[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4642650B2 - Surface coated mortar or concrete - Google Patents

Surface coated mortar or concrete Download PDF

Info

Publication number
JP4642650B2
JP4642650B2 JP2005367867A JP2005367867A JP4642650B2 JP 4642650 B2 JP4642650 B2 JP 4642650B2 JP 2005367867 A JP2005367867 A JP 2005367867A JP 2005367867 A JP2005367867 A JP 2005367867A JP 4642650 B2 JP4642650 B2 JP 4642650B2
Authority
JP
Japan
Prior art keywords
concrete
coating
mortar
neutralization
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005367867A
Other languages
Japanese (ja)
Other versions
JP2007169100A (en
Inventor
昭俊 荒木
一行 水島
聡史 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005367867A priority Critical patent/JP4642650B2/en
Publication of JP2007169100A publication Critical patent/JP2007169100A/en
Application granted granted Critical
Publication of JP4642650B2 publication Critical patent/JP4642650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1074Silicates, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、主に、土木・建築業界において使用される、中性化および塩害の抑制が可能な表面コーティングしたモルタル又はコンクリートに関する。   The present invention mainly relates to a surface-coated mortar or concrete used in the civil engineering and construction industry and capable of neutralization and suppression of salt damage.

モルタルやコンクリートに空気中の炭酸ガスが浸透するとアルカリ性が低下するため、内部の鉄筋の表面に形成されていた不動態被膜が破壊され錆びが発生する。この錆びの体積膨張により、コンクリートにひび割れや浮きが発生しコンクリート片のはく落などが生じる。特に、水/セメント比の大きいコンクリートや、鉄筋とのかぶりの小さいコンクリートでこのような劣化現象が顕在化しやすい。また、塩化物イオンが浸透した場合も鉄筋の不動態被膜が破壊され錆びが発生し、同様にコンクリートにひび割れや浮きが発生する。
そのため、中性化及び塩害による劣化を受けたコンクリートに対して、表面被覆工法、含浸塗布工法、断面修復工法、電気化学的補修工法等の各種補修工法が提案されている(非特許文献1)。
例えば、中性化が鉄筋位置まで到達していない場合は、表面被覆工法や含浸塗布工法で対処する場合が多い。表面被覆工法では、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂等の有機樹脂をコンクリートやモルタル表面に塗布する工法である。しかしながら、これらの樹脂は非常に高価な材料であり、しかも種類の異なる塗布材を塗り重ねて数層構造の被覆層を形成させる必要があり、施工に長時間を要するものであった。含浸塗布工法は、コンクリートやモルタル表面からシラン系やケイ酸塩系の塗布剤を含浸させることで表層部分を改質する工法である。作業性は樹脂系の表面被覆材より簡便であるが、水分が介在するイオンの浸透性を抑制する効果は大きいが、炭酸ガス等の気体の遮断性に対する効果は大きくない。
また、劣化が健在化しひび割れや浮きなどが発生している場合は、断面修復工法による補修工事が行われている(特許文献1、2)。さらに、有機−無機複合型塗膜養生剤が開発され(特許文献3)、セメント硬化体に塗布して養生する方法について提案されている(特許文献4)。
When carbon dioxide in the air penetrates into mortar or concrete, the alkalinity is lowered, so that the passive film formed on the surface of the internal reinforcing bar is destroyed and rust is generated. Due to the volume expansion of the rust, the concrete is cracked and floated, and the concrete pieces are peeled off. In particular, such a deterioration phenomenon is likely to be manifested in concrete having a large water / cement ratio or concrete having a small cover with a reinforcing bar. Further, when chloride ions permeate, the passive film of the reinforcing bar is destroyed and rust is generated, and cracks and floats are also generated in the concrete.
Therefore, various repair methods such as a surface coating method, an impregnation coating method, a cross-sectional repair method, an electrochemical repair method, etc. have been proposed for concrete subjected to neutralization and salt damage (Non-Patent Document 1). .
For example, when the neutralization does not reach the reinforcing bar position, the surface coating method or the impregnation coating method is often used. In the surface coating method, an organic resin such as an epoxy resin, an acrylic resin, or a urethane resin is applied to the concrete or mortar surface. However, these resins are very expensive materials, and it is necessary to form several layers of coating layers by applying different types of coating materials, which requires a long time for construction. The impregnation coating method is a method of modifying the surface layer portion by impregnating a concrete or mortar surface with a silane-based or silicate-based coating agent. The workability is simpler than that of a resin-based surface coating material, but the effect of suppressing the permeability of ions mediated by moisture is great, but the effect of blocking the gas such as carbon dioxide is not great.
Moreover, when deterioration is alive and cracks, floats, and the like are generated, repair work by a cross-sectional repair method is performed (Patent Documents 1 and 2). Furthermore, an organic-inorganic composite-type film curing agent has been developed (Patent Document 3), and a method of curing by applying to a hardened cement body has been proposed (Patent Document 4).

コンクリート診断技術‘03、基礎編、社団法人日本コンクリート工学協会編、2003年、p.236Concrete diagnosis technology '03, foundation edition, Japan Concrete Engineering Association edition, 2003, p. 236 特開平11−270144号公報Japanese Patent Laid-Open No. 11-270144 特開2005−104826号公報JP 2005-104826 A 特開2002−274976号公報JP 2002-274976 A 特開2005−162534号公報JP 2005-162534 A

本発明は、中性化及び塩害の抑制などが可能である、有機−無機複合型塗膜養生剤を表面にコーティングした硫酸アルミニウムを含有するモルタル又はコンクリートを提供するものである。   The present invention provides a mortar or concrete containing aluminum sulfate, the surface of which is coated with an organic-inorganic composite type coating curing agent, which can be neutralized and suppressed from salt damage.

すなわち、本発明は、(1)固形分濃度が10〜60%である、合成樹脂水性分散体、水溶性樹脂及び膨潤性粘土鉱物を含有する有機−無機複合型塗膜養生剤を表面にコーティングした硫酸アルミニウムをセメント100部に対して固形分で0.5〜10部含有してなる、中性化および塩害が抑制されたモルタル又はコンクリート、(2)有機-無機複合型塗膜養生剤の膨潤性粘土鉱物が合成フッ素雲母である()のモルタル又はコンクリート、()有機-無機複合型塗膜養生剤の使用量が50〜500g/mである(1)または(2)のモルタル又はコンクリートである。 That is, the present invention is (1) coating the surface with an organic-inorganic composite type coating curing agent containing a synthetic resin aqueous dispersion, a water-soluble resin and a swellable clay mineral having a solid content concentration of 10 to 60%. It was, comprising 0.5 to 10 parts by solid content relative to 100 parts of the cement of aluminum sulfate, mortar or concrete neutralization and salt damage is suppressed, (2) organic - inorganic composite type coating curing mortar or concrete swelling clay mineral is a synthetic fluorine mica agent (1), (3) an organic - the amount of the inorganic composite coating film curing agent is 50 to 500 g / m 2 (1) or (2 ) Mortar or concrete.

本発明の有機−無機複合型塗膜養生剤を表面にコーティングした硫酸アルミニウムを含有するモルタル又はコンクリートは、中性化および塩害などを抑制する効果を奏する。   The mortar or concrete containing aluminum sulfate, the surface of which is coated with the organic-inorganic composite type film curing agent of the present invention, has an effect of suppressing neutralization and salt damage.

本発明における部や%は、特に規定しない限り質量基準で示す。   Unless otherwise specified, parts and% in the present invention are shown on a mass basis.

本発明のモルタル又はコンクリートとは、特に限定されるものではなく、セメント、砂、砂利の骨材、水などを使用して作製したものである。   The mortar or concrete of the present invention is not particularly limited, and is produced using cement, sand, gravel aggregate, water or the like.

セメントとしては、普通、早強、超早強、中庸熱、及び低熱等の各種ポルトランドセメントや、これらポルトランドセメントに高炉スラグ、フライアッシュ及び石灰石微粉末を混合した各種混合セメント、高炉徐冷スラグや石灰石微粉末を混合したフィラーセメント、並びに都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)等が挙げられ、これらを微粉末化して使用することも可能である。混合セメントにおける混合物とセメントの割合は特に限定されるものではなく、これら混和材をJISで規定する以上に混合したものも使用可能である。さらに、セメントに、高炉スラグ微粉末、フライアッシュ、シリカフュームなどの潜在水硬性物質やポゾラン物質を多量に配合する場合もある。   As cement, various types of Portland cement such as normal, early strength, super early strength, moderate heat, and low heat, various mixed cements in which blast furnace slag, fly ash and fine limestone powder are mixed with these Portland cements, blast furnace slow cooling slag, Examples include filler cement mixed with limestone fine powder, and environmentally friendly cement (eco-cement) manufactured using municipal waste incineration ash and sewage sludge incineration ash as raw materials. is there. The ratio of the mixture and cement in the mixed cement is not particularly limited, and a mixture of these admixtures more than specified by JIS can be used. Furthermore, a large amount of latent hydraulic materials such as blast furnace slag fine powder, fly ash, silica fume, and pozzolanic materials may be blended in the cement.

骨材としては、通常の砂、砂利の他に、例えば、ケイ砂系や石灰石系などの天然骨材、高炉水砕スラグ系、高炉徐冷スラグ系、再生骨材系などの人工骨材が挙げられる。耐酸性などの観点からは、ケイ砂系を選定することが好ましい。また、比重3.0g/cm以上の重量骨材を使用することもでき、その具体例としては、例えば、人工骨材として、電気炉酸化期スラグ系骨材や、フェロニッケルスラグ、フェロクロムスラグ、銅スラグ、亜鉛スラグおよび鉛スラグなどを総称する非鉄精錬スラグ骨材などが、また、天然骨材としては、橄欖岩(かんらん岩)系骨材、いわゆるオリビンサンドや、エメリー鉱などが挙げられる。本発明では、これらの1種または2種以上を併用できる。 In addition to normal sand and gravel, aggregates include natural aggregates such as silica sand and limestone, blast furnace granulated slag, blast furnace slow-cooled slag, and recycled aggregates. Can be mentioned. From the viewpoint of acid resistance and the like, it is preferable to select a silica sand system. In addition, a heavy aggregate having a specific gravity of 3.0 g / cm 3 or more can be used, and specific examples thereof include, for example, an electric furnace oxidation period slag-based aggregate, ferronickel slag, ferrochrome slag as an artificial aggregate. Non-ferrous smelted aggregates such as copper slag, zinc slag and lead slag, and natural aggregates include peridotite aggregates, so-called olivine sand, emery ore, etc. It is done. In this invention, these 1 type (s) or 2 or more types can be used together.

水の使用量は、使用する目的・用途や各材料の配合割合によって変化するため特に限定されるものではないが、通常、水セメント比で25〜60%の範囲が好ましく、30〜55%がより好ましい。水セメントが25%未満では流動性を得ることが難しく、また、発熱量が極めて大きくなる。逆に60%を超えると強度発現性を確保することが困難な場合がある。また、物質移動が容易となり、耐久性を確保しにくくなる傾向にある。   The amount of water used is not particularly limited because it varies depending on the purpose / use of use and the blending ratio of each material. Usually, the water cement ratio is preferably 25 to 60%, and preferably 30 to 55% More preferred. If the water cement is less than 25%, it is difficult to obtain fluidity, and the calorific value becomes extremely large. Conversely, if it exceeds 60%, it may be difficult to ensure strength development. Moreover, mass transfer becomes easy and it tends to be difficult to ensure durability.

セメント、骨材、流動化剤などとともに、石灰石微粉末、高炉徐冷スラグ微粉末、下水汚泥焼却灰やその溶融スラグ、都市ゴミ焼却灰やその溶融スラグ、パルプスラッジ焼却灰などの混和材料、カルシウムアルミネートやカルシウムアルミネートとセッコウの混合物などの急硬材、凝結調整剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、スチールファイバー、ビニロンファイバー、炭素繊維、ワラストナイト繊維などの繊維物質、ポリマー、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体などのうちの1種または2種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。   Along with cement, aggregate, fluidizing agent, etc., limestone fine powder, blast furnace slow-cooled slag fine powder, sewage sludge incineration ash and its molten slag, municipal waste incineration ash and its molten slag, pulp sludge incinerated ash, etc., calcium Rapid hardening materials such as aluminate and calcium aluminate and gypsum, setting modifier, antifoaming agent, thickener, rust inhibitor, antifreeze agent, shrinkage reducing agent, steel fiber, vinylon fiber, carbon fiber, wallast One or more of fiber materials such as knight fibers, polymers, clay minerals such as bentonite, anion exchangers such as hydrotalcite, and the like are used within a range that does not substantially impair the object of the present invention. Is possible.

本発明の硫酸アルミニウムとは、特に限定されるものではなく、Al(SO・nHOの化学式を持ち、Al(SO・14〜18HOやAl(SO・8HOなどの含水塩や、無水硫酸アルミニウムなどである。これらは粉末や水に溶解して液体としてモルタル又はコンクリート作製時に添加することができる。
硫酸アルミニウムは、モルタルやコンクリートの硬化促進剤として使用されものである。他のアルミン酸塩、炭酸塩などの無機塩類を主成分とする硬化促進剤や、カルシウムアルミネートを主成分とする硬化促進剤を使用したときに比べ、モルタルやコンクリートの中性化や塩化物イオン浸透などを抑制する優れた効果を発揮する。従って、塩害や中性化の影響を受けやすいトンネルや補修・補強分野などにおいて吹付け材料として好適である。
硫酸アルミニウムの使用量は、セメント100部に対して、固形分で0.5〜10部が好ましく、1〜5部がより好ましい。硫酸アルミニウムの使用量が少なすぎると、硬化促進の効果が発揮できない場合があり、多すぎると硬化が速過ぎて緻密な硬化体が得られず、中性化や塩化物イオンなどの浸透が早くなる場合がある。
The aluminum sulfate of the present invention is not particularly limited, and has a chemical formula of Al 2 (SO 4 ) 3 .nH 2 O, and Al 2 (SO 4 ) 3 · 14 to 18H 2 O or Al 2 (SO 4) 3 · and hydrous salts such 8H 2 O, and the like anhydrous aluminum sulfate. These can be dissolved in powder or water and added as a liquid when preparing mortar or concrete.
Aluminum sulfate is used as a hardening accelerator for mortar and concrete. Neutralization and chloride of mortar and concrete compared to the use of hardening accelerators based on other inorganic salts such as aluminates and carbonates, and hardening accelerators based on calcium aluminate. Demonstrates excellent effects of suppressing ion penetration. Therefore, it is suitable as a spraying material in tunnels and repair / reinforcement fields that are susceptible to salt damage and neutralization.
The amount of aluminum sulfate used is preferably 0.5 to 10 parts by solid content and more preferably 1 to 5 parts relative to 100 parts of cement. If the amount of aluminum sulfate used is too small, the effect of accelerating curing may not be exhibited. If it is too much, curing is too fast and a dense cured body cannot be obtained, and neutralization and penetration of chloride ions, etc. are quick. There is a case.

本発明で使用する有機−無機複合型塗膜養生剤とは、合成樹脂水性分散体、水溶性樹脂、及び膨潤性粘土鉱物を含有するものである。さらに、架橋剤を含有するものが好ましい。   The organic-inorganic composite-type film curing agent used in the present invention contains a synthetic resin aqueous dispersion, a water-soluble resin, and a swellable clay mineral. Furthermore, what contains a crosslinking agent is preferable.

本発明で使用する合成樹脂水性分散体とは、一般的には合成樹脂エマルジョンであり、芳香族ビニル単量体、脂肪族共役ジエン系単量体、エチレン系不飽和脂肪酸単量体、及びその他の共重合可能な単量体の内から一種又は二種以上を乳化重合して得られるものである。例えば、スチレンを主体としたスチレン・ブタジエン系ラテックス、スチレン・アクリル系エマルジョンやスチレンと共重合したメチルメタクリレート・ブタジエン系ラテックス、エチレン・アクリルエマルジョンである。合成樹脂エマルジョンには、カルボキシル基またはヒドロキシ基を有するものがより好ましい。
ここで、乳化重合は、重合すべき単量体を混合し、これに乳化剤や重合開始剤等を加え水系で行なう一般的な乳化重合方法である。
膨潤性粘土鉱物との配合安定性を得るには、アンモニア、アミン類、及びカセイソーダなどの塩基性物質を使用し、pH5以上に調整したものが好ましい。
合成樹脂水性分散体の粒子径は、一般的に100〜300nmであるが、60〜100nm程度の小さい粒子径のものが好ましい。
The synthetic resin aqueous dispersion used in the present invention is generally a synthetic resin emulsion, an aromatic vinyl monomer, an aliphatic conjugated diene monomer, an ethylenically unsaturated fatty acid monomer, and others. The copolymerizable monomer is obtained by emulsion polymerization of one or more of these monomers. For example, styrene / butadiene latex mainly composed of styrene, styrene / acrylic emulsion, methyl methacrylate / butadiene latex copolymerized with styrene, and ethylene / acrylic emulsion. The synthetic resin emulsion is more preferably one having a carboxyl group or a hydroxy group.
Here, the emulsion polymerization is a general emulsion polymerization method in which a monomer to be polymerized is mixed, and an emulsifier, a polymerization initiator, etc. are added to the monomer and the reaction is carried out in an aqueous system.
In order to obtain blending stability with the swellable clay mineral, it is preferable to use a basic substance such as ammonia, amines, and caustic soda and adjust the pH to 5 or more.
The particle size of the synthetic resin aqueous dispersion is generally 100 to 300 nm, but preferably has a small particle size of about 60 to 100 nm.

水溶性樹脂としては、加工澱粉又はその誘導体、セルロース誘導体、ポリ酢酸ビニルの鹸化物又はその誘導体、スルホン酸基を有する重合体又はその塩、アクリル酸の重合体や共重合体又はこれらの塩、アクリルアミドの重合体や共重合体、ポリエチレングリコール、及びオキサゾリン基含有重合体等が挙げられ、そのうちの一種又は二種以上の使用が可能である。
水溶性樹脂として、純水への溶解度が常温で1%以上であるものであれば良く、樹脂単位重量当たりの水素結合性基又はイオン性基が10〜60%であることが好ましい。また、平均分子量は2,000〜1,000,000が好ましい。
水溶性樹脂の使用量は、合成樹脂水性分散体の固形分100部に対して、固形分換算で0.05〜200部が好ましい。0.05部未満では防湿性が低下する場合があり、200部を超えると防湿性が著しく低下する場合がある。
Examples of water-soluble resins include modified starch or derivatives thereof, cellulose derivatives, saponified polyvinyl acetate or derivatives thereof, polymers having sulfonic acid groups or salts thereof, polymers or copolymers of acrylic acid or salts thereof, Examples include acrylamide polymers and copolymers, polyethylene glycol, and oxazoline group-containing polymers, and one or more of them can be used.
The water-soluble resin may be one having a solubility in pure water of 1% or more at normal temperature, and preferably 10 to 60% of hydrogen bonding groups or ionic groups per unit weight of the resin. The average molecular weight is preferably 2,000 to 1,000,000.
The amount of the water-soluble resin used is preferably 0.05 to 200 parts in terms of solid content with respect to 100 parts of solid content of the synthetic resin aqueous dispersion. If the amount is less than 0.05 parts, the moisture resistance may be lowered. If the amount exceeds 200 parts, the moisture resistance may be significantly lowered.

膨潤性粘土鉱物としては、スクメタイト属に属する層状ケイ酸塩鉱物が挙げられる。例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、マイカ、及びベントナイトなどである。これらは天然品、合成品、及び加工処理品のいずれであっても使用可能である。
そのうち、日本ベントナイト工業会、標準試験方法 JBAS−104−77に準じた方法での膨潤力が20ml/2g以上の粘土鉱物、特に、ベントナイトが好ましい。また、イオン交換当量が100g当たり、10ミリ当量以上ものが好ましく、60〜200ミリ当量以上ものがより好ましい。さらに、そのアスペクト比が50〜5,000のものが好ましい。アスペクト比とは、電顕写真により求めた層状に分散した粘土鉱物の長さ/厚みの比である。
膨潤性粘土鉱物の使用量は、合成樹脂水性分散体の固形分100部に対して、固形分に対して、1〜50部が好ましい。1部未満では防湿性が低下しブロッキングが生じやすくなる場合があり、50部を超えると塗膜養生剤の膜の変形能力が低下する場合がある。
Examples of swellable clay minerals include layered silicate minerals belonging to the scumite genus. For example, montmorillonite, beidellite, nontronite, saponite, mica and bentonite. Any of natural products, synthetic products, and processed products can be used.
Among them, a clay mineral having a swelling power of 20 ml / 2 g or more according to a method according to the Japan Bentonite Industry Association, standard test method JBAS-104-77, particularly bentonite is preferable. Further, the ion exchange equivalent is preferably 10 milliequivalents or more, more preferably 60 to 200 milliequivalents or more per 100 g. Furthermore, the thing whose aspect ratio is 50-5,000 is preferable. The aspect ratio is the length / thickness ratio of the clay mineral dispersed in layers obtained by electron micrograph.
The amount of the swellable clay mineral used is preferably 1 to 50 parts with respect to the solid content with respect to 100 parts of the solid content of the synthetic resin aqueous dispersion. If it is less than 1 part, the moisture-proof property may be reduced and blocking may occur easily, and if it exceeds 50 parts, the film deformability of the film curing agent may be reduced.

架橋剤とは、水溶性樹脂や合成樹脂水性分散体が有するカルボキシル基、アミド基、及び水酸基等の親水性官能基と反応して、架橋、高分子化(三次元網目構造)、又は疎水化するものであり、カルボキシル基と付加反応を起こすオキサゾリン基を有するものが水溶性樹脂をも兼ねるので好ましい。
架橋剤の使用量は、合成樹脂水性分散体と水溶性樹脂の合計の固形分100部に対して、固形分換算で0.01〜30部が好ましい。0.01部未満では防湿性が低下する場合があり、30部を超えると防湿性やブロッキング防止性が頭打ちになる。
A cross-linking agent reacts with a hydrophilic functional group such as a carboxyl group, an amide group, and a hydroxyl group contained in an aqueous dispersion of a water-soluble resin or synthetic resin to crosslink, polymerize (three-dimensional network structure), or hydrophobize. Those having an oxazoline group that undergoes an addition reaction with a carboxyl group are also preferable because they also serve as water-soluble resins.
The amount of the crosslinking agent used is preferably 0.01 to 30 parts in terms of solid content with respect to 100 parts of the total solid content of the synthetic resin aqueous dispersion and the water-soluble resin. If the amount is less than 0.01 part, the moisture resistance may be lowered. If the amount exceeds 30 parts, the moisture resistance and the anti-blocking property reach a peak.

本発明では、合成樹脂水性分散体、水溶性樹脂、及び膨潤性粘土鉱物を混合して、さらに、これらと架橋剤とを反応させて塗膜養生剤を調製する。
塗膜養生剤の合成方法は、水溶性樹脂と膨潤性粘土鉱物をあらかじめ水中で混合した後に、合成樹脂水性分散体と架橋剤を混合する方法が好ましい。塗膜養生剤は、水に分散したポリマーディスパージョンであり、含有する固形分量は特に限定されるものではない。固形分濃度は、モルタルやコンクリートに塗布した場合に形成される被膜の強度や厚み、塗り易さなどに影響してくる。
モルタル又はコンクリートに塗布するときの塗布剤の固形分濃度は、10〜60%が好ましく、20〜50%がより好ましい。10%未満では、中性化や塩化物イオンの浸透などを抑制する効果が十分でなく、60%を超えると粘度が高くなることから塗り難くなる。
In the present invention, a synthetic resin aqueous dispersion, a water-soluble resin, and a swellable clay mineral are mixed and further reacted with a crosslinking agent to prepare a coating film curing agent.
The method for synthesizing the coating curing agent is preferably a method in which the water-soluble resin and the swellable clay mineral are mixed in water in advance, and then the synthetic resin aqueous dispersion and the crosslinking agent are mixed. The coating film curing agent is a polymer dispersion dispersed in water, and the solid content is not particularly limited. The solid content concentration affects the strength and thickness of the film formed when applied to mortar or concrete, ease of application, and the like.
10-60% is preferable and, as for the solid content concentration of the coating agent when apply | coating to mortar or concrete, 20-50% is more preferable. If it is less than 10%, the effect of suppressing neutralization and penetration of chloride ions is not sufficient, and if it exceeds 60%, the viscosity becomes high and it becomes difficult to apply.

有機-無機複合型塗膜養生剤の被覆方法は、均一に被覆膜が形成できる方法であれば特に限定されるものではなく、撒布したり、塗布したり、吹付けたりすることが可能である。
有機-無機複合型塗膜養生剤の塗布量は、1m当たり50〜500gの範囲で使用することが好ましく、100〜400gがより好ましい。50g未満では中性化や塩化物イオンの浸透などを抑制する効果が十分でなく、500gを超えてもさらなる効果の向上が期待できない。
The coating method of the organic-inorganic composite type film curing agent is not particularly limited as long as it can form a uniform coating film, and can be distributed, applied, or sprayed. is there.
The coating amount of the organic-inorganic composite type coating curing agent is preferably used in the range of 50 to 500 g per 1 m 2 , and more preferably 100 to 400 g. If the amount is less than 50 g, the effect of suppressing neutralization or penetration of chloride ions is not sufficient, and even if the amount exceeds 500 g, further improvement of the effect cannot be expected.

「実施例1」
容量3Lのホバートミキサーを用いて、セメントの物理試験方法(JIS R 5201)に示されているモルタルの配合において1分間練り混ぜ、セメント100部に対して硫酸アルミニウムを2部加えて再度10秒間練り混ぜ、すばやく型詰めを行った。材齢28日間、温度20℃、湿度80%の環境下で気中養生した。試験体のサイズは4×4×16cmで、その試験体の側面と底面をエポキシ樹脂でシールし、上面に表1に示す固形分濃度の塗膜剤を150g/mとなるように刷毛で塗布し、促進中性化試験、塩化物イオン浸透試験、作業性(塗り易さ)評価を行った。なお、比較として、硫酸アルミニウムの代わりにセメント100部に対して炭酸ナトリウムを2部加えたものについても同様に行った。結果を表1に示す。
"Example 1"
Using a Hobart mixer with a capacity of 3L, knead for 1 minute in the mortar formulation shown in the cement physical test method (JIS R 5201), add 2 parts of aluminum sulfate to 100 parts of cement and knead again for 10 seconds. Mix and quickly mold. It was cured in the air under an environment of a temperature of 20 ° C. and a humidity of 80% for 28 days. The size of the test body is 4 × 4 × 16 cm, the side and bottom surfaces of the test body are sealed with an epoxy resin, and the coating agent having a solid content concentration shown in Table 1 is applied to the upper surface with a brush so that the solid content is 150 g / m 2. After coating, accelerated neutralization test, chloride ion penetration test, and workability (ease of application) evaluation were performed. As a comparison, the same procedure was performed for 100 parts of cement added with 2 parts of sodium carbonate instead of aluminum sulfate. The results are shown in Table 1.

(モルタルの使用材料と配合)
セメント:普通ポルトランドセメント、電気化学工業社製
硬化促進剤(A):硫酸アルミニウム、試薬1級品、無水物
硬化促進剤(B):炭酸ナトリウム、試薬1級品、無水物
砂:標準砂
水:水道水
セメント:砂:水=1:3:0.5(質量比)
塗膜剤:有機−無機複合型塗膜養生剤、東亞合成社製、「CA212」、アクリル樹脂-フッ素雲母の複合型、固形分濃度45%
(Mortar materials and ingredients)
Cement: Ordinary Portland cement, hardening accelerator manufactured by Denki Kagaku Kogyo Co., Ltd. (A): Aluminum sulfate, reagent grade 1, anhydride hardening accelerator (B): sodium carbonate, reagent grade 1, anhydrous sand: standard sand water : Tap water cement: Sand: Water = 1: 3: 0.5 (mass ratio)
Coating agent: Organic-inorganic composite type coating curing agent, manufactured by Toagosei Co., Ltd., “CA212”, acrylic resin-fluorine mica composite type, solid content concentration 45%

(試験方法)
促進中性化試験:促進条件は、炭酸ガス濃度5%、温度30℃、湿度60%とし、塗膜剤を塗布して翌日に促進試験を開始した。促進期間は28日間とし、フェノールフタレイン法により上面からの中性化深さを測定した。
塩化物イオン浸透試験:塗膜剤を塗布して翌日に、JIS A 1171に準拠して擬似海水に28日間浸漬することで塩化物イオンの浸透深さを測定した。
塗り易さ:刷毛で試験体上面(4×16cm)を塗ったときに、塗膜剤が均一な場合を○、塗膜剤がやや不均一の場合を△、塗膜剤がかなり不均一な場合を×とした。
(Test method)
Accelerated neutralization test: The accelerated conditions were 5% carbon dioxide concentration, 30 ° C. temperature and 60% humidity, and the coating test was applied to start the accelerated test the next day. The promotion period was 28 days, and the neutralization depth from the top surface was measured by the phenolphthalein method.
Chloride ion penetration test: The coating depth was applied and the chloride ion penetration depth was measured by immersing in simulated seawater for 28 days according to JIS A 1171 the next day.
Ease of application: When the upper surface (4 × 16 cm) of the test specimen is applied with a brush, ○ when the coating agent is uniform, Δ when the coating agent is slightly non-uniform, and the coating agent is fairly non-uniform The case was marked with x.

Figure 0004642650
Figure 0004642650

表1より、本発明の塗膜剤で表面コーティングした硫酸アルミニウムを含有するモルタルは、中性化と塩害を抑制することが分かる。   Table 1 shows that the mortar containing the aluminum sulfate surface-coated with the coating agent of the present invention suppresses neutralization and salt damage.

「実施例2」
固形分濃度を25%とし、表2に示すように塗布量を変えた以外は実施例1と同様に行った。
"Example 2"
The same procedure as in Example 1 was performed except that the solid concentration was 25% and the coating amount was changed as shown in Table 2.

Figure 0004642650
Figure 0004642650

表2より、本発明の塗膜剤で表面コーティングした硫酸アルミニウムを含有するモルタルは、中性化と塩害を抑制し、塗り易さが良好であることが分かる。   Table 2 shows that the mortar containing the aluminum sulfate surface-coated with the coating agent of the present invention suppresses neutralization and salt damage and is easy to apply.

「実施例3」
硫酸アルミニウムの添加量を表3に示すように変え、塗膜剤の固形分濃度を25%として塗布量を150g/mとし、塗膜剤をモルタルに塗るまでの養生期間を材齢1日、7日、28日で行ったこと以外は実施例1と同様に行った。結果を表3に示す
"Example 3"
The amount of aluminum sulfate added was changed as shown in Table 3, the solid content concentration of the coating agent was 25%, the coating amount was 150 g / m 2, and the curing period until the coating agent was applied to the mortar was 1 day old The same procedure as in Example 1 was performed except that the test was performed on the 7th and 28th. The results are shown in Table 3.

Figure 0004642650
Figure 0004642650

表3より、本発明の塗膜剤で表面コーティングした硫酸アルミニウムを含有するモルタルは、中性化と塩害を抑制することが分かる。   Table 3 shows that the mortar containing aluminum sulfate surface-coated with the coating agent of the present invention suppresses neutralization and salt damage.

「実施例4」
実施例1の実験No.1-1の中性化深さが7.6mm、塩化物イオン浸透深さが9.8mmを示した塗膜剤を塗布しない試験体に対して、表4に示す実験No.の塗布条件(塗膜剤の種類、塗膜剤の固形分濃度、塗布量)で塗膜剤を塗布し、さらに、実施例1と同様に促進中性化試験及び塩化物イオン浸透試験を実施し中性化深さ及び塩化物イオン浸透深さを測定した。結果を表4に示す。
"Example 4"
Table 4 shows the test specimens to which the coating agent in which the neutralization depth of Experiment No. 1-1 in Example 1 was 7.6 mm and the chloride ion penetration depth was 9.8 mm was not applied. The coating agent was applied under the application conditions of the experiment No. (type of coating agent, solid content concentration of coating agent, coating amount), and further, accelerated neutralization test and chloride ion penetration as in Example 1. Tests were conducted to measure the neutralization depth and chloride ion penetration depth. The results are shown in Table 4.

Figure 0004642650
Figure 0004642650

表4より、本発明の塗膜剤で表面コーティングした硫酸アルミニウムを含有するモルタルは、中性化と塩害を抑制することが分かる。   Table 4 shows that the mortar containing the aluminum sulfate surface-coated with the coating agent of the present invention suppresses neutralization and salt damage.

「実施例5」
実施例1と同様のモルタルで縦30cm×横30cm×厚み6cmの平板を作製し、市販の表面被覆材、表面含浸材、及び本発明の塗膜剤(実験No.1-10の塗布条件)を施工し、実施例1と同様にその塗り易さ及び中性化深さを確認した。
"Example 5"
A flat plate having a length of 30 cm, a width of 30 cm, and a thickness of 6 cm was prepared using the same mortar as in Example 1, and a commercially available surface coating material, a surface impregnation material, and a coating agent of the present invention (application conditions for Experiment No. 1-10) As in Example 1, the ease of application and the depth of neutralization were confirmed.

(使用材料)
表面被覆材:プライマー(アクリル系樹脂、標準塗布量200g/m、市販品)、
中塗り材(アクリル系樹脂、標準塗布量200g/mを2回塗り、市販品)、上塗り材(アクリル−ウレタン系樹脂、標準塗布量200g/mを2回塗り、市販品)
表面含浸材:アルコキシシラン系エマルジョン、標準塗布量200g/m、市販品
(Materials used)
Surface coating material: primer (acrylic resin, standard coating amount 200 g / m 2 , commercially available product),
Intermediate coating material (acrylic resin, standard coating amount 200 g / m 2 applied twice, commercial product), top coating material (acrylic-urethane resin, standard coating amount 200 g / m 2 applied twice, commercial product)
Surface impregnating material: alkoxysilane emulsion, standard coating amount 200 g / m 2 , commercial product

(結果)
表面被覆材は3種の材料の重ね塗りを行うもので表面被覆が完了するまでに要した時間は、プライマー、中塗り材等の乾燥時間を設ける必要があるため、8時間を要した。促進中性化28日後の中性化深さ及び塩化物イオン浸透深さは0mmであった。
表面含浸材は、標準塗布量である200g/mを表面に1回のみ刷毛塗りするだけである。促進中性化28日後の中性化深さは4.4mm、塩化物イオン浸透深さは1.3mmであった。
一方、本発明では、塗膜剤を1回のみ刷毛塗りするだけであり、促進中性化28日後の中性化深さは0.3mm、塩化物イオン浸透深さは0.2mmであった。 従って、本発明は施工が簡便であり、通常の市販表面被覆材に匹敵する中性化抑制効果及び塩化物イオン浸透抑制効果を発揮するモルタルが容易に得られることが分かる。
(result)
Since the surface coating material is one in which three types of materials are overcoated, the time required to complete the surface coating requires 8 hours because it is necessary to provide a drying time for the primer, intermediate coating material, and the like. The neutralization depth and chloride ion penetration depth after 28 days of accelerated neutralization were 0 mm.
The surface-impregnated material is only applied once to the surface with a standard coating amount of 200 g / m 2 . The neutralization depth after 28 days of accelerated neutralization was 4.4 mm, and the chloride ion penetration depth was 1.3 mm.
On the other hand, in the present invention, the coating agent was only brushed once, the neutralization depth after 28 days of accelerated neutralization was 0.3 mm, and the chloride ion penetration depth was 0.2 mm. . Therefore, it can be seen that the present invention is simple to construct and can easily provide a mortar exhibiting a neutralization inhibitory effect and a chloride ion permeation inhibitory effect comparable to ordinary commercial surface coating materials.

「実施例6」
セメント318kg/m、砂829kg/m、砂利997kg/m、水170kg/m、減水剤をセメントに対し0.5%からなるコンクリート配合に、セメント100部に対して硫酸アルミニウムを2部加えて練り混ぜ、材齢28日間、温度20℃、湿度80%の環境下で気中養生した。試験体サイズは10×10×10cmで、その試験体側面と底面をエポキシ樹脂でシールし、上面に表5に示す実験No.の塗布条件(塗膜剤の種類、塗膜剤の固形分濃度、塗布量)で塗膜剤を刷毛で塗布した以外は実施例1と同様に行った。結果を表5に示す。
"Example 6"
Cement 318kg / m 3, sand 829kg / m 3, gravel 997kg / m 3, water 170 kg / m 3, the concrete mix consisting of 0.5% relative to the cement water reducing agent, 2 aluminum sulfate for 100 parts of cement The mixture was mixed and kneaded, and cured in the air under an environment of a material age of 28 days, a temperature of 20 ° C., and a humidity of 80%. The test specimen size is 10 × 10 × 10 cm, the side and bottom surfaces of the test specimen are sealed with epoxy resin, and the coating conditions of the experiment No. shown in Table 5 on the top (type of coating agent, solid content concentration of coating agent) The coating amount was applied in the same manner as in Example 1 except that the coating agent was applied with a brush. The results are shown in Table 5.

(使用材料)
砂:新潟県姫川水系産砕石、最大骨材粒径5mm
砂利:新潟県姫川水系産砕石、最大骨材粒径20mm
減水剤:ナフタレンスルホン酸塩系、市販品
(Materials used)
Sand: crushed stone from Himekawa water system, Niigata prefecture, maximum aggregate particle size 5mm
Gravel: Crushed stone from Himekawa water system, Niigata Prefecture, maximum aggregate particle size 20mm
Water reducing agent: Naphthalene sulfonate, commercial product

Figure 0004642650
Figure 0004642650

表5より、本発明の塗膜剤で表面コーティングした硫酸アルミニウムを含有するコンクリートは、中性化と塩害を抑制し、塗り易さが良好であることが分かる。   From Table 5, it can be seen that the concrete containing aluminum sulfate surface-coated with the coating agent of the present invention suppresses neutralization and salt damage and is easy to apply.

「実施例7」
セメント100部に対し砂200部、水42部、減水剤0.5部を50Lの左官ミキサーで練り混ぜ、得られたモルタルをスクイズポンプで3m圧送した。圧送ホース先端には吹付けノズルを取り付け、そのノズル手前で硫酸アルミニウム水溶液を固形分でセメント100部に対し6部となるように液体ポンプで圧送し圧縮空気と共に合流混合し型枠に吹き付け、表6に示す実験No.の塗布条件(塗膜剤の種類、塗膜剤の固形分濃度、塗布量)で塗膜剤を塗布し実施例1と同様に試験を行った。結果を表6に示す。
"Example 7"
To 100 parts of cement, 200 parts of sand, 42 parts of water, and 0.5 part of a water reducing agent were kneaded with a 50 L plaster mixer, and the resulting mortar was pumped by 3 m with a squeeze pump. At the tip of the pressure hose, a spray nozzle is attached, and before that nozzle, the aqueous solution of aluminum sulfate is pumped with a liquid pump so that the solid content is 6 parts with respect to 100 parts of cement. Tests were conducted in the same manner as in Example 1 except that the coating agent was applied under the application conditions of Experiment No. 6 (type of coating agent, solid content concentration of coating agent, application amount). The results are shown in Table 6.

(使用材料)
砂:石灰石砂、新潟県青海産石灰砂、最大粒径1.5mm
減水剤:ナフタレンスルホン酸塩系、市販品
硫酸アルミニウム水溶液:市販の硫酸アルミニウム18水塩を固形分27%となるように水に溶解させた水溶液
(Materials used)
Sand: Limestone sand, Niigata Aomi lime sand, Maximum particle size 1.5mm
Water reducing agent: Naphthalene sulfonate-based, commercially available aluminum sulfate aqueous solution: aqueous solution in which commercially available aluminum sulfate 18 hydrate is dissolved in water so as to have a solid content of 27%

(吹付け条件)
左官ミキサー:岡三機工社製ダマカットミキサー
スクイズポンプ:岡三機工社製OKG−05型、モルタルの吐出量0.2m/hr
コンプレッサー:圧力0.7MPa、空気流量0.4m/min
液体ポンプ:プランジャー方式圧送ポンプ(硫酸アルミニウム水溶液圧送用)
(Blowing condition)
Plasterer mixer: Okasan Kiko Damacut mixer squeeze pump: Okasan Kiko OKG-05, mortar discharge rate 0.2m 3 / hr
Compressor: Pressure 0.7MPa, Air flow rate 0.4m 3 / min
Liquid pump: Plunger type pump (for aluminum sulfate aqueous solution)

Figure 0004642650
Figure 0004642650

表6より、本発明の塗膜剤で表面コーティングした硫酸アルミニウムを含有するモルタルは、中性化と塩害を抑制し、塗り易さが良好であることが分かる。   Table 6 shows that the mortar containing the aluminum sulfate surface-coated with the coating agent of the present invention suppresses neutralization and salt damage and is easy to apply.

「実施例8」
セメント400kg/m、砂1055kg/m、砂利713kg/m、水200kg/mからなるコンクリートを練り混ぜ、コンクリート圧送機(アリバー280)で空気搬送し、途中設けたシャワーリング管の一方より、実施例7の硫酸アルミニウム水溶液をセメント100部に対して固形分で6部となるように液体ポンプで圧送し、合流混合し方枠に吹き付けた。吹き付けた型枠のサイズは縦30cm×横30cm×厚さ15cmの箱型枠であり、翌日、直径5cm×高さ10cmの円柱状に成形、表に示す塗布条件No.で塗布剤を塗布した以外は実施例6と同様に試験を行った。結果を表7に示す。
"Example 8"
Cement 400 kg / m 3, sand 1055kg / m 3, gravel 713kg / m 3, kneaded concrete comprising water 200 kg / m 3, the concrete pumping machine air conveyed by (Ariba 280), one of the showering tube provided midway Thus, the aqueous aluminum sulfate solution of Example 7 was pumped with a liquid pump so that the solid content was 6 parts with respect to 100 parts of cement, merged and mixed, and sprayed onto the frame. The size of the formwork sprayed was a box form with a length of 30 cm x width of 30 cm x thickness of 15 cm. The test was performed in the same manner as in Example 6 except for the above. The results are shown in Table 7.

(使用材料)
砂:新潟県姫川産川砂、最大粒径5mm
砂利:新潟県姫川産川砂利、最大粒径15mm
(Materials used)
Sand: River sand from Himekawa, Niigata Prefecture, maximum particle size 5mm
Gravel: Himekawa from Niigata gravel, maximum particle size 15mm

(吹付け条件)
吹付け機:アリバー社製アリバー280、空気消費量10m/min、コンクリート吐出量5m/hr
液体ポンプ:プランジャー方式圧送ポンプ(硫酸アルミニウム水溶液圧送用)
(Blowing condition)
Sprayer: Arriver 280 manufactured by Arriver, air consumption 10 m 3 / min, concrete discharge 5 m 3 / hr
Liquid pump: Plunger type pump (for aluminum sulfate aqueous solution)

Figure 0004642650
Figure 0004642650

表7より、本発明の塗膜剤で表面コーティングした硫酸アルミニウムを含有するコンクリートは、中性化と塩害を抑制し、塗り易さが良好であることが分かる。   From Table 7, it can be seen that the concrete containing aluminum sulfate surface-coated with the coating agent of the present invention suppresses neutralization and salt damage and is easy to apply.

本発明のモルタル又はコンクリートは、土木・建築分野のコンクリート構造物やコンクリートやモルタルの二次製品の補修・補強を目的として使用することができる。特に、中性化及び塩害の抑制などが要求される箇所に好適である。   The mortar or concrete of the present invention can be used for the purpose of repairing / reinforcing concrete structures in the field of civil engineering / architecture and secondary products of concrete and mortar. In particular, it is suitable for locations where neutralization and suppression of salt damage are required.

Claims (3)

固形分濃度が10〜60質量%である、合成樹脂水性分散体、水溶性樹脂及び膨潤性粘土鉱物を含有する有機−無機複合型塗膜養生剤を表面にコーティングした硫酸アルミニウムをセメント100質量部に対して固形分で0.5〜10質量部含有してなる、中性化および塩害が抑制されたモルタル又はコンクリート。 100 mass of cement cemented with aluminum sulfate , the surface of which is coated with an organic-inorganic composite-type coating curing agent containing a synthetic resin aqueous dispersion, a water-soluble resin, and a swellable clay mineral, having a solid content concentration of 10 to 60 mass%. Mortar or concrete containing 0.5 to 10 parts by mass in solid content with respect to parts , in which neutralization and salt damage are suppressed . 有機-無機複合型塗膜養生剤の膨潤性粘土鉱物が合成フッ素雲母である請求項記載のモルタル又はコンクリート。 Organic - inorganic composite type coating curing agent mortar or concrete according to claim 1, wherein the swelling clay mineral is a synthetic fluorine mica. 有機-無機複合型塗膜養生剤の使用量が50〜500g/mである請求項1または2記載のモルタル又はコンクリート。 Organic - inorganic composite type coating amount of the curing agent is 50 to 500 g / m 2 according to claim 1 or 2 wherein the mortar or concrete.
JP2005367867A 2005-12-21 2005-12-21 Surface coated mortar or concrete Active JP4642650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367867A JP4642650B2 (en) 2005-12-21 2005-12-21 Surface coated mortar or concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367867A JP4642650B2 (en) 2005-12-21 2005-12-21 Surface coated mortar or concrete

Publications (2)

Publication Number Publication Date
JP2007169100A JP2007169100A (en) 2007-07-05
JP4642650B2 true JP4642650B2 (en) 2011-03-02

Family

ID=38296164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367867A Active JP4642650B2 (en) 2005-12-21 2005-12-21 Surface coated mortar or concrete

Country Status (1)

Country Link
JP (1) JP4642650B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5185047B2 (en) * 2008-09-29 2013-04-17 電気化学工業株式会社 Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP5259360B2 (en) * 2008-11-28 2013-08-07 電気化学工業株式会社 Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP5336886B2 (en) * 2009-03-04 2013-11-06 電気化学工業株式会社 Impregnation composition
JP5466443B2 (en) * 2009-07-15 2014-04-09 株式会社竹中工務店 Method for preventing corrosion of concrete and concrete structure obtained by this method for preventing corrosion of concrete
JP5922942B2 (en) * 2012-02-08 2016-05-24 東亞合成株式会社 Method for protecting concrete and concrete structure obtained thereby

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122146A (en) * 1984-11-14 1986-06-10 三菱油化株式会社 Hydraulic cement composition and manufacture of cement moldings
JPH0834955A (en) * 1994-07-22 1996-02-06 Showa Highpolymer Co Ltd Water-based water-repellent and waterproof coating agent
JPH11240742A (en) * 1998-11-30 1999-09-07 Denki Kagaku Kogyo Kk Slag diminishing agent
JP2002274976A (en) * 2001-03-14 2002-09-25 Toagosei Co Ltd Method of hardening hydraulic inorganic material
JP2005008862A (en) * 2003-05-28 2005-01-13 Nippon Shokubai Co Ltd Water-based resin composition and its application
JP2005162534A (en) * 2003-12-03 2005-06-23 Denki Kagaku Kogyo Kk Method for ageing cured cement body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122146A (en) * 1984-11-14 1986-06-10 三菱油化株式会社 Hydraulic cement composition and manufacture of cement moldings
JPH0834955A (en) * 1994-07-22 1996-02-06 Showa Highpolymer Co Ltd Water-based water-repellent and waterproof coating agent
JPH11240742A (en) * 1998-11-30 1999-09-07 Denki Kagaku Kogyo Kk Slag diminishing agent
JP2002274976A (en) * 2001-03-14 2002-09-25 Toagosei Co Ltd Method of hardening hydraulic inorganic material
JP2005008862A (en) * 2003-05-28 2005-01-13 Nippon Shokubai Co Ltd Water-based resin composition and its application
JP2005162534A (en) * 2003-12-03 2005-06-23 Denki Kagaku Kogyo Kk Method for ageing cured cement body

Also Published As

Publication number Publication date
JP2007169100A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4842050B2 (en) Section repair material and section repair method
JP4316364B2 (en) Curing method for hardened cement and method for reducing drying shrinkage of hardened cement
JP6033636B2 (en) Repair mortar for spraying with low electrical resistance and repair method using the same
JP2009114002A (en) Abrasion-resistant material and repair method using the same
JP4642650B2 (en) Surface coated mortar or concrete
JP5697888B2 (en) Rapid hardening mortar with low electrical resistance, rapid hardening hardened body, and method for preventing corrosion of steel in concrete structure using the same
JP5356814B2 (en) Cement composite and method for forming the same
JP5185047B2 (en) Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP5242188B2 (en) Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP4593384B2 (en) Anticorrosive composite and process for producing the same
JP2008002176A (en) Composite body and method of producing the same
JP2002201057A (en) Adiabatic mortar
JP4813148B2 (en) Organic-inorganic composite type coating curing agent, mortar or concrete using the same, and processing method
JP2010241664A (en) Cement concrete hardened body, and method for preventing corrosion of steel material in concrete structure using the same
JP5308270B2 (en) Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar
JP5063965B2 (en) Composite and production method thereof
JP5868739B2 (en) Ground treatment method after concrete desalination
JP5078921B2 (en) Curing method for hardened cement and method for reducing drying shrinkage
JP5172164B2 (en) Method for treating high-strength concrete and hardened high-strength concrete
JP5068954B2 (en) Alumina cement composition and repair method using the same
JP5697357B2 (en) Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same
JP5697358B2 (en) Spraying mortar with low electrical resistance, mortar hardened body for spraying, and method for preventing corrosion of steel in concrete structure using the same
JP4744933B2 (en) Method for treating high fluid mortar or high fluid concrete and hardened cement
JP2011219332A (en) Quick-hardening mortar for plasterer having small electric resistance, quick-hardening mortar hardened body for the plasterer and corrosion prevention method for steel material inside concrete structure using the same
JP5259360B2 (en) Plastering mortar with low electrical resistance, a hardened body using the same, and a method for preventing corrosion of steel in a concrete structure using the mortar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250