[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4648841B2 - Separator for electronic parts - Google Patents

Separator for electronic parts Download PDF

Info

Publication number
JP4648841B2
JP4648841B2 JP2006017159A JP2006017159A JP4648841B2 JP 4648841 B2 JP4648841 B2 JP 4648841B2 JP 2006017159 A JP2006017159 A JP 2006017159A JP 2006017159 A JP2006017159 A JP 2006017159A JP 4648841 B2 JP4648841 B2 JP 4648841B2
Authority
JP
Japan
Prior art keywords
fibrillated
electronic component
separator
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006017159A
Other languages
Japanese (ja)
Other versions
JP2006245550A (en
Inventor
貴裕 佃
茂宏 前田
正敏 緑川
友洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2006017159A priority Critical patent/JP4648841B2/en
Publication of JP2006245550A publication Critical patent/JP2006245550A/en
Application granted granted Critical
Publication of JP4648841B2 publication Critical patent/JP4648841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Paper (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellently heat-resisting and highly reliable separator for an electronic component. <P>SOLUTION: The separator for an electronic component is made of a wet non-woven fabric which, in thermal expansion measurements to 300 &deg;C at a rate of temperature rise 10 &deg;C/min under a tensile load 4 KPa, measures 0.7 mm&times;min or less in the integration value of an area enclosed by both a straight line and a TMA curve ranging from 50 &deg;C to the temperature at which a maximum length is attained of the concerned specimen and further measures less than 2.0 % in the maximum degree of elongation in the temperature range from 50 &deg;C to 300 &deg;C. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、耐熱性に優れる高信頼性の電子部品用セパレータに関するものである。   The present invention relates to a highly reliable separator for electronic parts having excellent heat resistance.

従来、電気二重層キャパシタのセパレータとしては、再生セルロースや溶剤紡糸セルロースを主体とする紙製セパレータ(例えば、特許文献1、2参照)が使用されてきた。有機溶媒と電解質からなる電解液を備えた電気二重層キャパシタにおいては、水分がわずかでも混入すると所定の電圧にならない、電圧がふらつく、内部抵抗が大きくなるなど電気二重層キャパシタ特性に悪影響を及ぼすため、電極とセパレータを一緒に高温で長時間乾燥させてこれら部材に含まれる水分を除去してから電気二重層キャパシタが製造されている。溶剤紡糸セルロースを主体とする電解紙やセパレータは、200℃以上の高温で処理するとセルロース成分が炭化や分解してしまう問題と、充放電で体積膨張と収縮を繰り返す電極を用いた場合には、セパレータが破れてしまう問題があった。最近では耐熱性に優れるアラミド薄葉材(例えば、特許文献3参照)が提案されているが、強度が弱く取り扱いにくい問題と耐久性が悪い問題があった。   Conventionally, paper separators mainly composed of regenerated cellulose or solvent-spun cellulose (for example, see Patent Documents 1 and 2) have been used as separators for electric double layer capacitors. In an electric double layer capacitor equipped with an electrolyte solution consisting of an organic solvent and an electrolyte, even if a small amount of water is mixed, the voltage does not reach the specified voltage, the voltage fluctuates, the internal resistance increases, and so on. The electric double layer capacitor is manufactured after the electrodes and the separator are dried together at a high temperature for a long time to remove moisture contained in these members. Electrolytic paper and separators mainly composed of solvent-spun cellulose have a problem that the cellulose component is carbonized or decomposed when treated at a high temperature of 200 ° C. or higher, and when using an electrode that repeats volume expansion and contraction due to charge and discharge, There was a problem that the separator was torn. Recently, an aramid thin leaf material excellent in heat resistance (see, for example, Patent Document 3) has been proposed, but there are problems of low strength and difficulty in handling and poor durability.

従来、電解コンデンサのセパレータとしては、再生セルロースや溶剤紡糸セルロースを主体とする紙製セパレータ(例えば、特許文献4参照)が用いられてきた。しかし、これらのセパレータは、最近の半田の脱鉛化に伴う高融点半田による半田リフローでは、半田リフロー後に内部抵抗が上昇したり、漏れ電流が増加するなどの問題があった。
特開平11−168033号公報 特開2000−3834号公報 特開2005−307360号公報 特開平5−267103号公報
Conventionally, as a separator of an electrolytic capacitor, a paper separator mainly composed of regenerated cellulose or solvent-spun cellulose (for example, see Patent Document 4) has been used. However, these separators have problems such as an increase in internal resistance and an increase in leakage current after the solder reflow in the solder reflow using the high melting point solder accompanying the recent lead removal of the solder.
JP-A-11-168033 JP 2000-3834 A JP 2005-307360 A JP-A-5-267103

本発明の課題は、耐熱性に優れる高信頼性の電子部品用セパレータを提供することにある。   An object of the present invention is to provide a highly reliable separator for electronic parts that is excellent in heat resistance.

本発明者らは、上記課題を解決するため鋭意研究を行った結果、特定の条件で熱膨張測定して得られる曲線(以下、TMA曲線と表記する)において、TMA面積と伸び率が特定の範囲にある湿式不織布からなる電子部品用セパレータが、耐熱性に優れ、高性能の電子部品を実現できることを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a TMA area and an elongation rate are specific in a curve (hereinafter referred to as a TMA curve) obtained by measuring thermal expansion under specific conditions. The present inventors have found that a separator for electronic parts made of a wet nonwoven fabric in the range is excellent in heat resistance and can realize a high-performance electronic part.

即ち、本発明は、湿式不織布からなる電子部品用セパレータにおいて、引張荷重4KPa、昇温速度10℃/分で300℃まで熱膨張測定した際の50℃から最大試料長に達した温度までのTMA曲線と直線とで囲われた部分の積分値が0.01〜0.48mm×分で、且つ、50℃から300℃までの最大伸び率が0.8〜1.8%である電子部品用セパレータである。 That is, the present invention relates to a TMA from 50 ° C. up to the maximum sample length when the thermal expansion measurement is performed up to 300 ° C. at a tensile load of 4 KPa and a temperature increase rate of 10 ° C./min. For an electronic component in which the integral value of the portion surrounded by the curve and the straight line is 0.01 to 0.48 mm × min and the maximum elongation from 50 ° C. to 300 ° C. is 0.8 to 1.8% . It is a separator.

本発明においては、湿式不織布が、フィブリル化耐熱性繊維、非フィブリル化耐熱性繊維、フィブリル化セルロースの3成分を必須成分とし、必須3成分の合計含有量が45〜100質量%、非フィブリル化非耐熱性繊維の含有量が55〜0質量%で、フィブリル化耐熱性繊維と非フィブリル化耐熱性繊維の合計含有量が40質量%以上である。 In the present invention, the wet nonwoven fabric has three components, fibrillated heat-resistant fiber, non-fibrillated heat-resistant fiber, and fibrillated cellulose as essential components, and the total content of the essential three components is 45 to 100% by mass, non-fibrillated. in the content of the non-heat-resistant fiber 55-0 by mass%, the total content of fibrillated heat-resistant fiber and a non-fibrillated heat-resistant fiber is Ru der least 40 wt%.

本発明においては、フィブリル化耐熱性繊維が、フィブリル化パラ系全芳香族ポリアミド繊維であることが好ましい。   In the present invention, the fibrillated heat-resistant fiber is preferably a fibrillated para-type wholly aromatic polyamide fiber.

本発明においては、非フィブリル化耐熱性繊維が、非フィブリル化パラ系全芳香族ポリアミド繊維であることが好ましい。   In the present invention, the non-fibrillated heat-resistant fiber is preferably a non-fibrillated para-type wholly aromatic polyamide fiber.

本発明においては、電子部品が、電気二重層キャパシタであることが好ましい。   In the present invention, the electronic component is preferably an electric double layer capacitor.

本発明においては、電子部品が、電解コンデンサであることが好ましい。   In the present invention, the electronic component is preferably an electrolytic capacitor.

本発明により、耐熱性に優れる高信頼性の電子部品用セパレータが得られる。   According to the present invention, a highly reliable separator for electronic parts having excellent heat resistance can be obtained.

以下、本発明の電子部品用セパレータについて詳説する。   Hereinafter, the electronic component separator of the present invention will be described in detail.

本発明における電子部品とは、対向する2つの電極間に誘電体または電気二重層を挟んだ形で構成されてなる蓄電機能を有するものである。前者はアルミ電解コンデンサやタンタル電解コンデンサなどが挙げられ、蓄電機能の他にノイズ吸収、共振などの機能も持つ。後者は電気二重層キャパシタが挙げられる。電気二重層キャパシタの電極としては、一対の電気二重層型電極、一方が電気二重層型電極でもう片方が酸化還元型電極の組み合わせの何れでも良い。電解液には、イオン解離性の塩を溶解させた水溶液、プロピレンカーボネート(略称PC)、エチレンカーボネート(略称EC)、ジメチルカーボネート(略称DMC)、ジエチルカーボネート(略称DEC)、アセトニトリル(略称AN)、γ−ブチロラクトン(略称BL)、ジメチルホルムアミド(略称DMF)、テトラヒドロフラン(略称THF)、ジメトキシエタン(略称DME)、ジメトキシメタン(略称DMM)、スルホラン(略称SL)、ジメチルスルホキシド(略称DMSO)、エチレングリコール、プロピレングリコールなどの有機溶媒にイオン解離性の塩を溶解させたもの、イオン性液体(固体溶融塩)などが挙げられるが、これらに限定されるものではない。水溶液系と有機溶媒系の何れも利用できる電気化学素子の場合は、水溶液系は耐電圧が低いため、有機溶媒系の方が好ましい。電解液の代わりにポリピロール、ポリチオフェン、ポリアニリン、ポリアセチレン、これらの誘導体などの導電性高分子膜を用いても良い。   The electronic component in the present invention has a power storage function configured by sandwiching a dielectric or electric double layer between two opposing electrodes. The former includes aluminum electrolytic capacitors and tantalum electrolytic capacitors, and has functions such as noise absorption and resonance in addition to the power storage function. The latter includes an electric double layer capacitor. The electrode of the electric double layer capacitor may be a combination of a pair of electric double layer electrodes, one of which is an electric double layer electrode and the other is a redox electrode. The electrolyte includes an aqueous solution in which an ion dissociable salt is dissolved, propylene carbonate (abbreviation PC), ethylene carbonate (abbreviation EC), dimethyl carbonate (abbreviation DMC), diethyl carbonate (abbreviation DEC), acetonitrile (abbreviation AN), γ-butyrolactone (abbreviation BL), dimethylformamide (abbreviation DMF), tetrahydrofuran (abbreviation THF), dimethoxyethane (abbreviation DME), dimethoxymethane (abbreviation DMM), sulfolane (abbreviation SL), dimethyl sulfoxide (abbreviation DMSO), ethylene glycol Examples thereof include, but are not limited to, those obtained by dissolving an ion dissociable salt in an organic solvent such as propylene glycol, and ionic liquids (solid molten salts). In the case of an electrochemical element that can use both an aqueous solution system and an organic solvent system, an organic solvent system is preferred because the aqueous solution system has a low withstand voltage. Instead of the electrolytic solution, a conductive polymer film such as polypyrrole, polythiophene, polyaniline, polyacetylene, and derivatives thereof may be used.

本発明に用いるTMAとは、試料の温度を変化させながら、圧縮、引張、曲げ、ねじりなどの非振動的荷重を加えてその物質の変形を温度の関数として測定する方法のことである。さらに熱膨張測定とは、先端がチャックを支持できる構造のプローブを用いて、2個の小型チャックで試料の上端と下端を固定して、引張方向に測定温度範囲で試料が変形しない程度の引張荷重を加えたときの熱膨張による変位を測定する方法のことであり、横軸に温度又は時間を取ったものがTMA曲線である。   TMA used in the present invention is a method of measuring the deformation of a substance as a function of temperature by applying a non-vibrating load such as compression, tension, bending, and twisting while changing the temperature of a sample. Furthermore, thermal expansion measurement uses a probe whose tip can support the chuck, and fixes the upper and lower ends of the sample with two small chucks so that the sample does not deform in the tensile temperature range in the measurement temperature range. This is a method for measuring displacement due to thermal expansion when a load is applied, and a TMA curve is obtained by taking temperature or time on the horizontal axis.

本発明の電子部品用セパレータは、引張荷重4KPa、昇温速度10℃/分で300℃まで熱膨張測定した際の50℃から最大試料長に達した温度までのTMA曲線と直線とで囲われた部分の積分値が0.01〜0.48mm×分で、且つ、50℃から300℃までの最大伸び率が0.8〜1.8%であるが、このことはTMA曲線が直線的で傾きが小さく、温度上昇に伴って電子部品用セパレータが引張方向に急激かつ大幅に伸び縮みしたり、切断しないことを意味する。そのため本発明の電子部品用セパレータは、200℃以上、特に230℃以上の高温に曝されても、変形や劣化しにくい。本発明においては、最大試料長に達する温度は280〜300℃が好ましく、300℃に近い程好ましい。50℃から300℃までの最大伸び率とは、50℃のときの試料長さをL50、300℃までの間で示した最大試料長をLmaxとしたとき、(Lmax−L50)/L50×100で算出される値を指す。TMA面積が0.48mm×分より大きいか、最大伸び率が1.8%超の場合は、温度上昇に伴って電子部品用セパレータが急激に伸びたり、縮んだり、切断することを意味する。電子部品用セパレータの急激な伸び縮みや切断は、電子部品用セパレータを構成する繊維の軟化、溶融、劣化、分解などに起因している。そのため最大伸び率が1.8%超のセパレータは、200℃以上、特に230℃以上の高温で処理されると、繊維同士の絡みや結合力が弱くなり、その上、電解液が含浸されることにより繊維がほぐれやすくなるため、該セパレータを具備した電子部品に振動、衝突、落下などの衝撃や荷重が加わった場合や、充放電に伴って膨張・収縮する電極を用いた場合には、該セパレータに破れや亀裂が生じ、電子部品に致命的な欠陥が発生しやすくなる。また、該セパレータを具備した電子部品を半田付けした際には、該セパレータ形状が変形したり、セパレータの空隙の一部が塞がるなどして内部抵抗や電圧が不安定になったり異常値を示す場合がある。最大伸び率は0.8%以上である。 The separator for electronic parts of the present invention is surrounded by a TMA curve and a straight line from 50 ° C. up to the maximum sample length when the thermal expansion is measured up to 300 ° C. at a tensile load of 4 KPa and a heating rate of 10 ° C./min. The integrated value of the part is 0.01 to 0.48 mm × min , and the maximum elongation from 50 ° C. to 300 ° C. is 0.8 to 1.8% , which means that the TMA curve is linear. This means that the electronic component separator does not expand or contract rapidly or greatly in the tensile direction as the temperature rises, or does not cut. Therefore, the electronic component separator of the present invention is not easily deformed or deteriorated even when exposed to a high temperature of 200 ° C. or higher, particularly 230 ° C. or higher. In the present invention, the temperature reaching the maximum sample length is preferably 280 to 300 ° C, and is preferably closer to 300 ° C. The maximum elongation from 50 ° C. to 300 ° C. means that the sample length at 50 ° C. is L 50 and the maximum sample length between 300 ° C. is L max (L max −L 50 ). / L 50 indicates a value calculated by 50 × 100. When the TMA area is larger than 0.48 mm × min or the maximum elongation is more than 1.8% , it means that the electronic component separator rapidly expands, contracts or cuts as the temperature rises. . The rapid expansion / contraction or cutting of the electronic component separator is caused by softening, melting, deterioration, decomposition, or the like of the fibers constituting the electronic component separator. Therefore, when the separator having a maximum elongation exceeding 1.8% is treated at a high temperature of 200 ° C. or higher, particularly 230 ° C. or higher, the entanglement and bonding strength between fibers become weak, and the electrolyte solution is impregnated. When the electrode that expands and contracts due to charging / discharging is used when an impact or load such as vibration, collision, or dropping is applied to the electronic component equipped with the separator, The separator is broken or cracked, and a fatal defect is likely to occur in the electronic component. In addition, when an electronic component equipped with the separator is soldered, the internal resistance and voltage become unstable or show abnormal values because the shape of the separator is deformed or a part of the gap of the separator is blocked. There is a case. The maximum growth rate is Ru der 0.8% or more.

本発明における耐熱性繊維とは、軟化点、融点、熱分解温度の何れもが250℃以上、700℃以下である繊維を指す。具体的には、全芳香族ポリアミド、全芳香族ポリエステル、全芳香族ポリエステルアミド、全芳香族ポリエーテル、全芳香族ポリカーボネート、全芳香族ポリアゾメチン、ポリフェニレンスルフィド(略称PPS)、ポリ(パラ−フェニレンベンゾビスチアゾール)(略称PBZT)、ポリベンゾイミダゾール(略称PBI)、ポリエーテルエーテルケトン(略称PEEK)、ポリアミドイミド(略称PAI)、ポリイミド、ポリテトラフルオロエチレン(略称PTFE)、ポリ(パラ−フェニレン−2,6−ベンゾビスオキサゾール)(略称PBO)からなる繊維が挙げられ、これら単独でも良いし、2種類以上の組み合わせでも良い。PBZTはトランス型、シス型の何れでも良い。ここで、「軟化点、融点、熱分解温度の何れも250℃以上、700℃以下」の範疇には、軟化点や融点が明瞭ではないが、熱分解温度が250℃以上、700℃以下であるものも含まれる。全芳香族ポリアミドやPBOなどはその例である。これらの繊維の中でも、液晶性のため均一に細くフィブリル化されやすいパラ系全芳香族ポリアミド繊維が好ましい。   The heat resistant fiber in the present invention refers to a fiber having a softening point, a melting point, and a thermal decomposition temperature of 250 ° C. or more and 700 ° C. or less. Specifically, wholly aromatic polyamide, wholly aromatic polyester, wholly aromatic polyester amide, wholly aromatic polyether, wholly aromatic polycarbonate, wholly aromatic polyazomethine, polyphenylene sulfide (abbreviation PPS), poly (para-phenylene) Benzobisthiazole) (abbreviation PBZT), polybenzimidazole (abbreviation PBI), polyetheretherketone (abbreviation PEEK), polyamideimide (abbreviation PAI), polyimide, polytetrafluoroethylene (abbreviation PTFE), poly (para-phenylene- 2,6-benzobisoxazole) (abbreviation PBO), and these may be used alone or in combination of two or more. PBZT may be either a transformer type or a cis type. Here, although the softening point and the melting point are not clear in the category of “softening point, melting point, and thermal decomposition temperature are all 250 ° C. or higher and 700 ° C. or lower”, the thermal decomposition temperature is 250 ° C. or higher and 700 ° C. or lower. Some are included. Examples include wholly aromatic polyamides and PBO. Among these fibers, para-type wholly aromatic polyamide fibers that are easy to be fibrillated uniformly due to liquid crystallinity are preferable.

本発明におけるパラ系全芳香族ポリアミドとは、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドとの重縮合で得られるポリマー、前述のモノマーに対して共重合率40%以下でメタ配向芳香族ジアミン、メタ配向芳香族ジハライド、脂肪族ジアミン、脂肪族ジカルボン酸などを重縮合して得られるポリマーであって、アミド結合が芳香環のパラ位またはそれに準じた配向位で結合した繰り返し単位からなるポリマーである。また、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドの芳香環の一部の水素原子は、アミド結合を形成しない置換基で置換されていても良く、芳香環は多環でも良い。アミド結合を形成しない置換基としては、アルキル基、アルコキシ基、ハロゲン、スルフォニル基、ニトロ基、フェニル基、その他が挙げられる。アルキル基とアルコキシ基は、炭素数が長いと重縮合を阻害しやすくなるため、炭素数は1〜4が好ましい。例えば、芳香環の一部の水素原子がアルキル基で置換されたパラ配向芳香族ジアミンとしては、N,N´−ジメチルパラフェニレンジアミン、N,N´−ジエチルパラフェニレンジアミン、2−メチル−4−エチルパラフェニレンジアミン、2−メチル−4−エチル−5−プロピルパラフェニレンジアミンなどが挙げられるが、これらに限定されるものではない。例えば、芳香環の一部の水素原子がアルコキシ基で置換されたパラ配向芳香族ジカルボン酸ハライドとしては、ジメトキシテレフタル酸クロライド、ジエトキシテレフタル酸クロライド、2−メトキシ−4−エトキシテレフタル酸クロライドなどが挙げられるが、これらに限定されるものではない。例えば、芳香環が多環なパラ配向芳香族ジアミンとしては、4,4´−オキシジフェニルジアミン、4,4´−スルフォニルジフェニルジアミン、4,4´−ジフェニルジアミン、3,3´−オキシジフェニルジアミン、3,3´−スルフォニルジフェニルジアミン、3,3´−ジフェニルジアミンなどが挙げられるが、これらに限定されるものではない。さらに、これらの芳香環の一部の水素原子が、前述したように、アミド結合を形成しない置換基で置換されていても良い。例えば、芳香環が多環なパラ配向芳香族ジカルボン酸ハライドとしては、4,4´−オキシジベンゾイルクロライド、4,4´−スルフォニルジベンゾイルクロライド、4,4´−ジベンゾイルクロライド、3,3´−オキシジベンゾイルクロライド、3,3´−スルフォニルジベンゾイルクロライド、3,3´−ジベンゾイルクロライドなどが挙げられるが、これらに限定されるものではない。さらにこれらの芳香環の一部の水素原子が、前述したように、アミド結合を形成しない置換基で置換されていても良い。   The para-type wholly aromatic polyamide in the present invention is a polymer obtained by polycondensation of a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide. A polymer obtained by polycondensation of an aromatic diamine, meta-oriented aromatic dihalide, aliphatic diamine, aliphatic dicarboxylic acid, etc., from a repeating unit in which the amide bond is bonded at the para position of the aromatic ring or an oriented position equivalent thereto It is the polymer which becomes. Further, some hydrogen atoms of the aromatic rings of the para-oriented aromatic diamine and the para-oriented aromatic dicarboxylic acid halide may be substituted with a substituent that does not form an amide bond, and the aromatic ring may be polycyclic. Examples of the substituent that does not form an amide bond include an alkyl group, an alkoxy group, a halogen, a sulfonyl group, a nitro group, a phenyl group, and the like. Since an alkyl group and an alkoxy group tend to inhibit polycondensation when the number of carbon atoms is long, the number of carbon atoms is preferably 1 to 4. For example, as the para-oriented aromatic diamine in which a part of hydrogen atoms in the aromatic ring is substituted with an alkyl group, N, N′-dimethylparaphenylenediamine, N, N′-diethylparaphenylenediamine, 2-methyl-4 -Ethylparaphenylenediamine, 2-methyl-4-ethyl-5-propylparaphenylenediamine and the like are exemplified, but not limited thereto. For example, the para-oriented aromatic dicarboxylic acid halide in which a part of hydrogen atoms of the aromatic ring is substituted with an alkoxy group includes dimethoxyterephthalic acid chloride, diethoxyterephthalic acid chloride, 2-methoxy-4-ethoxyterephthalic acid chloride, and the like. Although it is mentioned, it is not limited to these. For example, the para-oriented aromatic diamine having a polycyclic aromatic ring includes 4,4′-oxydiphenyldiamine, 4,4′-sulfonyldiphenyldiamine, 4,4′-diphenyldiamine, and 3,3′-oxydiphenyldiamine. 3,3′-sulfonyldiphenyldiamine, 3,3′-diphenyldiamine, and the like, but are not limited thereto. Further, as described above, some of the hydrogen atoms of these aromatic rings may be substituted with a substituent that does not form an amide bond. For example, the para-oriented aromatic dicarboxylic acid halide having a polycyclic aromatic ring includes 4,4′-oxydibenzoyl chloride, 4,4′-sulfonyldibenzoyl chloride, 4,4′-dibenzoyl chloride, 3,3 Examples include, but are not limited to, '-oxydibenzoyl chloride, 3,3'-sulfonyldibenzoyl chloride, 3,3'-dibenzoyl chloride. Furthermore, as described above, some of the hydrogen atoms of these aromatic rings may be substituted with a substituent that does not form an amide bond.

本発明におけるパラ系全芳香族ポリアミドとしては、上記したポリマーの中でも特に耐熱性に優れるポリ(パラ−フェニレンテレフタルアミド)やコポリ(パラ−フェニレン−3,4´−オキシジフェニレンテレフタルアミド)が好ましい。   As the para-type wholly aromatic polyamide in the present invention, poly (para-phenylene terephthalamide) and copoly (para-phenylene-3,4'-oxydiphenylene terephthalamide) which are particularly excellent in heat resistance are preferable among the above-mentioned polymers. .

本発明におけるフィブリルとは、フィルム状ではなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下になっている繊維を指し、フィブリッドとは製法、形状が異なる。長さと巾のアスペクト比は約20〜約100000の範囲に分布し、カナディアンスタンダードフリーネスは0〜500ml以下の範囲にあることが好ましく、0〜200mlの範囲にあることがより好ましい。さらに重量平均繊維長が0.1〜2mmの範囲にあるものが好ましい。   The fibril in the present invention is not a film, but a fiber having a portion finely divided mainly in a direction parallel to the fiber axis, and at least a part of the fiber has a fiber diameter of 1 μm or less. The manufacturing method and shape are different from fibrids. The aspect ratio of length to width is distributed in the range of about 20 to about 100,000, and the Canadian standard freeness is preferably in the range of 0 to 500 ml or less, and more preferably in the range of 0 to 200 ml. Furthermore, what has a weight average fiber length in the range of 0.1-2 mm is preferable.

本発明におけるフィブリル化は、リファイナー、ビーター、ミル、摩砕装置、高速の回転刃によりせん断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも3000psiの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等を用いて行うが、特に高圧ホモジナイザーで処理すると細かいフィブリルが得られるため好ましい。   Fibrilization in the present invention includes refiner, beater, mill, grinding device, rotary blade homogenizer that applies shearing force by high-speed rotary blade, cylindrical inner blade that rotates at high speed, and fixed outer blade. Double-cylindrical high-speed homogenizer that generates shearing force, ultrasonic crusher that is refined by ultrasonic impact, a pressure difference of at least 3000 psi is applied to the fiber suspension, and a small-diameter orifice is passed through to increase the speed. Is carried out using a high-pressure homogenizer or the like that applies a shearing force or a cutting force to the fiber by rapidly decelerating the fibers, and it is particularly preferable to treat with a high-pressure homogenizer because fine fibrils can be obtained.

フィブリッドとは、非顆粒状、非剛性の繊維状またはフィルム状微小粒子で、繊維状の場合は、径と長さがμmの範囲にあり、フィルム状の場合は厚み、巾、長さのうち何れか1つの大きさがμmの範囲にあるものを指す。フィブリッドは、米国特許第2999788号明細書や米国特許第3018091号明細書に明示されているように、ポリマー溶液を貧溶媒(凝固浴)の中へ剪断沈殿させることによって製造される。   Fibrids are non-granular, non-rigid fibrous or film-like fine particles. In the case of fibrous, the diameter and length are in the range of μm. In the case of film, the thickness, width, and length Any one of the sizes is in the range of μm. Fibrids are produced by shear precipitation of a polymer solution into a poor solvent (coagulation bath) as specified in US Pat. No. 2,999,788 and US Pat. No. 30,180,091.

本発明における非フィブリル化耐熱性繊維は、上記した耐熱性繊維でフィブリル化していないものを指す。非フィブリル化耐熱性繊維の繊度は0.01〜1.5dtexが好ましく、0.1〜0.9dtexがより好ましい。繊度が0.01dtex未満では、該繊維が脆くなりやすい。1.5dtexより大きいと電子部品用セパレータの目が粗くなりやすく、内部短絡の原因になりやすい。本発明においては、非フィブリル化耐熱性繊維の中でも、特に耐熱性に優れるポリ(パラ−フェニレンテレフタルアミド)やコポリ(パラ−フェニレン−3,4´−オキシジフェニレンテレフタルアミド)などのパラ系全芳香族ポリアミド繊維が好ましい。   The non-fibrillated heat-resistant fiber in the present invention refers to the above-mentioned heat-resistant fiber that has not been fibrillated. The fineness of the non-fibrillated heat resistant fiber is preferably 0.01 to 1.5 dtex, more preferably 0.1 to 0.9 dtex. If the fineness is less than 0.01 dtex, the fiber tends to be brittle. When it is larger than 1.5 dtex, the electronic component separator tends to be rough, which may cause an internal short circuit. In the present invention, among non-fibrillated heat-resistant fibers, all para-types such as poly (para-phenylene terephthalamide) and copoly (para-phenylene-3,4'-oxydiphenylene terephthalamide), which are particularly excellent in heat resistance, are used. Aromatic polyamide fibers are preferred.

本発明における非フィブリル化非耐熱性繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、それらの誘導体などのポリエステル、ポリオレフィン、アクリロニトリル系共重合体(アクリル)、脂肪族ポリアミド、半芳香族ポリアミド、ポリエーテルスルホン(略称PES)、ポリフッ化ビニリデン、ポリビニルアルコール、ポリウレタン、ポリ塩化ビニルなどからなる単繊維や複合繊維が挙げられ、これら1種類でも良いし、2種類以上混合して用いても良い。ここで、半芳香族とは、主鎖の一部に例えば脂肪鎖などを有するものを指すが、これに限定されるものではない。これらの中でも、アクリロニトリル系共重合体からなる繊維は、TMA面積と伸び率を小さくする効果があるため好ましい。芯部がポリエチレンテレフタレートなど高融点の樹脂からなり、鞘部がポリエチレンイソフタレートなど低融点成分を含有する樹脂からなる芯鞘複合繊維は、電子部品用セパレータの強度を強くするため好ましい。   Non-fibrillated non-heat-resistant fibers in the present invention include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene isophthalate, and derivatives thereof, polyolefins, acrylonitrile copolymers (acrylic), aliphatic polyamides, and semi-aromatic polyamides. , Polyethersulfone (abbreviated as PES), polyvinylidene fluoride, polyvinyl alcohol, polyurethane, polyvinyl chloride, and the like. These may be one type or a mixture of two or more types. . Here, the semi-aromatic refers to a substance having, for example, a fatty chain in a part of the main chain, but is not limited thereto. Among these, a fiber made of an acrylonitrile copolymer is preferable because it has an effect of reducing the TMA area and the elongation rate. A core-sheath composite fiber in which the core part is made of a resin having a high melting point such as polyethylene terephthalate and the sheath part is made of a resin containing a low melting point component such as polyethylene isophthalate is preferable because the strength of the separator for electronic parts is increased.

本発明における非フィブリル化非耐熱性繊維の繊度は、0.01〜2.0dtexが好ましい。繊度が0.01dtex未満では、繊維が細すぎて湿式不織布の基本骨格を形成し難い。繊度が2.0dtexより大きいと、フィブリル化耐熱性繊維とフィブリル化セルロースが脱落しやすく、その結果、ピンホールができやすく、地合いが不均一になりやすい。非フィブリル化非耐熱性繊維の繊維長は1mm〜15mmが好ましく、2mm〜10mmがより好ましい。繊維長が1mmより短いと電子部品用セパレータから脱落しやすく、15mmより長いと、繊維がもつれてダマになりやすく、厚みむらが生じやすい。   The fineness of the non-fibrillated non-heat resistant fiber in the present invention is preferably 0.01 to 2.0 dtex. If the fineness is less than 0.01 dtex, the fibers are too thin to form the basic skeleton of the wet nonwoven fabric. When the fineness is larger than 2.0 dtex, the fibrillated heat-resistant fiber and the fibrillated cellulose tend to fall off, and as a result, pinholes are easily formed and the texture tends to be uneven. The fiber length of the non-fibrillated non-heat resistant fiber is preferably 1 mm to 15 mm, and more preferably 2 mm to 10 mm. When the fiber length is shorter than 1 mm, it is easy to fall off from the electronic component separator. When the fiber length is longer than 15 mm, the fiber tends to get tangled and become lumpy, and uneven thickness tends to occur.

本発明におけるフィブリル化セルロースは、バクテリアセルロースや機械的にフィブリル化したセルロースを指す。前者は微生物が産生するバクテリアセルロースのことを指す。このバクテリアセルロースは、セルロースおよびセルロースを主鎖とするヘテロ多糖を含むものおよびβ―1,3、β−1,2等のグルカンを含むものである。ヘテロ多糖の場合のセルロース以外の構成成分はマンノース、フラクトース、ガラクトース、キシロース、アラビノース、ラムノース、グルクロン酸等の六炭糖、五炭糖および有機酸等である。これらの多糖は単一物質で構成される場合もあるが、2種以上の多糖が水素結合などで結合して構成されている場合もあり、何れも利用できる。   The fibrillated cellulose in the present invention refers to bacterial cellulose or mechanically fibrillated cellulose. The former refers to bacterial cellulose produced by microorganisms. This bacterial cellulose contains cellulose and a heteropolysaccharide having cellulose as a main chain, and also contains glucans such as β-1,3, β-1,2, and the like. Constituent components other than cellulose in the case of heteropolysaccharides are hexoses such as mannose, fructose, galactose, xylose, arabinose, rhamnose, glucuronic acid, pentoses, organic acids and the like. These polysaccharides may be composed of a single substance, or may be composed of two or more kinds of polysaccharides bonded together by hydrogen bonds or the like, and any of them can be used.

後者は、リンターをはじめとする各種パルプ、リントなどを原料とし、上記フィブリル化耐熱性繊維と同様にフィブリル化されたものを指す。これら天然セルロースから得られるフィブリル化セルロースやバクテリアセルロースは、TMA面積を小さくする効果が大きいため好ましい。   The latter refers to fibrillated materials similar to the above-described fibrillated heat-resistant fibers, which are made from various pulps such as linter, lint and the like. Fibrilized cellulose and bacterial cellulose obtained from these natural celluloses are preferable because they have a large effect of reducing the TMA area.

本発明の湿式不織布は、フィブリル化耐熱性繊維、非フィブリル化耐熱性繊維、フィブリル化セルロースの3成分を必須成分とし、必須3成分の合計含有量が45〜100質量%、非フィブリル化非耐熱性繊維の含有量が55〜0質量%で、フィブリル化耐熱性繊維と非フィブリル化耐熱性繊維の合計含有量が40質量%以上で構成されることが好ましい。この条件を満たさない場合は必要な耐熱性が得られにくく、高信頼性の電子部品が得られないことがある。   The wet nonwoven fabric of the present invention has three components, fibrillated heat-resistant fiber, non-fibrillated heat-resistant fiber, and fibrillated cellulose as essential components, and the total content of the essential three components is 45 to 100% by mass, non-fibrillated and non-heat-resistant. It is preferable that the content of the conductive fiber is 55 to 0% by mass and the total content of the fibrillated heat resistant fiber and the non-fibrillated heat resistant fiber is 40% by mass or more. If this condition is not satisfied, the required heat resistance is difficult to obtain, and a highly reliable electronic component may not be obtained.

本発明における湿式不織布は、長網抄紙機、短網抄紙機、円網抄紙機、傾斜型抄紙機、これらの中から同種あるいは異種の抄紙機を2つ以上組み合わせたコンビネーションマシンなどを用いて湿式抄紙して製造される。湿式抄紙の際に用いる水はイオン交換水が好ましく、分散助剤やその他添加薬品、剥離剤などは、非イオン性のものが好ましいが、電子部品の特性に影響を及ぼさない程度であれば、イオン性のものを適量用いても良い。   The wet nonwoven fabric in the present invention is wet using a long paper machine, a short paper machine, a circular paper machine, an inclined paper machine, a combination machine in which two or more of the same or different types of paper machines are combined. Manufactured by papermaking. The water used for wet papermaking is preferably ion-exchanged water, and dispersion aids and other additive chemicals, release agents, etc. are preferably nonionic, so long as they do not affect the characteristics of electronic components. An appropriate amount of ionic substances may be used.

本発明における電子部品用セパレータの坪量は、特に制限はないが、5〜50g/mが好ましく、8〜35g/mがさらに好ましく用いられる。 Although there is no restriction | limiting in particular in the basic weight of the separator for electronic components in this invention, 5-50 g / m < 2 > is preferable and 8-35 g / m < 2 > is used more preferable.

本発明における電子部品用セパレータの厚みは、特に制限はないが、電子部品が小型化できること、収容できる電極面積を大きくでき容量を稼げる点から薄い方が好ましい。具体的には電子部品組立時に破断しない程度の強度を持ち、ピンホールが無く、高い均一性を備える厚みとして10〜300μmが好ましく用いられ、20〜100μm、さらには20〜60μmがより好ましく用いられる。10μm未満では、電子部品の製造時の短絡不良率が増加するため好ましくない。一方、300μmより厚くなると、電子部品に収納できる電極面積が減少するため電子部品の容量が低いものになる。   The thickness of the electronic component separator in the present invention is not particularly limited, but it is preferably thinner from the viewpoint that the electronic component can be miniaturized, the electrode area that can be accommodated can be increased, and the capacity can be increased. Specifically, 10 to 300 μm is preferably used as the thickness having strength that does not break when assembling electronic components, no pinholes, and high uniformity, and 20 to 100 μm, more preferably 20 to 60 μm is more preferably used. . If it is less than 10 μm, the short-circuit failure rate during the production of electronic components increases, which is not preferable. On the other hand, when the thickness is greater than 300 μm, the electrode area that can be accommodated in the electronic component is reduced, and the capacity of the electronic component is low.

本発明の電子部品用セパレータは、必要に応じて、カレンダー処理、熱カレンダー処理、熱処理などの熱加工処理が施される。熱処理の場合は、150℃〜300℃の温度で処理することが好ましい。150℃未満では熱処理が不十分になりやすく、300℃より高いと熱収縮しやすい。   The electronic component separator of the present invention is subjected to thermal processing such as calendering, thermal calendering, and heat treatment as necessary. In the case of heat treatment, the treatment is preferably performed at a temperature of 150 ° C to 300 ° C. When the temperature is lower than 150 ° C., the heat treatment tends to be insufficient, and when the temperature is higher than 300 ° C., the heat shrinks easily.

以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the content of this invention is not limited to an Example.

<フィブリル化耐熱性繊維1の作製>
パラ系全芳香族ポリアミド繊維(帝人テクノプロダクツ製、トワロン1080)を初期濃度5%になるようにイオン交換水に分散させ、ダブルディスクリファイナーを用いて、15回繰り返し叩解処理し、重量平均繊維長1.35mm、カナディアンスタンダードフリーネス90mlのフィブリル化パラ系全芳香族ポリアミド繊維を作製した。以下、これをフィブリル化耐熱性繊維1またはFB1と表記する。
<Preparation of fibrillated heat resistant fiber 1>
Para-type wholly aromatic polyamide fiber (manufactured by Teijin Techno Products, Twaron 1080) was dispersed in ion-exchanged water so as to have an initial concentration of 5%, and was repeatedly beaten 15 times using a double disc refiner to obtain a weight average fiber length. A fibrillated para-type wholly aromatic polyamide fiber of 1.35 mm and Canadian standard freeness 90 ml was produced. Hereinafter, this is referred to as fibrillated heat resistant fiber 1 or FB1.

<フィブリル化耐熱性繊維2の作製>
フィブリル化耐熱性繊維1をさらに高圧ホモジナイザーで50MPaの条件で25回繰り返し叩解処理し、重量平均繊維長0.58mm、カナディアンスタンダードフリーネス0mlのフィブリル化パラ系全芳香族ポリアミド繊維を作製した。以下、これをフィブリル化耐熱性繊維2またはFB2と表記する。
<Preparation of fibrillated heat resistant fiber 2>
The fibrillated heat-resistant fiber 1 was further repeatedly beaten with a high-pressure homogenizer 25 times under the condition of 50 MPa to produce a fibrillated para-type wholly aromatic polyamide fiber having a weight average fiber length of 0.58 mm and a Canadian standard freeness of 0 ml. Hereinafter, this is referred to as fibrillated heat resistant fiber 2 or FB2.

<パラ系全芳香族ポリアミド繊維1>
ポリ(パラ−フェニレンテレフタルアミド)樹脂を液晶紡糸し、洗浄して繊度0.1dtexのトウを作製した。これを長さ3mmに切断してパラ系全芳香族ポリアミド繊維を作製した。以下、これをパラ系全芳香族ポリアミド繊維1またはPA1と表記する。
<Para-type wholly aromatic polyamide fiber 1>
Poly (para-phenylene terephthalamide) resin was subjected to liquid crystal spinning and washed to prepare a tow having a fineness of 0.1 dtex. This was cut into a length of 3 mm to produce a para-type wholly aromatic polyamide fiber. Hereinafter, this is referred to as para-type wholly aromatic polyamide fiber 1 or PA1.

<ポリエステル繊維1>
ポリエチレンテレフタレート樹脂を溶融紡糸し、延伸して繊度0.05dtexのトウを作製した。これを長さ3mmに切断してポリエチレンテレフタレート繊維を得た。以下、これをポリエステル繊維1またはPET1と表記する。
<Polyester fiber 1>
A polyethylene terephthalate resin was melt-spun and stretched to produce a tow having a fineness of 0.05 dtex. This was cut into a length of 3 mm to obtain a polyethylene terephthalate fiber. Hereinafter, this is referred to as polyester fiber 1 or PET1.

<アクリル繊維1>
アクリロニトリル、アクリル酸メチル、酢酸ビニルの3成分からなるアクリロニトリル系共重合体を湿式紡糸し、洗浄、延伸して繊度0.01dtexのトウを作製した。これを長さ2mmに切断してアクリル繊維を得た。以下、これをアクリル繊維1またはA1と表記する。
<Acrylic fiber 1>
An acrylonitrile copolymer comprising three components of acrylonitrile, methyl acrylate and vinyl acetate was wet-spun, washed and stretched to produce a tow having a fineness of 0.01 dtex. This was cut into a length of 2 mm to obtain an acrylic fiber. Hereinafter, this is referred to as acrylic fiber 1 or A1.

<フィブリル化セルロース1の作製>
リンターを5%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて50MPaの圧力で20回繰り返し処理して、重量平均繊維長0.33mm、カナディアンスタンダードフリーネス0mlのフィブリル化セルロースを作製した。以下、これをフィブリル化セルロース1またはFBC1と表記する。
<Preparation of fibrillated cellulose 1>
Disperse linters in ion-exchanged water to a concentration of 5% and repeat the treatment 20 times at a pressure of 50 MPa using a high-pressure homogenizer to produce fibrillated cellulose with a weight average fiber length of 0.33 mm and Canadian standard freeness of 0 ml. did. Hereinafter, this is referred to as fibrillated cellulose 1 or FBC1.

<フィブリル化セルロース2の作製>
麻繊維をイオン交換水中に分散させ、ビーターで叩解した後、高圧ホモジナイザーを用いて50MPaの圧力で20回繰り返し処理して、重量平均繊維長0.45mm、カナディアンスタンダードフリーネス0mlのフィブリル化セルロースを作製した。以下、これをフィブリル化セルロース2またはFBC2と表記する。
<Preparation of fibrillated cellulose 2>
Hemp fibers are dispersed in ion-exchanged water, beaten with a beater, and repeatedly treated 20 times at a pressure of 50 MPa using a high-pressure homogenizer to produce fibrillated cellulose having a weight average fiber length of 0.45 mm and Canadian standard freeness of 0 ml. did. Hereinafter, this is referred to as fibrillated cellulose 2 or FBC2.

<メタ系全芳香族ポリアミドフィブリッドの作製>
ポリ(メタ−フェニレンイソフタルアミド)、トリエチルアミン、トリエチルアミンヒドロクロライドを所定量溶解させたメチレンクロライド溶液をワーリンブレンダーで撹拌しながら、イソフタル酸クロライドを溶解させたメチレンクロライド溶液を加えて重縮合反応させ、ポリ(メタ−フェニレンイソフタルアミド)を合成した。N,N´−ジメチルアセトアミド30%、水68%、塩化カルシウム2%の割合で混合した凝固浴をワーリンブレンダーで高速攪拌させ、これにポリ(メタ−フェニレンイソフタルアミド)溶液を接触させ、アラミドフィブリッドを沈殿生成させた。得られたアラミドフィブリッドを水洗した。以下、これをメタ系全芳香族ポリアミドフィブリッド1またはFD1と表記する。FD1のカナディアンフリーネスは30mlであった。
<Production of meta-type wholly aromatic polyamide fibrid>
While stirring a methylene chloride solution in which a predetermined amount of poly (meta-phenylene isophthalamide), triethylamine, and triethylamine hydrochloride was stirred with a Warin blender, a methylene chloride solution in which isophthalic acid chloride was dissolved was added to cause a polycondensation reaction. Poly (meta-phenylene isophthalamide) was synthesized. A coagulation bath mixed at a ratio of 30% N, N'-dimethylacetamide, 68% water and 2% calcium chloride is stirred at a high speed with a Warin blender, and a poly (meta-phenylene isophthalamide) solution is brought into contact therewith to form an aramid. Fibrids were precipitated. The obtained aramid fibrid was washed with water. Hereinafter, this is referred to as meta-type wholly aromatic polyamide fibrid 1 or FD1. The Canadian freeness of FD1 was 30 ml.

表1に示した原料と配合量に従って、抄紙用スラリーを調製した。ここで、表1中の「PET2」は、繊度0.1dtex、繊維長3mmのポリエチレンテレフタレート繊維(帝人ファイバー製、テピルスTM04PN)、「PET3」は、繊度1.1dtex、繊維長5mmの芯鞘複合繊維(帝人ファイバー製、TJ04CN、芯部:融点255℃のポリエチレンテレフタレート、鞘部:ポリエチレンテレフタレートとポリエチレンイソフタレートの共重合体、融点110℃)を意味する。「A2」は、繊度0.1dtex、繊維長3mmのアクリル繊維(三菱レイヨン製、ボンネルM.V.P、アクリロニトリル、アクリル酸メチル、メタクリル酸誘導体の3成分からなるアクリロニトリル系共重合体)、「A3」は、繊度0.4dtex、繊維長3mmのアクリル繊維(三菱レイヨン製、ボンネルM.V.P、アクリロニトリル、アクリル酸メチル、メタクリル酸誘導体の3成分からなるアクリロニトリル系共重合体)を意味する。「PA2」は、繊度0.75dtex、繊維長3mmのパラ系全芳香族ポリアミド繊維(帝人テクノプロダクツ製、テクノーラ、コポリ(パラ−フェニレン−3,4´−オキシジフェニレンテレフタルアミド))、「PA3」は、繊度1.2dtex、繊維長5mmのパラ系全芳香族ポリアミド繊維(帝人テクノプロダクツ製、トワロン1080、ポリ(パラ−フェニレンテレフタルアミド))、「PA4」は、繊度0.08dtex、繊維長3mmの芳香族ポリアミド繊維(クラレ製、ジェネスタ、融点255℃、軟化点230℃)を意味する。「P1」は、をカナディアンスタンダードフリーネス20mlになるまで叩解した溶剤紡糸セルロース(レンチング社製、テンセル)、「P2」は、カナディアンスタンダードフリーネス500mlのポリノジックレーヨン、「P3」は、カナディアンフリーネス640mlのマニラ麻を意味する。   A papermaking slurry was prepared according to the raw materials and blending amounts shown in Table 1. Here, “PET2” in Table 1 is a polyethylene terephthalate fiber having a fineness of 0.1 dtex and a fiber length of 3 mm (Teijin Fibers, Tepyrus TM04PN), and “PET3” is a core-sheath composite having a fineness of 1.1 dtex and a fiber length of 5 mm. It means fiber (manufactured by Teijin Fibers, TJ04CN, core: polyethylene terephthalate having a melting point of 255 ° C., sheath: copolymer of polyethylene terephthalate and polyethylene isophthalate, melting point 110 ° C.). “A2” is an acrylic fiber having a fineness of 0.1 dtex and a fiber length of 3 mm (acrylonitrile copolymer comprising three components of Mitsubishi Rayon, Bonnell MVP, acrylonitrile, methyl acrylate, and methacrylic acid derivative), “ “A3” means acrylic fiber (manufactured by Mitsubishi Rayon, Bonnell MVP, acrylonitrile, methyl acrylate, methacrylic acid derivative acrylonitrile copolymer having a fineness of 0.4 dtex and a fiber length of 3 mm). . "PA2" is a para-type wholly aromatic polyamide fiber having a fineness of 0.75 dtex and a fiber length of 3 mm (manufactured by Teijin Techno Products, Technora, copoly (para-phenylene-3,4'-oxydiphenylene terephthalamide)), "PA3 Is a para-type wholly aromatic polyamide fiber having a fineness of 1.2 dtex and a fiber length of 5 mm (manufactured by Teijin Techno Products, Twaron 1080, poly (para-phenylene terephthalamide)), and “PA4” has a fineness of 0.08 dtex and a fiber length. It means 3 mm aromatic polyamide fiber (manufactured by Kuraray, Genesta, melting point 255 ° C., softening point 230 ° C.). “P1” is solvent-spun cellulose (Tencel, manufactured by Lenzing Co., Ltd.) beaten to 20 ml Canadian Standard Freeness, “P2” is Polynosic Rayon with 500 ml Canadian Standard Freeness, and “P3” is 640 ml of Manila hemp means.

実施例1〜18
円網抄紙機と円網抄紙機のコンビネーション抄紙機を用いてスラリー1〜18を湿式抄紙し、線圧10〜500N/cmでカレンダー処理して、電子部品用セパレータ1〜18を作製した。
Examples 1-18
Slurries 1-18 were wet-machined using a combination of a circular paper machine and a circular paper machine, and calendared at a linear pressure of 10-500 N / cm to produce separators 1-18 for electronic parts.

(比較例1、2)
長網抄紙機を用いてスラリー19、20を湿式抄紙し、線圧10〜500N/cmでカレンダー処理して、電子部品用セパレータ19、20を作製した。
(Comparative Examples 1 and 2)
Slurries 19 and 20 were subjected to wet paper making using a long paper machine and calendered at a linear pressure of 10 to 500 N / cm to produce separators 19 and 20 for electronic parts.

(比較例3〜7)
円網抄紙機と円網抄紙機のコンビネーション抄紙機を用いてスラリー21〜25を湿式抄紙し、線圧10〜500N/cmでカレンダー処理して、電子部品用セパレータ21〜25を作製した。
(Comparative Examples 3 to 7)
Slurries 21 to 25 were subjected to wet paper making using a circular paper machine and a combination paper machine, and calendar treatment was performed at a linear pressure of 10 to 500 N / cm to produce separators 21 to 25 for electronic parts.

<電気二重層キャパシタの作製>
電極活物質として非多孔性炭素85%、導電材としてカーボンブラック10%、結着材としてポリテトラフルオロエチレン5%を混練して厚み0.2mmのシート状電極を作製した。これを厚み50μmのアルミニウム箔の両面に導電性接着剤を用いて接着させ、圧延して電極を作製した。この電極を正極および負極として用いた。電子部品用セパレータを負極と正極の間に介して積層し、巻回機を用いて渦巻き型に巻回して渦巻き型素子を作製した。正極側および負極側の最外層には何れも電子部品用セパレータを配した。この渦巻き型素子をアルミニウム製ケースに収納した。ケースに取り付けられた正極端子および負極端子に正極リードおよび負極リードを溶接した後、電解液注液口を残してケースを封口した。この素子を収納したケースごと240℃に20時間加熱し乾燥処理した。但し、電子部品19、20については、200℃に40時間加熱した。これを室温まで放冷した後、ケース内に電解液を注入し、注液口を密栓して電気二重層キャパシタを作製した。電解液には、プロピレンカーボネートに1.5mol/lになるように(C(CH)NBFを溶解させたものを用いた。
<Production of electric double layer capacitor>
A sheet-like electrode having a thickness of 0.2 mm was prepared by kneading 85% nonporous carbon as an electrode active material, 10% carbon black as a conductive material, and 5% polytetrafluoroethylene as a binder. This was adhered to both surfaces of an aluminum foil having a thickness of 50 μm using a conductive adhesive, and rolled to produce an electrode. This electrode was used as a positive electrode and a negative electrode. A separator for an electronic component was laminated between the negative electrode and the positive electrode, and wound into a spiral shape using a winding machine to produce a spiral element. Both the positive electrode side and the negative electrode side were provided with electronic component separators. This spiral element was housed in an aluminum case. The positive electrode lead and the negative electrode lead were welded to the positive electrode terminal and the negative electrode terminal attached to the case, and then the case was sealed leaving the electrolyte injection port. The case containing this element was heated to 240 ° C. for 20 hours and dried. However, the electronic components 19 and 20 were heated to 200 ° C. for 40 hours. After allowing this to cool to room temperature, an electrolytic solution was injected into the case, and the liquid inlet was sealed to produce an electric double layer capacitor. As the electrolytic solution, a solution obtained by dissolving (C 2 H 5 ) 3 (CH 3 ) NBF 4 in propylene carbonate so as to have a concentration of 1.5 mol / l was used.

<電解コンデンサの作製>
厚み50μm、エッチング孔径1〜5μmのアルミニウム箔を電極として用い、該電極の片面に陽極用コネクタをスポット溶接した後、90℃の温度に保たれたホウ酸溶液に浸漬し、30Aの電流で15分間、アルミニウム箔面を酸化して、酸化アルミニウム誘電体層を形成した。これを陽極として用いた。同様に、エッチングしたアルミニウム箔電極の片面に陰極用コネクタをスポット溶接して、陰極として用いた。電子部品用セパレータを陽極の誘電体層上に配置し、陰極と合わせて巻き取った後、電解コンデンサ用セルに挿入し、電解液(フタル酸テトラエチルアンモニウム24.1質量%、γ−ブチロラクトン70質量%、エチレングリコール5.9質量%)を注入した後、セルを密封してアルミ電解コンデンサを作製した。
<Production of electrolytic capacitor>
An aluminum foil having a thickness of 50 μm and an etching hole diameter of 1 to 5 μm was used as an electrode. After spot welding the anode connector on one side of the electrode, the electrode was immersed in a boric acid solution maintained at a temperature of 90 ° C. The aluminum foil surface was oxidized for a minute to form an aluminum oxide dielectric layer. This was used as an anode. Similarly, a cathode connector was spot welded to one side of an etched aluminum foil electrode and used as a cathode. An electronic component separator is placed on the anode dielectric layer, wound together with the cathode, and then inserted into a cell for an electrolytic capacitor. Electrolyte (tetraethylammonium phthalate 24.1% by mass, γ-butyrolactone 70% by mass) %, Ethylene glycol 5.9% by mass), and the cell was sealed to produce an aluminum electrolytic capacitor.

電子部品用セパレータ、電気二重層キャパシタ、および電解コンデンサについて、下記の試験方法により測定し、その結果を下記表2、3に示した。   The electronic component separator, the electric double layer capacitor, and the electrolytic capacitor were measured by the following test methods, and the results are shown in Tables 2 and 3 below.

<厚み>
電子部品用セパレータ1〜25の厚みをJIS C2111に準拠して測定し、その結果を表2に示した。
<Thickness>
The thicknesses of the electronic component separators 1 to 25 were measured according to JIS C2111, and the results are shown in Table 2.

<密度>
電子部品用セパレータ1〜25の密度をJIS C2111に準拠して測定し、その結果を表2に示した。
<Density>
The density of the electronic component separators 1 to 25 was measured according to JIS C2111, and the results are shown in Table 2.

<TMA面積>
電子部品用セパレータを5mm巾×13mm長の短冊状にMD(マシンディレクション)方向に長くなるように切断して、TMA装置(パーキンエルマー製、TMA7)用のチャックで試料の両端を固定した。固定した試料を石英製引張プローブのフックに引掛けて、窒素ガス雰囲気中、引張荷重4KPa、昇温速度10℃/分の条件で室温から300℃まで温度上昇させ、熱膨張による試料の変位を測定した。TMA面積は、50℃から最大試料長に達した温度までのTMA曲線と直線とで囲われた部分の積分値から求め、表2に示した。
<TMA area>
The separator for electronic parts was cut into a strip of 5 mm width × 13 mm length so as to be long in the MD (machine direction) direction, and both ends of the sample were fixed with a chuck for a TMA apparatus (Perkin Elmer, TMA7). The fixed sample is hooked on the hook of a quartz tensile probe, and the temperature is increased from room temperature to 300 ° C. in a nitrogen gas atmosphere under the conditions of a tensile load of 4 KPa and a temperature increase rate of 10 ° C./min. It was measured. The TMA area was determined from the integral value of the portion surrounded by the TMA curve and the straight line from 50 ° C. to the maximum sample length, and is shown in Table 2.

<伸び率>
<TMA面積>の項の熱膨張測定において検出される50℃のときの試料長をL50、最大試料長をLmaxとし、次の式(1)より電子部品用セパレータの伸び率を算出し、表2に示した。
伸び率(%)=(Lmax−L50)/L50×100 (1)
<Elongation>
The sample length at 50 ° C. detected in the thermal expansion measurement in the <TMA area> section is L 50 , the maximum sample length is L max, and the elongation percentage of the electronic component separator is calculated from the following equation (1). The results are shown in Table 2.
Elongation rate (%) = (L max −L 50 ) / L 50 × 100 (1)

<最大試料長温度>
<TMA面積>の項の熱膨張測定において、試料長が最大に達した温度を表2に示した。この温度が高いほど好ましい。
<Maximum sample length temperature>
Table 2 shows the temperature at which the sample length reached the maximum in the thermal expansion measurement in the <TMA area> section. A higher temperature is preferable.

<DC抵抗>
電気二重層キャパシタを3.3Vまで充電した後、20Aの定電流放電したときの放電開始直後の電圧低下より算出し、表3に示した。
<DC resistance>
The electric double layer capacitor was calculated from the voltage drop immediately after the start of discharge when a constant current of 20 A was discharged after charging to 3.3 V, and is shown in Table 3.

<耐久性>
電気二重層キャパシタを3.3Vまで充電した後、2.0Vまで放電させる充放電を500回繰り返した。電極が体積膨張してもセパレータが突き破れることなく正常に500回作動した割合(%)を求め、表3に示した。電極の膨張圧力は0.3MPaであった。数値が大きいほど、耐久性に優れることを意味する。
<Durability>
After charging the electric double layer capacitor to 3.3V, charging / discharging to discharge to 2.0V was repeated 500 times. Table 3 shows the ratio (%) at which the separator was normally operated 500 times without breaking through even when the electrode expanded in volume. The expansion pressure of the electrode was 0.3 MPa. It means that it is excellent in durability, so that a numerical value is large.

<リフロー後漏れ電流>
電解コンデンサにピーク温度260℃、30秒間を含む230℃以上の半田リフロー処理を1分間行った後の漏れ電流を測定し、表3に示した。
<Leakage current after reflow>
The leakage current after 1 minute of solder reflow treatment at 230 ° C. or higher including 30 seconds at a peak temperature of 260 ° C. was measured on the electrolytic capacitor.

Figure 0004648841
Figure 0004648841

Figure 0004648841
Figure 0004648841

Figure 0004648841
Figure 0004648841

表2に示した通り、実施例1〜18の電子部品用セパレータは、引張荷重4KPa、昇温速度10℃/分で300℃まで熱膨張測定した際の50℃から最大試料長に達した温度までのTMA曲線と直線とで囲われた部分の積分値が0.01〜0.48mm×分で、且つ最大伸び率が0.8〜1.8%であった。そのため該セパレータは200℃以上の高温で処理されても劣化しにくく、該セパレータを具備した電気二重層キャパシタは、DC抵抗が低く、耐久性が優れていた。また、該セパレータを具備した電解コンデンサは、高温の半田リフロー処理後の漏れ電流が小さく優れていた。 As shown in Table 2, the separators for electronic components of Examples 1 to 18 were temperatures that reached the maximum sample length from 50 ° C. when the thermal expansion was measured up to 300 ° C. at a tensile load of 4 KPa and a temperature increase rate of 10 ° C./min. The integral value of the portion surrounded by the TMA curve and the straight line was 0.01 to 0.48 mm × min , and the maximum elongation was 0.8 to 1.8% . Therefore, the separator hardly deteriorates even when treated at a high temperature of 200 ° C. or higher, and the electric double layer capacitor provided with the separator has low DC resistance and excellent durability. In addition, the electrolytic capacitor provided with the separator was excellent in that the leakage current after the high-temperature solder reflow treatment was small.

一方、比較例1および2の電子部品用セパレータは、セルロース100%であるため、引張荷重4KPa、昇温速度10℃/分で300℃まで熱膨張測定した際の50℃から最大試料長に達した温度までのTMA曲線と直線とで囲われた部分の積分値が0.48mm×分より大きかった。該セパレータを具備した電気二重層キャパシタは、その製造工程において実施例よりも低温である200℃で乾燥処理されたため、DC抵抗は低かったものの耐久性が著しく悪かった。該セパレータを具備した電解コンデンサは、高温の半田リフロー処理後の漏れ電流が大きくなった。 On the other hand, since the separators for electronic parts of Comparative Examples 1 and 2 are 100% cellulose, the maximum sample length is reached from 50 ° C. when the thermal expansion measurement is performed up to 300 ° C. at a tensile load of 4 KPa and a heating rate of 10 ° C./min. The integral value of the portion surrounded by the TMA curve and the straight line up to the measured temperature was larger than 0.48 mm × min . The electric double layer capacitor provided with the separator was dried at 200 ° C., which is lower than that of the example, in the manufacturing process. Therefore, although the DC resistance was low, the durability was extremely poor. The electrolytic capacitor provided with the separator has a large leakage current after the high-temperature solder reflow treatment.

比較例3の電子部品用セパレータは、強度が弱いため熱膨張測定において試料が切断してしまいTMA面積を測定できなかった。   Since the separator for electronic parts of Comparative Example 3 was weak, the sample was cut in the thermal expansion measurement, and the TMA area could not be measured.

比較例4〜6の電子部品用セパレータは、引張荷重4KPa、昇温速度10℃/分で熱膨張測定した際の50℃から最大試料長に達した温度までのTMA曲線と直線とで囲われた部分の積分値が0.48mm×分より大きく、最大伸び率が1.8%超であったため、該セパレータを具備した電気二重層キャパシタは、DC抵抗が高いかやや高めで、耐久性が劣っていた。また、該セパレータを具備した電解コンデンサは、高温の半田リフロー処理後の漏れ電流が大きくなった。 The separators for electronic parts of Comparative Examples 4 to 6 are surrounded by a TMA curve and a straight line from 50 ° C. when the thermal expansion measurement is performed at a tensile load of 4 KPa and a temperature increase rate of 10 ° C./min to the temperature reaching the maximum sample length. The integral value of the part was larger than 0.48 mm × min , and the maximum elongation was more than 1.8%. Therefore , the electric double layer capacitor equipped with the separator has a high or slightly high DC resistance and a high durability. It was inferior. Further, the electrolytic capacitor equipped with the separator has a large leakage current after the high-temperature solder reflow treatment.

比較例7の電子部品用セパレータは、引張荷重4KPa、昇温速度10℃/分で熱膨張測定した際の50℃から最大試料長に達した温度までのTMA曲線と直線とで囲われた部分の積分値が0.48mm×分より大きかったため、該セパレータを具備した電気二重層キャパシタは、DC抵抗が高めで、耐久性が劣っていた。また、該セパレータを具備した電解コンデンサは、高温の半田リフロー処理後の漏れ電流が大きくなった。
The separator for electronic parts of Comparative Example 7 is a portion surrounded by a TMA curve and a straight line from 50 ° C. to the maximum sample length when the thermal expansion measurement is performed at a tensile load of 4 KPa and a temperature increase rate of 10 ° C./min. Therefore , the electric double layer capacitor equipped with the separator had high DC resistance and poor durability. Further, the electrolytic capacitor equipped with the separator has a large leakage current after the high-temperature solder reflow treatment.

本発明の活用例としては、耐熱性と高信頼性が要求される用途、例えば、電気二重層キャパシタ、電解コンデンサなどの電子部品用セパレータが挙げられる。   Examples of applications of the present invention include applications that require heat resistance and high reliability, for example, separators for electronic parts such as electric double layer capacitors and electrolytic capacitors.

Claims (5)

引張荷重4KPa、昇温速度10℃/分で300℃まで熱膨張測定した際の50℃から最大試料長に達した温度までのTMA曲線と直線とで囲われた部分の積分値が0.01〜0.48mm×分で、且つ、50℃から300℃までの最大伸び率が0.8〜1.8%である湿式不織布からなり、該湿式不織布が、軟化点、融点、熱分解温度の何れもが250℃以上、700℃以下であるフィブリル化耐熱性繊維、軟化点、融点、熱分解温度の何れもが250℃以上、700℃以下である非フィブリル化耐熱性繊維、フィブリル化セルロースの3成分を必須成分とし、必須3成分の合計含有量が45〜100質量%、非フィブリル化非耐熱性繊維の含有量が55〜0質量%で、フィブリル化耐熱性繊維と非フィブリル化耐熱性繊維の合計含有量が40質量%以上である電子部品用セパレータ。 The integral value of the portion surrounded by the TMA curve and the straight line from 50 ° C. to the temperature reaching the maximum sample length when the thermal expansion measurement is performed up to 300 ° C. at a tensile load of 4 KPa and a temperature increase rate of 10 ° C./min is 0.01 in ~0.48Mm × min, and, Ri maximum elongation of up to 300 ° C. from 50 ° C. is Do the wet-laid nonwoven fabric is from 0.8 to 1.8%, the wet nonwoven fabric, softening point, melting point, thermal decomposition temperature These are fibrillated heat-resistant fibers having a temperature of 250 ° C. or more and 700 ° C. or less, non-fibrillated heat-resistant fibers or fibrillated cellulose having a softening point, melting point, or thermal decomposition temperature of 250 ° C. or more and 700 ° C. or less. These three components are essential components, the total content of the essential three components is 45 to 100% by mass, the content of non-fibrillated non-heat-resistant fibers is 55 to 0% by mass, fibrillated heat-resistant fibers and non-fibrillated heat-resistant fibers The total content of sexual fibers Electronic component separator is 0 mass% or more. フィブリル化耐熱性繊維が、フィブリル化パラ系全芳香族ポリアミド繊維である請求項に記載の電子部品用セパレータ。 Fibrillated heat-resistant fiber is, the electronic component separator according to claim 1 which is fibrillated para-type wholly aromatic polyamide fibers. 非フィブリル化耐熱性繊維が、非フィブリル化パラ系全芳香族ポリアミド繊維である請求項に記載の電子部品用セパレータ。 Non fibrillated heat-resistant fiber is, the electronic component separator according to claim 1 which is non-fibrillated para-type wholly aromatic polyamide fibers. 電子部品が、電気二重層キャパシタであることを特徴とする請求項1〜のいずれか記載の電子部品用セパレータ。 Electronic components, electronic component separator according to any one of claims 1-3, characterized in that the electric double layer capacitor. 電子部品が、電解コンデンサであることを特徴とする請求項1〜のいずれか記載の電子部品用セパレータ。 The electronic component separator according to any one of claims 1 to 3 , wherein the electronic component is an electrolytic capacitor.
JP2006017159A 2005-02-01 2006-01-26 Separator for electronic parts Active JP4648841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017159A JP4648841B2 (en) 2005-02-01 2006-01-26 Separator for electronic parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005025725 2005-02-01
JP2006017159A JP4648841B2 (en) 2005-02-01 2006-01-26 Separator for electronic parts

Publications (2)

Publication Number Publication Date
JP2006245550A JP2006245550A (en) 2006-09-14
JP4648841B2 true JP4648841B2 (en) 2011-03-09

Family

ID=37051571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017159A Active JP4648841B2 (en) 2005-02-01 2006-01-26 Separator for electronic parts

Country Status (1)

Country Link
JP (1) JP4648841B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076486A (en) * 2007-09-18 2009-04-09 Tomoegawa Paper Co Ltd Separator for electrochemical element
JP5172047B2 (en) * 2010-12-17 2013-03-27 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2015032678A1 (en) * 2013-09-06 2015-03-12 Teijin Aramid B.V. Separator paper for electrochemical cells
SE540365C2 (en) 2016-09-28 2018-08-14 Stora Enso Oyj A method for the production of a film comprising microfibrillated cellulose, a film and a paper or paperboard product
EP3565028A4 (en) * 2016-12-27 2020-11-04 Mitsubishi Paper Mills Limited Lithium ion battery separator and lithium ion battery
CN115136266B (en) 2020-02-21 2024-01-05 日本高度纸工业株式会社 Separator for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2022036311A (en) * 2020-08-22 2022-03-07 株式会社ダイセル Fine aramid fiber and manufacturing method thereof, aramid fiber aqueous dispersion, nonwoven fabric, secondary battery separator, and secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093350A1 (en) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separator for electrochemical device and method for producing the same, and electrochemical device
JP2003168629A (en) * 2001-08-30 2003-06-13 Mitsubishi Paper Mills Ltd Separator for capacitor
JP2003347166A (en) * 2002-05-29 2003-12-05 Mitsubishi Paper Mills Ltd Separator for capacitor
JP2004079668A (en) * 2002-08-13 2004-03-11 Mitsubishi Paper Mills Ltd Separator for capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093350A1 (en) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separator for electrochemical device and method for producing the same, and electrochemical device
JP2003168629A (en) * 2001-08-30 2003-06-13 Mitsubishi Paper Mills Ltd Separator for capacitor
JP2003347166A (en) * 2002-05-29 2003-12-05 Mitsubishi Paper Mills Ltd Separator for capacitor
JP2004079668A (en) * 2002-08-13 2004-03-11 Mitsubishi Paper Mills Ltd Separator for capacitor

Also Published As

Publication number Publication date
JP2006245550A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4377911B2 (en) Electrochemical element separator
JP4648841B2 (en) Separator for electronic parts
US7977260B2 (en) Separator for an electric double layer capacitor
JP2007067389A (en) Separator for electrochemical element
JP4739186B2 (en) Heat resistant nonwoven fabric
JP2012009165A (en) Separator formed of extra fine nonwoven fabric
JP4163523B2 (en) Separator for solid electrolytic capacitor
JPWO2011027870A1 (en) Separator, electric double layer capacitor, battery, and laminate
JP2010238640A (en) Separator for power storage device
JP2008112827A (en) Separator for electric double layer capacitor
JP2010239028A (en) Separator for electric storage device
JP3971905B2 (en) Separator for electrochemical device and method for producing the same
JP2007150122A (en) Separator for electric double layer capacitor
JP5848630B2 (en) Capacitor separator and capacitor using the same
JP2014179442A (en) Separator for electrolytic capacitors, and electrolytic capacitor using the same
JP2007059789A (en) Separator for solid electrolytic capacitor
JP2011187515A (en) Separator for electrochemical element, and the electrochemical element using the same
JP2004146137A (en) Separator for electrochemical element
JP2013191780A (en) Separator for solid electrolytic capacitor, and solid electrolytic capacitor including the same
JP2010239061A (en) Separator for electric storage device
JP2004207333A (en) Separator and wound type electric double-layered capacitor using the same
JP2003168629A (en) Separator for capacitor
JP2015061036A (en) Separator for capacitor
JP2020088024A (en) Solid electrolytic capacitor or hybrid separator for electrolytic capacitor, and solid electrolytic or hybrid electrolytic capacitor which is arranged by use thereof
JP2006135243A (en) Capacitor separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4648841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250