[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4641375B2 - Method for producing composite of olivine type lithium phosphate and carbon material - Google Patents

Method for producing composite of olivine type lithium phosphate and carbon material Download PDF

Info

Publication number
JP4641375B2
JP4641375B2 JP2003358780A JP2003358780A JP4641375B2 JP 4641375 B2 JP4641375 B2 JP 4641375B2 JP 2003358780 A JP2003358780 A JP 2003358780A JP 2003358780 A JP2003358780 A JP 2003358780A JP 4641375 B2 JP4641375 B2 JP 4641375B2
Authority
JP
Japan
Prior art keywords
carbon material
type lithium
lithium phosphate
olivine
lifepo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003358780A
Other languages
Japanese (ja)
Other versions
JP2005123107A (en
Inventor
勝 宮山
香里 木村
秀昭 片山
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2003358780A priority Critical patent/JP4641375B2/en
Publication of JP2005123107A publication Critical patent/JP2005123107A/en
Application granted granted Critical
Publication of JP4641375B2 publication Critical patent/JP4641375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、Liイオンなどの金属カチオンをインターカレート・ディインターカレートすることが可能な電気化学素子用活物質に用いられるオリビン型リン酸リチウムと炭素材料との複合体の製造方法に関する。
The present invention relates to a method for producing a composite of an olivine-type lithium phosphate and a carbon material used for an active material for an electrochemical element capable of intercalating and deintercalating metal cations such as Li ions.

リチウムイオン二次電池は、炭素材料を負極の活物質として用い、LiCoO2 、LiNiO2 、LiMn2 4 などのLiと遷移金属との複合酸化物を正極の活物質として用い、ポリオレフィンの微多孔膜をセパレータとして用い、LiPF6 、LiBF4 などのリチウム塩を電解質とする有機電解液を用いることによって、充電時にはLiイオンが負極の炭素材料にインターカレートし、放電時にはLiイオンが正極のLiと遷移金属との複合酸化物にインターカレートすることによって充放電を行っている(特許文献1)。
米国特許第4567031号明細書
A lithium ion secondary battery uses a carbon material as an active material for a negative electrode, a composite oxide of Li and a transition metal such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 as an active material for a positive electrode, and is a microporous polyolefin. By using a membrane as a separator and using an organic electrolytic solution having a lithium salt such as LiPF 6 or LiBF 4 as an electrolyte, Li ions are intercalated into the carbon material of the negative electrode during charging, and Li ions are positive electrode Li during discharging. Charging / discharging is performed by intercalating a composite oxide of bismuth and transition metal (Patent Document 1).
US Pat. No. 4,567,031

しかしながら、上記活物質はLiイオンのインターカレーション、ディインターカレーションの速度が遅いため、高速での充放電が困難であるという問題があった。   However, the above active material has a problem that it is difficult to charge and discharge at high speed because Li ion intercalation and deintercalation are slow.

また、リチウム二次電池では、上記した材料以外に原料が安価な材料としてオリビン型リン(燐)酸リチウムであるLiFePO4 の検討が行われている(特許文献2)。
特開平9−134724号公報
In addition to the materials described above, LiFePO 4 , which is an olivine-type lithium phosphate, has been studied as a lithium secondary battery in addition to the above materials (Patent Document 2).
JP-A-9-134724

しかしながら、このLiFePO4 は、導電性が10-9mS/cm程度と低く、従来の電極を作製するような導電助剤を添加するといった方法では充分な導電性が得られず、高速での充放電が困難であるということが問題であった。 However, this LiFePO 4 has a conductivity as low as about 10 −9 mS / cm, and sufficient conductivity cannot be obtained by a method such as adding a conductive auxiliary agent for producing a conventional electrode. The problem was that it was difficult to discharge.

そこで、それを改善するためにLiFePO4 と炭素材料とを複合化することも検討されている(特許文献3〜5)。また、LiFePO4 にZr、Ti、Nb、Mgなどの異種金属をドープする方法も検討されている(非特許文献1)。
特開2002−75364号公報 特開2003−34534号公報 特開2003−203628号公報 Nature Materials,Vol.1 OCT.2002
Therefore, it is also considered to composite the LiFePO 4 and the carbon material to improve it (Patent Documents 3 to 5). In addition, a method of doping LiFePO 4 with a dissimilar metal such as Zr, Ti, Nb, or Mg has been studied (Non-Patent Document 1).
JP 2002-75364 A Japanese Patent Laid-Open No. 2003-34534 JP 2003-203628 A Nature Materials, Vol. 1 OCT. 2002

しかしながら、これらの方法は、いずれも、LiFePO4 を合成する際に焼成することによって、炭素材料と複合化したり、LiFePO4 に異種金属をドープしているため、LiFePO4 のミクロンオーダー以上の大きなサイズの結晶を生成する。したがって、炭素材料と複合化した場合でも複合化した活物質は、その表面に炭素材料の微粒子が付着した構造であるとか、活物質の内部に炭素材料を含んだ構造となり、そのため、LiFePO4 の結晶粒子間の導電性を充分に確保できない。また、異種金属をドープした場合、導電性は改善できるものの、焼成法を採用しているために、高温での長時間の加熱工程が必要であり、プロセスに要するコストが高いものになるという問題点があった。 However, these methods are all, by firing in synthesizing LiFePO 4, or complexed with carbon material, since the doped dissimilar metals LiFePO 4, the large size of the micron order or more LiFePO 4 To produce crystals. Thus, the active material complexed even when complexed with carbon materials, Toka particulate carbon material is a structure attached to the surface, becomes the internal containing a carbon material on the structure of the active material, therefore, the LiFePO 4 The conductivity between crystal grains cannot be sufficiently secured. Also, when different types of metals are doped, the conductivity can be improved, but since the firing method is adopted, a long heating step at a high temperature is required, and the cost required for the process becomes high. There was a point.

本発明は、上記のようなリチウム二次電池などの電気化学素子用活物質の問題点を解決し、高速での充放電が可能でかつ高容量の電気化学素子を構成することができる電気化学素子用活物質に用いられるオリビン型リン酸リチウムと炭素材料との複合体の製造方法を提供することを目的とする。
The present invention solves the problems of active materials for electrochemical devices such as lithium secondary batteries as described above, and is capable of constituting a high-capacity electrochemical device that can be charged and discharged at high speed. It aims at providing the manufacturing method of the composite_body | complex of the olivine type lithium phosphate used for the active material for elements, and a carbon material.

本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、化学式がLiFePOで表されるオリビン型リン酸リチウムと炭素材料との複合体であって、炭素材料の形態を実質的に保持し、その炭素材料の一部または全部をオリビン型リン酸リチウムで被覆した構造のもので電気化学素子用活物質を構成するときは、高速での充放電が可能でかつ高容量の電気化学素子を構成することができることを見出し、本発明を完成するにいたった。
As a result of intensive studies to solve the above problems, the inventors of the present invention are a composite of an olivine-type lithium phosphate having a chemical formula represented by LiFePO 4 and a carbon material, and the carbon material is substantially in a form. When the active material for an electrochemical device is configured with a structure in which a part or all of the carbon material is covered with olivine type lithium phosphate, it is possible to charge and discharge at high speed and to have a high capacity It has been found that a chemical element can be constructed, and the present invention has been completed.

すなわち、主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料とを複合化することによって、Liイオンの拡散が速くなり、高速での充放電が可能になる。また、オリビン型リン酸リチウムと炭素材料との複合化をナノレベルで行うことにより導電性が確保され、負荷特性が向上して、高速充放電での容量がより一層大きくなり、高容量が得られる。 That is, by combining the olivine-type lithium phosphate, whose chemical formula is mainly represented by LiFePO 4 , and the carbon material, the diffusion of Li ions is accelerated, and charging / discharging at high speed becomes possible. In addition, by combining the olivine-type lithium phosphate and carbon material at the nano level, conductivity is ensured, load characteristics are improved, capacity at high-speed charge / discharge is further increased, and high capacity is obtained. It is done.

本発明において、主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムとは、主成分がLiFePO4 で表されるオリビン型リン酸リチウムであり、そのLiFePO4 を生成する際に副生するLiFePO4 (OH)やLi2 Fe2 PO4 などの化合物を副生成物として含有するものであってもよいという意味である。 In the present invention, primarily the chemical formula The olivine-type lithium phosphate represented by LiFePO 4, the main component is an olivine-type lithium phosphate represented by LiFePO 4, as a byproduct when generating the LiFePO 4 LiFePO 4 (OH) or Li 2 Fe 2 PO 4 or the like may be contained as a by-product.

本発明の製造方法によって製造されるオリビン型リン酸リチウムと炭素材料との複合体からなる電気化学素子用活物質は、高速での充放電が可能であり、また、Liイオンをインターカレート・ディインターカレートさせることが可能なので高容量を得ることができる。したがって、この活物質を用いることによって、高速での充放電が可能でかつ高容量の電気化学素子を構成することができる。
The active material for an electrochemical device comprising a composite of an olivine type lithium phosphate and a carbon material produced by the production method of the present invention can be charged / discharged at high speed, and Li ions can be intercalated. High capacity can be obtained because deintercalation is possible. Therefore, by using this active material, a high-capacity electrochemical device capable of high-speed charge / discharge can be constructed.

本発明において、主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと複合化する炭素材料としては、複合化することにより活物質としての複合体に電子伝導性を付与することのできる物質であれば特に制限されることはないが、例えば、人造黒鉛、アセチレンブラック、ケッチェンブラック、カーボンブラック、気相成長炭素繊維(VGCF)、非晶質炭素、炭素繊維、カーボンナノチューブ、フラーレン類などの炭素質材料を好適に用いることができる。 In the present invention, the carbon material to be combined with the olivine-type lithium phosphate mainly represented by the chemical formula LiFePO 4 is a substance that can impart electronic conductivity to the composite as an active material by combining. If there is no particular limitation, for example, artificial graphite, acetylene black, ketjen black, carbon black, vapor grown carbon fiber (VGCF), amorphous carbon, carbon fiber, carbon nanotube, fullerenes, etc. A carbonaceous material can be used suitably.

上記主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体は、炭素材料の持つ電子伝導性を活かすために、実質的に炭素材料の形態を保持していることが好ましい。ここでいう実質的に形態を保持しているとは、電子顕微鏡などを用いた形態観測を行った場合に、複合化する前の炭素材料の形態と複合化後の活物質が類似構造を有していることをいう。例えば、従来のオリビン型リン酸リチウムと炭素材料との複合体のように、オリビン型リン酸リチウムの結晶がミクロンオーダーで析出していることが観測される場合には、炭素材料が明らかに複合化前と形態が異なっていて、実質的に炭素材料の形態を保持しているとはいえない。 The composite of the olivine-type lithium phosphate mainly represented by the chemical formula LiFePO 4 and the carbon material may substantially retain the form of the carbon material in order to make use of the electronic conductivity of the carbon material. preferable. The term “substantially retaining the form” as used herein means that the form of the carbon material before compounding and the active material after compounding have a similar structure when morphological observation is performed using an electron microscope or the like. It means doing. For example, when it is observed that crystals of olivine-type lithium phosphate are deposited on the micron order, such as a conventional composite of olivine-type lithium phosphate and a carbon material, the carbon material is clearly a composite. The form is different from that before the conversion, and it cannot be said that the form of the carbon material is substantially maintained.

本発明の主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体は、FeSO4 またはその水和物であるFeSO4 ・nH2 O(nH2 Oは水和水)、FeCl2 またはその水和物であるFeCl2 ・nH2 O(nH2 Oは水和水)および(NH4 2 Fe(SO4 2 またはその水和物である(NH4 2 Fe(SO4 2 ・nH2 O(nH2 Oは水和水)よりなる群から選ばれる少なくとも1種と、LiOHまたはその水和物であるLiOH・nH2 O(nH2 Oは水和水)と、H3 PO4 とをオリビン型リン酸リチウム用の原材料とし、そのオリビン型リン酸リチウム用の原材料と炭素材料とを攪拌混合した後、水熱合成法によりLiFePO4 の前駆体であるLiFePO4 (OH)が主体のリン酸リチウムと炭素材料の複合体を合成し、その後、不活性ガス中で加熱処理してアニールすることによって製造することができる。その際の水熱合成法については特に制限されることなく従来公知の方法を採用することができる。例えば、上記攪拌混合したオリビン型リン酸リチウム用の原材料と炭素材料との混合物を耐圧容器中で好ましくは130〜170℃、より好ましくは150℃で熱処理する方法を採用することができる。そして、その際の熱処理の時間は1〜5時間が好ましい。熱処理時間が1時間より少ないと、LiFePO4 の前駆体の生成が不充分になりアニール後のLiFePO4 の生成量が少なく良好な特性が得ることができなくなるおそれがある。また、熱処理時間が5時間より多いと、LiFePO4 の前駆体の生成時にLiFePO4 の結晶が析出しミクロンオーダーでの結晶成長を引き起こすため炭素材料の持つ良好な電子伝導性を充分に生かすことができなくなるおそれがある。生成したLiFePO4 の前駆体は、その後の不活性ガス内でアニール処理することによりLiFePO4 を生成することができる。アニール処理時の温度としては、400〜600℃が好ましく、450〜550℃がより好ましく、500℃前後がさらに好ましい。アニール処理温度が低すぎるとLiFePO4 (OH)が多量に残り、アニール処理温度が高すぎるとLi2 Fe2 (PO)4 が生成する。いずれの場合も活物質の容量低下を招くなどの悪影響があるため好ましくない。アニール処理の時間は30分〜5時間であることが好ましい。また、水熱合成する際に微粒子化剤や界面活性剤などを適宜加えることができる。微粒子化剤としては例えばポリエチレングリコールを用いることができ、界面活性剤としては例えばアセトンを用いることができる。水熱合成法により合成することによって、低温、短時間で炭素材料と複合化したオリビン型リン酸リチウムの合成が可能である。 The composite of the olivine type lithium phosphate and the carbon material mainly represented by the chemical formula LiFePO 4 of the present invention is FeSO 4 or its hydrate, FeSO 4 .nH 2 O (nH 2 O is hydration water). FeCl 2 or its hydrate FeCl 2 .nH 2 O (where nH 2 O is hydration water) and (NH 4 ) 2 Fe (SO 4 ) 2 or its hydrate (NH 4 ) 2 Fe (SO 4 ) 2 · nH 2 O (nH 2 O is hydration water) and at least one selected from the group consisting of LiOH or hydrates thereof LiOH · nH 2 O (nH 2 O is hydration water) ) And H 3 PO 4 are raw materials for olivine-type lithium phosphate, and the raw materials for olivine-type lithium phosphate and carbon materials are stirred and mixed, and then a precursor of LiFePO 4 by a hydrothermal synthesis method. LiFePO 4 (OH) is mainly phosphorus Sanli Synthesizing a complex of um and a carbon material, then, it can be produced by annealing by heat treatment in an inert gas. The hydrothermal synthesis method at that time is not particularly limited, and a conventionally known method can be employed. For example, a method of heat-treating the mixture of the raw material for the olivine-type lithium phosphate and the carbon material, which are stirred and mixed, in a pressure resistant vessel, preferably at 130 to 170 ° C., more preferably 150 ° C. can be employed. And the time of the heat processing in that case is preferably 1 to 5 hours. If the heat treatment time is less than 1 hour, the LiFePO 4 precursor is not sufficiently produced, and the amount of LiFePO 4 produced after annealing is small, and good characteristics may not be obtained. Further, when the heat treatment time is more than 5 hours, it is sufficiently exploit that good electron conductivity possessed by the carbon material to cause crystal growth in the crystal precipitated micron order of LiFePO 4 when generating precursor LiFePO 4 There is a risk that it will not be possible. The produced LiFePO 4 precursor can be annealed in a subsequent inert gas to produce LiFePO 4 . As temperature at the time of annealing treatment, 400-600 degreeC is preferable, 450-550 degreeC is more preferable, About 500 degreeC is further more preferable. If the annealing temperature is too low, a large amount of LiFePO 4 (OH) remains, and if the annealing temperature is too high, Li 2 Fe 2 (PO) 4 is generated. In either case, there is an adverse effect such as reducing the capacity of the active material, which is not preferable. The annealing treatment time is preferably 30 minutes to 5 hours. Further, when hydrothermal synthesis is performed, a fine particle agent, a surfactant and the like can be appropriately added. As the micronizing agent, for example, polyethylene glycol can be used, and as the surfactant, for example, acetone can be used. By synthesizing by a hydrothermal synthesis method, it is possible to synthesize olivine type lithium phosphate complexed with a carbon material at a low temperature in a short time.

このようにして得られた本発明の主として化学式LiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体からなる電気化学素子用活物質は、オリビン型リン酸リチウムと炭素材料とがナノメータースケールで複合化しており、複合化後においても、実質的に炭素材料の形態を保持し、炭素材料にオリビン型リン酸リチウムが被覆した構造となる。オリビン型リン酸リチウムによる被覆は炭素材料全体に及んでいてもよいし、一部のみの被覆でもよい。オリビン型リン酸リチウムと炭素材料との比率は、特に制限されることはないが、質量比で40:60〜90:10が好ましい。オリビン型リン酸リチウムの比率が前記範囲より少ないと活物質の放電容量が少なくなり、前記範囲より多いと炭素材料の比率が少なすぎて充分な電子伝導性が得られなくなるおそれがある。 The active material for an electrochemical device comprising a composite of the olivine-type lithium phosphate represented by the chemical formula LiFePO 4 and the carbon material of the present invention thus obtained is obtained by combining the olivine-type lithium phosphate and the carbon material. It is compounded at the nanometer scale, and even after the compounding, the structure of the carbon material is substantially maintained and the carbon material is coated with olivine type lithium phosphate. The coating with the olivine-type lithium phosphate may extend over the entire carbon material or may be a partial coating. The ratio between the olivine-type lithium phosphate and the carbon material is not particularly limited, but is preferably 40:60 to 90:10 by mass ratio. When the ratio of the olivine type lithium phosphate is less than the above range, the discharge capacity of the active material is decreased. When the ratio is more than the above range, the ratio of the carbon material is too small and sufficient electronic conductivity may not be obtained.

得られた主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体は、従来公知の電極集電体への塗布、圧着、あるいはペレット化などの方法によって電極を形成できる。これらの方法に特に制限はないが、高速充放電特性をより適切に活かすためには、集電体に塗布するか、圧着する方法を採用することが好ましい。集電体に用いる基材としては、電気化学素子の集電体に一般的に用いられている材料であればいずれでもよいが、例えばLiイオン電池の正極として用いる場合には、Al、Niなどが好適に用いられる。そして、集電体としては、それらの基材を箔状、メッシュ状などに加工したものを用いることができる。また、集電体との密着性を向上させる目的で高分子バインダーなどを添加してもよい。その高分子バインダーとしては、必要な密着力が得られ、電解液に対する溶解性がなく、使用する電圧範囲で酸化や還元による分解などの副反応を起こさず安定である化合物であればいずれでもよいが、例えば、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレンなどのフッ素系ポリマーが化学的に安定であるという観点から好適に用いられる。 The obtained composite of olivine-type lithium phosphate mainly represented by the chemical formula LiFePO 4 and a carbon material can form an electrode by a method such as application to a conventionally known electrode current collector, pressure bonding, or pelletization. . Although there is no restriction | limiting in particular in these methods, In order to utilize a high-speed charge / discharge characteristic more appropriately, it is preferable to employ | adopt the method of apply | coating to a collector or crimping | bonding. The base material used for the current collector may be any material that is generally used for current collectors of electrochemical devices. For example, when used as the positive electrode of a Li-ion battery, Al, Ni, etc. Are preferably used. And as a collector, what processed those base materials into foil shape, mesh shape, etc. can be used. Further, a polymer binder or the like may be added for the purpose of improving the adhesion to the current collector. The polymer binder may be any compound as long as it has the necessary adhesion, is not soluble in the electrolyte, and is stable without causing side reactions such as oxidation or reduction in the voltage range used. However, for example, fluoropolymers such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, and tetrafluoroethylene are preferably used from the viewpoint of being chemically stable.

このようにして得られた、主として化学式がLiFePO4 が表されるオリビン型リン酸リチウムと炭素材料との複合体を活物質として用いて電気化学素子を構成することができる。この複合体からなる活物質の電位が対Liで3.4V程度であることを考慮すると正極の活物質として用いることが好ましい。正極として用いる場合の対極としては、例えば、金属リチウムやLiAl合金、Sn、SiなどのLiと合金を形成する金属、あるいは、非晶質炭素、人造黒鉛、天然黒鉛、フラーレン、ナノチューブなどのリチウムを吸蔵放出(インターカレート・ディインターカレート)可能な炭素系材料、Li4 Ti5 12、Li2 Ti3 7 などのリチウムを吸蔵放出可能なチタン酸リチウムを用いることができる。 An electrochemical device can be formed using the composite of the olivine-type lithium phosphate and the carbon material obtained as described above, in which the chemical formula is mainly LiFePO 4 , as an active material. Considering that the potential of the active material made of this composite is about 3.4 V as compared to Li, it is preferable to use it as the positive electrode active material. As a counter electrode when used as a positive electrode, for example, metal such as lithium, LiAl alloy, Sn, Si, or other metal that forms an alloy with Li, or lithium such as amorphous carbon, artificial graphite, natural graphite, fullerene, or nanotube is used. Lithium titanate capable of occluding and releasing lithium, such as a carbon-based material that can be occluded and released (intercalated and deintercalated), Li 4 Ti 5 O 12 , and Li 2 Ti 3 O 7 can be used.

本発明の電気化学素子用活物質を用いて電気化学素子を構成するにあたり、電解液としてはLi塩を有機溶媒に溶解したものが用いられる。上記Li塩としては、溶媒中で解離してLi+ イオンを形成し、素子として使用される電圧範囲で分離などの副反応を起こさないものであればいずれでもよいが、例えば、LiPF6 、LiBF4 、LiAsF6 、LiClO4 などの無機化合物、LiN(SO2 CF3 2 、LiN(SO2 2 5 2 、LiN(SO2 CF3 )(SO2 4 9 )、LiC(SO2 CF2 3 、LiC(SO2 2 5 2 、LiPF6-n (C2 5 n (nは1から6までの整数)、LiSO2 CF3 、LiSO3 2 6 、LiSO2 4 8 などの有機化合物などを用いることができる。 In constituting an electrochemical element using the active material for an electrochemical element of the present invention, an electrolytic solution in which a Li salt is dissolved in an organic solvent is used. The Li salt may be any one as long as it dissociates in a solvent to form Li + ions and does not cause a side reaction such as separation in the voltage range used as the device. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 and other inorganic compounds, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC ( SO 2 CF 2) 3, LiC (SO 2 C 2 F 5) 2, LiPF 6-n (C 2 F 5) n ( n is an integer from 1 to 6), LiSO 2 CF 3, LiSO 3 C 2 F 6 , organic compounds such as LiSO 2 C 4 F 8 can be used.

そして、有機溶媒としては、Li塩を溶解し、素子として使用される電圧範囲で分解などの副反応を起こさないものであればいずれでもよいが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、γ−ブチロラクトンといった環状エステル、ジメトキシエタン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル、ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル、アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類などを単独でまたは2種以上用いることができる。特に良好な特性を得るためには、エチレンカーボネートと鎖状カーボネートとの混合溶媒のような高い導電率を得ることができる組み合わせを採用することが好ましい。   Any organic solvent may be used as long as it dissolves the Li salt and does not cause side reactions such as decomposition in the voltage range used as the device. For example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene Cyclic carbonates such as carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, cyclic esters such as γ-butyrolactone, chain ethers such as dimethoxyethane, diglyme, triglyme and tetraglyme, dioxane, tetrahydrofuran, 2-methyl Cyclic ethers such as tetrahydrofuran, nitriles such as acetonitrile, propionitrile, and methoxypropionitrile can be used alone or in combination of two or more. In order to obtain particularly good characteristics, it is preferable to employ a combination capable of obtaining high conductivity such as a mixed solvent of ethylene carbonate and chain carbonate.

これらの電解液には、安全性、サイクル性、高温貯蔵性などの特性を向上させる目的で、添加剤、例えば、ビニレンカーボネートまたはその誘導体、ベンゼンまたはその誘導体、1,3−プロパンサルトン、ジフェニル−ジスルフィドまたはその誘導体、ビフェニルまたはその誘導体などの添加剤を適宜加えることができる。   These electrolytes contain additives such as vinylene carbonate or derivatives thereof, benzene or derivatives thereof, 1,3-propane sultone, diphenyl for the purpose of improving safety, cycleability, high temperature storage properties and the like. -Additives such as disulfide or a derivative thereof, biphenyl or a derivative thereof can be appropriately added.

また、有機溶媒に代えて、エチル−メチルイミダゾリウムトリフルオロメチルスルホニウムイミド、ヘプチル−トリメチルアンモニウムトリフルオロメチルスルホニウムイミド、ピリジニウムトリフルオロメチルスルホニウムイミド、グアジニウムトリフルオロメチルスルホニウムイミドなどの常温溶融塩を用いることもできる。   Instead of organic solvents, room temperature molten salts such as ethyl-methylimidazolium trifluoromethylsulfonium imide, heptyl-trimethylammonium trifluoromethylsulfonium imide, pyridinium trifluoromethylsulfonium imide, guanidinium trifluoromethylsulfonium imide, etc. It can also be used.

さらに、上記した電解液にポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド−プロピレンオキシド共重合体、主鎖または側鎖にエチレンオキシド鎖を含む架橋ポリマーなどのゲル電解質形成可能なホストポリマーを添加してゲル化した電解液を用いることもできる。   Further, the above electrolyte solution is crosslinked with polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyacrylonitrile, polyethylene oxide, polypropylene oxide, ethylene oxide-propylene oxide copolymer, ethylene oxide chain in the main chain or side chain. An electrolytic solution obtained by adding a host polymer capable of forming a gel electrolyte such as a polymer to be gelled can also be used.

また、電解液に代えて、ポリエチレンオキシド、側鎖にエチレンオキシド基を含むシロキサンポリマー、側鎖にエチレンオキシド基を含む(メタ)アクリレート、ポリエチレンカーボネート、ポリプロピレンカーボネート、アンヒドログルシトール基含有ポリカーボネートなどのポリマーとリチウム塩とからなる高分子電解質を用いることもできる。   Also, instead of electrolyte, polymers such as polyethylene oxide, siloxane polymers containing ethylene oxide groups in the side chains, (meth) acrylates containing ethylene oxide groups in the side chains, polyethylene carbonates, polypropylene carbonates, polycarbonates containing anhydroglucitol groups It is also possible to use a polymer electrolyte comprising lithium salt.

さらに、電解液に代えて、Li2 S−SiS2 −Li4 SiO4 、Li2 S−SiS2 −P2 5 −LiI、LiO2 −Al2 3 −TiO2 −P2 5 などの無機ガラス電解質、LiTi2 (PO4 3 などのNASICON型、La0.57Li0.28TiO3 などのペロブスカイト型、Li3.25Ge0.250.754 、Li3.4 Si0.4 0.6 4 などのLISICON型の無機固体電解質を用いることもできる。 Further, instead of the electrolytic solution, Li 2 S—SiS 2 —Li 4 SiO 4 , Li 2 S—SiS 2 —P 2 S 5 —LiI, LiO 2 —Al 2 O 3 —TiO 2 —P 2 O 5, etc. Inorganic glass electrolytes, NASICON types such as LiTi 2 (PO 4 ) 3 , perovskite types such as La 0.57 Li 0.28 TiO 3 , LISICON types such as Li 3.25 Ge 0.25 P 0.75 S 4 and Li 3.4 Si 0.4 P 0.6 S 4 An inorganic solid electrolyte can also be used.

これらの構成材料を用いて電気化学素子が構築されるが、その際の素子の形態としては、従来公知の円筒形、角形、コイン形あるいはラミネートタイプなどのいずれの形状、形態であってもよく、特に制限されることはない。例えば、円筒形の電気化学素子を作製する場合、集電体への塗布または圧着などを経て作製されたシート状の正極と負極とをポリオレフィン微多孔膜からなるセパレータを介して巻回し、得られた巻回構造の電極体をステンレス鋼またはアルミニウムなどの材料でできた有底円筒状の缶に挿入し、正負極端子を取り付け、電解液を注入し、封口することによって作製される。封口の方法にはガスケットを介したかしめ、レーザー溶接などの方法を採用することができる。また、アルミニウムを芯材とするアルミラミネートフィルムなどを外装材としたラミネートタイプの電気化学素子を作製する場合は、前記した巻回構造の電極体を円筒形ではなく、長円形に巻回し、袋状にしたアルミニウムラミネートフィルムの袋内に挿入し、端子を取り出し、電解液を注入し、熱融着などによりラミネートフィルムを封止することによって作製される。また、コイン形の電気化学素子を作製する場合は、プレスにより形成したペレット状電極と対極とをセパレータを介して缶内に配し、電解液を注入し、対極缶を被せて封口ガスケットを介してかしめることによって作製される。   An electrochemical element is constructed using these constituent materials, and the form of the element at that time may be any shape and form such as a conventionally known cylindrical shape, square shape, coin shape or laminate type. There is no particular limitation. For example, when producing a cylindrical electrochemical element, a sheet-like positive electrode and negative electrode produced through application or pressure bonding to a current collector are wound through a separator made of a polyolefin microporous film. The wound electrode body is inserted into a bottomed cylindrical can made of a material such as stainless steel or aluminum, attached with positive and negative terminals, injected with an electrolyte, and sealed. As a sealing method, a method such as caulking through a gasket or laser welding can be employed. In addition, when producing a laminate type electrochemical element having an aluminum laminate film or the like having aluminum as a core material as an exterior material, the electrode body having the winding structure described above is wound not in a cylindrical shape but in an oval shape to form a bag. It is produced by inserting the aluminum laminate film into a bag, taking out the terminals, injecting an electrolyte, and sealing the laminate film by heat fusion or the like. When producing a coin-shaped electrochemical device, a pellet-shaped electrode formed by pressing and a counter electrode are placed in a can via a separator, an electrolyte is injected, a counter electrode can is covered, and a sealing gasket is inserted. It is made by caulking.

次に実施例を挙げて本発明をより具体的に詳細に説明する。ただし、本発明はそれらの実施例に限定されるものではない。なお、以下の実施例などにおいて、溶液などの濃度を示す%は、特にその基準を付記しない限り、質量%である。   Next, an Example is given and this invention is demonstrated more concretely in detail. However, the present invention is not limited to these examples. In the following examples and the like,% indicating the concentration of a solution or the like is mass% unless otherwise noted.

実施例1
1mol/lのLiOH・H2 O水溶液と、1mol/lのFeSO4 ・7H2 O水溶液と、H3 PO4 とをモル比がLi:Fe:P=3.0:1.0:1.0になるように混合し、微粒子化促進剤としてポリエチレングルコール(LiFePO4 用原材料液の1/3の体積)を加えた。さらに界面活性剤としてアセトン(LiFePO4 用原材料液と同体積)と炭素材料としてのアセチレンブラック(平均粒子径35nm)を原材料が全てLiFePO4 となったと仮定して計算した生成量と同質量になるように加えて、15時間攪拌混合した。得られた混合物を耐圧容器に入れて150℃で3時間水熱合成を行い、LiFePO4 の前駆体と炭素材料との複合体を得た。その複合体を洗浄後、N2 中で500℃で1時間アニールすることによって、主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体を得た。
Example 1
A 1 mol / l LiOH.H 2 O aqueous solution, a 1 mol / l FeSO 4 .7H 2 O aqueous solution, and H 3 PO 4 have a molar ratio of Li: Fe: P = 3.0: 1.0: 1. were mixed so that 0, was added polyethylene glycol (1/3 of the volume of LiFePO 4 for the raw material solution) as fine particles accelerator. Furthermore, acetone (same volume as the raw material liquid for LiFePO 4 ) as the surfactant and acetylene black (average particle diameter 35 nm) as the carbon material have the same mass as the amount calculated assuming that the raw materials are all LiFePO 4. The mixture was stirred and mixed for 15 hours. The obtained mixture was put into a pressure vessel and hydrothermal synthesis was performed at 150 ° C. for 3 hours to obtain a composite of a precursor of LiFePO 4 and a carbon material. The composite was washed and then annealed in N 2 at 500 ° C. for 1 hour to obtain a composite of an olivine type lithium phosphate having a chemical formula mainly represented by LiFePO 4 and a carbon material.

実施例2
アニール温度を400℃とした以外は、実施例1と同様にして、主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体を製造した。
Example 2
Except that the annealing temperature was 400 ° C., a composite of an olivine type lithium phosphate whose chemical formula was mainly represented by LiFePO 4 and a carbon material was produced in the same manner as in Example 1.

実施例3
アニール温度を550℃とした以外は、実施例1と同様にして、主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体を製造した。
Example 3
Except that the annealing temperature was 550 ° C., a composite of an olivine type lithium phosphate whose chemical formula was mainly represented by LiFePO 4 and a carbon material was manufactured in the same manner as in Example 1.

実施例4
アニール温度を600℃とした以外は、実施例1と同様にして、主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体を製造した。
Example 4
Except that the annealing temperature was 600 ° C., a composite of an olivine type lithium phosphate whose chemical formula was mainly represented by LiFePO 4 and a carbon material was manufactured in the same manner as in Example 1.

比較例1
アニールをしなかった以外は、実施例1と同様にして、LiFePO4 の前駆体と炭素材料との複合体を製造した。
Comparative Example 1
A composite of a LiFePO 4 precursor and a carbon material was produced in the same manner as in Example 1 except that annealing was not performed.

比較例2
炭素材料としてのアセチレンブラックを混合しなかったこと以外は、実施例1と同様にしてオリビン型リン酸リチウムを製造した。
Comparative Example 2
An olivine type lithium phosphate was produced in the same manner as in Example 1, except that acetylene black as a carbon material was not mixed.

図1に実施例1〜4で製造した主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体および比較例1で製造したLiFePO4 の前駆体と炭素材料との複合体のX線回折スペクトルの測定結果を示す。 1 is a composite of an olivine-type lithium phosphate having a chemical formula mainly represented by LiFePO 4 and a carbon material manufactured in Examples 1 to 4 , and a composite of a precursor of LiFePO 4 and a carbon material manufactured in Comparative Example 1. The measurement result of the X-ray diffraction spectrum of a body is shown.

図1に示すように、実施例1では、ほぼ100%オリビン型リン酸リチウムがLiFePO4 であり、高純度の良好な複合体を得られていることがわかる。また、実施例2〜4でも、やや不純物に起因するピークが見られるものの、主としてLiFePO4 が生成していることがわかる。 As shown in FIG. 1, in Example 1, it can be seen that almost 100% olivine-type lithium phosphate is LiFePO 4 , and a good composite with high purity is obtained. Also, in Examples 2 to 4, it can be seen that LiFePO 4 is mainly produced although a peak due to impurities is slightly observed.

これに対して、比較例1では、LiFePO4 のピークはほとんど生成していないことがわかる。 On the other hand, in Comparative Example 1, it can be seen that almost no LiFePO 4 peak is generated.

また、図2に実施例1で製造した複合体のSEM(走査電子顕微鏡)像写真を示し、図3にその複合化にあたって使用した炭素材料としてのアセチレンブラック(AB)のSEM像写真を示す。また、図4に比較例2で製造したLiFePO4 のSEM像写真を示す。 2 shows an SEM (scanning electron microscope) image photograph of the composite produced in Example 1, and FIG. 3 shows an SEM image photograph of acetylene black (AB) as a carbon material used for the composite. FIG. 4 shows a SEM image photograph of LiFePO 4 produced in Comparative Example 2.

図2〜図3からわかるように、実施例1の主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体は、オリビン型リン酸リチウムと炭素材料とが良好に複合化しており、複合化させたアセチレンブラックの形態を保持している。これに対して、図4に示すように、炭素材料と複合化していないLiFePO4 は、菱形結晶構造を示し、実施例1の主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体との違いは明白である。 As can be seen from FIGS. 2 to 3, the composite of the olivine type lithium phosphate and the carbon material mainly represented by the chemical formula LiFePO 4 in Example 1 is a good composite of the olivine type lithium phosphate and the carbon material. And maintains the complexed acetylene black form. On the other hand, as shown in FIG. 4, LiFePO 4 that is not complexed with the carbon material exhibits a rhomboid crystal structure, and the olivine-type lithium phosphate and the carbon material in which the chemical formula of Example 1 is mainly represented by LiFePO 4 The difference with the complex is obvious.

実施例5
実施例1で製造した主として化学式がLiFePO4 で表されるオリビン型 リン酸リチウムと炭素材料との複合体に結着剤としてポリテトラフルオロエチレンを質量比で90:10の割合で混合して合剤を調製し、得られた合剤をNiメッシュに圧着して電極を作製した。電極上の合剤質量は20mg/cm3 であった。
Example 5
Polytetrafluoroethylene as a binder was mixed with the composite of olivine type lithium phosphate and the carbon material mainly represented by the chemical formula LiFePO 4 manufactured in Example 1 at a mass ratio of 90:10. An electrode was prepared, and the resulting mixture was pressure-bonded to a Ni mesh to produce an electrode. The mixture mass on the electrode was 20 mg / cm 3 .

上記のようにして得られた電極を用い、対極および参照極に金属リチウムを用い、セパレータにポリエチレン製微多孔膜を用い、電解液に1M LiClO4 PC溶液〔プロピレンカーボネート(PC)にLiClO4 を1mol/l溶解させた溶液〕を用いて三極式セルを組み立て、後記のように、その電気化学特性を測定した。 Using the electrode obtained as described above, the metal lithium used as a counter electrode and a reference electrode, a polyethylene microporous membrane separator, the LiClO 4 in 1M LiClO 4 PC solution [propylene carbonate (PC) in the electrolyte A tripolar cell was assembled using 1 mol / l dissolved solution], and its electrochemical characteristics were measured as described below.

比較例3
比較例2で製造したオリビン型リン酸リチウムにアセチレンブラックを質量比で1:1になるように混合し、得られた混合物に結着剤としてポリテトラフルオロエチレンを質量比で90:10になるように混合して合剤を調製し、得られた合剤をNiメッシュに圧着して電極を作製した以外は実施例5と同様にして三極式セルを組み立て、その電気化学特性を測定した。
Comparative Example 3
Acetylene black was mixed at a mass ratio of 1: 1 with the olivine-type lithium phosphate produced in Comparative Example 2, and polytetrafluoroethylene as a binder was blended at a mass ratio of 90:10. A three-electrode cell was assembled in the same manner as in Example 5 except that an electrode was prepared by pressure-bonding the resulting mixture to a Ni mesh, and the electrochemical characteristics thereof were measured. .

上記のようにして作製した実施例5および比較例3のセルについて、負荷特性を測定した。その結果を図5に示す。負荷特性は、充電時の電流密度は30mA/gで終止電圧は4V、放電時の終止電圧は2.5Vで電流密度を0.02A/gから10A/gまで変化させて測定した。   The load characteristics of the cells of Example 5 and Comparative Example 3 manufactured as described above were measured. The result is shown in FIG. The load characteristics were measured by changing the current density from 0.02 A / g to 10 A / g, with a current density during charging of 30 mA / g, a final voltage of 4 V, and a final voltage of 2.5 V during discharging.

図5に示すように、実施例5は、比較例3に比べて、高い電流密度で放電させたときの放電容量の低下が少なく、負荷特性が優れており、高速での充放電が可能でかつ高容量が得られることを示していた。   As shown in FIG. 5, in Example 5, compared to Comparative Example 3, there is little decrease in discharge capacity when discharged at a high current density, excellent load characteristics, and high speed charge / discharge is possible. And it showed that a high capacity was obtained.

また、実施例5のセルについて、25℃で掃引速度0.1mV/s、2.5〜4.3Vの範囲で測定したサイクリックボルタグラム(CV)を図6に示す。図6に示すように、実施例5のセルは、5回の充放電でのサイクリックボルタグラムの変形がなく、良好なサイクル特性を示し、リチウム二次電池などの二次の電気化学素子に必要とされる充分なサイクル特性を有していた。   Moreover, about the cell of Example 5, the cyclic voltagram (CV) measured in the range of 2.5-4.3V at the sweep rate of 0.1 mV / s at 25 degreeC is shown in FIG. As shown in FIG. 6, the cell of Example 5 has no cyclic voltagram deformation after 5 charge / discharge cycles, exhibits good cycle characteristics, and is suitable for secondary electrochemical devices such as lithium secondary batteries. It had sufficient cycle characteristics as required.

実施例1〜4および比較例1のオリビン型リン酸リチウムと炭素材料との複合体のX線回折スペクトルを示す図である。It is a figure which shows the X-ray-diffraction spectrum of the composite_body | complex of the olivine type lithium phosphate of Examples 1-4 and the comparative example 1, and a carbon material. 実施例1で製造した主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体のSEM像を示す図である。1 is a diagram showing an SEM image of a composite of an olivine-type lithium phosphate and a carbon material produced mainly in Example 1 and whose chemical formula is mainly represented by LiFePO 4. FIG. 実施例1の主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムと炭素材料との複合体の製造にあたって用いたアセチレンブラックのSEM像を示す図である。1 is a diagram showing an SEM image of acetylene black used in the manufacture of a composite of an olivine-type lithium phosphate whose chemical formula is mainly represented by LiFePO 4 and a carbon material in Example 1. FIG. 比較例2で製造した主として化学式がLiFePO4 で表されるオリビン型リン酸リチウムのSEM像を示す図である。Primarily the chemical formula was prepared in Comparative Example 2 is a view showing an SEM image of the olivine-type lithium phosphate represented by LiFePO 4. 実施例5および比較例3で作製した電気化学素子の負荷特性を示す図である。It is a figure which shows the load characteristic of the electrochemical element produced in Example 5 and Comparative Example 3. 実施例5で作製した電気化学素子のサイクリックボルタモグラムを示す図である。6 is a diagram showing a cyclic voltammogram of the electrochemical device produced in Example 5. FIG.

Claims (2)

FeSOまたはその水和物であるFeSO・nHO(nHOは水和水)、FeClまたはその水和物であるFeCl・nHO(nHOは水和水)および(NHFe(SOまたはその水和物である(NHFe(SO・nHO(nHOは水和水)よりなる群から選ばれる少なくとも1種と、LiOHまたはその水和物であるLiOH・nHO(nHOは水和水)と、HPOとをオリビン型リン酸リチウム用の原材料とし、そのオリビン型リン酸リチウム用の原材料と炭素材料とを攪拌混合した後、水熱合成法によりLiFePOの前駆体を生成させ、それを不活性ガス中400〜600℃でアニールすることを特徴とする、化学式がLiFePOで表されるオリビン型リン酸リチウムと炭素材料との複合体の製造方法。 FeSO 4 or its hydrate FeSO 4 .nH 2 O (nH 2 O is hydrated water), FeCl 2 or its hydrate FeCl 2 .nH 2 O (nH 2 O is hydrated water) and At least one selected from the group consisting of (NH 4 ) 2 Fe (SO 4 ) 2 or a hydrate thereof (NH 4 ) 2 Fe (SO 4 ) 2 .nH 2 O (nH 2 O is hydrated water) The seed, LiOH or its hydrate, LiOH.nH 2 O (nH 2 O is hydration water) and H 3 PO 4 are used as raw materials for olivine-type lithium phosphate, and for the olivine-type lithium phosphate After stirring and mixing the raw material and the carbon material, a precursor of LiFePO 4 is generated by a hydrothermal synthesis method and annealed at 400 to 600 ° C. in an inert gas. The chemical formula is LiFePO 4 . Represented Method for producing a complex of the olivine-type lithium phosphate and a carbon material. 炭素材料が、人造黒鉛、アセチレンブラック、ケッチェンブラック、カーボンブラック、気相成長炭素繊維、非晶質炭素、炭素繊維、カーボンナノチューブおよびフラーレン類よりなる群から選ばれる少なくとも1種を含むことを特徴とする請求項記載のオリビン型リン酸リチウムと炭素材料との複合体の製造方法。 The carbon material includes at least one selected from the group consisting of artificial graphite, acetylene black, ketjen black, carbon black, vapor grown carbon fiber, amorphous carbon, carbon fiber, carbon nanotube, and fullerenes. The manufacturing method of the composite_body | complex of the olivine type lithium phosphate and carbon material of Claim 1 .
JP2003358780A 2003-10-20 2003-10-20 Method for producing composite of olivine type lithium phosphate and carbon material Expired - Fee Related JP4641375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358780A JP4641375B2 (en) 2003-10-20 2003-10-20 Method for producing composite of olivine type lithium phosphate and carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358780A JP4641375B2 (en) 2003-10-20 2003-10-20 Method for producing composite of olivine type lithium phosphate and carbon material

Publications (2)

Publication Number Publication Date
JP2005123107A JP2005123107A (en) 2005-05-12
JP4641375B2 true JP4641375B2 (en) 2011-03-02

Family

ID=34615196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358780A Expired - Fee Related JP4641375B2 (en) 2003-10-20 2003-10-20 Method for producing composite of olivine type lithium phosphate and carbon material

Country Status (1)

Country Link
JP (1) JP4641375B2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399608C (en) * 2005-06-28 2008-07-02 中国科学院物理研究所 Olivine carbon bobbles composite material and use thereof
JP5098146B2 (en) * 2005-10-14 2012-12-12 株式会社Gsユアサ Method for producing positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP2008047450A (en) * 2006-08-18 2008-02-28 Sony Corp Electrochemical light-emitting element and electrochemical light-emitting device
TWI481100B (en) * 2007-01-18 2015-04-11 Lg Chemical Ltd Cathode active material and secondary battery comprising the same
KR100854540B1 (en) * 2007-01-30 2008-08-26 재단법인서울대학교산학협력재단 Carbon nanotubes complex and the process of manufacturing thereof
JP5036348B2 (en) 2007-02-27 2012-09-26 三洋電機株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5293936B2 (en) * 2007-05-21 2013-09-18 戸田工業株式会社 Non-aqueous electrolyte secondary battery olivine-type composite oxide, method for producing the same, and secondary battery
JP5245351B2 (en) * 2007-10-19 2013-07-24 株式会社豊田中央研究所 Active material for lithium secondary battery and lithium secondary battery
EP2276698A1 (en) * 2008-04-14 2011-01-26 Dow Global Technologies Inc. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
US8821763B2 (en) 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
JP5365125B2 (en) * 2008-09-30 2013-12-11 Tdk株式会社 Active material for positive electrode of lithium ion secondary battery
JP5365126B2 (en) * 2008-09-30 2013-12-11 Tdk株式会社 Active material for positive electrode of lithium ion secondary battery and method for producing active material for positive electrode of lithium ion secondary battery
JP5396798B2 (en) 2008-09-30 2014-01-22 Tdk株式会社 Active material, positive electrode and lithium ion secondary battery using the same
JP5381192B2 (en) * 2009-03-16 2014-01-08 Tdk株式会社 Method for producing active material for lithium ion secondary battery
JP5347605B2 (en) * 2009-03-16 2013-11-20 Tdk株式会社 Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
JP5347603B2 (en) * 2009-03-16 2013-11-20 Tdk株式会社 Active material manufacturing method, active material, electrode, and lithium ion secondary battery
CN102428026B (en) * 2009-03-17 2016-06-22 巴斯夫欧洲公司 Synthesize lithium-iron-phosphate under hydrothermal conditions
JP5509918B2 (en) * 2009-03-27 2014-06-04 住友大阪セメント株式会社 Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5486907B2 (en) 2009-11-18 2014-05-07 電気化学工業株式会社 Positive electrode material for lithium ion secondary battery and method for producing the same
JP5623544B2 (en) * 2009-12-04 2014-11-12 ルート ジェイジェイ カンパニー リミテッド Cathode active material precursor for lithium secondary battery containing nano hollow fiber type carbon, active material and method for producing the same
JP5040010B2 (en) 2010-01-15 2012-10-03 トヨタ自動車株式会社 Method for producing composite positive electrode active material
US20130157135A1 (en) * 2010-09-10 2013-06-20 Mingjie Zhou Lithium salt-graphene-containing composite material and preparation method thereof
US20130260245A1 (en) 2010-12-17 2013-10-03 Sumitomo Osaka Cement Co., Ltd. Electrode material and method for producing the same
JP6077205B2 (en) * 2011-09-22 2017-02-08 住友大阪セメント株式会社 Electrode material and manufacturing method thereof
DE102011003125A1 (en) 2011-01-25 2012-07-26 Chemische Fabrik Budenheim Kg Iron (III) orthophosphate-carbon composite
KR101215443B1 (en) 2011-03-14 2012-12-26 연세대학교 산학협력단 Metal phosphate/carbon nanotube nanocomposite and manufacturing method thereof
CN103503207B (en) * 2011-04-28 2016-01-20 昭和电工株式会社 The manufacture method of positive active material for lithium secondary battery
JP6057893B2 (en) 2011-04-28 2017-01-11 昭和電工株式会社 Positive electrode material for lithium secondary battery and method for producing the same
JP5784961B2 (en) * 2011-04-28 2015-09-24 国立大学法人高知大学 Method for producing coated active material
CA2859113C (en) 2011-11-15 2020-04-14 Denki Kagaku Kogyo Kabushiki Kaisha Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
WO2013073562A1 (en) 2011-11-15 2013-05-23 電気化学工業株式会社 Composite particles, method for producing same, electrode material for secondary batteries, and secondary battery
JP5725456B2 (en) * 2011-12-19 2015-05-27 太平洋セメント株式会社 Method for producing positive electrode active material for lithium ion secondary battery
KR101974828B1 (en) * 2012-01-18 2019-08-29 에스케이이노베이션 주식회사 Variation of the surface of graphene oxide, precursor of lithium graphene composite and preparation method thereof
JP5478693B2 (en) * 2012-03-23 2014-04-23 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP5804422B2 (en) * 2012-06-26 2015-11-04 太平洋セメント株式会社 Method for producing secondary battery positive electrode active material
CA2794290A1 (en) 2012-10-22 2014-04-22 Hydro-Quebec Method of producing electrode material for lithium-ion secondary battery and lithium-ion secondary battery using such electrode material
JP2014179291A (en) 2013-03-15 2014-09-25 Sumitomo Osaka Cement Co Ltd Electrode material, and electrode, and lithium ion battery
CN104183843B (en) * 2013-05-24 2016-12-28 江苏长园华盛新能源材料有限公司 Carbonic ester auxiliary prepares the method for LiFePO4
TWI611032B (en) * 2013-09-05 2018-01-11 攀時歐洲公司 Conductive target material
JP5790745B2 (en) 2013-11-28 2015-10-07 住友大阪セメント株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
CN103715427B (en) * 2013-12-25 2016-01-13 天津斯特兰能源科技有限公司 The preparation method of lithium iron phosphate nano single-crystal material
CN103956485B (en) * 2014-01-21 2016-03-30 武汉理工大学 Lithium iron phosphate electrode material of a kind of three-dimensional hierarchical structure and preparation method thereof
JP2015138633A (en) * 2014-01-22 2015-07-30 三菱マテリアル株式会社 Conductive assistant for negative electrode, composite material electrode, and lithium ion secondary battery
JP6054327B2 (en) * 2014-03-14 2016-12-27 太平洋セメント株式会社 Method for producing olivine-type silicate compound
CN106784724B (en) * 2017-01-12 2020-08-07 吉林大学 L iFePO4Solvothermal assisted preparation method of @ C/rGO multistage composite microspheres
JP6442633B2 (en) * 2017-05-29 2018-12-19 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery using these, and production method thereof
CN107863499A (en) * 2017-09-25 2018-03-30 五邑大学 A kind of hydro-thermal method prepares lithium ion battery liFePO4The method of/CNTs composite positive poles
WO2020065832A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Electrically conductive substance, positive electrode, and secondary battery
WO2024007183A1 (en) * 2022-07-06 2024-01-11 宁德时代新能源科技股份有限公司 Positive electrode slurry, corresponding positive electrode plate, secondary battery, battery module, battery pack and electric device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196059A (en) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2002075364A (en) * 2000-08-30 2002-03-15 Sony Corp Positive electrode active material, its manufacturing method, nonaqueous electrolyte battery, and manufacturing method of battery
JP2002110161A (en) * 2000-09-29 2002-04-12 Sony Corp Manufacturing methods of positive pole active material and nonaqueous electrolyte battery
JP2002151082A (en) * 2000-11-10 2002-05-24 Kansai Research Institute Iron phosphate lithium, its manufacturing method, and secondary battery using it
JP2003034534A (en) * 2001-05-15 2003-02-07 Toyota Central Res & Dev Lab Inc Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2003203628A (en) * 2001-12-28 2003-07-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2003292307A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Ferrous phosphate hydrate crystal, production method therefor, and method for producing lithium/iron/ phosphorus-based complex oxide
JP2004259471A (en) * 2003-02-24 2004-09-16 Sumitomo Osaka Cement Co Ltd Manufacturing method of positive electrode active material for lithium ion battery
JP2004303496A (en) * 2003-03-31 2004-10-28 Kyushu Univ Secondary battery and method of manufacturing positive electrode material therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196059A (en) * 1999-10-29 2001-07-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2002075364A (en) * 2000-08-30 2002-03-15 Sony Corp Positive electrode active material, its manufacturing method, nonaqueous electrolyte battery, and manufacturing method of battery
JP2002110161A (en) * 2000-09-29 2002-04-12 Sony Corp Manufacturing methods of positive pole active material and nonaqueous electrolyte battery
JP2002151082A (en) * 2000-11-10 2002-05-24 Kansai Research Institute Iron phosphate lithium, its manufacturing method, and secondary battery using it
JP2003034534A (en) * 2001-05-15 2003-02-07 Toyota Central Res & Dev Lab Inc Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2003203628A (en) * 2001-12-28 2003-07-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2003292307A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Ferrous phosphate hydrate crystal, production method therefor, and method for producing lithium/iron/ phosphorus-based complex oxide
JP2004259471A (en) * 2003-02-24 2004-09-16 Sumitomo Osaka Cement Co Ltd Manufacturing method of positive electrode active material for lithium ion battery
JP2004303496A (en) * 2003-03-31 2004-10-28 Kyushu Univ Secondary battery and method of manufacturing positive electrode material therefor

Also Published As

Publication number Publication date
JP2005123107A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4641375B2 (en) Method for producing composite of olivine type lithium phosphate and carbon material
JP5213213B2 (en) Active material for electrochemical device, method for producing the same, and electrochemical device
KR101558535B1 (en) Negative active material negative electrode comrprising same method of preparing negative electrodee and lithium battery
JP6177345B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP5684915B2 (en) Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
US20130189575A1 (en) Porous silicon based anode material formed using metal reduction
JP5268042B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2004139743A (en) Nonaqueous electrolyte secondary battery
JP2015115319A (en) Negative electrode active material, lithium battery including the same, and method of manufacturing the negative electrode active material
JP7451728B2 (en) Positive electrode active material precursor for secondary batteries, positive electrode active material, and lithium secondary batteries containing the same
JP5245201B2 (en) Negative electrode, secondary battery
KR101530963B1 (en) Negative active material for rechargable lithium battery, preparation method thereof and rechargable lithium battery
JP6077345B2 (en) Non-aqueous secondary battery positive electrode material, non-aqueous secondary battery positive electrode and non-aqueous secondary battery
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
FR3000956A1 (en) PROCESS FOR THE SYNTHESIS OF LIM1-X-Y-ZNYQZFEXPO4 COMPOUND AND ITS USE AS ELECTRODE MATERIAL FOR LITHIUM ACCUMULATOR
JP5364865B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR20200033764A (en) positive material having surface coated positive active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising the same
KR101661896B1 (en) Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
JP4345920B2 (en) Electrode for electrochemical device, method for producing the same, and electrochemical device using the electrode
KR101713259B1 (en) -TiO LITHIUM TITANIUM OXIDE-TiO COMPLEX FOR SECONDARY BATTERY PREPARING METHOD OF THE SAME AND SECONDARY BATTERY INCLUDING THE SAME
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4641375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees