base body having a bimetal function, and a first junction made of an Au-based metal material on the semiconductor epitaxial layer of the semiconductor epitaxial substrate. A step of forming a layer, a step of forming a second bonding layer made of an Au-based metal material on the other surface of the silicon substrate, and the first bonding layer and the second bonding layer so as to face each other. And a step of performing a heat treatment, and the semiconductor epitaxial layer is applied to the substrate by performing the heat treatment. To form the same direction of the warp and the catcher Le substrate, by controlling the amount of warp of the substrate, and said semiconductor epitaxial substrate and the substrate is surface contact,
さらに前記面接触させた状態から温度を変化させることで、前記基体の反り量を変化させ、前記第1接合層と前記第2接合層とを接合して貼り合せ体を形成する工程と、前記基体の前記GaAs基板を除去する工程と、個々のチップへと切り分ける工程とを有することを特徴とする。Further, by changing the temperature from the surface contact state, changing the amount of warping of the substrate, joining the first joining layer and the second joining layer to form a bonded body, The method includes a step of removing the GaAs substrate of the base and a step of cutting into individual chips.

本発明に係る半導体装置は、基体上に反りを有する半導体エピタキシャル層が接合され、該半導体エピタキシャル層に電極が形成されてなる半導体装置において、前記基体は、熱処理を加えた際の反り方向が前記半導体エピタキシャル層の反り方向と同一方向となるような、熱膨張率が異なる少なくとも2種類の材料からなる積層構造を有することを特徴とする。
The semiconductor device according to the present invention is a semiconductor device in which a semiconductor epitaxial layer having a warp is bonded on a base, and an electrode is formed on the semiconductor epitaxial layer, and the base has a warping direction when subjected to heat treatment. It has a laminated structure made of at least two kinds of materials having different coefficients of thermal expansion that are in the same direction as the warp direction of the semiconductor epitaxial layer.

<発明の要点>
本発明の要点は、貼り替え用として用意される基体(貼り替え基板)側の構造を、熱膨張率が異なる少なくとも2種類の材料を積層した多層基板としたことにある。
<Key points of the invention>
The main point of the present invention is that the structure on the substrate (replacement substrate) side prepared for replacement is a multilayer substrate in which at least two kinds of materials having different coefficients of thermal expansion are laminated.

熱膨張率が異なる少なくとも2種類の材料を積層した多層基板は、いわゆるバイメタルと呼ばれるもので、温度が変化すると熱膨張率の小さな材料の方に曲がるという性質を持つ。そこで、貼り替え基板をバイメタルとすれば、適切な温度を与えれば半導体エピタキシャル基板と同等の反りを与えることが可能である。このようにすることで、半導体エピタキシャル基板に機械的な変形を加える必要はなく、半導体エピタキシャル基板と貼り替え基板のほとんどの面を接触させることが可能である。   A multilayer substrate in which at least two kinds of materials having different coefficients of thermal expansion are stacked is called a so-called bimetal, and has a property of bending toward a material having a smaller coefficient of thermal expansion when the temperature changes. Therefore, if the replacement substrate is made of bimetal, it is possible to give the same warp as the semiconductor epitaxial substrate if an appropriate temperature is given. By doing in this way, it is not necessary to apply mechanical deformation to the semiconductor epitaxial substrate, and it is possible to bring most of the surfaces of the semiconductor epitaxial substrate and the replacement substrate into contact.

さらに、この状態から多少温度を変化させれば、貼り替え基板が伸縮してより堅固に半導体エピタキシャル基板に接触する。このとき、半導体エピタキシャル基板に多少の力が加わるが、機械的に変形を施す力に比べれば圧倒的に小さい。さらに、半導体エピタキシャル基板全面に均等に力が加わるため、発光層へのダメージが入りにくい。さらに、温度が適切であれば、この状態でしばらく放置することで半導体エピタキシャル基板と貼り替え基板を接合させ、一体化させることできる。すなわち、基板の貼り替えが可能となる。   Furthermore, if the temperature is changed somewhat from this state, the re-attached substrate expands and contracts and comes into contact with the semiconductor epitaxial substrate more firmly. At this time, some force is applied to the semiconductor epitaxial substrate, but it is overwhelmingly smaller than the force to mechanically deform. In addition, since the force is uniformly applied to the entire surface of the semiconductor epitaxial substrate, the light emitting layer is hardly damaged. Furthermore, if the temperature is appropriate, the semiconductor epitaxial substrate and the replacement substrate can be joined and integrated by leaving them in this state for a while. That is, the substrate can be replaced.

本発明の代表例は、発光ダイオード用エピタキシャル基板、発光ダイオード、およびそれらの製造方法であり、本発明の特徴に従い、半導体基板と、第1導電型の第1のクラッド層と、第2導電型の第2のクラッド層と、前記第1のクラッド層と第2のクラッド層の間に設けられた活性層とからなる発光層を具備する半導体エピタキシャル基板に対し、熱膨張率が異なる少なくとも2種類の材料を接合した多層基板を貼り合わせる工程と、これにより得られた貼り合せ体から半導体エピタキシャル基板側の半導体基板を除去する工程とを含むものである。   Representative examples of the present invention are an epitaxial substrate for a light emitting diode, a light emitting diode, and a method for manufacturing the same, and according to the features of the present invention, a semiconductor substrate, a first cladding layer of a first conductivity type, and a second conductivity type. At least two types having different thermal expansion coefficients with respect to the semiconductor epitaxial substrate including the light emitting layer comprising the second clad layer and the active layer provided between the first clad layer and the second clad layer. And a step of removing the semiconductor substrate on the side of the semiconductor epitaxial substrate from the bonded body obtained thereby.

本発明において、半導体エピタキシャル基板を形成する材料には特に制限はない。エピタキシャル成長用の半導体基板としては、GaAs基板の他にインジウムリン(InP)基板、サファイア基板等を用いてもよい。   In the present invention, the material for forming the semiconductor epitaxial substrate is not particularly limited. As a semiconductor substrate for epitaxial growth, an indium phosphide (InP) substrate, a sapphire substrate, or the like may be used in addition to a GaAs substrate.

また、これらの半導体基板上に形成する発光層としては、AlGaAs系化合物半導体、AlGaInP系化合物半導体の他に、窒化ガリウム(GaN)系化合物半導体、インジウム・ガリウム・ヒ素・リン(InGaAsP)系化合物半導体等を用いてもよい。   In addition to AlGaAs compound semiconductors and AlGaInP compound semiconductors, the light emitting layer formed on these semiconductor substrates includes gallium nitride (GaN) compound semiconductors, indium / gallium / arsenic / phosphorus (InGaAsP) compound semiconductors. Etc. may be used.

本発明において、貼り替え基板(基体)として用意される多層基板を構成する材料は、熱伝導や電気伝導を考慮すると、化合物および合金よりも単体が望ましく、例えば、シリコン、ゲルマニウム、アルミニウム、金、銀、銅、白金、チタン、モリブデン、タングステン等があげられるが、必ずしもこれらの材料に限定されるものではない。これらのうちから熱膨張率が異なる少なくとも2種類の材料を任意に選択して使用できるものである。代表的には、これらのうちで比較的熱膨張率の小さいシリコン(線熱膨張率:0.763×10-5/deg)と比較的熱膨張率の大きいアルミニウム(線熱膨張率:2.313×10-5/deg)の組み合わせがある。 In the present invention, the material constituting the multilayer substrate prepared as the replacement substrate (base) is preferably a simple substance rather than a compound and an alloy in consideration of heat conduction and electric conduction, for example, silicon, germanium, aluminum, gold, Silver, copper, platinum, titanium, molybdenum, tungsten and the like can be mentioned, but the material is not necessarily limited to these materials. Of these, at least two kinds of materials having different coefficients of thermal expansion can be arbitrarily selected and used. Typically, silicon having a relatively low thermal expansion coefficient (linear thermal expansion coefficient: 0.763 × 10 −5 / deg) and aluminum having a relatively large thermal expansion coefficient (linear thermal expansion coefficient: 2. 313 × 10 −5 / deg).

本発明において、貼り替え基板(基体)となる多層基板は必ずしも2層構造である必要はなく、3層以上としてもよい。   In the present invention, the multilayer substrate to be the replacement substrate (base) does not necessarily have a two-layer structure, and may have three or more layers.

本発明によれば、半導体エピタキシャル基板と基体(貼り替え基板)を接合し、発光ダイオードの如き半導体装置やそれ用の接合型半導体エピタキシャル基板等を製造するに際し、基体側を熱膨張率が異なる少なくとも2種類の材料を積層した多層基板とし、半導体エピタキシャル基板と多層基板の接合時に適切な温度に保持することで、多層基板にバイメタルの変形原理により半導体エピタキシャル基板と同等の反りを与えるようにしたので、半導体エピタキシャル基板に機械的な変形を加えずに基体を接合することができる。   According to the present invention, at the time of manufacturing a semiconductor device such as a light-emitting diode or a junction type semiconductor epitaxial substrate therefor by bonding a semiconductor epitaxial substrate and a substrate (replacement substrate), the substrate side has at least a different coefficient of thermal expansion. Since the multilayer substrate is made by laminating two kinds of materials and maintained at an appropriate temperature when the semiconductor epitaxial substrate and the multilayer substrate are bonded together, the multilayer substrate is given a warp equivalent to that of the semiconductor epitaxial substrate due to the bimetallic deformation principle. The substrate can be bonded to the semiconductor epitaxial substrate without mechanical deformation.

従って、最終的に特性の良好な発光ダイオード等の半導体装置を得ることができる。   Therefore, a semiconductor device such as a light-emitting diode with good characteristics can be finally obtained.

以下、図面を参照しながら本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例に係る貼り合せ体の製造方法を、また図2は従来例による貼り合せ体の製造方法を示した図である。   FIG. 1 shows a method for manufacturing a bonded body according to an embodiment of the present invention, and FIG. 2 shows a method for manufacturing a bonded body according to a conventional example.

<半導体エピタキシャル基板の形成>
まず図3に示す発光ダイオード構造の半導体エピタキシャル基板20を作製した。図示するように、直径76.2mm、厚さ300μmのZnドープp型GaAs基板(半導体基板)1上に、Znドープp型Al0.7Ga0.3Asエッチストップ層2、Znドープp型GaAs保護層3、Znドープp型(Al0.7Ga0.30.5In0.5Pクラッド層4、アンドープ(Al0.15Ga0.850.5In0.5P活性層5、Seドープn型(Al0.7Ga0.30.5In0.5Pクラッド層6と、Seドープn型GaAs保護層7を、有機金属化学的気相成長法(MOVPE法)で順次成長し、図3に示す構造を持つ半導体エピタキシャル基板Aを得た。
<Formation of semiconductor epitaxial substrate>
First, a semiconductor epitaxial substrate 20 having a light emitting diode structure shown in FIG. 3 was produced. As shown, a Zn-doped p-type Al 0.7 Ga 0.3 As etch stop layer 2 and a Zn-doped p-type GaAs protective layer 3 are formed on a Zn-doped p-type GaAs substrate (semiconductor substrate) 1 having a diameter of 76.2 mm and a thickness of 300 μm. Zn-doped p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 4, undoped (Al 0.15 Ga 0.85 ) 0.5 In 0.5 P active layer 5, Se-doped n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 6 and a Se-doped n-type GaAs protective layer 7 were sequentially grown by metal organic chemical vapor deposition (MOVPE) to obtain a semiconductor epitaxial substrate A having the structure shown in FIG.

さらに、半導体エピタキシャル基板Aに用いたp型GaAs基板1と同一ロットのp型GaAs基板に半導体エピタキシャル基板Aと全く同様のエピタキシャル成長を適用し、図3に示す構造の半導体エピタキシャル基板Bを得た。   Further, the same epitaxial growth as that of the semiconductor epitaxial substrate A was applied to the p-type GaAs substrate of the same lot as that of the p-type GaAs substrate 1 used for the semiconductor epitaxial substrate A to obtain a semiconductor epitaxial substrate B having the structure shown in FIG.

半導体エピタキシャル基板A、Bともに、Seドープn型GaAs保護層7側を凸面とする反りが生じていた。反り量として、半導体エピタキシャル基板の中心部と端部の高低差を測定したところ、半導体エピタキシャル基板Aでは317μm、半導体エピタキシャル基板Bでは312μmであった。   In both the semiconductor epitaxial substrates A and B, the warp with the Se-doped n-type GaAs protective layer 7 side as a convex surface occurred. As the amount of warpage, the difference in height between the center portion and the end portion of the semiconductor epitaxial substrate was measured and found to be 317 μm for the semiconductor epitaxial substrate A and 312 μm for the semiconductor epitaxial substrate B.

半導体エピタキシャル基板Aと半導体エピタキシャル基板Bがほぼ同等の特性を持つことを確認するため、それぞれにアルゴンレーザ光(波長514.5nm)を照射し、PLスペクトルの測定を行った。半導体エピタキシャル基板Aおよび半導体エピタキシャル基板Bのスペクトルを図4に示す。図4からわかるように、ほぼ同等のスペクトル形状を示している。この結果から、半導体エピタキシャル基板Aと半導体エピタキシャル基板Bでは反り量に若干の差はあるものの、ほぼ同一の特性を持つ半導体エピタキシャル基板であることが確認された。   In order to confirm that the semiconductor epitaxial substrate A and the semiconductor epitaxial substrate B have substantially the same characteristics, each was irradiated with argon laser light (wavelength 514.5 nm), and the PL spectrum was measured. The spectra of the semiconductor epitaxial substrate A and the semiconductor epitaxial substrate B are shown in FIG. As can be seen from FIG. 4, the spectrum shapes are almost equivalent. From this result, it was confirmed that the semiconductor epitaxial substrate A and the semiconductor epitaxial substrate B are semiconductor epitaxial substrates having almost the same characteristics although there is a slight difference in warpage.

次に、図1(a)、図2(a)に示すように、半導体エピタキシャル基板Aおよび半導体エピタキシャル基板Bの片側、正確にはエピタキシャル成長を行った側(Seドープn型GaAs保護層7側)に、厚さ50nmのAuGe合金層、厚さ10nmのNi層、厚さ300nmのAu層を順次蒸着した。引き続き水素雰囲気中で500℃、5分間の熱処理を行い、AuGeNi合金層14とAu層16の2層とした。この熱処理により、半導体エピタキシャル基板のエピタキシャル層とAu層の両層間の電気が流れ易くなると共に両層間の接着強度が向上し、剥がれにくくなる。   Next, as shown in FIGS. 1 (a) and 2 (a), one side of the semiconductor epitaxial substrate A and the semiconductor epitaxial substrate B, more precisely, the side on which epitaxial growth has been performed (Se-doped n-type GaAs protective layer 7 side). In addition, a 50 nm thick AuGe alloy layer, a 10 nm thick Ni layer, and a 300 nm thick Au layer were sequentially deposited. Subsequently, a heat treatment was performed in a hydrogen atmosphere at 500 ° C. for 5 minutes to form two layers of an AuGeNi alloy layer 14 and an Au layer 16. This heat treatment facilitates the flow of electricity between the epitaxial layer and the Au layer of the semiconductor epitaxial substrate, improves the adhesion strength between the two layers, and makes it difficult to peel off.

<貼り替え基板(基体)の形成>
次に、貼り替え基板(基体)を形成すべく、同一ロットのBドープp型シリコン基板12を2枚準備し、それぞれシリコン基板Aおよびシリコン基板Bとした(図1(a)、図2(a)参照)。シリコン基板Aおよびシリコン基板Bの直径は76.2mm、厚さは350μmである。
<Formation of substrate for replacement (base)>
Next, two B-doped p-type silicon substrates 12 of the same lot were prepared in order to form a replacement substrate (base), which were designated as silicon substrate A and silicon substrate B, respectively (FIG. 1 (a), FIG. 2 ( a)). The silicon substrate A and the silicon substrate B have a diameter of 76.2 mm and a thickness of 350 μm.

図1(a)に示すように、シリコン基板Aの片面には、スパッタ装置を用いて厚さ5.3μmのアルミニウム膜11を形成し、熱膨張率が異なる2種類の材料からなる積層構造とした。さらに、図1(a)、図2(a)に示すように、シリコン基板Aのアルミニウム膜が形成されていない側の面、およびシリコン基板Bの片面には、厚さ50nmのAuCr合金層13、厚さ300nmのAu層16を順次蒸着した。   As shown in FIG. 1A, an aluminum film 11 having a thickness of 5.3 μm is formed on one surface of a silicon substrate A by using a sputtering apparatus, and a laminated structure made of two types of materials having different thermal expansion coefficients. did. Further, as shown in FIG. 1A and FIG. 2A, an AuCr alloy layer 13 having a thickness of 50 nm is formed on the surface of the silicon substrate A where the aluminum film is not formed and on one surface of the silicon substrate B. The Au layer 16 having a thickness of 300 nm was sequentially deposited.

<接合>
まず従来例の接合方法から説明する。
<Joint>
First, the conventional joining method will be described.

図2(a)に示すように、半導体エピタキシャル基板Bとシリコン基板Bを、それぞれAu層を蒸着した面を向かい合わせ、シリコン基板Bが下側になるように重ねて設置した。半導体エピタキシャル基板B上には直径76.2mm、厚さ5mmのモリブデン製の重り15を設置した。図2(b)に示すように、これに真空中で500℃、60分の熱処理を行い、半導体エピタキシャル基板Bとシリコン基板Bを接合させてなる貼り合せ体22とした(従来例1)。   As shown in FIG. 2A, the semiconductor epitaxial substrate B and the silicon substrate B were placed so that the surfaces on which the Au layers were deposited faced each other and the silicon substrate B was on the lower side. On the semiconductor epitaxial substrate B, a molybdenum weight 15 having a diameter of 76.2 mm and a thickness of 5 mm was installed. As shown in FIG. 2B, this was subjected to heat treatment at 500 ° C. for 60 minutes in a vacuum to obtain a bonded body 22 obtained by bonding the semiconductor epitaxial substrate B and the silicon substrate B (conventional example 1).

次に本発明の実施例の接合方法を説明する。   Next, the joining method of the Example of this invention is demonstrated.

上記従来例1と同様に、図1(a)に示す如く、半導体エピタキシャル基板Aとシリコン基板Aを、それぞれAu層を蒸着した面を向かい合わせ、シリコン基板Aが下側になるように重ねて設置した。図1(b)に示すように、これに水素雰囲気中で220℃、30分の熱処理を行い、図1(c)のように半導体エピタキシャル基板Aとシリコン基板Aを接合させてなる貼り合せ体21とした(実施例1)。   As in the conventional example 1, as shown in FIG. 1A, the semiconductor epitaxial substrate A and the silicon substrate A are stacked so that the surfaces on which the Au layers are deposited face each other and the silicon substrate A is on the lower side. installed. As shown in FIG. 1B, a bonded body obtained by performing heat treatment at 220 ° C. for 30 minutes in a hydrogen atmosphere and bonding the semiconductor epitaxial substrate A and the silicon substrate A as shown in FIG. 1C. 21 (Example 1).

この実施例1においては、シリコン基板A上に重り等は設置せず、荷重はいっさい加えていない。しかし、貼り替え基板(基体)としてのシリコン基板Aは、片面にアルミニウム膜11を具備し、全体としては熱膨張率の異なる2種類の材料(シリコン基板12とアルミニウム膜11)を接合した多層基板(バイメタル)として構成されている。このため上記の如く、接合のため水素雰囲気中で220℃、30分という熱処理を施すと、これが反りに関しても適切な温度の熱処理を施したことになり、バイメタルの変形原理により、反りを有する半導体エピタキシャル基板Aに対して、これと同等の反りが与えられる。すなわち、図1(c)に示すように、シリコン基板Aが半導体エピタキシャル基板Aと同一方向に反った状態となり、半導体エピタキシャル基板Aに機械的な変形を与えることなく、両者を隙間なく重ね合わせて接合した貼り合せ体21を得ることができる。また、本発明によれば、従来例での熱処理温度500℃よりも低温の熱処理温度(220℃)でも良好な接合を行うことができる。   In the first embodiment, no weight or the like is placed on the silicon substrate A, and no load is applied. However, the silicon substrate A as the replacement substrate (base) has an aluminum film 11 on one side, and is a multilayer substrate in which two kinds of materials (silicon substrate 12 and aluminum film 11) having different thermal expansion coefficients as a whole are joined. (Bimetal). For this reason, as described above, when heat treatment is performed at 220 ° C. for 30 minutes in a hydrogen atmosphere for bonding, the heat treatment is performed at an appropriate temperature with respect to warpage. The warp equivalent to this is given to the epitaxial substrate A. That is, as shown in FIG. 1C, the silicon substrate A is warped in the same direction as the semiconductor epitaxial substrate A, and the semiconductor epitaxial substrate A is overlapped with no gap without giving mechanical deformation. The bonded bonded body 21 can be obtained. In addition, according to the present invention, good bonding can be performed even at a heat treatment temperature (220 ° C.) lower than the heat treatment temperature of 500 ° C. in the conventional example.

貼り替え基板たるシリコン基板Aの反り量を制御し、半導体エピタキシャル基板Aの反り量と一致させるには、バイメタルの理論が非常に有用である。例えばS.P. Timoshenko:Analysis of Bi−Metal Thermostats,J.Optical Soc.Am,Vol.11,P.233−255(1925)に詳細が記載されている。   In order to control the warpage amount of the silicon substrate A which is a substrate to be replaced and to match the warpage amount of the semiconductor epitaxial substrate A, the bimetal theory is very useful. For example, S.W. P. Timoshenko: Analysis of Bi-Metal Thermostats, J. MoI. Optical Soc. Am, Vol. 11, p. Details are described in 233-255 (1925).

これらの貼り合せ体21(実施例1)および貼り合せ体22(従来例1)に対し、赤外線検査装置を用いて接合の成否についての検討を行ったところ、従来例1の貼り合せ体22では、基板周辺部での未接合あるいは剥離(図2(c)の隙間参照)が確認できた。接合部は中心からおよそ直径45mmの円状の範囲に限定されており、基板面積に対する未接合部の面積の割合は63%であった。一方、実施例1の貼り合せ体21では、複数の微小な未接合部が不規則に認められたが、基板面積に対する未接合部面積の割合はわずか5%であった。   When the bonded body 21 (Example 1) and the bonded body 22 (Conventional Example 1) were examined for success or failure using an infrared inspection apparatus, the bonded body 22 of the Conventional Example 1 In addition, non-bonding or peeling (see the gap in FIG. 2C) at the periphery of the substrate could be confirmed. The joint portion was limited to a circular range having a diameter of approximately 45 mm from the center, and the ratio of the area of the unjoined portion to the substrate area was 63%. On the other hand, in the bonded body 21 of Example 1, a plurality of minute unjoined portions were irregularly recognized, but the ratio of the unjoined portion area to the substrate area was only 5%.

以上の結果は、本発明による貼り合せ体の製造方法は、従来技術による貼り合せ体の製造方法に比べて、歩留まりの観点から非常に優れていることを示している。   The above results show that the method for manufacturing a bonded body according to the present invention is very superior from the viewpoint of yield compared with the method for manufacturing a bonded body according to the prior art.

上記半導体エピタキシャル基板Aとシリコン基板Aを接合した貼り合せ体21について、その半導体エピタキシャル基板A側のGaAs基板1を厚さ50μmまで研磨した。このとき、接合不良部はピンセットで除去した。残ったGaAs基板1はアンモニア水と過酸化水素水の混合液でエッチングして完全に除去した。その後、反応性イオンエッチング(Reactive Ion Etching;RIE)により、表面に露出したZnドープp型Al0.7Ga0.3Asエッチストップ層2を除去した。 For the bonded body 21 obtained by bonding the semiconductor epitaxial substrate A and the silicon substrate A, the GaAs substrate 1 on the semiconductor epitaxial substrate A side was polished to a thickness of 50 μm. At this time, the bonding failure portion was removed with tweezers. The remaining GaAs substrate 1 was completely removed by etching with a mixed solution of ammonia water and hydrogen peroxide solution. Thereafter, the Zn-doped p-type Al 0.7 Ga 0.3 As etch stop layer 2 exposed on the surface was removed by reactive ion etching (RIE).

これにより、半導体エピタキシャル基板20から半導体基板1を除去して得られる半導体エピタキシャル層31と、シリコン基板12にアルミニウム膜11を積層して反りを発生させた基体32とを、該基体32の反りを半導体エピタキシャル層31の反り方向に一致させて接合した接合型半導体エピタキシャル基板30(図5参照)を得た。   As a result, the semiconductor epitaxial layer 31 obtained by removing the semiconductor substrate 1 from the semiconductor epitaxial substrate 20 and the base body 32 in which the aluminum film 11 is laminated on the silicon substrate 12 to generate the warp are reduced. A junction-type semiconductor epitaxial substrate 30 (see FIG. 5) was obtained that was bonded in accordance with the warping direction of the semiconductor epitaxial layer 31.

この半導体エピタキシャル層31は、正確には半導体エピタキシャル基板AからGaAs基板1だけでなくエッチストップ層2をも除去して得られるものであり、従ってn型保護層7、n型クラッド層6、活性層5、p型クラッド層4、及びp型保護層3を順次積層した積層体からなる。   This semiconductor epitaxial layer 31 is obtained by removing not only the GaAs substrate 1 but also the etch stop layer 2 from the semiconductor epitaxial substrate A. Therefore, the n-type protective layer 7, the n-type cladding layer 6, the active It consists of a laminated body in which the layer 5, the p-type cladding layer 4, and the p-type protective layer 3 are sequentially laminated.

この後、上記接合型半導体エピタキシャル基板30をダイシング装置で300μm角のチップへと加工し、金属ステム10へ搭載した。このとき、シリコン基板A(図5のシリコン基板12)のアルミニウム膜11側が金属ステム10と金シリコンはんだを介して接触するように配置した。露出したZnドープp型GaAs保護層3側には、直径100μmの円形電極8を形成し、これにワイヤー9を接続した。   Thereafter, the junction type semiconductor epitaxial substrate 30 was processed into a 300 μm square chip by a dicing apparatus and mounted on the metal stem 10. At this time, the aluminum film 11 side of the silicon substrate A (silicon substrate 12 in FIG. 5) was arranged so as to be in contact with the metal stem 10 via gold silicon solder. A circular electrode 8 having a diameter of 100 μm was formed on the exposed Zn-doped p-type GaAs protective layer 3 side, and a wire 9 was connected thereto.

以上の工程により、実施例1の貼り合せ体21から発光ダイオードA(実施例2)を得ることができた。   The light emitting diode A (Example 2) was able to be obtained from the bonded body 21 of Example 1 by the above process.

一方、従来例1の貼り合せ体22にも同様の工程を施し、図5に示す構造の発光ダイオードB(従来例2)を得た。ただし、貼り合せ体22には貼り合わせ工程時にシリコン基板B側に予めアルミニウム膜11が形成されていないため、シリコン基板B(図5のシリコン基板12)側には、スパッタ装置を用いて厚さ5.3μmのアルミニウム膜11を形成した。   On the other hand, the same process was applied to the bonded body 22 of Conventional Example 1 to obtain a light emitting diode B (Conventional Example 2) having the structure shown in FIG. However, since the aluminum film 11 is not formed in advance on the silicon substrate B side in the bonding process in the bonding process 22, the thickness of the bonding body 22 is set on the silicon substrate B (silicon substrate 12 in FIG. 5) by using a sputtering apparatus. An aluminum film 11 having a thickness of 5.3 μm was formed.

発光ダイオードBは従来方法で製造された発光ダイオードであり、発光ダイオードAは本発明の方法で製造された発光ダイオードである。図5に示すように、金属ステム10とワイヤー9を通し、これらにそれぞれ200mAの電流を通電して発光出力を調べた結果、発光ダイオードB(従来例2)の発光出力は138mW、発光ダイオードA(実施例2)の発光出力は161mWであった。このときの印加電圧は、発光ダイオードB(従来例2)が2.9V、発光ダイオードA(実施例2)は2.7Vであった。   The light emitting diode B is a light emitting diode manufactured by a conventional method, and the light emitting diode A is a light emitting diode manufactured by the method of the present invention. As shown in FIG. 5, the light emission output of the light emitting diode B (conventional example 2) was 138 mW as a result of investigating the light emission output by passing a current of 200 mA through the metal stem 10 and the wire 9. The light emission output of (Example 2) was 161 mW. The applied voltage at this time was 2.9 V for the light emitting diode B (conventional example 2) and 2.7 V for the light emitting diode A (example 2).

印加電流が同じであるにもかかわらず、発光ダイオードA(実施例2)の方が発光出力が大きく、さらに印加電圧が低い。これは、発光ダイオードB(従来例2)が接合時の機械的な圧力で活性層にダメージが入り、特性が低下したためだと考えられる。   Despite the same applied current, the light emitting diode A (Example 2) has a larger light emission output and a lower applied voltage. This is presumably because the light-emitting diode B (conventional example 2) was damaged in the active layer by the mechanical pressure at the time of bonding, and the characteristics deteriorated.

以上の結果は、本発明に関する発光ダイオードが、従来の製造方法による発光ダイオードよりも特性の面で非常に優れていることを示している。   The above results indicate that the light-emitting diode according to the present invention is much superior in characteristics than the light-emitting diode produced by the conventional manufacturing method.

<他の実施例、変形例>
上記実施例では、半導体エピタキシャル基板がエピタキシャル成長面側に凸面に反った場合について述べたが、逆に凹面状に反っていてもよい。この場合でも、貼り替え基板(基体)側の材料を熱膨張率の違いに基づいて適切に選択すれば、半導体エピタキシャル基板の反りと同一方向に反らせることが可能である。
<Other embodiments and modifications>
In the above-described embodiment, the case where the semiconductor epitaxial substrate is warped convexly toward the epitaxial growth surface side is described, but conversely, it may be warped concavely. Even in this case, it is possible to warp in the same direction as the warp of the semiconductor epitaxial substrate if the material on the substrate to be replaced (base) side is appropriately selected based on the difference in thermal expansion coefficient.

上記実施例では半導体エピタキシャル基板を有機金属化学的気相成長法で製造したが、本発明において、半導体エピタキシャル基板の製造方法は必ずしも有機金属化学的気相成長法である必要はなく、例えば液相エピタキシャル成長等の方法を用いてもよい。   In the above embodiment, the semiconductor epitaxial substrate is manufactured by the metal organic chemical vapor deposition method. However, in the present invention, the method for manufacturing the semiconductor epitaxial substrate is not necessarily the metal organic chemical vapor deposition method. A method such as epitaxial growth may be used.

また本発明において、半導体エピタキシャル基板と基体との接合膜に用いる金属膜やその構造は、本実施例に限定されるものではなく、他の金属や合金を用いてもよい。さらに、必ずしも金属膜である必要はなく、導電性接着剤等を用いてもよい。   In the present invention, the metal film used for the bonding film between the semiconductor epitaxial substrate and the substrate and the structure thereof are not limited to this embodiment, and other metals and alloys may be used. Furthermore, it is not necessarily a metal film, and a conductive adhesive or the like may be used.

また、本発明は、温度、雰囲気等の接合条件に関しても本実施例に限定されるものではなく、必要に応じて適宜変更が可能である。   Further, the present invention is not limited to the present embodiment with respect to bonding conditions such as temperature and atmosphere, and can be appropriately changed as necessary.

本発明により半導体エピタキシャル層と基体を貼り合せた半導体装置は、例えば発光素子として、照明機器、液晶用バックライト、各種インジケータ、表示パネル等のデバイスに応用することができる。特に、大電流および大出力での特性に優れているため、自動車のストップランプ等に応用することができる。   A semiconductor device in which a semiconductor epitaxial layer and a substrate are bonded according to the present invention can be applied to devices such as lighting devices, backlights for liquid crystals, various indicators, and display panels as light emitting elements. In particular, since it is excellent in characteristics at a large current and a large output, it can be applied to a stop lamp of an automobile.

本発明の実施例に係る貼り合せ体の製造方法を示した図である。It is the figure which showed the manufacturing method of the bonded body which concerns on the Example of this invention. 従来例による貼り合せ体の製造方法を示した図である。It is the figure which showed the manufacturing method of the bonded body by a prior art example. 本発明の実施例に係る半導体エピタキシャル基板Aおよび従来例に係る半導体エピタキシャル基板Bの模式的な断面図である。It is typical sectional drawing of the semiconductor epitaxial substrate A which concerns on the Example of this invention, and the semiconductor epitaxial substrate B which concerns on a prior art example. 本発明の実施例に係る半導体エピタキシャル基板Aおよび従来例に係る半導体エピタキシャル基板BのPLスペクトルを示す図である。It is a figure which shows PL spectrum of the semiconductor epitaxial substrate A which concerns on the Example of this invention, and the semiconductor epitaxial substrate B which concerns on a prior art example. 本発明の実施例に係る発光ダイオードおよび従来例に係る発光ダイオードの模式的な断面図である。It is typical sectional drawing of the light emitting diode which concerns on the Example of this invention, and the light emitting diode which concerns on a prior art example.

符号の説明Explanation of symbols

1 p型GaAs基板
2 p型Al0.7Ga0.3Asエッチストップ層
3 p型GaAs保護層
4 p型(Al0.7Ga0.30.5In0.5Pクラッド層
5 アンドープ(Al0.15Ga0.850.5In0.5P活性層
6 n型(Al0.7Ga0.30.5In0.5Pクラッド層
7 n型GaAs保護層
8 円形電極
9 ワイヤ
10 金属ステム
11 アルミニウム膜
12 シリコン基板
13 AuCr合金層
14 AuGeNi合金層
15 重り
16 Au層
20 エピタキシャル基板
21 貼り合せ体
22 貼り合せ体
30 接合型半導体エピタキシャル基板
31 半導体エピタキシャル層
32 基体
1 p-type GaAs substrate 2 p-type Al 0.7 Ga 0.3 As etch stop layer 3 p-type GaAs protective layer 4 p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 5 undoped (Al 0.15 Ga 0.85 ) 0.5 In 0.5 P activity Layer 6 n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 7 n-type GaAs protective layer 8 circular electrode 9 wire 10 metal stem 11 aluminum film 12 silicon substrate 13 AuCr alloy layer 14 AuGeNi alloy layer 15 weight 16 Au layer 20 Epitaxial substrate 21 Bonded body 22 Bonded body 30 Junction type semiconductor epitaxial substrate 31 Semiconductor epitaxial layer 32 Base

Claims (6)

半導体基板上に半導体エピタキシャル層を成長して、反りを有する半導体エピタキシャル基板を形成する工程と、熱膨張率が互いに異なる少なくとも2種類の材料を積層して、バイメタル機能を備える基体を形成する工程と、前記半導体エピタキシャル基板の前記半導体エピタキシャル層上に第1接合層を形成する工程と、前記基体上に第2接合層を形成する工程と、前記第1接合層と前記第2接合層とを向かい合うように重ね合わせ、熱処理を施す工程とを有し、前記熱処理を施すことで、前記基体に前記半導体エピタキシャル基板と同じ方向の反りを形成すると共に、前記基体の反り量を制御して、前記基体と前記半導体エピタキシャル基板とを面接触させ、
さらに、前記面接触させた状態から温度を変化させることで、前記基体の反り量を変化させ、前記第1接合層と前記第2接合層とを接合することを特徴とする貼り合せ体の製造方法。
A step of growing a semiconductor epitaxial layer on a semiconductor substrate to form a semiconductor epitaxial substrate having warpage, and a step of forming a substrate having a bimetal function by laminating at least two kinds of materials having different thermal expansion coefficients. A step of forming a first bonding layer on the semiconductor epitaxial layer of the semiconductor epitaxial substrate, a step of forming a second bonding layer on the substrate, and the first bonding layer and the second bonding layer face each other. And performing a heat treatment to form a warp in the same direction as the semiconductor epitaxial substrate on the substrate and to control the warp amount of the substrate, And the semiconductor epitaxial substrate are in surface contact,
Furthermore, by changing the temperature from the surface contact state, the amount of warpage of the substrate is changed, and the first bonding layer and the second bonding layer are bonded to each other. Method.
前記反りを有する半導体エピタキシャル基板は、前記半導体エピタキシャル層側に凸状の反りを有することを特徴とする請求項1に記載の貼り合せ体の製造方法。 The method for producing a bonded body according to claim 1, wherein the semiconductor epitaxial substrate having the warp has a convex warp on the semiconductor epitaxial layer side . 前記基体は、シリコン基板の一方の面にアルミニウム膜を設けて形成され、前記第2接合層は、前記シリコン基板の他方の面に形成される、ことを特徴とする請求項1又は2に記載の貼り合せ体の製造方法。 3. The substrate according to claim 1, wherein the base is formed by providing an aluminum film on one surface of a silicon substrate, and the second bonding layer is formed on the other surface of the silicon substrate. The manufacturing method of the bonded body . 前記半導体基板はGaAs基板であり、前記半導体エピタキシャル層はAlGaAs系化合物半導体、又はAlGaInP系化合物半導体であり、前記第1接合層及び前記第2接合層は、Au系金属材料からなることを特徴とする請求項1〜3いずれかに記載の貼り合せ体の製造方法。The semiconductor substrate is a GaAs substrate, the semiconductor epitaxial layer is an AlGaAs compound semiconductor or an AlGaInP compound semiconductor, and the first bonding layer and the second bonding layer are made of an Au metal material. The manufacturing method of the bonded body in any one of Claims 1-3 to do. GaAs基板上にAlGaAs系化合物半導体又はAlGaInP系化合物半導体からなる半導体エピタキシャル層を成長して、前記半導体エピタキシャル層側に凸状の反りを有する半導体エピタキシャル基板を形成する工程と、シリコン基板の一方の面側にアルミニウム膜を形成し、バイメタル機能を備える基体を形成する工程と、前記半導体エピタキシャル基板の前記半導体エピタキシャル層上にAu系金属材料からなる第1接合層を形成する工程と、前記シリコン基板の他方の面側にAu系金属材料からなる第2接合層を形成する工程と、前記第1接合層と前記第2接合層とを向かい合うように重ね合わせ、熱処理を施す工程とを有し、前記熱処理を施すことで、前記基体に前記半導体エピタキシャル基板と同じ方向の反りを形成すると共に、前記基体の反り量を制御して、前記基体と前記半導体エピタキシャル基板とを面接触させ、A step of growing a semiconductor epitaxial layer made of an AlGaAs compound semiconductor or an AlGaInP compound semiconductor on a GaAs substrate to form a semiconductor epitaxial substrate having a convex warp on the semiconductor epitaxial layer side, and one surface of the silicon substrate Forming a base having a bimetal function by forming an aluminum film on the side; forming a first bonding layer made of an Au-based metal material on the semiconductor epitaxial layer of the semiconductor epitaxial substrate; and A step of forming a second bonding layer made of an Au-based metal material on the other surface side, a step of superposing the first bonding layer and the second bonding layer so as to face each other, and performing a heat treatment, By performing a heat treatment, the base is warped in the same direction as the semiconductor epitaxial substrate. Both controls the amount of warpage of the substrate, and said semiconductor epitaxial substrate and the substrate is surface contact,
さらに前記面接触させた状態から温度を変化させることで、前記基体の反り量を変化させ、前記第1接合層と前記第2接合層とを接合して貼り合せ体を形成する工程と、前記貼り合せ体の前記GaAs基板を除去する工程と、個々のチップへと切り分ける工程とを有することを特徴とする半導体装置の製造方法。Further, by changing the temperature from the surface contact state, changing the amount of warping of the substrate, joining the first joining layer and the second joining layer to form a bonded body, A method for manufacturing a semiconductor device, comprising: a step of removing the GaAs substrate of a bonded body, and a step of cutting into individual chips.
基体上に反りを有する半導体エピタキシャル層が接合され、該半導体エピタキシャル層に電極が形成されてなる半導体装置において、
前記基体は、熱処理を加えた際の反り方向が前記半導体エピタキシャル層の反り方向と同一方向となるような、熱膨張率が異なる少なくとも2種類の材料からなる積層構造を有することを特徴とする半導体装置。
In a semiconductor device in which a semiconductor epitaxial layer having a warp is bonded on a substrate, and an electrode is formed on the semiconductor epitaxial layer.
The semiconductor has a laminated structure made of at least two kinds of materials having different coefficients of thermal expansion so that a warping direction when a heat treatment is applied is the same as a warping direction of the semiconductor epitaxial layer. apparatus.
JP2005195098A 2005-07-04 2005-07-04 Method for manufacturing bonded body, method for manufacturing semiconductor device, and semiconductor device Expired - Fee Related JP4655209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195098A JP4655209B2 (en) 2005-07-04 2005-07-04 Method for manufacturing bonded body, method for manufacturing semiconductor device, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195098A JP4655209B2 (en) 2005-07-04 2005-07-04 Method for manufacturing bonded body, method for manufacturing semiconductor device, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2007013046A JP2007013046A (en) 2007-01-18
JP4655209B2 true JP4655209B2 (en) 2011-03-23

Family

ID=37751114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195098A Expired - Fee Related JP4655209B2 (en) 2005-07-04 2005-07-04 Method for manufacturing bonded body, method for manufacturing semiconductor device, and semiconductor device

Country Status (1)

Country Link
JP (1) JP4655209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538507B (en) * 2008-06-02 2017-08-15 Lg伊诺特有限公司 Method for preparing semiconductor light-emitting apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339100A (en) * 2000-05-30 2001-12-07 Shin Etsu Handotai Co Ltd Light emitting element and its manufacturing method
JP2004266240A (en) * 2002-07-08 2004-09-24 Nichia Chem Ind Ltd Nitride semiconductor element and its manufacturing method
JP2005109207A (en) * 2003-09-30 2005-04-21 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
JP2005109208A (en) * 2003-09-30 2005-04-21 Shin Etsu Handotai Co Ltd Method of manufacturing light emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339100A (en) * 2000-05-30 2001-12-07 Shin Etsu Handotai Co Ltd Light emitting element and its manufacturing method
JP2004266240A (en) * 2002-07-08 2004-09-24 Nichia Chem Ind Ltd Nitride semiconductor element and its manufacturing method
JP2005109207A (en) * 2003-09-30 2005-04-21 Shin Etsu Handotai Co Ltd Light emitting element and method of manufacturing the same
JP2005109208A (en) * 2003-09-30 2005-04-21 Shin Etsu Handotai Co Ltd Method of manufacturing light emitting element

Also Published As

Publication number Publication date
JP2007013046A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US20230197906A1 (en) Semiconductor light emitting device
EP2157623B1 (en) Semiconductor light emitting element and method for manufacturing the same
KR100610632B1 (en) Manufacturing method of led having vertical structure
US7781755B2 (en) Light emitting diode by use of metal diffusion bonding technology and method of producing such light emitting diode
TWI405350B (en) Light emitting element and manufacturing method thereof
KR20040104232A (en) A METHOD OF PRODUCING VERTICAL GaN LIGHT EMITTING DIODES
KR20080015794A (en) Ingaaln light-emitting device and manufacturing method thereof
JP2009141093A (en) Light emitting element and method of manufacturing the same
JP2013197380A (en) Semiconductor light emitting element, lamp for vehicle, and semiconductor light emitting element manufacturing method
EP2383801A1 (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
US8916396B2 (en) Method of manufacturing semiconductor element
JP4655209B2 (en) Method for manufacturing bonded body, method for manufacturing semiconductor device, and semiconductor device
JP2007123841A (en) Semiconductor laser element
JP2006518102A (en) Thin film semiconductor device and manufacturing method thereof
JP2014527306A (en) LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP4666158B2 (en) Manufacturing method of semiconductor light emitting device
WO2012005185A1 (en) Method of producing light-emitting diodes, cutting method, and light-emitting diode
US20060163592A1 (en) Light emitting diode and fabricating method thereof
US9048090B2 (en) Semiconductor element and method of manufacturing same
JP2014120511A (en) Method of manufacturing semiconductor device; and semiconductor device
JP4594708B2 (en) LIGHT EMITTING DIODE AND ITS MANUFACTURING METHOD, LIGHT EMITTING DIODE LAMP
JP2010028140A (en) Method of manufacturing nitride-based compound semiconductor light-emitting element
JP2004297056A (en) Semiconductor light emitting device, its manufacturing method and light emitting diode
JP2007096090A (en) Semiconductor light emitting element and method of manufacturing the same
TWI702733B (en) Mounting method of light-emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees