JP4646571B2 - Adventitious root formation promoter - Google Patents
Adventitious root formation promoter Download PDFInfo
- Publication number
- JP4646571B2 JP4646571B2 JP2004248136A JP2004248136A JP4646571B2 JP 4646571 B2 JP4646571 B2 JP 4646571B2 JP 2004248136 A JP2004248136 A JP 2004248136A JP 2004248136 A JP2004248136 A JP 2004248136A JP 4646571 B2 JP4646571 B2 JP 4646571B2
- Authority
- JP
- Japan
- Prior art keywords
- medium
- adventitious root
- root formation
- plant
- soybean
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cultivation Of Plants (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Description
本発明は、植物の不定根形成促進剤、詳しくは大豆蛋白質に特定酵素を作用させて得られる大豆蛋白質分解物を有効成分とする植物の不定根形成促進剤に関する。 The present invention relates to a plant adventitious root formation promoter, and more particularly to a plant adventitious root formation promoter containing as an active ingredient a soybean protein degradation product obtained by allowing a specific enzyme to act on soybean protein.
大豆粕(大豆ミール)などの植物油搾り粕類は、有機質肥料として古くから利用されてきたが、これらは高分子蛋白質を主成分とするために植物への吸収性に乏しい欠点があり、また、安価でより効果の高い硫安や尿素などの化学肥料の開発によって、現在はほとんど利用されておらず、一部家畜の飼料として利用される以外は、埋め立てや海洋投棄されている現状にある。一方、化学肥料はその使用初期においては非常に優れた効果を奏するが、使用回数が重なるに伴ない土中への蓄積により土中微生物の存在種類および量を減少させ、植物成長効果を低下させる欠点がある。 Vegetable oil-squeezed potatoes such as soybean meal (soybean meal) have been used for a long time as organic fertilizers, but these have the disadvantage of poor absorbability to plants due to their high molecular weight protein as the main component. Due to the development of cheaper and more effective chemical fertilizers such as ammonium sulfate and urea, they are hardly used at present, and are being landfilled or dumped into the sea except for being used as part of livestock feed. On the other hand, chemical fertilizers have a very good effect in the initial use, but as the number of use increases, accumulation in the soil decreases the type and amount of microorganisms in the soil, reducing the plant growth effect. There are drawbacks.
本発明者らは、大豆粕の有効利用を図るべく鋭意研究を重ねた結果、先に、大豆粕の蛋白質を特異的に且つ速やかに低分子量化分解し得る酵素を産生するバチルス属に属する菌株および該菌株由来の蛋白質分解酵素を見出し、これらを利用して得られる大豆粕由来の植物成長肥料を開発するに成功し、これらに係る発明を完成した(特許文献1および2参照)。 As a result of intensive studies aimed at effective utilization of soybean meal, the present inventors previously obtained a strain belonging to the genus Bacillus that produces an enzyme capable of specifically and rapidly degrading and degrading the protein of soybean meal. In addition, the present inventors have found a proteolytic enzyme derived from the strain and succeeded in developing a plant growth fertilizer derived from soybean meal obtained by using these, and completed the inventions related thereto (see Patent Documents 1 and 2).
本発明者らが先に開発した肥料は、上記菌株と共に大豆粕分解ペプチドを多量に含有することに基づいて、例えば小松菜およびカイワレ大根の収穫量(重量)を増大させる効果および栽培期間を短縮させる効果を奏し得、また植物の根毛を増殖させる効果を期待できるものであった。
本発明の目的は、植物の不定根形成促進剤を提供することにある。 The objective of this invention is providing the adventitious root formation promoter of a plant.
本発明者らは、先に開発した植物成長肥料、特にこれに含まれる各種の大豆蛋白分解ペプチドについて鋭意研究を重ねる過程において、該肥料中に含まれる大豆蛋白質分解物中に植物の不定根形成促進作用を有する物質が存在することを見出した。 The present inventors have promoted adventitious root formation in the soybean proteolysate contained in the fertilizer in the process of earnestly researching the previously developed plant growth fertilizer, particularly the various soybean proteolytic peptides contained therein. It was found that a substance having an action exists.
本発明はこの新しい知見を基礎として、更に鋭意研究を重ねた結果完成されたものであり、下記項1-6に記載の植物の不定根形成促進剤および植物の不定根形成促進方法を提供する。 Based on this new knowledge, the present invention has been completed as a result of further intensive studies, and provides the plant adventitious root formation promoter and the plant adventitious root formation promotion method described in Item 1-6 below.
項1. 大豆蛋白質原料にバチルス・サーキュランス(Bacillus circulans) HA12 (FERM P-13428)株または該株由来の蛋白質分解酵素を作用させて得られる植物の不定根形成促進作用を有する大豆蛋白質分解物を有効成分として含有することを特徴とする植物の不定根形成促進剤。 Item 1. A soy protein hydrolyzate having an action to promote adventitious root formation of a plant obtained by allowing Bacillus circulans HA12 (FERM P-13428) strain or a proteolytic enzyme derived from the strain to act on a soy protein raw material A plant adventitious root formation promoter characterized by containing as an active ingredient.
項2. 大豆蛋白質原料が、大豆粕である項1に記載の不定根形成促進剤。 Item 2. The adventitious root formation promoter according to Item 1, wherein the soybean protein raw material is soybean meal.
項3. 不定根形成促進作用を有する大豆蛋白質分解物が、分子量5000以下のペプチドである項1に記載の不定根形成促進剤。 Item 3. The adventitious root formation promoter according to Item 1, wherein the soybean protein degradation product having an adventitious root formation promoting action is a peptide having a molecular weight of 5000 or less.
項4. 植物が、ナス科、マメ科、キク科およびナデシコ科から選択されるものである項1に記載の不定根形成促進剤。 Item 4. The adventitious root formation promoter according to Item 1, wherein the plant is selected from Solanum, Leguminosae, Asteraceae and Nadesicoaceae.
項5. 項1に記載の不定根形成促進剤を植物と接触させることを特徴とする植物の不定根形成促進方法。 Item 5. A method for promoting adventitious root formation in a plant, comprising contacting the plant with the adventitious root formation promoter according to Item 1.
項6. 植物が、ナス科、マメ科、キク科およびナデシコ科から選択されるものである項5に記載の不定根形成促進方法。 Item 6. The method for promoting adventitious root formation according to Item 5, wherein the plant is selected from the family Solanum, Leguminosae, Asteraceae, and Nadesicoaceae.
本発明不定根成長促進剤有効成分(大豆蛋白質分解物)は、植物の不定根の成長を促進させる作用を奏し得るものであって、植物に速やかに吸収されてその不定根を成長させ、これによって、植物体の生育・成長を旺盛にし、植物体が野菜・果実などの場合はその収穫量を増大させ、切り花などの場合は長期に亘る生育を可能とし、カルスなどの場合はその分化・生育を促進する。しかも、本発明促進剤有効成分は、安価に入手容易な大豆粕などを原料として得られるものであり、その有効利用を図り得ると共に、環境や人体に悪影響を及ぼす惧れはない。 The adventitious root growth promoter active ingredient (soy protein breakdown product) of the present invention can exert the action of promoting the growth of adventitious roots of plants, and is rapidly absorbed by the plants to grow the adventitious roots. Increases the growth and growth of the body, increases the yield when the plant body is vegetables, fruits, etc., enables long-term growth when it is cut flowers, and promotes its differentiation and growth when it is callus To do. In addition, the active ingredient of the present invention promoter is obtained by using soybean meal, which is easily available at low cost, and can be used effectively, and there is no possibility of adversely affecting the environment and the human body.
以下、本発明の植物の不定根形成促進剤につき詳述する。 Hereinafter, the adventitious root formation promoter of the plant of this invention is explained in full detail.
本発明に係る植物の不定根成長促進剤は、大豆蛋白質原料にバチルス・サーキュランス(Bacillus circulans) HA12 (FERM P-13428)株自体を、或いは該株由来の蛋白質分解酵素を、作用させて得られる植物の不定根形成促進作用を有する大豆蛋白質分解物を有効成分として含有することを特徴とする。 The plant adventitious root growth promoter according to the present invention is obtained by allowing a Bacillus circulans HA12 (FERM P-13428) strain itself or a proteolytic enzyme derived from the strain to act on a soybean protein raw material. It contains a soybean protein degradation product having a plant adventitious root formation promoting action as an active ingredient.
ここで、酵素を作用させる大豆蛋白質原料は、大豆から精製して得られる蛋白質であってもよいが、その必要はなく、例えばこれを含む大豆自体、その粉砕物、該大豆から油脂分を抽出した残りの大豆油かすなどであってもよい。特に、本発明ではこの大豆蛋白質原料として、大豆油かす、その内でも大豆から油脂(食用油原料)を抽出した後、消化を良くするために加熱乾燥させ、粒状に粉砕した油かすである大豆ミール(以下、「大豆粕」という)を有効に利用することができる。該大豆粕の原料大豆に対する歩留まりは約80%とされており、その蛋白質含量は約45%にも及んでおり、この点でも大豆粕は本発明に好適に利用できる。大豆蛋白質原料に酵素を作用させるに当たり、該大豆蛋白質原料は通常水を加えた溶液形態に調製される。 Here, the soy protein raw material that acts on the enzyme may be a protein obtained by refining from soybean, but it is not necessary, for example, soybean itself containing this, its pulverized product, and extracting fat and oil from the soybean. The remaining soybean oil residue may be used. In particular, in the present invention, the soybean protein residue is a soybean oil cake, and among them, the oil and fat (edible oil material) is extracted from the soybean, then dried by heating to improve digestion, and the soybean meal is pulverized into granules. Meal (hereinafter referred to as “soybean cake”) can be used effectively. The yield of the soybean meal with respect to the raw soybean is about 80%, and the protein content reaches about 45%. In this respect, soybean meal can be suitably used in the present invention. When the enzyme is allowed to act on the soy protein raw material, the soy protein raw material is usually prepared in a solution form to which water is added.
大豆蛋白質原料に作用させるバチルス・サーキュランス(Bacillus circulans) HA12 (FERM P-13428)株または該株由来の蛋白質分解酵素は、本発明者らが先に開発したものである(特許文献1参照)。該蛋白質分解酵素は、これを微生物から単離、精製して利用することもできるが、特に単離、精製する必要はなく、これを含む状態で、例えば上記菌株自体としてまたは該菌体の培養液などとして利用することもできる。菌体自体を利用する場合、大豆蛋白質原料を含む適当な培地を用いて菌体を培養することによって、該菌体が大豆蛋白質原料を資化して、所望の大豆蛋白質分解物を得ることができる。 The Bacillus circulans HA12 (FERM P-13428) strain or the proteolytic enzyme derived from the strain that acts on soy protein raw material was developed by the present inventors (see Patent Document 1). . The proteolytic enzyme can also be used after being isolated and purified from a microorganism, but it is not necessary to isolate and purify it in particular. For example, as the strain itself or as a culture of the bacterial body It can also be used as a liquid. When using the microbial cells themselves, by culturing the microbial cells using an appropriate medium containing the soy protein raw material, the microbial cells can assimilate the soy protein raw material to obtain a desired soy protein degradation product. .
大豆粕などの原料大豆蛋白質に対する酵素もしくは菌株の使用量は、原料が分解され得ることを前提として適宜決定され特に限定されない。一般には、10w/v%大豆粕液体培地に対して1v/v%HA12株培養液を植菌する条件が採用される。大豆蛋白質原料の酵素による分解反応は、通常、該酵素の至適条件を考慮して適当な条件下に実施できる。温度条件としては、より具体的には、約50℃程度を挙げることができ、一般に振盪培養条件下に、約48時間前後で反応は完結する。反応系のpHは、特に調整する必要はない。 The amount of enzyme or strain used for the raw soybean protein such as soybean meal is appropriately determined on the assumption that the raw material can be decomposed, and is not particularly limited. Generally, conditions for inoculating a 1 v / v% HA12 strain culture solution on a 10 w / v% soybean meal liquid medium are employed. The decomposition reaction of soybean protein raw material with an enzyme can usually be carried out under an appropriate condition in consideration of the optimum condition of the enzyme. More specifically, the temperature condition can include about 50 ° C., and the reaction is generally completed in about 48 hours under shaking culture conditions. It is not necessary to adjust the pH of the reaction system.
有効成分とする植物の不定根形成促進作用を有する大豆蛋白質分解物は、上記で得られる培養液から常法に従い取得することができ、必要に応じて精製することができる。より具体的には、大豆蛋白質原料にバチルス・サーキュランス(Bacillus circulans) HA12 (FERM P-13428)株由来の蛋白質分解酵素を上記の条件で作用させ、得られる大豆蛋白質分解物を遠心分離して、その上清として得ることができる。該上清を、活性炭処理して、活性炭吸着画分と活性炭非吸着画分とに分画し、活性炭吸着画分をゲルろ過クロマトグラフィーにより精製することによって、精製された大豆蛋白質分解物を得ることができる。この大豆蛋白質分解物精製物は、例えば後記実施例に示されるとおり、リテンションタイム8.5〜9.9分の分画(ペプチド)として得ることができ、その分子量は5000以下、通常約500〜2000である。 The soy protein degradation product having a plant adventitious root formation promoting action as an active ingredient can be obtained from the culture solution obtained above according to a conventional method, and can be purified as necessary. More specifically, the proteolytic enzyme derived from the Bacillus circulans HA12 (FERM P-13428) strain is allowed to act on the soy protein raw material under the above conditions, and the resulting soy protein hydrolyzate is centrifuged. Can be obtained as the supernatant. The supernatant is treated with activated carbon, fractionated into an activated carbon adsorbed fraction and an activated carbon non-adsorbed fraction, and the activated charcoal adsorbed fraction is purified by gel filtration chromatography to obtain a purified soybean protein degradation product. be able to. This purified soy protein product can be obtained, for example, as a fraction (peptide) having a retention time of 8.5 to 9.9 minutes as shown in the Examples below, and its molecular weight is 5000 or less, usually about 500 to 2000.
本発明の不定根成長促進剤は、上記大豆蛋白質分解物精製物を含有する限り特に限定されず、例えばこれを含むものであることができる。具体的には、上述したように、大豆蛋白質原料に特定酵素またはこれを産生する微生物を作用させて得られる水溶液または培養液が、そのまま本発明促進剤として利用できる。 The adventitious root growth promoter of the present invention is not particularly limited as long as it contains the purified product of soybean protein degradation product, and may contain, for example. Specifically, as described above, an aqueous solution or a culture solution obtained by allowing a specific enzyme or a microorganism producing the same to act on a soybean protein raw material can be used as it is as the promoter of the present invention.
本発明促進剤の植物に対する適用は、植物が該促進剤を吸収できるような適用形態である限り特に限定されない。例えば植物の茎が本発明促進剤を含む液と接触するような形態であればよい。 The application of the promoter of the present invention to a plant is not particularly limited as long as the application form allows the plant to absorb the promoter. For example, what is necessary is just a form which a plant stem contacts with the liquid containing this invention promoter.
本発明促進剤の使用形態も特に限定されず、液剤形態および固剤形態(粉末形態)のいずれでもよい。液剤形態の本発明促進剤は、通常、液剤中に本発明有効成分が、ペプチド・アミノ酸濃度換算で、約1〜500μg/mL、好ましくは約30〜400μg/mL含まれるものとされる。なお、この濃度の測定については、後記実施例3において詳述する。 The usage form of the promoter of the present invention is not particularly limited, and may be either liquid form or solid form (powder form). In the liquid form of the present accelerator, the active ingredient of the present invention is usually contained in the liquid in an amount of about 1 to 500 μg / mL, preferably about 30 to 400 μg / mL in terms of peptide / amino acid concentration. This concentration measurement will be described in detail in Example 3 below.
その植物への適用は、散布、噴霧などの一般的な方法によって行うことができる。また、植物が切り花、カルスなどの場合は、これらを本発明促進剤液中に浸漬する方法によることもできる。 The application to the plant can be performed by a general method such as spraying or spraying. Moreover, when a plant is a cut flower, callus, etc., it can also be based on the method of immersing these in this invention promoter solution.
本発明促進剤を適用される植物は、特に限定されるものではなく、栽培用、観賞用、収穫用などに適した各種の植物のいずれでもよい。具体的には、この適用可能な植物には、ナス科(トマト、ピーマンなど)、マメ科(ダイズ、インゲン、エンドウ、モヤシなど)、キク科(キク、レタスなど)、ナデシコ科(カーネーション、カスミ草など)が含まれる。 The plant to which the promoter of the present invention is applied is not particularly limited, and may be any of various plants suitable for cultivation, ornamental use, harvesting and the like. Specifically, the applicable plants include solanaceae (tomatoes, peppers, etc.), legumes (soybeans, green beans, peas, bean sprouts, etc.), asteraceae (chrysanthemum, lettuce, etc.), radish family (carnation, misty, etc.). Grass etc.).
本発明不定根形成促進剤は、各種植物の不定根の形成を促進させる作用を奏し得るものであり、この作用を利用して例えば下記に示す各種の用途に有効に利用することができる。
(1) カルスの形成促進および成長促進によって植物を成長させる、
(2) 切り花を長期間保存する、
(3) 芝生を繁殖させる、
(4) サツマイモの増収をはかる、
(5) 農薬量を低減させて低(減)農薬有機栽培を行う、
(6) 庭木などの移植時の保存性を向上させる、
(7) 植物の株分けを行う(同一品種を茎から大量に株分けできる)、
(8) 植物工場(水耕栽培)によって植物収穫量を増大させる(土壌を用いることなく、不定根の形成促進によって、栽培日数の短縮化と収穫量増大が期待できる)。
実施例
以下、本発明を更に詳しく説明するため実施例を挙げる。
The adventitious root formation promoter of the present invention can exert the action of promoting the formation of adventitious roots of various plants, and can be effectively used for various applications shown below, for example, using this action.
(1) Growing plants by promoting callus formation and growth,
(2) Store cut flowers for a long time,
(3) breed lawn,
(4) Increase sales of sweet potatoes,
(5) Reduce (decrease) pesticide organic cultivation by reducing the amount of pesticide,
(6) Improving the storage stability when transplanting garden trees, etc.
(7) Perform plant stocking (the same variety can be stocked in large quantities from the stem)
(8) Increase plant yields by plant factories (hydroponics) (promoting the formation of adventitious roots without the use of soil can be expected to shorten cultivation days and increase yields).
EXAMPLES Examples are given below to explain the present invention in more detail.
(1)大豆粕分解微生物のスクリーニング
(1-1)大豆粕液体培地の調整
大豆粕10gに蒸留水100mLを加え、500mL振盪培養フラスコ中でオートクレーブ処理(121℃/20分)を行い、大豆粕液体培地を調整した。
(1) Screening for soybean meal-degrading microorganisms
(1-1) Preparation of soybean meal liquid medium 100 ml of distilled water was added to 10 g of soybean meal and autoclaved (121 ° C./20 minutes) in a 500 ml shaking culture flask to prepare soybean meal liquid medium.
(1-2)スクリーニング用培地の調整
300mL三角フラスコに、ペプトン1g、酵母エキス0.5g、塩化ナトリウム0.5g、寒天0.5g、カゼイン2gおよび蒸留水100mLを加え、蓋をして高圧蒸気滅菌(121℃/20分)を行い、オートクレーブ終了後、培地が60〜70℃に冷えてから、三角フラスコの底部に濃く溶けた寒天をよく振り混ぜながら、乾熱滅菌したシャーレに分注して、LB+寒天+カゼインのプレート(培地)を作製した。
(1-2) Preparation of screening medium
Add 1 g of peptone, 0.5 g of yeast extract, 0.5 g of sodium chloride, 0.5 g of agar, 2 g of casein, and 100 mL of distilled water to a 300 mL Erlenmeyer flask, cap and sterilize by autoclaving (121 ° C / 20 min), and complete the autoclave. Then, after the medium has cooled to 60-70 ° C, dispense the LB + agar + casein plate (medium) by shaking it into a petri dish sterilized with dry heat while thoroughly shaking the agar at the bottom of the Erlenmeyer flask. did.
(1-3)前培養用LB液体培地の調整
ペプトン1g、酵母エキス0.5gおよび塩化ナトリウム0.5gを蒸留水100mL中に加えて前培養用LB液体培地を調整し、これをオートクレーブにて滅菌後、滅菌試験管10本に5mLずつ分注した。
(1-3) Preparation of LB liquid medium for preculture 1 g of peptone, 0.5 g of yeast extract and 0.5 g of sodium chloride were added to 100 mL of distilled water to prepare LB liquid medium for preculture, and this was sterilized in an autoclave. 5 mL each was dispensed into 10 sterilized test tubes.
自然界から採集した土壌サンプル1gを、前記大豆粕液体培地に加え、振盪培養した(150回転/分、50℃、24時間)。振盪培養終了後、得られた培養液100μLを、10mLの希釈用滅菌水を入れた試験管に分注して希釈し、さらにその希釈培養液100μLを、希釈用滅菌水10mLを入れた試験管に分注する操作を2回繰返して、培養液を106 倍に希釈した。 1 g of a soil sample collected from nature was added to the soybean meal liquid medium and cultured with shaking (150 rotations / minute, 50 ° C., 24 hours). After shaking culture, 100 μL of the obtained culture solution is dispensed and diluted in a test tube containing 10 mL of sterile water for dilution. Further, 100 μL of the diluted culture solution is added to a test tube containing 10 mL of sterile water for dilution. The operation of aliquoting was repeated twice to dilute the culture solution 10 6 times.
得られた希釈培養液100μLを、前記(2)で調製したスクリーニング用培地プレートに分注し、コンラジ棒にて広げ、50℃で12時間培養し、生育したコロニーの数,色,形態,ハローの様子などを観察した。 Distribute 100 μL of the diluted culture solution to the screening medium plate prepared in (2) above, spread it with a conage rod, and culture at 50 ° C. for 12 hours. The number, color, morphology, and halo of grown colonies Observed the situation.
ハローが観察されたシングルコロニーを、滅菌した爪楊枝にて新たなスクリーニング用培地プレートに植菌し、50℃で12時間培養した。その後、生育した各シングルコロニーから1白金耳を採取し、前記(3)で調整した前培養用LB液体培地を入れた試験管内に加え、50℃で12時間培養した(前培養)。 A single colony in which halo was observed was inoculated into a new screening medium plate with a sterilized toothpick and cultured at 50 ° C. for 12 hours. Thereafter, one platinum loop was collected from each grown single colony, added to the test tube containing the LB liquid medium for preculture prepared in (3) above, and cultured at 50 ° C. for 12 hours (preculture).
次に、得られた前培養液を、前記(1)で調整した大豆粕液体培地100mLに1mLずつ加え、振盪培養器(150回転/分)内で、50℃下に24〜72時間振盪培養した。浸透培養器内の大豆粕がドロドロになっていた場合、その菌をプラス(+)とし、それ以外をマイナス(-)と判定した。尚、表皮の堅い部分は除いて考えた。 Next, add 1 mL of the obtained preculture solution to 100 mL of soybean meal liquid medium prepared in (1) above, and shake culture at 50 ° C. for 24-72 hours in a shaking incubator (150 rpm). did. When soybean meal in the osmotic culture vessel became muddy, the bacteria were determined to be positive (+), and the others were determined to be negative (-). In addition, it considered except the hard part of the epidermis.
(2)大豆粕資化の判定と各菌株の生育温度
300mL三角フラスコに、ペプトン1g、酵母エキス0.5g、塩化ナトリウム0.5gおよび寒天2gと共に蒸留水100mLを加え、オートクレーブで滅菌後、乾熱滅菌したシャーレに分注して、LB+寒天のプレート(培地)を作製した。
(2) Soybean assimilation and growth temperature of each strain
Add 300 mL of distilled water together with 1 g of peptone, 0.5 g of yeast extract, 0.5 g of sodium chloride and 2 g of agar to a 300 mL Erlenmeyer flask, sterilize in an autoclave, dispense into a petri dish sterilized by dry heat, and plate of LB + agar (medium) Was made.
大豆粕分解微生物のスクリーニングでプラス(+)と判定された菌を滅菌した爪楊枝で採取し、上記LB+寒天のプレート(培地)に植菌し、30℃以下、37.5℃、50℃、70℃および75℃に設定した恒温器でそれぞれ12時間培養した。 Bacteria determined to be positive (+) by screening for soybean meal-degrading microorganisms are collected with a sterilized toothpick, inoculated into the above LB + agar plate (medium), 30 ° C or lower, 37.5 ° C, 50 ° C, 70 ° C and The cells were cultured for 12 hours in a thermostat set to 75 ° C.
カゼインを分解して蛋白質分解酵素(プロテアーゼ)を産生しているハローが観察された菌をプラス(+)とし、それ以外の菌をマイナス(−)と判定した。その結果、大豆粕培地で生育する菌株合計20株を取得し、それぞれHA1〜HA20と命名した。 Bacteria in which a halo producing protease (protease) by degrading casein was observed were determined to be positive (+), and other bacteria were determined to be negative (−). As a result, a total of 20 strains grown on soybean meal medium were obtained and designated as HA1 to HA20, respectively.
取得した大豆粕分解菌5株とその培養条件(温度)を下記表1に示す。 The obtained 5 strains of soybean meal-degrading bacteria and their culture conditions (temperature) are shown in Table 1 below.
(3)菌株の同定
分離選別した大豆粕分解菌の菌学的性質を調べるために、グラム染色を始めとした種々の確認試験をそれぞれ下記の手法により行った。
(3) Identification of strains In order to examine the bacteriological properties of the soybean meal-degrading bacteria that were separated and selected, various confirmation tests including Gram staining were conducted by the following methods.
1.グラム染色
Huckerの変法に従って、スライドガラス上に塗抹し、乾燥後火炎固定した菌液について、Huckerの液(1.5%クリスタルバイオレット-エタノール溶液)で30秒間染色した。染色後直ちに水洗し、Lugol 液で1分間媒染した。媒染終了後水洗し、更にアルコールで30秒間脱色し直ちに水洗した。水をよく切った後、サフラニンで30秒間染色した。染色した標本を顕微鏡で観察し、紫色に染色された菌をグラム陽性とし、赤色に染色された菌をグラム陰性とした。また、顕微鏡により菌の形態を観察した。
1. Gram staining
According to the modified Hucker method, the bacterial solution smeared on a slide glass, dried and fixed with flame was stained with Hucker's solution (1.5% crystal violet-ethanol solution) for 30 seconds. Immediately after dyeing, it was washed with water and mordanted with Lugol solution for 1 minute. After the mordanting, it was washed with water, further decolored with alcohol for 30 seconds, and immediately washed with water. After thoroughly draining the water, it was stained with safranin for 30 seconds. The stained specimen was observed with a microscope, and the bacteria stained purple were regarded as Gram positive, and the bacteria stained red were regarded as Gram negative. Moreover, the form of the fungus was observed with a microscope.
2.生育温度
下記組成の液状チオグリコレート培地を121℃で15分間滅菌し、試験管に5mL分注した。この培地にコロニーから採取した菌を植え、それぞれの温度で静置培養して、12時間または24時間後に培地が混濁したものを生育したと判断した。
2. Growth temperature Liquid thioglycolate medium having the following composition was sterilized at 121 ° C. for 15 minutes, and 5 mL was dispensed into a test tube. Bacteria collected from the colonies were planted in this medium, statically cultured at each temperature, and it was judged that the medium had become turbid after 12 or 24 hours.
<液状チオグリコレート培地の組成>
L-シスチン 0.75g
NaCl 2.5g
ブドウ糖 5.0g
酵母エキス 5.0g
寒天 0.75g
カゼイン消化物 15.0g
チオグリコール酸ナトリウム 0.5g
0.1%レザズリン 1.0mL
蒸留水 1000mL
pH 7.2
3.オキシダーゼ
テルモ(株)製バクトラボ オキシダーゼ・テストを用いて試験した。即ち、二塩化N,N,N',N'-テトラメチル-p-フェニレンジアミンを含んだ綿棒に菌体を付け、オキシダーゼ活性により生成する青紫色を生じた場合に、オキシダーゼ陽性と判断した。
<Composition of liquid thioglycolate medium>
L-cystine 0.75g
NaCl 2.5g
Glucose 5.0g
Yeast extract 5.0g
Agar 0.75g
Casein digest 15.0g
Sodium thioglycolate 0.5g
0.1% resazurin 1.0mL
Distilled water 1000mL
pH 7.2
3. Oxidase Tested using Bactlab oxidase test from Terumo Corporation. That is, microbial cells were attached to a cotton swab containing N, N, N ′, N′-tetramethyl-p-phenylenediamine dichloride, and a blue-purple color produced by oxidase activity was produced.
4.カタラーゼ
毛細管の一端に菌を付けた後、毛細管の菌を付けた一端から3%過酸化水素水を吸い上げて菌体と過酸化水素水とを毛細管内で混合させた。毛細管内で過酸化水素分解にともない酸素の気泡が発生した場合をカタラーゼ陽性とした。
4. After bacteria were attached to one end of the catalase capillary tube, 3% hydrogen peroxide solution was sucked up from one end of the capillary tube to mix the cells and hydrogen peroxide solution in the capillary tube. Catalase was positive when oxygen bubbles were generated in the capillary tube due to hydrogen peroxide decomposition.
5.硝酸塩還元能
0.1%硝酸ナトリウム加ブイヨン培地に菌を接種し、最適生育温度で5日間培養した。得られた培養液に、α- ナフチルアミン液(α- ナフチルアミン0.1gを30%酢酸水溶液200mLに溶解したもの)1.0mLとスルファニル酸液(スルファニル酸0.5gを30%酢酸水溶液150mLに溶解したもの)1.0mLを加えてよく混和させた後、30分以内に硝酸還元により生成した亜硝酸による桃赤色を呈した場合を陽性とした。
5.Nitrate reduction ability
Fungus was inoculated into a 0.1% sodium nitrate-containing broth medium and cultured at the optimum growth temperature for 5 days. In the obtained culture broth, α-naphthylamine solution (0.1 g of α-naphthylamine dissolved in 200 mL of 30% acetic acid solution) and 1.0 mL of sulfanilic acid solution (0.5 g of sulfanilic acid dissolved in 150 mL of 30% acetic acid solution) After adding 1.0 mL and mixing well, a case where a pinkish red color due to nitrous acid produced by nitric acid reduction was observed within 30 minutes was regarded as positive.
6.クリグラー培地
下記組成のクリグラー培地を試験管に分注した後、121℃で15分間高圧蒸気滅菌して高層斜面に固めた。斜面部分および高層部分に被検菌を植え、各菌の生育温度で18〜24時間培養した。培養後、斜面部分が黄変色した場合を斜面部陽性(乳糖を分解し酸を生成)とし、高層部分で黄変色した場合を高層部陽性(ブドウ糖を分解し酸を生成)とした。
6. Crigler medium Crigler medium having the following composition was dispensed into test tubes, and then autoclaved at 121 ° C for 15 minutes to harden on a high slope. The test bacteria were planted on the slope part and the upper part, and cultured at the growth temperature of each fungus for 18 to 24 hours. After culturing, when the slope portion turned yellow, the slope portion was positive (lactose was decomposed to produce acid), and when it turned yellow at the high portion, the high layer portion was positive (glucose was broken to produce acid).
<クリグラー培地の組成>
肉エキス 4.0g
ペプトン 15.0g
乳糖 10.0g
ブドウ糖 1.0g
塩化ナトリウム 5.0g
チオ硫酸ナトリウム 0.08g
亜硫酸ナトリウム 0.4g
硫酸第一鉄 0.2g
フェノール赤 0.02g
寒天末 15.0g
精製水 1000mL
pH 7.2
7.SC培地
下記組成の培地を蒸留水に溶し約2mLずつ試験管に分注し、121℃で15分間高圧蒸気滅菌し全斜面に固めた。斜面部分に被検菌を植え、各菌の生育温度で18〜24時間培養した。この培地に含まれる唯一の炭素源であるクエン酸を利用し生育した場合を陽性とした。陽性の場合に、培地に含まれるブロム・チモールが緑色から深青色に変色した。
<Composition of Krigler medium>
Meat extract 4.0g
Peptone 15.0g
Lactose 10.0g
Glucose 1.0g
Sodium chloride 5.0g
Sodium thiosulfate 0.08g
Sodium sulfite 0.4g
Ferrous sulfate 0.2g
Phenol red 0.02g
Agar powder 15.0g
Purified water 1000mL
pH 7.2
7. SC Medium A medium having the following composition was dissolved in distilled water and dispensed into a test tube at about 2 mL, and autoclaved at 121 ° C. for 15 minutes and solidified on all slopes. Test bacteria were planted on the slope and cultured at the growth temperature of each fungus for 18-24 hours. The case where it grew using the citric acid which is the only carbon source contained in this culture medium was made positive. When positive, brom thymol contained in the medium changed from green to deep blue.
<SC培地の組成>
塩化ナトリウム 5.0g
硫酸マグネシウム 0.2g
リン酸二水素アンモニウム 1.0g
リン酸二水素カリウム 1.0g
クエン酸ナトリウム 2.0g
ブロム・チモール青 0.08g
寒天末 15.0g
精製水 1000mL
pH 6.8
8. SIM培地
下記組成の培地を1000mLの蒸留水に加温溶解して約3mLずつ試験管に分注し、121℃で15分間高圧蒸気滅菌した後高層に固めた。被検菌を高層部分に穿刺し、それぞれの菌の生育温度で18〜24時間培養した。培養後培地が黒変した場合を硫化水素発生(+)とし、穿刺部分から広がって生育した場合を運動性(+)とし、さらに培地上部にクロロホルム1mLを重層し、その上にコバック試薬1mLを重層してクロロホルム層が赤変した場合をインドール(+)とした。
<Composition of SC medium>
Sodium chloride 5.0g
Magnesium sulfate 0.2g
Ammonium dihydrogen phosphate 1.0 g
Potassium dihydrogen phosphate 1.0g
Sodium citrate 2.0g
Brom Timor Blue 0.08g
Agar powder 15.0g
Purified water 1000mL
pH 6.8
8. SIM medium A medium having the following composition was dissolved by heating in 1000 mL of distilled water, dispensed into test tubes approximately 3 mL at a time, autoclaved at 121 ° C for 15 minutes, and then solidified into a high layer. The test bacteria were punctured into the upper layer and cultured at the growth temperature of each bacteria for 18-24 hours. When the medium turns black after culture, hydrogen sulfide is generated (+). When it grows from the puncture site, it grows (+). Further, 1 mL of chloroform is overlaid on the top of the medium, and 1 mL of Kovac reagent is added on top. Indole (+) was defined as the case where the chloroform layer turned red after layering.
<SIM培地の組成>
エールリッヒ肉エキス 3.0g
プロテオーゼペプトン 10.0g
ポリペプトン 20.0g
チオ硫酸ナトリウム 0.2g
クエン酸鉄アンモニウム 0.2g
寒天末 3.0g
精製水 1000mL
pH 7.3
9.メチルレッド
下記組成のグルコース-リン酸塩-ペプトン水を試験管に3mL分注し、100℃で30分間の滅菌操作を3回繰返した。この培地に被検菌を植え、各菌の生育温度で3日間培養した。得られた培養液1mLを別の試験管に移し、メチルレッドを滴下し、培地色調が赤変した場合を陽性とした。
<Composition of SIM medium>
Ehrlich Meat Extract 3.0g
Proteose peptone 10.0g
Polypeptone 20.0g
Sodium thiosulfate 0.2g
Ammonium iron citrate 0.2g
Agar powder 3.0g
Purified water 1000mL
pH 7.3
9. Methyl red 3 mL of glucose-phosphate-peptone water having the following composition was dispensed into a test tube, and sterilization at 100 ° C. for 30 minutes was repeated three times. The test bacteria were planted in this medium and cultured at the growth temperature of each bacteria for 3 days. 1 mL of the obtained culture solution was transferred to another test tube, methyl red was added dropwise, and the color of the medium turned red was regarded as positive.
<グルコース-リン酸塩-ペプトン水の組成>
ペプトン 7.0g
リン酸二水素カリウム 5.0g
ブドウ糖 5.0g
蒸留水 1000mL
10.フォゲスプロスカウエル(VP)
上記グルコース-リン酸塩-ペプトン水を試験管に3mL分注し、100℃で30分間の滅菌操作を3回繰返した。この培地に被検菌を植え、各菌の生育温度で3日間培養した。得られた培養液1mLを別の試験管に移し、これにα-ナフトール液(5%α-ナフトール-無水エタノール溶液)0.6mLと40%KOH水溶液0.2mLを加えてよく混和させた後、試験管を斜めに傾けて静置した。静置後15分後と1時間後にそれぞれ培地色調の変化を観察し、培地色調が濃赤色となったものを陽性とした。
<Composition of glucose-phosphate-peptone water>
Peptone 7.0g
Potassium dihydrogen phosphate 5.0g
Glucose 5.0g
Distilled water 1000mL
10. Foguez Proskawell (VP)
3 mL of the glucose-phosphate-peptone water was dispensed into a test tube, and the sterilization operation at 100 ° C. for 30 minutes was repeated three times. The test bacteria were planted in this medium and cultured at the growth temperature of each bacteria for 3 days. Transfer 1 mL of the obtained culture solution to another test tube, add 0.6 mL of α-naphthol solution (5% α-naphthol-anhydrous ethanol solution) and 0.2 mL of 40% KOH aqueous solution, and mix well. The tube was tilted and allowed to stand. Changes in the color of the medium were observed 15 minutes and 1 hour after standing, respectively, and those in which the medium color became dark red were considered positive.
11.OF(Oxidation or Fermentation )
Hugh-Leifsonの方法に従って、下記組成のOF培地を121℃で15分間高圧蒸気滅菌し、培地が60℃程度に冷めたところで終濃度1%となるように濾過滅菌したグルコースを加え、得られた培地を2本の試験管にそれぞれ3mL分注し、高層に固めた。この培地に被検菌を穿刺し、1本の試験管には流動パラフィンを1〜2cmの厚さに重層して嫌気的に培養し、他方の試験管はそのまま好気的に培養した。各菌体の生育温度で3〜4日間培養した後、酸化的糖分解を行なう菌で好気的条件で培養した培地色調が黄変したものを(O)と結果に表記し、発酵的糖分解を行なう菌で好気的および嫌気的両条件で培地色調が黄変したものを(F)と結果に表記し、また4日間の培養後さらに次の7日間に糖分解が観察されたものを(W)と結果に表記した。
11.OF (Oxidation or Fermentation)
According to the method of Hugh-Leifson, an OF medium of the following composition was autoclaved at 121 ° C for 15 minutes, and glucose sterilized by filtration to a final concentration of 1% when the medium was cooled to about 60 ° C was obtained. 3 mL of each medium was dispensed into two test tubes and hardened in a high layer. The test bacteria were punctured into this medium, and liquid paraffin was layered to a thickness of 1 to 2 cm in one test tube and cultured anaerobically, and the other test tube was cultured aerobically as it was. After culturing at the growth temperature of each microbial cell for 3-4 days, the bacterium that undergoes oxidative saccharolysis and cultured under aerobic conditions is shown as yellow (O) in the result and is expressed as fermentative sugar. Degraded bacteria whose medium color turned yellow under both aerobic and anaerobic conditions are shown as (F) in the results, and glycolysis was observed in the next 7 days after 4 days of culture Was written in the results as (W).
<OF培地の組成>
トリプトン 2.0g
塩化ナトリウム 5.0g
寒天 2.5g
リン酸二水素カリウム 0.3g
B.T.B. 0.03g
蒸留水 1000mL
pH 7.1
12.Urease
下記組成の栄研化学(株)製ウレアーゼ確認用尿素培地(滅菌済み)を用い、0.5〜1.0mLを滅菌済の試験管に分注し、被検菌を接種した。この培地を各被検菌の生育温度で6〜24時間培養し、アンモニアの生成にともなう培地の赤変を生じた場合を陽性とした。なお、赤変が弱い場合には「W」と表示する。
<Composition of OF medium>
Tryptone 2.0g
Sodium chloride 5.0g
Agar 2.5g
Potassium dihydrogen phosphate 0.3g
BTB 0.03g
Distilled water 1000mL
pH 7.1
12.Urease
Using a urease confirmation urea medium (sterilized) manufactured by Eiken Chemical Co., Ltd. having the following composition, 0.5 to 1.0 mL was dispensed into a sterilized test tube and inoculated with the test bacteria. This medium was cultured at the growth temperature of each test bacterium for 6 to 24 hours, and a case where the medium turned red due to the production of ammonia was regarded as positive. If red discoloration is weak, “W” is displayed.
<尿素培地の組成>
ペプトン 2.0g
尿素 30.0g
塩化ナトリウム 5.0g
リン酸1カリウム 9.0g
リン酸2ナトリウム 3.0g
フェノールレッド 0.01g
pH 6.2
13.NaCl
1%ペプトン水に種々の濃度のNaClを加え、滅菌した培地(pH7.2)を約3mL試験管に加えて被検菌を植菌後、各菌体の生育温度で18〜24時間静置培養した。そして培養液が混濁したものを陽性とした。
<Composition of urea medium>
Peptone 2.0g
Urea 30.0g
Sodium chloride 5.0g
Monopotassium phosphate 9.0g
Disodium phosphate 3.0g
Phenol red 0.01g
pH 6.2
13.NaCl
Add various concentrations of NaCl to 1% peptone water, add about 3 mL of sterilized medium (pH 7.2) to the test tube, inoculate the test bacterium, and leave it at the growth temperature of each cell for 18 to 24 hours. Cultured. And the thing in which the culture solution became turbid was made positive.
14.マンニット
食塩(MS)培地下記組成の栄研化学(株)製マンニット食塩培地「栄研」を用い、この培地112gを蒸留水1000mLに溶解して、121℃で15分間高圧蒸気滅菌した。滅菌した培地を滅菌したシャーレに約20mLずつ分注し、平板に固めた。得られた平板培地に被検菌を植菌し、各菌体の生育温度で24〜48時間培養した。マンニットを分解しコロニーの周囲が黄変したものをMS陽性とし、黄変せず生育しコロニーを形成したものをNaCl陽性とした。
14. Mannitol Salt (MS) Medium Using Eiken Chemical Co., Ltd. Mannite Salt Medium “Eiken” with the following composition, 112 g of this medium was dissolved in 1000 mL of distilled water and autoclaved at 121 ° C. for 15 minutes. did. About 20 mL each of the sterilized medium was dispensed into a sterilized petri dish and hardened on a flat plate. The test bacteria were inoculated into the obtained plate medium and cultured at the growth temperature of each cell for 24-48 hours. The mannit was decomposed and the area around the colony turned yellow was regarded as MS positive, and the one that grew without yellowing and formed a colony was regarded as NaCl positive.
<マンニット食塩培地「栄研」の組成>
肉エキス「栄研」 2.5g
ペプトン「栄研」 10.0g
マンニット 10.0g
塩化ナトリウム 75.0g
フェノールレッド 0.025g
寒 天 15.0g
15.Hemolysis
普通寒天15mLを溶解し45℃に保ちながら、これに5%の割合で脱繊維素血液を加えた。この培地に微量の被検菌を植えてよく混和し、滅菌シャーレに注ぎ平板に固めた。各菌の生育温度で24時間培養し、溶血の有無により判定した。溶血を起しハローを生じたものを陽性とした。
<Composition of Mannite Salt Medium “Eiken”>
Meat Extract “Eiken” 2.5g
Peptone "Eiken" 10.0g
Mannit 10.0g
Sodium chloride 75.0g
Phenol red 0.025g
Agar 15.0g
15.Hemolysis
While dissolving 15 mL of ordinary agar and keeping it at 45 ° C., defibrinated blood was added thereto at a rate of 5%. A small amount of the test bacteria was planted in this medium, mixed well, poured into a sterile petri dish and hardened on a flat plate. The cells were cultured for 24 hours at the growth temperature of each bacterium, and judged by the presence or absence of hemolysis. Those that caused hemolysis and produced halos were considered positive.
16.エスクリン
121℃で15分間高圧蒸気滅菌した下記組成のBarsiekow 培地が80℃に冷えたところで濾過滅菌したエスクリン(配糖体)を0.5%の割合で加え、滅菌試験管に2mL分注した。この培地に被検菌を植菌し、各菌体の生育温度で18〜24時間培養し、エスクリン分解により培地色調が青色から黄変した場合を陽性とした。
16. Esculin
When the Barsiekow medium having the following composition, which had been autoclaved at 121 ° C. for 15 minutes, was cooled to 80 ° C., esculin (glycoside) sterilized by filtration was added at a rate of 0.5%, and 2 mL was dispensed into a sterile test tube. The test bacteria were inoculated into this medium, cultured at the growth temperature of each bacterial cell for 18 to 24 hours, and the case where the color of the medium changed from blue to yellow due to esculin decomposition was regarded as positive.
<Barsiekow培地の組成>
ペプトン水 100mL
0.2%B.T.B溶液 1.2mL
17.ゼラチンの液化
普通ブイヨン1000mLに精製ゼラチン100gを加え、121℃で12分間高圧蒸気滅菌した培地を滅菌試験管に3mL分注し、高層に固めた。被検菌を高層部分に穿刺し、各菌体の生育温度で1週間培養した。穿刺線に沿ったゼラチン液化の有無を観察し、液化が観察されたものを陽性とした。
<Composition of Barsiekow medium>
Peptone water 100mL
0.2% BTB solution 1.2mL
17. Liquefaction of gelatin 100 g of purified gelatin was added to 1000 mL of ordinary bouillon, and 3 mL of a medium sterilized by autoclaving at 121 ° C. for 12 minutes was dispensed into a sterile test tube and solidified into a high layer. The test bacteria were punctured into the upper layer and cultured for 1 week at the growth temperature of each cell. The presence or absence of gelatin liquefaction along the puncture line was observed.
18.オルニチンからの脱炭酸試験
Difco 社製 Standard Dehydrated Culture Medium 10.5gおよびL-オルニチン10.0gを蒸留水1000mLに溶解させ、121℃で15分間高圧蒸気滅菌し、滅菌試験管に3mL分注した。この培地に被検菌を植菌し、各菌体の生育温度で18〜24時間培養し、培地色調が小豆色から黄変したものを陽性とした。
18.Decarboxylation test from ornithine
Difco Standard Dehydrated Culture Medium (10.5 g) and L-ornithine (10.0 g) were dissolved in distilled water (1000 mL), autoclaved at 121 ° C. for 15 minutes, and dispensed into a sterile test tube (3 mL). The test bacteria were inoculated into this medium and cultured at the growth temperature of each cell for 18 to 24 hours, and the medium color tone changed from red beans to yellow was regarded as positive.
19.リジンからの脱炭酸試験
Difco 社製 Standard Dehydrated Culture Medium 10.5gおよびL-オルニチン10.0gを蒸留水1000mLに溶解させ、121℃で15分間高圧蒸気滅菌し、滅菌試験管に3mL分注した。この培地に被検菌を植菌し、各菌体の生育温度で18〜24時間培養し、培地色調が赤紫色から黄変したものを陽性とした。
19.Decarboxylation test from lysine
Difco Standard Dehydrated Culture Medium (10.5 g) and L-ornithine (10.0 g) were dissolved in distilled water (1000 mL), autoclaved at 121 ° C. for 15 minutes, and dispensed into a sterile test tube (3 mL). The test bacteria were inoculated into this medium and cultured at the growth temperature of each cell for 18 to 24 hours, and the medium color tone changed from reddish purple to yellow was regarded as positive.
20.アルギニンからの脱炭酸試験
Difco 社製 Standard Dehydrated Culture Medium 10.5gおよびL-オルニチン10.0gを蒸留水1000mLに溶解させ、121℃で15分間高圧蒸気滅菌し、滅菌試験管に3mL分注した。この培地に被検菌を植菌し、各菌体の生育温度で18〜24時間培養し、培地色調が茶褐色から黄変したものを陽性とした。
20.Decarboxylation test from arginine
Difco Standard Dehydrated Culture Medium (10.5 g) and L-ornithine (10.0 g) were dissolved in distilled water (1000 mL), autoclaved at 121 ° C. for 15 minutes, and dispensed into a sterile test tube (3 mL). The test bacteria were inoculated into this medium and cultured at the growth temperature of each cell for 18 to 24 hours, and the medium color changed from brown to yellow was regarded as positive.
21.糖の資化能判定
前記OF培地を121℃で15分間高圧蒸気滅菌し、培地温度が60℃程度に冷めたところで濾過滅菌した糖を1%の割合で加え、よく混和した後、試験管に3mL分注し、高層に固めた。この培地に被検菌を穿刺し、各菌体の生育温度で24時間培養し、培地色調が黄変したものを陽性とした。
21. Determination of assimilation ability of sugar The OF medium is autoclaved at 121 ° C for 15 minutes, and after the medium temperature is cooled to about 60 ° C, 1% of sterilized sugar is added to the OF medium and mixed well. 3 mL was dispensed into a tube and hardened to a higher layer. The medium was punctured with the test bacteria and cultured at the growth temperature of each bacterial cell for 24 hours.
以上の試験の結果を表2に示す。 The results of the above test are shown in Table 2.
尚、NCは斜面部陰性を、Yは高層部陽性を、Rは高層部陰性を、それぞれ意味する。 In addition, NC means slope part negative, Y means high part positive, R means high part negative.
上記表2に示した種々の同定確認試験の結果から、ここで分離選別した菌株はグラム陽性の中桿菌であり、内胞子を形成し、またオキシダーゼやカタラーゼを産生する、等の性質を有することが確認された。また、両菌株ともバチルス(Bacillus)属に属する菌株であることが判明し、種名はHA12がサーキュランス(circulans)、HA19がステアロサーモフィルス(stearothermophilus)であると同定され、それぞれバチルス・サーキュランス(Bacillus circulans)HA12並びにバチルス・ステアロサーモフィルス(Bacillus stearothermophilus)HA19と命名した。以後、これら菌株をそれぞれHA12,HA19と称する。本発明者らは、これらの新規菌株を、1993年2月12日に旧工業技術院微生物工業技術研究所(日本国茨城県つくば市東1-1-1 中央第6に住所を有する独立行政法人 産業技術総合研究所 特許生物寄託センター)に寄託しており、その寄託番号はそれぞれFERM P-13428およびFERM P-13429である。 From the results of the various identification confirmation tests shown in Table 2 above, the strains separated and selected here are Gram-positive medium fungi, and have properties such as forming endospores and producing oxidase and catalase. Was confirmed. Both strains were found to belong to the genus Bacillus, and the species names were identified as HA12 as circulans and HA19 as stearothermophilus, respectively. It was named Lance (Bacillus circulans) HA12 and Bacillus stearothermophilus HA19. Hereinafter, these strains are referred to as HA12 and HA19, respectively. The inventors of the present invention acquired these new strains on February 12, 1993 at the former Institute of Microbial Industrial Technology (Independent Administrative Institution with an address in 1-1-6 Higashi 1-1-1 Tsukuba, Ibaraki, Japan) The deposit numbers are FERM P-13428 and FERM P-13429, respectively.
新菌株HA12(FERM P-13428)を用いた大豆粕分解物の挙動について説明する。新菌株HA12(FERM P-13428)を用いた大豆粕分解過程における蛋白質濃度の経時変化を、BCA法を用いて以下の通り測定した。
大豆粕液体培地および試薬の調整
<大豆粕液体培地の調整>
大豆粕1.5gに蒸留水150mLを加えて、500mL振盪培養フラスコでオートクレーブ(121℃/20分 )を行い大豆粕液体培地とした。
<BCA試薬の調整>
試薬A:100溶+試薬B:2溶
<検量線用標準溶液(ウシアルブミン)の調整>
下記の表3に従い、種々の蛋白質濃度の標準溶液を調整した。
The behavior of soybean meal decomposition product using the new strain HA12 (FERM P-13428) will be described. Changes in protein concentration over time during the soybean meal decomposition process using the new strain HA12 (FERM P-13428) were measured using the BCA method as follows.
Preparation of soybean meal liquid medium and reagents < Preparation of soybean meal liquid medium>
Distilled water (150 mL) was added to soybean meal (1.5 g), and autoclaved (121 ° C./20 minutes) in a 500 mL shake culture flask to obtain a soybean meal liquid medium.
<Adjustment of BCA reagent>
Reagent A: 100 solutions + Reagent B: 2 solutions <Preparation of standard solution for calibration curve (bovine albumin)>
According to Table 3 below, standard solutions having various protein concentrations were prepared.
調整した検量線用アルブミン標準溶液0.1mLとBCA試薬2.0mLとを試験管内で撹拌した後、37℃の恒温槽内に30分間放置することによりBCA反応を行なった。反応終了後、各試験管を室温まで放置し、同時に測定した水0.1mLとBCA試薬0.2mLの溶液をブランクとして562nmにおける吸光度を測定し、検量線を作成した。 The prepared standard curve albumin standard solution (0.1 mL) and BCA reagent (2.0 mL) were stirred in a test tube, and then left in a constant temperature bath at 37 ° C. for 30 minutes to carry out a BCA reaction. After completion of the reaction, each test tube was allowed to stand at room temperature, and the absorbance at 562 nm was measured using a solution of 0.1 mL water and 0.2 mL BCA reagent simultaneously measured as a blank to prepare a calibration curve.
次に、オートクレーブした1w/v%大豆粕液体培地(150mL)から1mLを無菌的に採取し、10000回転/15分遠心して得られた上清についてBCA法による蛋白質濃度測定を行い、この操作により得られた蛋白質濃度を培養時間0(ゼロ)における蛋白質濃度とした。同様にして、1w/v%大豆粕液体培地から1mLを無菌的に採取し、その培地に、予め大豆粕液体培地で前培養したHA12(FERM P-13428)の菌液1.5mLをそれぞれ植菌し、50℃,150回転/15分の条件で培養を行い、この培養液から経時的に培養液を無菌的に採取し、各培養時間における蛋白質濃度を測定した。新菌株HA12(FERM P-13428)を用いた大豆粕分解過程における蛋白質濃度の経時変化を図1(横軸:時間(hr)、縦軸:ペプチド(左側に表示)および蛋白質(右側に表示)の濃度(mg/mL))に示す。 Next, aseptically collect 1mL from autoclaved 1w / v% soybean meal liquid medium (150mL), and measure the protein concentration by BCA method on the supernatant obtained by centrifugation at 10000 rpm for 15 minutes. The obtained protein concentration was defined as the protein concentration at culture time 0 (zero). Similarly, aseptically collect 1 mL from 1 w / v% soybean meal liquid medium, and inoculate 1.5 ml of HA12 (FERM P-13428) bacterial solution pre-cultured in soybean meal liquid medium in advance. Then, the culture was performed at 50 ° C. and 150 rpm for 15 minutes, the culture solution was aseptically collected from this culture solution over time, and the protein concentration at each culture time was measured. Fig. 1 (horizontal axis: time (hr), vertical axis: peptide (displayed on the left side) and protein (displayed on the right side) of protein concentration during the soybean soybean decomposition process using the new strain HA12 (FERM P-13428) Concentration (mg / mL)).
図1から理解されるように、新菌株HA12(FERM P-13428)は大豆粕蛋白質を高速で効率良く低分子化分解している。尚、図1中の白丸は蛋白質の濃度(mg/mL)を示し、黒丸はペプチドの濃度(mg/mL)を示す。 As can be seen from FIG. 1, the new strain HA12 (FERM P-13428) decomposes soybean meal protein at low speed and efficiently. In FIG. 1, white circles indicate protein concentration (mg / mL), and black circles indicate peptide concentration (mg / mL).
本発明の大豆蛋白質分解物を有効成分とする不定根形成促進剤の植物に対する効果について説明する。 The effect of adventitious root formation promoter containing the soybean protein degradation product of the present invention as an active ingredient will be described.
(1)ミニトマト(ピコ)(タキイ種苗株式会社、京都)を用いた例
[供試植物]
3週間生育させたミニトマトの茎を切断したものをサンプルとして使用した。
[供試試薬の調整]
LB培地5mLに、実施例1で調製した菌株HA12(FERM P-13428)(1白金耳又は1×109個/mL〜5×109個/mL)を1%植菌し、一晩、37℃で振盪培養して前培養液を調製した。得られた前培養液1v/v%を10w/v%大豆粕培地に加えて、振盪培養(50℃、120回転/分、48時間)し、培養終了後、培養液のpHが9.0を越えたものを供試試薬(DSP, Degradation Soybean meal Products)とした。
(1) Example using cherry tomato (Pico) (Takii Seed Co., Ltd., Kyoto)
[Test plant]
A sample obtained by cutting a stem of cherry tomato grown for 3 weeks was used as a sample.
[Adjustment of test reagent]
In LB medium 5 mL, the strain HA12 prepared in Example 1 (FERM P-13428) ( 1 loopful or 1 × 10 9 cells / ml to 5 × 10 9 cells / mL) was inoculated 1% overnight, A preculture was prepared by shaking culture at 37 ° C. Add 1v / v% of the obtained pre-culture solution to 10w / v% soybean meal medium, shake culture (50 ° C, 120 rotations / min, 48 hours), and after culturing, the pH of the culture solution exceeds 9.0. The sample was used as a test reagent (DSP, Degradation Soybean meal Products).
次いで、活性炭(Darco G-60)10gにイオン交換水1Lを加えて、1時間攪拌して活性炭を洗浄した。攪拌終了後、活性炭が沈殿するまで静置した。静置後、イオン交換水を捨て、得られる残渣にイオン交換水およびDSPをそれぞれ100mL加えて1時間攪拌し、活性炭にDSPを吸着させた。攪拌後、遠心分離(10000回転/分、10分)し、上清と沈殿(活性炭)に分けた。上清は濾紙で濾過して、活性炭を除去した(活性炭非吸着画分)。沈殿はイオン交換水と100%アセトンとをそれぞれ100mL加え、1時間攪拌した。攪拌後、遠心分離(10000回転/分、10分)し、上清と沈殿(活性炭)に分け、更に得られた上清を減圧蒸留して、アセトンを除去した(活性炭吸着画分)。 Subsequently, 1 L of ion-exchanged water was added to 10 g of activated carbon (Darco G-60), and the activated carbon was washed by stirring for 1 hour. After stirring, the mixture was allowed to stand until activated carbon precipitated. After standing, ion-exchanged water was discarded, and 100 mL each of ion-exchanged water and DSP was added to the resulting residue and stirred for 1 hour to adsorb DSP onto activated carbon. After stirring, the mixture was centrifuged (10000 rpm / 10 minutes) and separated into a supernatant and a precipitate (activated carbon). The supernatant was filtered with a filter paper to remove activated carbon (an activated carbon non-adsorbed fraction). For precipitation, 100 mL each of ion-exchanged water and 100% acetone was added and stirred for 1 hour. After stirring, the mixture was centrifuged (10000 rpm / minute, 10 minutes), separated into a supernatant and a precipitate (activated carbon), and the obtained supernatant was distilled under reduced pressure to remove acetone (activated carbon adsorption fraction).
DSP中のフェノール性物質としては、DSP(30mg/mL)20 mLにジエチルエーテルを100 mL加え、その上清からロータリーエバポレーター(Rotavapor R-114、柴田、東京)を用いてジエチルエーテルを除き抽出したものを利用した。 As a phenolic substance in DSP, 100 mL of diethyl ether was added to 20 mL of DSP (30 mg / mL), and the diethyl ether was extracted from the supernatant using a rotary evaporator (Rotavapor R-114, Shibata, Tokyo). I used something.
[試験方法]
植物サンプルの切断茎部分を下記に示す各供試試薬を入れた容器内に浸漬し、その状態で1週間生育させた後、不定根の形成される様子を肉眼観察した。
[Test method]
The cut stalk portion of the plant sample was immersed in a container containing each of the test reagents shown below and allowed to grow for 1 week in that state, and then the appearance of adventitious roots was visually observed.
容器A: 蒸留水(H2O)のみ(コントロール)
容器B: DSP 30μg/mL
容器C: DSP 300μg/mL
容器D: DSP活性炭吸着画分30μg/mL
容器E: DSP活性炭吸着画分300μg/mL
容器F: DSP活性炭非吸着画分30μg/mL
容器G: DSP活性炭非吸着画分300μg/mL
容器H: DSP中のフェノール性物質
なお、各供試試薬の濃度は、ニンヒドリン反応(ヒドリンダンチン法、 Moore, S. and Stein, W. H., "Amodified ninhydrin regent for the photometric determination of amino acids and related compounds", Biol. Chem., 211, pp.907-913 (1954))により測定したペプチド・アミノ酸濃度(μg/mL)を示す。該濃度は、y=0.0176x(x:ペプチド・アミノ酸濃度、y:570nm吸光度)により算出される。
Container A: Distilled water (H 2 O) only (control)
Container B: DSP 30μg / mL
Container C: DSP 300μg / mL
Container D: DSP activated carbon adsorption fraction 30μg / mL
Container E: DSP activated carbon adsorption fraction 300μg / mL
Container F: DSP activated carbon non-adsorbed fraction 30 μg / mL
Container G: DSP activated carbon non-adsorbed fraction 300μg / mL
Container H: Phenolic substances in DSP The concentration of each test reagent was determined based on the ninhydrin reaction (hydrindantine method, Moore, S. and Stein, WH, "Amodified ninhydrin regent for the photometric determination of amino acids and related compounds. ", Biol. Chem., 211, pp.907-913 (1954))" shows peptide / amino acid concentrations (μg / mL). The concentration is calculated by y = 0.0176x (x: peptide / amino acid concentration, y: absorbance at 570 nm).
[結果]
得られた結果を、図2および図3に示す。
[result]
The obtained results are shown in FIG. 2 and FIG.
図2は、上記各容器A〜Hを用いて得られた結果(各容器に茎部を浸漬して生育させたミニトマト(3本)の写真;図中の各写真には、用いた容器と対応させてA〜Hと表示する)である。また、図3は、容器B-EおよびGを用いて得られた結果(各容器に茎部を浸漬して生育させたミニトマト(1本)の切断茎先端部の拡大写真;図中の各写真には、用いた容器と対応させてB-EおよびGと表示する)である。 FIG. 2 shows the results obtained using the above containers A to H (photos of cherry tomatoes (3 pieces) grown by immersing the stems in each container; Are displayed as A to H). In addition, FIG. 3 shows the results obtained using containers BE and G (magnified photographs of cut stem tips of cherry tomatoes (one) grown by immersing stems in each container; each photograph in the figure) Are labeled BE and G in correspondence with the containers used).
上記各図から、容器B, C, D, EおよびGを用いた場合、不定根形成が認められ、その他の容器(AおよびF)の場合は不定根の形成は認められないことが明らかである。特に、形成された不定根の本数は、容器Cの場合が最も多く、次いでE, B, D, Gの順に少なくなっていくことが判った。
[考察]
上記結果から、本発明において有効成分として利用する大豆分解蛋白質(DSP)は、不定根形成促進効果を発揮し、不定根形成促進剤として有効であることが明らかである。また、不定根形成促進効果を発揮する主要な有効成分物質(ペプチド)は、D, Eとして示す活性炭吸着画分に存在することが明らかである。
From the above figures, it is clear that adventitious root formation is observed when containers B, C, D, E, and G are used, and adventitious root formation is not observed with other containers (A and F). In particular, it was found that the number of adventitious roots formed was highest in the container C and then decreased in the order of E, B, D, and G.
[Discussion]
From the above results, it is clear that soybean degradation protein (DSP) used as an active ingredient in the present invention exhibits an adventitious root formation promoting effect and is effective as an adventitious root formation accelerator. In addition, it is clear that the main active ingredient substance (peptide) that exhibits the effect of promoting adventitious root formation exists in the activated carbon adsorption fractions indicated as D and E.
カルス培養
(1) 実験方法
カルス誘導用寒天培地(MS培地)を下記の組成で作製し、ニンジンを用いてカルス誘導を行った。
Callus culture
(1) Experimental Method A callus induction agar medium (MS medium) was prepared with the following composition, and callus induction was performed using carrots.
〈培地の作製〉
MS培地のストック溶液の調整
下記A〜Dの各成分からなるMS培地のストック溶液を調整した。
<Preparation of medium>
Preparation of stock solution of MS medium A stock solution of MS medium consisting of the following components A to D was prepared.
A. 主要無機栄養成分 A. Major inorganic nutrients
調整後、4℃で保存。 After adjustment, store at 4 ° C.
B. 微量成分 B. Trace components
調整後、4℃で保存。 After adjustment, store at 4 ° C.
C. 鉄成分 C. Iron component
20分オートクレーブ後、メスアップして4℃で保存。 After autoclaving for 20 minutes, measure up and store at 4 ° C.
D. 有機栄養成分 D. Organic nutrients
調整後、小分けにして−20℃で保存。 After adjustment, aliquot and store at -20 ° C.
MS培地の調整
下記表8に記載の各成分からなるMS培地を調整した。
Preparation of MS medium An MS medium composed of each component described in Table 8 below was prepared.
調整されたMS培地は1N KOHでpH5.8に調整後、オートクレーブし、これに生長調節物質(2,4-ジクロロフェノキシ酢酸、2,4-D)を加えて比較試料とし、また本発明不定根形成促進剤の有効成分であるDSPを100μg/mLまたは300μg/mLそれぞれ加えて本発明試料とした。何も加えなかったものをコントロール(対照試料)とした。 The adjusted MS medium was adjusted to pH 5.8 with 1N KOH, autoclaved, and a growth regulator (2,4-dichlorophenoxyacetic acid, 2,4-D) was added to this sample as a comparative sample. DSP, which is an active ingredient of a formation accelerator, was added to each of 100 μg / mL and 300 μg / mL to obtain a sample of the present invention. A control (control sample) was the one to which nothing was added.
2,4-Dは、合成オーキシンであり、オーキシンはカルスを増殖させる作用を有するものとして知られている。 2,4-D is a synthetic auxin, and auxin is known to have a callus-growing action.
(2) ニンジンの滅菌とカルス誘導
新鮮なニンジンをよく洗い、上部と下部を切り捨てた。残った部分を70%エタノールに10秒間浸した。次に、ニンジンをクリーンベンチ内で1%次亜塩素酸ナトリウム水溶液に15分間浸して滅菌し、その後、滅菌水で3回以上洗浄した。そして、滅菌したニンジンをコルクボーラーで打ち抜き、コンラージ棒で押し出した。その打ち抜いたニンジンの形成層の部分を約1mmの厚さに切り抜き、カルス誘導用寒天培地に植え、暗所、25℃で7日間培養した。
(2) Sterilization of carrots and callus induction Fresh carrots were washed well and the upper and lower parts were cut off. The remaining part was immersed in 70% ethanol for 10 seconds. Next, the carrot was sterilized by immersing in a 1% sodium hypochlorite aqueous solution in a clean bench for 15 minutes, and then washed with sterilized water three times or more. Then, the sterilized carrot was punched out with a cork borer and extruded with a large rod. The punched carrot formation layer was cut out to a thickness of about 1 mm, planted on a callus induction agar medium, and cultured in the dark at 25 ° C. for 7 days.
(3) 結果
対照試料、比較試料および本発明試料のそれぞれを用いて得られた結果(カルス誘導の培養0日目と7日目の結果)を、図4に示す。
(3) Results FIG. 4 shows the results obtained using each of the control sample, the comparative sample, and the sample of the present invention (results of callus induction culture on day 0 and day 7).
図4中、左列は0日目の結果であり、右列は7日目の結果である。また、上段から順に、対照試料(コントロール)、比較試料(2,4-Dと表示)、本発明試料(DSP 100μg/mLおよびDSP300μg/mL使用)を示す。
In FIG. 4, the left column is the result of the 0th day, and the right column is the result of the 7th day. Also, in order from the top, a control sample (control), a comparative sample (displayed as 2,4-D), and a sample of the present invention (using
図4に示される結果から、コントロールでは0日目と7日目を比較すると殆ど変化はないが、2,4-DとDSP 100μg/mLおよび300μg/mLでは、培養7日目において、いずれもコントロールの培養7日目に比して、カルスの肥大が観察された。
From the results shown in FIG. 4, there is almost no change in the control when comparing day 0 and day 7, but 2,4-D and
本発明は、植物の不定根の形成を促進する薬剤を提供するものであり、このものは植物の不定根形成促進効果に基づいて、植物の生育、成長、収穫を良好なものとし、植物が関与する分野で有用である。 The present invention provides a drug that promotes the formation of adventitious roots of plants, which, based on the effect of promoting adventitious root formation of plants, improves the growth, growth, and harvest of plants, and plants are involved. Useful in the field.
Claims (6)
6. The method for promoting adventitious root formation according to claim 5, wherein the plant is selected from the family of solanaceous, legume, asteraceae and dianthus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004248136A JP4646571B2 (en) | 2004-08-27 | 2004-08-27 | Adventitious root formation promoter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004248136A JP4646571B2 (en) | 2004-08-27 | 2004-08-27 | Adventitious root formation promoter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006063023A JP2006063023A (en) | 2006-03-09 |
JP4646571B2 true JP4646571B2 (en) | 2011-03-09 |
Family
ID=36109806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004248136A Expired - Fee Related JP4646571B2 (en) | 2004-08-27 | 2004-08-27 | Adventitious root formation promoter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4646571B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4688471B2 (en) * | 2004-10-28 | 2011-05-25 | 学校法人立命館 | Novel bioactive peptide |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073210A (en) * | 2001-09-03 | 2003-03-12 | Daiwa Kasei Kk | Composition for promoting growth of plant and method for the same |
JP2006124323A (en) * | 2004-10-28 | 2006-05-18 | Ritsumeikan | New biologically active peptide |
-
2004
- 2004-08-27 JP JP2004248136A patent/JP4646571B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003073210A (en) * | 2001-09-03 | 2003-03-12 | Daiwa Kasei Kk | Composition for promoting growth of plant and method for the same |
JP2006124323A (en) * | 2004-10-28 | 2006-05-18 | Ritsumeikan | New biologically active peptide |
Also Published As
Publication number | Publication date |
---|---|
JP2006063023A (en) | 2006-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11432551B2 (en) | Microbial fermentation methods and compositions | |
US4551164A (en) | Microbial plant growth promoter | |
BR122020001306B1 (en) | METHODS AND COMPOSITIONS OF BACTERIAL FERMENTATION | |
KR102470864B1 (en) | Promotes onion growth and drought tolerance by bacillus altitudinis h5-9 and uses thereof | |
RU2264999C2 (en) | Biopreparation for enhancing productivity of agricultural crops | |
JP4646571B2 (en) | Adventitious root formation promoter | |
KR20070008381A (en) | Method for culturing pleurotus eryngii including ginseng | |
CN117844705A (en) | Endophytic listeria, microbial agent prepared from endophytic listeria and application of microbial agent | |
JP3577485B2 (en) | Plant growth fertilizer derived from soybean meal using a novel Bacillus circulans fungus | |
Andriyani et al. | Production of keratinase under solid-state fermentation (SSF) by Bacillus sp. MD24 and potential of its liquid by-product as organic fertilizers | |
JP3322277B2 (en) | Bacillus circulans new strain | |
JP2003095773A (en) | Fertilizer utilizing waste molasses and method of producing the same | |
El-Gindy et al. | Chicken feather waste degradation by Malbranchea cinnamomea and its application on plant growth and metabolites of Vicia faba plant | |
KR100849407B1 (en) | Method for improving plant growth using the self-circulation system of soil-favorable microorganisms | |
CA3121392A1 (en) | Process for the manufacture of a biostimulant or natural fertilizer based on fermented macroalgae, natural additives and probiotic bacteria for agriculture and horticulture | |
CN104628434A (en) | Preparation method of biological fertilizer capable of resisting pathological fungi of lycium ruthenicum | |
KR20240069909A (en) | Bacillus tequilensis PAMB00293 strain promoting plant growth and uses thereof | |
JP3431611B2 (en) | Bacillus stearothermophilus new strain and soybean meal-derived plant growth fertilizer using the same | |
TW200946477A (en) | Novel species of Azospirillum rugosum and use thereof as biofertilizer | |
JPH107483A (en) | Culture promotion agent for plant and method for promoting culture of plant using the agent | |
CN117946892A (en) | Method for producing deodorized fermented livestock manure liquid fertilizer using long-term stored deodorized microorganism liquid preparation and useful microorganism | |
KR900003708B1 (en) | Method for degradation of plant toxin by micro organism | |
BR102020009375B1 (en) | PROCESS FOR PRODUCING BIO-INOCULANT AND INDOL-3-ACETIC ACID AND PLANT GROWTH PROMOTING COMPOSITION | |
KR0134562B1 (en) | Novel rhodopseudomonas sp. and its microbial agents | |
CN116463236A (en) | Streptomyces, fermentation liquor for preventing and treating bacterial diseases of tomatoes, and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4646571 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |