JP4654411B2 - Hydrogen peroxide concentration measurement method, enzyme activity measurement method and immunochemical measurement method - Google Patents
Hydrogen peroxide concentration measurement method, enzyme activity measurement method and immunochemical measurement method Download PDFInfo
- Publication number
- JP4654411B2 JP4654411B2 JP2005089574A JP2005089574A JP4654411B2 JP 4654411 B2 JP4654411 B2 JP 4654411B2 JP 2005089574 A JP2005089574 A JP 2005089574A JP 2005089574 A JP2005089574 A JP 2005089574A JP 4654411 B2 JP4654411 B2 JP 4654411B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- concentration
- measuring
- potential
- activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
本発明は、過酸化水素濃度を高感度に測定が可能である、特に過酸化水素を生成物として与える酸化酵素の活性を高感度に測定ができ、免疫化学測定法に有用である過酸化水素の濃度測定法、酵素活性測定法、免疫化学測定法及びこれらの装置に関する。 The present invention is capable of measuring the hydrogen peroxide concentration with high sensitivity, and in particular, is capable of measuring the activity of an oxidase that gives hydrogen peroxide as a product with high sensitivity, and is useful for immunochemical measurement methods. The present invention relates to a concentration measurement method, an enzyme activity measurement method, an immunochemical measurement method, and devices thereof.
過酸化水素の高感度測定法として、現在利用されているものに化学発光法がある。この方法は鉄錯体などの触媒存在下で過酸化水素とルミノールが反応する際に発光することを利用している。しかし、この方法は、発光効率を高くするためにアルカリ性中で反応を行わせねばならず、取り扱い及び廃液の処理等の点で問題を残す。
一方、電気化学法(電流測定法)は簡便であり、比較的高感度であるが、従来の検出下限濃度は、通常10-7M程度までに留まる。
A chemiluminescence method is currently used as a highly sensitive method for measuring hydrogen peroxide. This method utilizes the fact that light is emitted when hydrogen peroxide and luminol react in the presence of a catalyst such as an iron complex. However, this method has to carry out the reaction in an alkaline environment in order to increase the luminous efficiency, leaving problems in terms of handling and waste liquid treatment.
On the other hand, the electrochemical method (current measurement method) is simple and relatively sensitive, but the conventional detection lower limit concentration is usually limited to about 10 −7 M.
過酸化水素の電流測定による分析において、高感度化を図る場合、通常過酸化水素の電極反応に対する触媒活性が高い白金を電極材料として用いることが多い(例えば、特許文献1参照)。他の電極材料を用いる場合、例えばフェロセン等のメディエータを利用して電流の増大、高感度化を図ることが行われる(例えば、特許文献2参照)。
しかし、従来の方法では、電極上での還元電流は過酸化水素濃度と数mMまで正の相関を持つものの、検出下限濃度は1μM(S/N =3)程度に留まるという問題があった。
However, the conventional method has a problem that although the reduction current on the electrode has a positive correlation with the hydrogen peroxide concentration up to several mM, the detection lower limit concentration remains at about 1 μM (S / N = 3).
本発明は、上記の問題点を解決することを目的とし、電気化学法の簡便性を活かし、さらに高感度化を図るものであり、すなわち簡便な汎用の電気化学装置で、従来達成不可能であった高感度な過酸化水素濃度、酸化酵素活性、抗原濃度の測定を可能とすることを目的とする。 The present invention aims to solve the above-mentioned problems, and makes use of the simplicity of the electrochemical method to further increase the sensitivity. That is, it is a simple general-purpose electrochemical device that cannot be achieved conventionally. The purpose is to enable the highly sensitive measurement of hydrogen peroxide concentration, oxidase activity, and antigen concentration.
上記の課題に鑑み、次の新規発明を提供する。
(1)電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を過酸化水素含有試料溶液中に一定時間浸漬した後、電解質溶液中に移し、これを作用電極として、その開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定することを特徴とする過酸化水素の濃度測定法。
(2)過酸化水素濃度の検出を行うことにより酸化酵素の活性を測定する方法であって、電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を過酸化水素含有試料溶液中に一定時間浸漬した後、電解質溶液中に移し、これを作用電極として、その開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定し、該過酸化水素の濃度から過酸化水素を酵素反応生成物とする酸化酵素の活性を測定することを特徴とする酵素活性測定法。
(3)過酸化水素濃度の検出を行うことにより酸化酵素の活性を測定し、該酸化酵素を抗体分子に対する標識酵素として抗原濃度を求める免疫化学測定法であって、電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を過酸化水素含有試料溶液中に一定時間浸漬した後、電解質溶液中に移し、これを作用電極として、その開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定し、該過酸化水素の濃度から過酸化水素を酵素反応生成物とする酸化酵素の活性を測定し、抗原抗体反応後に抗原と結合した又は未結合の抗体量を前記測定された酸化還元酵素活性から求め、それによって抗原濃度を求めることを特徴とする免疫化学測定法。
(4)過酸化水素の濃度を測定するに際して、過酸化水素含有試料溶液中又は酸化還元活性種の薄膜中に過酸化水素の還元を促進する触媒作用を有する物質を含有させることを特徴とする上記(1)〜(3)のいずれかに記載の過酸化水素の濃度測定法、酵素活性測定法又は免疫化学測定法。
(5)過酸化水素の還元を促進する触媒作用を有する物質が、ヘミン等の金属−ポルフィリン類化合物、若しくはこれらを含むマイクロペルオキシターゼ等のオリゴペプチド、西洋ワサビペルオキシターゼなどの酵素であることを特徴とする上記(1)〜(4)のいずれかに記載の過酸化水素の濃度測定法、酵素活性測定法又は免疫化学測定法。
(6)酸化還元活性種の還元型が、フェロセン及びその誘導体若しくは前記構造を含む高分子化合物、ハイドロキノン及びその誘導体若しくはこれらの構造を含む高分子化合物、又はポリビニルピリジンのオスミウム錯体若しくはこの構造を含む高分子であることを特徴とする上記(1)〜(5)のいずれかに記載の過酸化水素の濃度測定法、酵素活性測定法又は免疫化学測定法。
(7)電子伝導体基板上に、自己組織化法、スピンコート法、キャスト法によって酸化還元活性種の薄膜を形成することを特徴とする上記(1)〜(6)のいずれかに記載の過酸化水素の濃度測定法、酵素活性測定法又は免疫化学測定法。
In view of the above problems, the following new invention is provided.
(1) An electrode made of a redox active species thin film having an oxidation potential lower than that of hydrogen peroxide formed on an electron conductor substrate is immersed in a hydrogen peroxide-containing sample solution for a certain period of time, and then an electrolyte solution. And the concentration of hydrogen peroxide in the sample is measured from the reduction current response obtained when the potential is swept or stepped from the open potential to the base potential. Method for measuring hydrogen concentration.
(2) A method for measuring the activity of oxidase by detecting the concentration of hydrogen peroxide, which is an oxidation-reduction active species that exhibits a lower oxidation potential than the reduction potential of hydrogen peroxide formed on an electron conductor substrate. Obtained by immersing an electrode consisting of a thin film in a hydrogen peroxide-containing sample solution for a certain period of time and then transferring it to an electrolyte solution, using this as a working electrode, and sweeping or stepping the potential from its open potential to a base potential A method for measuring enzyme activity, comprising measuring a concentration of hydrogen peroxide in a sample from a reduction current response, and measuring an activity of an oxidase using hydrogen peroxide as an enzyme reaction product from the concentration of hydrogen peroxide.
(3) An immunochemical measurement method for measuring an oxidase activity by detecting a hydrogen peroxide concentration and determining an antigen concentration using the oxidase as a labeling enzyme for an antibody molecule, which is formed on an electron conductor substrate. After immersing an electrode consisting of a redox active species thin film showing a base oxidation potential lower than the reduction potential of hydrogen peroxide for a certain period of time in a hydrogen peroxide-containing sample solution, it is transferred to an electrolyte solution, and this is used as a working electrode. The concentration of hydrogen peroxide in the sample is measured from the reduction current response obtained when the potential is swept or stepped from the open potential to the base potential, and the hydrogen peroxide is determined as the enzyme reaction product from the hydrogen peroxide concentration. The oxidase activity is measured, and the amount of antibody bound or unbound to the antigen after the antigen-antibody reaction is determined from the measured oxidoreductase activity, thereby determining the antigen concentration.疫化 science measurement method.
(4) When measuring the concentration of hydrogen peroxide, a substance having a catalytic action for promoting the reduction of hydrogen peroxide is included in the hydrogen peroxide-containing sample solution or the redox active species thin film. The hydrogen peroxide concentration measuring method, enzyme activity measuring method or immunochemical measuring method according to any one of (1) to (3) above.
(5) The substance having a catalytic action for promoting reduction of hydrogen peroxide is a metal-porphyrin compound such as hemin, an oligopeptide such as microperoxidase containing these, or an enzyme such as horseradish peroxidase. The hydrogen peroxide concentration measuring method, enzyme activity measuring method or immunochemical measuring method according to any one of the above (1) to (4).
(6) The reduced form of the redox active species includes ferrocene and derivatives thereof or a polymer compound containing the above structure, hydroquinone and derivatives thereof or a polymer compound containing these structures, or an osmium complex of polyvinylpyridine or this structure. The method for measuring the concentration of hydrogen peroxide, the method for measuring enzyme activity or the immunochemical assay according to any one of (1) to (5) above, wherein the polymer is a polymer.
(7) The redox active species thin film is formed on the electron conductor substrate by a self-organization method, a spin coating method, or a casting method, as described in any one of (1) to (6) above Hydrogen peroxide concentration measurement method, enzyme activity measurement method or immunochemical measurement method.
また、本願は、次の新規発明を提供する。
(8)電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を一定時間浸漬させるための過酸化水素含有試料溶液、これを電解質溶液中に移して作用電極とし、該電極の開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定するための電気化学測定セルを備え、該電気化学測定セルは前記作用電極、参照電極、対向電極を有し、各電極が電位を規制するためのポテンシオスタットに接続されていることを特徴とする過酸化水素の濃度測定装置。
(9)電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を一定時間浸漬させるための過酸化水素含有試料溶液を備え、該溶液は測定対象の酸化酵素、過酸化水素の還元を促進する触媒作用を有する物質及び酵素の基質を含有し、前記電極を電解質溶液中に移して作用電極とし、その該電極の開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定するための電気化学測定セルを備え、該電気化学測定セルは前記作用電極、参照電極、対向電極を有し、各電極が電位を規制するためのポテンシオスタットに接続されていることを特徴とする酵素活性測定装置。
(10)電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を一定時間浸漬させるための過酸化水素含有試料溶液を備え、該溶液は測定対象の酸化酵素、過酸化水素の還元を促進する触媒作用を有する物質及び酵素の基質を含有し、前記電極を電解質溶液中に移して作用電極とし、該電極の開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定するための電気化学測定セルを備え、該電気化学測定セルは前記作用電極、参照電極、対向電極を有し、各電極が電位を規制するためのポテンシオスタットに接続されており、電気化学セル中で測定された過酸化水素の濃度から過酸化水素を酵素反応生成物とする酸化酵素の活性を測定し、さらに酸化酵素を標識酵素とする抗体を用いた抗原抗体反応を行い、反応後に抗原と結合した又は未結合の抗体量を酸化還元酵素活性から求め、この抗体量から抗原濃度を求めることを特徴とする免疫化学測定装置。
The present application also provides the following novel invention.
(8) A hydrogen peroxide-containing sample solution for immersing an electrode made of a thin film of redox active species having a base oxidation potential lower than the reduction potential of hydrogen peroxide formed on an electron conductor substrate for a certain period of time, and using this as an electrolyte Electrochemical measurement cell for measuring the concentration of hydrogen peroxide in a sample from the reduction current response obtained when the potential is swept or stepped from the open potential to the base potential from the open potential of the electrode as a working electrode after being transferred into the solution The electrochemical measurement cell has the working electrode, the reference electrode, and the counter electrode, and each electrode is connected to a potentiostat for regulating the potential, and the concentration measurement of hydrogen peroxide, apparatus.
(9) A hydrogen peroxide-containing sample solution for immersing an electrode made of a redox active species thin film having a base oxidation potential lower than the hydrogen peroxide reduction potential formed on the electron conductor substrate for a predetermined time, The solution contains an oxidase to be measured, a substance having a catalytic action for promoting reduction of hydrogen peroxide, and a substrate for the enzyme. The electrode is transferred into an electrolyte solution to be used as a working electrode, and the base is removed from the open potential of the electrode. An electrochemical measurement cell for measuring the concentration of hydrogen peroxide in the sample from the reduction current response obtained when the potential is swept or stepped to a different potential, the electrochemical measurement cell comprising the working electrode, the reference electrode, An enzyme activity measuring apparatus comprising a counter electrode and each electrode connected to a potentiostat for regulating a potential.
(10) A hydrogen peroxide-containing sample solution for immersing an electrode made of a redox active species thin film having a base oxidation potential lower than the hydrogen peroxide reduction potential formed on the electron conductor substrate for a predetermined time, The solution contains an oxidase to be measured, a substance having a catalytic action for promoting the reduction of hydrogen peroxide, and a substrate for the enzyme. The electrode is transferred into an electrolyte solution to form a working electrode, and the base potential is reduced from the open potential of the electrode. An electrochemical measurement cell for measuring the concentration of hydrogen peroxide in the sample from the reduction current response obtained when the potential is swept or stepped to the potential, the electrochemical measurement cell comprising the working electrode, the reference electrode, and the counter electrode Oxidase that has electrodes, each electrode is connected to a potentiostat for regulating the potential, and hydrogen peroxide is the enzyme reaction product from the concentration of hydrogen peroxide measured in the electrochemical cell After measuring the activity, an antigen-antibody reaction using an antibody with oxidase as a labeling enzyme is performed, and after the reaction, the amount of antibody bound to the antigen or unbound is determined from the oxidoreductase activity, and the antigen concentration is determined from the amount of antibody An immunochemical measurement device characterized by being obtained.
本発明の方法及び装置によれば、簡便な汎用の電気化学装置で、従来達成不可能であった高感度な過酸化水素濃度、酸化酵素活性、抗原濃度の測定が可能となるという優れた効果を有する。 According to the method and apparatus of the present invention, it is possible to measure a highly sensitive hydrogen peroxide concentration, oxidase activity, and antigen concentration, which has been impossible to achieve with a simple general-purpose electrochemical device. Have
本発明の過酸化水素の濃度測定法は、電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を過酸化水素含有試料溶液中に一定時間浸漬した後、電解質溶液中に移し、これを作用電極として、その開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定するものである。
すなわち、本発明は、次のメディエータ反応に着目したものである。
H2O2+Mred = 2H2O + Mox (1)
Mox + 2e = Mred (2)
ここで、Mred及びMoxは、それぞれメディエータの還元型及び酸化型を表す。(1)と(2)の反応速度がともに大きければ、過酸化水素の直接電解による電流より大きな電流が与えられ、過酸化水素測定の高感度化が達成される。
In the method for measuring the concentration of hydrogen peroxide according to the present invention, an electrode comprising a thin film of a redox active species having a base oxidation potential lower than the reduction potential of hydrogen peroxide formed on an electron conductor substrate is placed in a sample solution containing hydrogen peroxide. After being immersed in the electrolyte solution for a certain period of time, the concentration of hydrogen peroxide in the sample is determined from the reduction current response obtained when the potential is swept or stepped from the open potential to the base potential using this as the working electrode. Measure.
That is, the present invention focuses on the following mediator reaction.
H 2 O 2 + Mred = 2H 2 O + Mox (1)
Mox + 2e = Mred (2)
Here, Mred and Mox represent the reduced form and the oxidized form of the mediator, respectively. If the reaction rates of (1) and (2) are both high, a higher current than that obtained by direct electrolysis of hydrogen peroxide is applied, and high sensitivity in hydrogen peroxide measurement is achieved.
メディエータを電極上に固定化した状態で、前記先ず(1)の反応のみを起こさせてMoxを電極上に蓄積させ、しかる後に蓄積したMoxを電極に負の電位を印可することによって素早く還元させ、そのときの過渡電流応答又はこれを積分した電気量を測定することにより、大きな信号(過渡電流応答)を得、著しく低濃度の過酸化水素の測定を可能とするものである。
この概念図を図1に示す。図1の左図において電荷を蓄積させ、次に右図において電気化学的に還元するものである。これによって、従来達成不可能であった高感度な過酸化水素濃度、酸化酵素活性、抗原濃度の測定が可能となった。
In the state where the mediator is immobilized on the electrode, first, only the reaction of (1) is caused to accumulate Mox on the electrode, and then the accumulated Mox is rapidly reduced by applying a negative potential to the electrode. By measuring the transient current response at that time or the amount of electricity integrated therewith, a large signal (transient current response) is obtained, and measurement of hydrogen peroxide at a significantly low concentration is possible.
This conceptual diagram is shown in FIG. Charges are accumulated in the left diagram of FIG. 1, and then electrochemically reduced in the right diagram. This makes it possible to measure the hydrogen peroxide concentration, oxidase activity, and antigen concentration with high sensitivity that could not be achieved in the past.
本発明の、過酸化水素の濃度測定装置の具体的なものとしては、電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を一定時間浸漬させるための過酸化水素含有試料溶液とそのための容器、さらに処理した前記電極を電解質溶液中に移して作用電極とし、その電極の開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定するための電気化学測定セルから構成することができる。
この電気化学測定セルには、前記作用電極、参照電極、対向電極を備え付け、各電極には電位を規制するためのポテンシオスタットを接続して構成することができる。
As a specific apparatus for measuring the concentration of hydrogen peroxide according to the present invention, an electrode composed of a thin film of redox active species having a base oxidation potential lower than the reduction potential of hydrogen peroxide formed on an electron conductor substrate. When a sample solution containing hydrogen peroxide for immersion for a certain period of time, a container therefor, and the treated electrode are transferred into an electrolyte solution to be used as a working electrode, and the potential is swept or stepped from the open potential of the electrode to a base potential The electrochemical measurement cell for measuring the concentration of hydrogen peroxide in the sample from the reduction current response obtained in (1).
The electrochemical measurement cell may be provided with the working electrode, the reference electrode, and the counter electrode, and each electrode may be configured by connecting a potentiostat for regulating the potential.
このようにして得られた過酸化水素の濃度から過酸化水素を酵素反応生成物とする酸化酵素の活性を測定することができる。さらに、この測定された酸化還元酵素活性から抗原抗体反応後に抗原と結合した又は未結合の抗体量を求め、それによって抗原濃度を求めることができる。
酸化酵素を標識酵素とする免疫化学測定システムにおける、このような酵素活性の高感度化は免疫化学測定の高感度化につながり、医療、環境分野などへの寄与に大きく貢献することができる。
The activity of the oxidase using hydrogen peroxide as an enzyme reaction product can be measured from the concentration of hydrogen peroxide thus obtained. Further, from the measured oxidoreductase activity, the amount of antibody bound or unbound to the antigen after the antigen-antibody reaction can be determined, and thereby the antigen concentration can be determined.
In such an immunochemical measurement system using an oxidase as a labeling enzyme, such high sensitivity of enzyme activity leads to high sensitivity of immunochemical measurement, and can greatly contribute to the medical and environmental fields.
酵素活性測定装置の具体例としては、過酸化水素の濃度測定装置と同様のものを使用することができる。下記の装置は一例であり、本発明は、この装置の例に限定されないことを理解すべきである。
電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を一定時間浸漬させるための過酸化水素含有試料溶液とそれを保持する容器を準備する。
該溶液には、測定対象の酸化酵素、必要に応じて過酸化水素の還元を促進させる触媒及び酵素の基質を含有させる。また、前記電極を電解質溶液中に移して作用電極とし、その電極の開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定するための電気化学測定セルを設置する。
該電気化学測定セルには、前記作用電極、参照電極、対向電極を配置する。各電極には、電位を規制するためのポテンシオスタットに接続する。
As a specific example of the enzyme activity measuring apparatus, the same apparatus as the hydrogen peroxide concentration measuring apparatus can be used. It should be understood that the following apparatus is an example, and that the present invention is not limited to this example apparatus.
A sample solution containing hydrogen peroxide for immersing an electrode made of a thin film of redox active species having an oxidation potential lower than that of hydrogen peroxide formed on an electron conductor substrate for a certain period of time and a container for holding the sample solution prepare.
The solution contains an oxidase to be measured, a catalyst that promotes reduction of hydrogen peroxide as necessary, and an enzyme substrate. In addition, the concentration of hydrogen peroxide in the sample is measured from the reduction current response obtained when the electrode is moved into the electrolyte solution and used as the working electrode, and the potential is swept or stepped from the open potential to the base potential. An electrochemical measurement cell is installed.
The working electrode, the reference electrode, and the counter electrode are arranged in the electrochemical measurement cell. Each electrode is connected to a potentiostat for regulating the potential.
さらに、免疫化学測定装置も前記酵素活性測定装置と同様のものを使用できる。下記の装置は一例であり、本発明は、この装置の例に限定されないことを理解すべきである。
この装置は、電子伝導体基板上に形成した過酸化水素の還元電位より卑な酸化電位を示す酸化還元活性種の薄膜からなる電極を一定時間浸漬させるための過酸化水素含有試料溶液を備える。
また、該溶液は測定対象の酸化酵素、必要に応じて過酸化水素の還元を促進させる触媒及び酵素の基質を含有させ、前記電極を電解質溶液中に移して作用電極とする。さらに、該電極の開放電位から卑な電位に電位を掃引又はステップしたときに得られる還元電流応答から試料中の過酸化水素の濃度を測定するための電気化学測定セルを備える。該電気化学測定セルには、前記作用電極、参照電極、対向電極を配置させ、各電極は電位を規制するためのポテンシオスタットに接続させる。
電気化学セル中で測定された過酸化水素の濃度から過酸化水素を酵素反応生成物とする酸化酵素の活性を測定する。そして、酸化酵素を標識酵素とする抗体を用いた抗原抗体反応を行い、反応後に抗原と結合した又は未結合の抗体量を酸化還元酵素活性から求め、この抗体量から抗原濃度を求める。
Furthermore, the same immunochemical measuring apparatus as that of the enzyme activity measuring apparatus can be used. It should be understood that the following apparatus is an example, and that the present invention is not limited to this example apparatus.
This apparatus includes a hydrogen peroxide-containing sample solution for immersing an electrode made of a thin film of redox active species having an oxidation potential lower than that of hydrogen peroxide formed on an electron conductor substrate for a predetermined time.
The solution contains an oxidase to be measured, a catalyst that promotes reduction of hydrogen peroxide as necessary, and an enzyme substrate, and the electrode is transferred into an electrolyte solution to form a working electrode. Furthermore, an electrochemical measurement cell is provided for measuring the concentration of hydrogen peroxide in the sample from the reduction current response obtained when the potential is swept or stepped from the open potential to the base potential. In the electrochemical measurement cell, the working electrode, the reference electrode, and the counter electrode are arranged, and each electrode is connected to a potentiostat for regulating the potential.
The activity of oxidase using hydrogen peroxide as an enzyme reaction product is measured from the concentration of hydrogen peroxide measured in the electrochemical cell. Then, an antigen-antibody reaction using an antibody having an oxidase as a labeling enzyme is performed, and after the reaction, the amount of the antibody bound or unbound to the antigen is determined from the oxidoreductase activity, and the antigen concentration is determined from the amount of the antibody.
前記の通り、過酸化水素の濃度を測定するに際しては、過酸化水素含有試料溶液中又は酸化還元活性種の薄膜中に、過酸化水素の還元を促進する触媒を含有させることができる。この触媒としては、ヘミン等の金属−ポルフィリン類化合物、若しくはこれらを含むマイクロペルオキシターゼ等のオリゴペプチド、ミオグロビンやヘム置換ミオグロビン等の配位子結合性ヘム蛋白質、西洋ワサビペルオキシターゼなどの酵素が有効である。
また、酸化還元活性種の還元型としては、フェロセン及びその誘導体若しくは前記構造を含む高分子化合物、ハイドロキノン及びその誘導体若しくはこれらの構造を含む高分子化合物、又はポリビニルピリジンのオスミウム錯体若しくはこの構造を含む高分子を使用することができる。
また、電子伝導体基板上に酸化還元活性種の薄膜を形成する手段としては、自己組織化法、スピンコート法、キャスト法を使用することができ、有効である。
As described above, when measuring the concentration of hydrogen peroxide, a catalyst that promotes the reduction of hydrogen peroxide can be contained in the hydrogen peroxide-containing sample solution or in the thin film of redox active species. As this catalyst, metal-porphyrin compounds such as hemin, or oligopeptides such as microperoxidase containing these, ligand-binding heme proteins such as myoglobin and heme-substituted myoglobin, and enzymes such as horseradish peroxidase are effective. .
In addition, the reduced form of the redox active species includes ferrocene and its derivatives or polymer compounds containing the above structure, hydroquinone and its derivatives or polymer compounds containing these structures, or an osmium complex of polyvinylpyridine or this structure. Polymers can be used.
As a means for forming a redox active species thin film on the electron conductor substrate, a self-assembly method, a spin coating method, and a casting method can be used, which is effective.
以下、本発明を実施例に基づいて説明する。なお、以下の説明は、本願発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本願発明の技術思想に基づく変形、実施態様、他の例は、本願発明に含まれるものである。 Hereinafter, the present invention will be described based on examples. In addition, the following description is for making an understanding of this invention easy, and is not restrict | limited to this. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.
(実施例1)
(過酸化水素測定電極の作製と高感度測定法)
金ディスク電極(直径1.6 mm、BAS株式会社製、商品名:AUE金電極)をアルミナ研磨、超音波洗浄、硫酸中で定法により電気化学的に洗浄し、1 mMフェロセンウンデカンチオールの無水ヘキサン溶液に2時間浸漬してフェロセン自己組織化単分子膜被覆電極を作製した。この酸化還元電位は+400 mV vs. Ag/AgCl(溶液は75 mM PB + 50 mM NaClO4, pH 7)と見積もられた。
Example 1
(Preparation of hydrogen peroxide measuring electrode and high sensitivity measuring method)
Gold disk electrode (diameter: 1.6 mm, manufactured by BAS, trade name: AUE gold electrode) is alumina-polished, ultrasonically cleaned, and electrochemically cleaned in sulfuric acid by an ordinary method to obtain 1 mM ferroceneundecanethiol in anhydrous hexane. A ferrocene self-assembled monolayer-coated electrode was fabricated by immersion for 2 hours. This redox potential was estimated to be +400 mV vs. Ag / AgCl (solution is 75 mM PB + 50 mM NaClO4, pH 7).
触媒として1 μMのヘミンを加えた上記水溶液(10 mL)に各濃度の過酸化水素を添加し、上記修飾電極を挿入(解放電位の状態)、15時間放置後、解放電位から電位を+100 mV vs. Ag/AgClにステップ、H2O2 + 2Fc + 2H+ = 2H2O + 2Fc+ の反応で生成したFc+ を再還元する電流−時間曲線を計測した(図2参照)。
計測システムとして、ポテンショスタット(北斗電工社製、商品名:HA-150)、デジタルオシロスコープ(IWATSU社製、商品名:DS-8812)を用いた。
Add each concentration of hydrogen peroxide to the above aqueous solution (10 mL) to which 1 μM hemin has been added as a catalyst, insert the modified electrode (in the state of release potential), leave it for 15 hours, and then change the potential from the release potential to +100 step mV vs. Ag / AgCl, H 2 O 2 + 2Fc + 2H + = 2H 2 O + 2Fc + current re-reduced to Fc + produced in the reaction - was measured time curve (see Figure 2).
As the measurement system, a potentiostat (Hokuto Denko, trade name: HA-150) and a digital oscilloscope (IWATSU, trade name: DS-8812) were used.
電流−時間曲線から電気量を求め、これと過酸化水素濃度との関係を求めると、図3に示すように濃度15 nM程度まで濃度増加とともに顕著な電気量の増加が認められた。検出下限濃度は0.5 nM (S/N = 3)と見積もられた。
下記に示す、汎用アンペロメトリー法に比べて、本法では1千分の1以下の濃度の過酸化水素濃度測定が可能となった。
When the amount of electricity was determined from the current-time curve and the relationship between the amount of hydrogen and the concentration of hydrogen peroxide was determined, as shown in FIG. 3, a marked increase in the amount of electricity was observed as the concentration increased to about 15 nM. The lower detection limit was estimated to be 0.5 nM (S / N = 3).
Compared with the general-purpose amperometry method shown below, this method has made it possible to measure the hydrogen peroxide concentration at a concentration of 1/1000 or less.
(比較例1)
上記と同様の電極を作製、ヘミン存在下で+100mV vs. Ag/AgClで過酸化水素を一定濃度添加しつつ、アンペロメトリックな測定を実施した。
電極上での還元電流は過酸化水素濃度と数mMまで正の相関を持つものの、検出下限濃度は1μM (S/N =3)に留まった。
(Comparative Example 1)
An electrode similar to the above was prepared, and amperometric measurement was performed while adding a constant concentration of hydrogen peroxide at +100 mV vs. Ag / AgCl in the presence of hemin.
Although the reduction current on the electrode had a positive correlation with the hydrogen peroxide concentration up to several mM, the detection lower limit concentration remained at 1 μM (S / N = 3).
(実施例2)
金くし形電極(NTT-AT社製、商品名:くし形電極Au)を使って実施例1と同様な実験を行った。ミクロ電極への過酸化水素/ヘミンの拡散速度の増大により20分の浸漬時間で実施例1と同様な結果が得られた。
(Example 2)
An experiment similar to that in Example 1 was performed using a gold comb electrode (manufactured by NTT-AT, trade name: comb electrode Au). Similar results to Example 1 were obtained with an immersion time of 20 minutes by increasing the diffusion rate of hydrogen peroxide / hemin to the microelectrode.
(実施例3)
実施例2において使用したフェロセンウンデカンチオールに替え、2−メルカプヒドロトキノン(H2Q)を用いて実施例2と同様な実験を実施した。
但し、H2O2 + H2Q = 2H2O + Qの反応で生成したキノンの再還元には−100 mVの電圧を印加した。これによって、実施例2と同様の結果を得た。
(Example 3)
The same experiment as in Example 2 was performed using 2 -mercaptohydrotoquinone (H 2 Q) instead of ferrocene undecanethiol used in Example 2.
However, a voltage of −100 mV was applied to re-reduction of the quinone produced by the reaction of H 2 O 2 + H 2 Q = 2H 2 O + Q. As a result, the same result as in Example 2 was obtained.
(実施例4)
1 μMのヘミンと10 mMグルコースを加えた実施例1の緩衝液(10 mL)に、グルコース酸化酵素を適量添加後1時間放置して、実施例1の方法で酵素活性と電気量の相関を解析した。その結果、500 nU/Lの活性の酵素まで測定可能であった。汎用のアンペロメトリー法や分光法に比べて1千倍の高感度化を達成した。500 nU/Lの酵素活性は反応溶液中の酵素量としては50 fgに相当する。
Example 4
Add the appropriate amount of glucose oxidase to the buffer solution of Example 1 (10 mL) to which 1 μM hemin and 10 mM glucose have been added and let stand for 1 hour. Analyzed. As a result, even an enzyme with an activity of 500 nU / L could be measured. The sensitivity was increased by 1000 times compared to general-purpose amperometry and spectroscopy. An enzyme activity of 500 nU / L corresponds to 50 fg as the amount of enzyme in the reaction solution.
(実施例5)
グルコース酸化酵素で修飾した抗ANP抗体を用いてANPとの反応させ、ANP固定化基盤により未反応抗体の除去した後、反応した抗体を含む溶液のみ回収し、このグルコース酸化酵素活性を、実施例4と同一の方法で測定し、酵素活性とANP濃度との関係を調べた。この結果0.1 pptまでのANPの測定が可能であった。
(Example 5)
After reacting with ANP using an anti-ANP antibody modified with glucose oxidase, removing the unreacted antibody by the ANP immobilization base, only the solution containing the reacted antibody was recovered, and this glucose oxidase activity was Measured by the same method as in No. 4, the relationship between enzyme activity and ANP concentration was examined. As a result, it was possible to measure ANP up to 0.1 ppt.
本発明は、過酸化水素濃度、特にその高感度測定は生物化学分野で特に重要である。例えば、過酸化水素濃度の高感度測定により過酸化水素を生成物として与える酸化酵素の活性の高感度測定が可能となり、酵素分析に必要とされる酸化酵素のスクリーニングの効率化等に資するところが多い。
さらに、酸化酵素を標識酵素とする免疫化学測定システムにおいて、酵素活性の高感度化は、免疫化学測定の高感度化につながり、医療、環境分野などへの寄与が大きい。
The present invention is particularly important in the field of biochemistry for the measurement of hydrogen peroxide concentration, especially its high sensitivity. For example, high-sensitivity measurement of hydrogen peroxide concentration enables high-sensitivity measurement of the activity of oxidase that gives hydrogen peroxide as a product, which often contributes to efficient screening of oxidase required for enzyme analysis. .
Furthermore, in an immunochemical measurement system using an oxidase as a labeling enzyme, increasing the sensitivity of the enzyme activity leads to higher sensitivity of the immunochemical measurement and greatly contributes to the medical and environmental fields.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005089574A JP4654411B2 (en) | 2005-03-25 | 2005-03-25 | Hydrogen peroxide concentration measurement method, enzyme activity measurement method and immunochemical measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005089574A JP4654411B2 (en) | 2005-03-25 | 2005-03-25 | Hydrogen peroxide concentration measurement method, enzyme activity measurement method and immunochemical measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006267059A JP2006267059A (en) | 2006-10-05 |
JP4654411B2 true JP4654411B2 (en) | 2011-03-23 |
Family
ID=37203188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005089574A Expired - Fee Related JP4654411B2 (en) | 2005-03-25 | 2005-03-25 | Hydrogen peroxide concentration measurement method, enzyme activity measurement method and immunochemical measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4654411B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI368028B (en) * | 2007-12-27 | 2012-07-11 | Dev Center Biotechnology | A device for detecting the dioxin and a method of detection thereof |
KR101029329B1 (en) | 2008-11-26 | 2011-04-15 | 고려대학교 산학협력단 | Eelectrochemical sensor based on a CuO nanoflowers-modified electrode for hydrogen peroxide detection |
CN102628829B (en) * | 2012-03-15 | 2014-04-02 | 上海师范大学 | Horseradish peroxidase-trumpet flower-shaped zinc phytate-glassy carbon electrode electrochemical biosensor and construction method thereof |
CN108273554A (en) * | 2018-01-09 | 2018-07-13 | 西安交通大学 | A kind of g-C3N4The preparation and application of@Hemin compound analogue enztmes |
CN114778459A (en) * | 2022-04-12 | 2022-07-22 | 贵州医科大学 | Preparation method and application of catalase-like g-C3N4/hemin |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127053A (en) * | 1995-10-30 | 1997-05-16 | Kdk Corp | Measuring method for hydrogen peroxide, hydrogen peroxide measuring sensor using said method and its manufacture |
JPH1164271A (en) * | 1997-08-18 | 1999-03-05 | Nagoyashi | Current amplification type oxyzen sensor |
JP2001305103A (en) * | 2000-04-24 | 2001-10-31 | Toyobo Co Ltd | Polyphenol sensor |
JP2002071620A (en) * | 2000-09-01 | 2002-03-12 | Nippon Telegr & Teleph Corp <Ntt> | Electrode for electrochemical measurement and manufacturing method thereof |
JP2003098174A (en) * | 2001-09-27 | 2003-04-03 | Matsushita Ecology Systems Co Ltd | Method for measuring substance to be detected |
-
2005
- 2005-03-25 JP JP2005089574A patent/JP4654411B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127053A (en) * | 1995-10-30 | 1997-05-16 | Kdk Corp | Measuring method for hydrogen peroxide, hydrogen peroxide measuring sensor using said method and its manufacture |
JPH1164271A (en) * | 1997-08-18 | 1999-03-05 | Nagoyashi | Current amplification type oxyzen sensor |
JP2001305103A (en) * | 2000-04-24 | 2001-10-31 | Toyobo Co Ltd | Polyphenol sensor |
JP2002071620A (en) * | 2000-09-01 | 2002-03-12 | Nippon Telegr & Teleph Corp <Ntt> | Electrode for electrochemical measurement and manufacturing method thereof |
JP2003098174A (en) * | 2001-09-27 | 2003-04-03 | Matsushita Ecology Systems Co Ltd | Method for measuring substance to be detected |
Also Published As
Publication number | Publication date |
---|---|
JP2006267059A (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5312762A (en) | Method of measuring an analyte by measuring electrical resistance of a polymer film reacting with the analyte | |
Wang et al. | Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin | |
JP4567333B2 (en) | Method for manufacturing a highly sensitive potentiometric sensor | |
Raoof et al. | Electrocatalytic oxidation and highly selective voltammetric determination of L-cysteine at the surface of a 1-[4-(ferrocenyl ethynyl) phenyl]-1-ethanone modified carbon paste electrode | |
EP0241309A2 (en) | Measurement of electroactive species in solution | |
JP2004530099A (en) | An electrochemical method for measuring chemical reaction rates. | |
KR101698988B1 (en) | Biosensor using redox cycling of an electron mediator | |
JP2001194298A (en) | Surface plasmon resonance enzyme sensor and method for measuring surface plasmon resonance | |
Liu et al. | A mediator‐free tyrosinase biosensor based on ZnO sol‐gel matrix | |
KR20100008260A (en) | Protein measurement apparatus by using biosensor | |
Ikariyama et al. | Micro-enzyme electrode prepared on platinized platinum | |
Salimi et al. | Amperometric detection of dopamine in the presence of ascorbic acid using a nafion coated glassy carbon electrode modified with catechin hydrate as a natural antioxidant | |
US20110031134A1 (en) | Electrochemical antioxidant sensors based on metallic oxide modified electrodes for the generation of hydroxyl radicals and the subsequent measurement of antioxidant activities | |
JP4654411B2 (en) | Hydrogen peroxide concentration measurement method, enzyme activity measurement method and immunochemical measurement method | |
Salimi et al. | Electrocatalytic reduction of H2O2 and oxygen on the surface of thionin incorporated onto MWCNTs modified glassy carbon electrode: application to glucose detection | |
KR100812573B1 (en) | Biosensor using feedback | |
Ikariyama et al. | High performance micro-enzyme sensor using platinized microelectrode. | |
Szymanski et al. | Electrochemical dissolution of silver nanoparticles and its application in metalloimmunoassay | |
Moreno-Guzmán et al. | Gold nanoparticles/carbon nanotubes/ionic liquid microsized paste electrode for the determination of cortisol and androsterone hormones | |
Pinkerton et al. | Analytical problems facing the development of electrochemical transducers for in vivo drug monitoring: an overview. | |
Ferapontova et al. | Bioelectrocatalytical detection of H2O2 with different forms of horseradish peroxidase directly adsorbed at polycrystalline silver and gold | |
Krishnan et al. | Fast amperometric immunoassay utilizing highly dispersed electrode material | |
Li et al. | Preparation of novel mercury-doped silver nanoparticles film glassy carbon electrode and its application for electrochemical biosensor | |
JP4111961B2 (en) | DNA-immobilized FET sensor and manufacturing method thereof | |
Suwansa‐ard et al. | Prussian blue dispersed sphere catalytic labels for amplified electronic detection of DNA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101201 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |