[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4533642B2 - Winding wheel bearing structure for windmill - Google Patents

Winding wheel bearing structure for windmill Download PDF

Info

Publication number
JP4533642B2
JP4533642B2 JP2004045449A JP2004045449A JP4533642B2 JP 4533642 B2 JP4533642 B2 JP 4533642B2 JP 2004045449 A JP2004045449 A JP 2004045449A JP 2004045449 A JP2004045449 A JP 2004045449A JP 4533642 B2 JP4533642 B2 JP 4533642B2
Authority
JP
Japan
Prior art keywords
rolling element
ring
element row
load
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004045449A
Other languages
Japanese (ja)
Other versions
JP2005337267A (en
Inventor
孝文 吉田
勝彦 田北
寿生 三宅
昌明 柴田
圭太 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004045449A priority Critical patent/JP4533642B2/en
Publication of JP2005337267A publication Critical patent/JP2005337267A/en
Application granted granted Critical
Publication of JP4533642B2 publication Critical patent/JP4533642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/02Arrangements for equalising the load on a plurality of bearings or their elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/08Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)
  • Wind Motors (AREA)

Description

本発明は、風車用旋回輪軸受構造に関し、特に、複列化される風車用旋回輪軸受構造に関する。   The present invention relates to a slewing ring bearing structure for a windmill, and more particularly to a slewing ring bearing structure for a windmill that is double-rowed.

地球環境の保全のために、環境に対する負荷が小さい自然エネルギーの利用が望まれている。自然エネルギーとして風力エネルギーが有望である。風車発電機は、風力エネルギーを電力に変換する回転機械である。風車発電機は、図17に示されるように、支持塔と、支持塔の一部である旋回軸101に旋回自在に支持される風車基体102と、風車基体102に回転自在に支持される翼車基体(ロータヘッド)103とから構成されている。複数翼(例示:3枚翼)104A,104B,104Cは、それぞれに、ロータヘッド103に旋回輪軸受105A,105B,105Cを介してロータヘッド103に旋回自在に(ピッチ可変自在に)支持されている。旋回輪軸受105Bは、図18に示されるように、非旋回側(ロータヘッド側)の外輪106と旋回側(翼側)の内輪107とで形成されている。外輪106と内輪107との間には、環状の転動体列108が介設されている。転動体列108の要素(転動体)は、概球面の転がり玉又は概円筒面(鼓面)の転がりローラとして形状化されている。   In order to preserve the global environment, it is desired to use natural energy with a low environmental impact. Wind energy is promising as natural energy. A windmill generator is a rotating machine that converts wind energy into electric power. As shown in FIG. 17, the wind turbine generator includes a support tower, a wind turbine base 102 that is turnably supported by a turning shaft 101 that is a part of the support tower, and a blade that is rotatably supported by the windmill base 102. The vehicle body (rotor head) 103 is comprised. A plurality of blades (e.g., three blades) 104A, 104B, and 104C are supported by the rotor head 103 so as to be pivotable (variable in pitch) by the rotor head 103 via pivotal bearings 105A, 105B, and 105C, respectively. Yes. As shown in FIG. 18, the slewing ring bearing 105B is formed of an outer ring 106 on the non-swinging side (rotor head side) and an inner ring 107 on the slewing side (blade side). An annular rolling element row 108 is interposed between the outer ring 106 and the inner ring 107. The elements (rolling elements) of the rolling element row 108 are shaped as rolling balls having an approximately spherical surface or rolling rollers having an approximately cylindrical surface (a drum surface).

図17に示される3枚翼の1つ104Bを支持する旋回輪軸受105Bには、軸線XBに向く外力Fxbと、軸線XBのまわりの回転モーメントMxbと、軸線YBに向く外力Fybと、軸線YBのまわりの回転モーメントMybと、ロータヘッド103の回転軸心線に直交して交叉する放射線ZBに向く外力Fzbと、放射線ZBのまわりの回転モーメントMzbとが作用する。このような2様の3次元の力は、外輪106と内輪107と転動体列108の多数の転動体に対して面圧を生成する。そのような面圧は、外輪106と内輪107と転動体列108に変形力として作用する。そのような変形力は、同一円周上に配列される多数の転動体の玉番号に対応する円周方向位置の分布関数として表され、転動体が受ける球荷重又はその位置の面圧は、一定でなく大きく変動している。このような変形力は、旋回輪軸受105−A,B,Cに生成される不適正な摩擦の原因として現れ、旋回輪軸受の寿命を短期化する。   The slewing ring bearing 105B supporting one of the three blades 104B shown in FIG. 17 has an external force Fxb directed to the axis XB, a rotational moment Mxb around the axis XB, an external force Fyb directed to the axis YB, and an axis YB. , The external force Fzb directed to the radiation ZB intersecting at right angles to the rotational axis of the rotor head 103, and the rotational moment Mzb around the radiation ZB. Such two-dimensional three-dimensional forces generate surface pressures on a large number of rolling elements of the outer ring 106, the inner ring 107, and the rolling element row 108. Such a surface pressure acts as a deformation force on the outer ring 106, the inner ring 107, and the rolling element row 108. Such deformation force is expressed as a distribution function of the circumferential position corresponding to the ball numbers of a large number of rolling elements arranged on the same circumference, and the ball load received by the rolling element or the surface pressure at that position is It is not constant but fluctuates greatly. Such a deformation force appears as a cause of improper friction generated in the slewing ring bearings 105-A, B, and C, and shortens the life of the slewing ring bearing.

単列旋回輪軸受を複列旋回輪軸受(例示:2列)に変更することにより、そのような不適正変形を適切に最小化することが期待される。複列の転動体列を持つ複列旋回輪軸受では、複列の転動体列に対応して外輪と内輪とが分担する荷重が適正分配(例示:荷重等配)されることが必要である。荷重等配は、複列旋回輪軸受が高剛性であり、又は、各転動体列に対応する全剛性(軸受剛性+支持剛性)が等しいことにより実現される。各転動体列に対応する全剛性が等しくなければ、より多く荷重を支持する列の軸受部位の面圧が高くなって、当該部位の早期損傷を招くことになる。   It is expected that such improper deformation is appropriately minimized by changing the single row slewing ring bearing to a double row slewing ring bearing (example: two rows). In a double row slewing ring bearing having a double row rolling element row, it is necessary that the load shared by the outer ring and the inner ring corresponding to the double row rolling element row be properly distributed (for example, load equal distribution). . The load equal distribution is realized by the high rigidity of the double-row slewing ring bearing or the equal total rigidity (bearing rigidity + support rigidity) corresponding to each rolling element array. If the total rigidity corresponding to each rolling element row is not equal, the surface pressure of the bearing portion of the row that supports more load increases, leading to early damage of the portion.

単列旋回輪軸受を複列旋回輪軸受(例示:2列)に変更することが求められる。その場合に、複列化が不適正荷重分配を招かないことが重要である。   It is required to change the single row slewing ring bearing to a double row slewing ring bearing (example: two rows). In that case, it is important that the double row does not cause improper load distribution.

特開平7−310654号JP-A-7-310654

本発明の課題は、旋回輪軸受の複列化と面圧均等化(玉荷重の均等化)を同時に実現する風車用旋回輪軸受構造を提供することにある。
本発明の他の課題は、旋回輪軸受を複列化し、且つ、適正荷重分配を荷重等配とすることにより、面圧均等化を実現する風車用旋回輪軸受構造を提供することにある。
本発明の更に他の課題は、旋回輪軸受を複列化し、荷重不等配の場合に面圧均等化を実現する風車用旋回輪軸受構造を提供することにある。
An object of the present invention is to provide a slewing ring bearing structure for a windmill that simultaneously realizes double-row slewing ring bearings and equalization of surface pressure (equalization of ball load).
Another object of the present invention is to provide a slewing ring bearing structure for a windmill that realizes equalizing of the surface pressure by making the slewing ring bearings double-rowed and making the proper load distribution equal to the load.
Still another object of the present invention is to provide a slewing ring bearing structure for a windmill that doubles slewing ring bearings and realizes equalization of surface pressure in the case of uneven load distribution.

本発明による風車用旋回輪軸受構造は、本体(1:ロータヘッド)と、本体(1)に支持され複数の可変ピッチ翼をそれぞれに旋回自在に支持する複数の旋回輪軸受(3)とから構成されている。旋回輪軸受(3)は、内輪(5)と、外輪(4)と、内輪(5)と外輪(4)の間に介設される第1転動体列(6)と、内輪(5)と外輪(4)の間に介設される第2転動体列(7)とから形成されている。第1転動体列(6)と第2転動体列(7)は互いに旋回軸方向に並んで複列化されている。第1転動体列(6)が受ける第1荷重分布は、第1転動体列(6)の円周方向位置に対応する第1転動体番号の第1分布関数(図9)として表され、第2転動体列(7)が受ける第2荷重分布は、第2転動体列の円周方向位置に対応する第2転動体番号の第2分布関数(図10)として表される。旋回輪軸受(3)は、第1荷重分布と第2荷重分布との荷重差分布を積極的に小さくする荷重分配構造を有する。第3転動体列を追加することは自由である。   A wind turbine slewing ring bearing structure according to the present invention includes a main body (1: rotor head) and a plurality of slewing ring bearings (3) supported by the main body (1) and slewably supporting a plurality of variable pitch blades. It is configured. The slewing ring bearing (3) includes an inner ring (5), an outer ring (4), a first rolling element row (6) interposed between the inner ring (5) and the outer ring (4), and an inner ring (5). And a second rolling element row (7) interposed between the outer ring (4) and the outer ring (4). The 1st rolling element row | line | column (6) and the 2nd rolling element row | line | column (7) are double-rowed along with the rotation axis direction mutually. The first load distribution received by the first rolling element row (6) is expressed as a first distribution function (FIG. 9) of the first rolling element number corresponding to the circumferential position of the first rolling element row (6). The second load distribution received by the second rolling element row (7) is expressed as a second distribution function (FIG. 10) of the second rolling element number corresponding to the circumferential position of the second rolling element row. The slewing ring bearing (3) has a load distribution structure that actively reduces the load difference distribution between the first load distribution and the second load distribution. It is free to add the third rolling element row.

結果的に、両列間の荷重差分布は円周方向位置の関数として表される。荷重差分布は、一定でなく全周域で零になるとは限らないが、荷重差分布の大きさは全体的に小さくなり、転動体荷重は均等化され、結果として、面圧差分布が平坦化される。荷重分配構造は、荷重差分布を全周域で平坦化して小さくすることが可能である。   As a result, the load difference distribution between both rows is expressed as a function of the circumferential position. The load difference distribution is not constant and does not necessarily become zero in the entire circumference, but the size of the load difference distribution becomes smaller overall, the rolling element load is equalized, and as a result, the surface pressure difference distribution becomes flat. Is done. The load distribution structure can reduce the load difference distribution by flattening the entire circumference.

荷重分配構造は、第1転動体列(6)の第1転動体の球直径と第2転動体列(7)の第2転動体の球直径との直径差を積極的に与えることにより有効に実現される。外輪(4)の本体側と外輪(4)の翼側とが受ける荷重(f1,f2)が等しくない場合に、荷重差(f2−f1)に対応して玉直径差を与える簡素な構造により、荷重分布を平坦化することができる。   The load distribution structure is effective by positively giving a difference in diameter between the ball diameter of the first rolling element in the first rolling element row (6) and the ball diameter of the second rolling element in the second rolling element row (7). To be realized. When the loads (f1, f2) received by the main body side of the outer ring (4) and the wing side of the outer ring (4) are not equal, a simple structure that gives a ball diameter difference corresponding to the load difference (f2-f1) The load distribution can be flattened.

荷重分配構造は、外輪(4)の第1転動体列(6)の側の第1厚みと外輪(4)の第2転動体列(7)の側の第2厚みとの厚み差を積極的に与えることにより有効に実現される。第1転動体列(6)の側の剛性と第2転動体列(7)の側の剛性の剛性差分布が平坦化され、両列で荷重が等配化され、玉荷重分布又は面圧分布が平坦化される。   The load distribution structure positively affects the thickness difference between the first thickness of the outer ring (4) on the first rolling element row (6) side and the second thickness of the outer ring (4) on the second rolling element row (7) side. It can be effectively realized by giving it automatically. The rigidity difference distribution between the rigidity on the first rolling element row (6) side and the rigidity on the second rolling element row (7) side is flattened, the load is evenly distributed in both rows, the ball load distribution or the surface pressure The distribution is flattened.

荷重分配構造は、外輪(4)の旋回軸方向の第1長さと内輪(5)の旋回軸方向の第2長さとの長さ差を積極的に与えることにより有効に実現される。両列で荷重が等配化され、玉荷重分布又は面圧分布が平坦化される。   The load distribution structure is effectively realized by positively giving a length difference between the first length of the outer ring (4) in the turning axis direction and the second length of the inner ring (5) in the turning axis direction. The load is equally distributed in both rows, and the ball load distribution or the surface pressure distribution is flattened.

荷重分配構造は、第1転動体列(6)にかける予圧と第2転動体列(7)にかける予圧との予圧差を積極的に与えることにより有効に実現される。両列で面圧分布が平坦化される。   The load distribution structure is effectively realized by positively giving a preload difference between the preload applied to the first rolling element row (6) and the preload applied to the second rolling element row (7). The surface pressure distribution is flattened in both rows.

第1転動体の球直径R1と第2転動体の球直径R2との直径差を積極的に与え、その直径差を小さくすることにより予圧差を適正に与えることにより有効に実現される。両列で面圧分布が平坦化される。   This is effectively realized by positively giving a difference in preload by positively giving a difference in diameter between the sphere diameter R1 of the first rolling element and the sphere diameter R2 of the second rolling element. The surface pressure distribution is flattened in both rows.

荷重分配構造は、外輪(4)の側周面又は内輪(5)の側周面に接合する輪板(13)を備え、輪板(13)に外輪又は内輪に剛性を付加することにより有効に実現される。両列の剛性分布が平坦化され、各列に対する荷重(f1,f2)が均等分配され、両列で荷重差分布、面圧差分布が平坦化される。   The load distribution structure is equipped with a ring plate (13) joined to the side peripheral surface of the outer ring (4) or the side peripheral surface of the inner ring (5), and is effective by adding rigidity to the outer ring or inner ring to the ring plate (13). To be realized. The rigidity distribution of both rows is flattened, the load (f1, f2) for each row is evenly distributed, and the load difference distribution and the surface pressure difference distribution are flattened in both rows.

荷重分配構造は、外輪(4)の転動体転がり面と内輪(5)の転動体転がり面の内の一方、又は、外輪の転動体転がり面と内輪の転動体転がり面の両方を非真円に形成することにより有効に実現される。両列の転動体荷重差分布が平坦化される。   In the load distribution structure, one of the rolling element rolling surface of the outer ring (4) and the rolling element rolling surface of the inner ring (5) or both the rolling element rolling surface of the outer ring and the rolling element rolling surface of the inner ring is non-circular. It is effectively realized by forming it. The rolling element load difference distribution in both rows is flattened.

荷重分配構造は、第1転動体列を保持する第1リテーナ(図示されず)を単一環に形成し、且つ、第2転動体列を保持する第2リテーナ(図示されず)を単一環に形成し、その第1リテーナと第2リテーナとを更に同体の単一環として形成することにより、外輪と内輪の間に単一剛性体が形成され、両列の転動体荷重差分布の平坦化が促進される。このような多重の単一環構造により、両列の転動体の位相を更に高精度に同じにすることができ、両列の転動体荷重分布の平均化が更に促進される。   In the load distribution structure, a first retainer (not shown) for holding the first rolling element row is formed in a single ring, and a second retainer (not shown) for holding the second rolling element row is formed in a single ring. By forming the first retainer and the second retainer as a single ring of the same body, a single rigid body is formed between the outer ring and the inner ring, and the rolling element load difference distribution in both rows can be flattened. Promoted. Such a multiple single ring structure makes it possible to make the phases of the rolling elements in both rows the same with higher accuracy, further promoting the averaging of the rolling element load distribution in both rows.

荷重分配構造は、旋回輪軸受(3)を2列球面転がり軸受として構成することにより容易に実現する。周知であり既製品的に機械部品市場に流通する2列球面転がり軸受は、本発明の実現のために顕著に有効に利用され、玉荷重差分布を容易に平坦化することができる。   The load distribution structure is easily realized by configuring the slewing ring bearing (3) as a two-row spherical rolling bearing. A two-row spherical rolling bearing, which is well known and is already on the market in the machine parts market, is remarkably effectively used for realizing the present invention, and can easily flatten the ball load difference distribution.

本発明による風車用旋回輪軸受構造は、荷重差分布の平坦化により面圧差分布を平坦化し、旋回輪軸受の複列化と面圧均等化を同時に実現することができる。   The slewing ring bearing structure for wind turbines according to the present invention can flatten the surface pressure difference distribution by flattening the load difference distribution, and can simultaneously realize double row and uniform surface pressure of the slewing ring bearing.

本発明による風車用旋回輪軸受構造の実現態は、図に対応して、詳細に記述される。翼車本体(ロータヘッド)1には、図1に示されるように、風力取出用回転軸2と、3組の旋回輪軸受3とから構成されている。3体の可変ピッチ翼(図示されず)は、3組の旋回輪軸受3にそれぞれに支持される。3組の旋回輪軸受3のそれぞれの旋回軸心線は、同一平面上で120度の等角度間隔で配置されている。   The realization of the slewing ring bearing structure for wind turbines according to the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the impeller body (rotor head) 1 includes a wind power take-off rotary shaft 2 and three sets of swirl ring bearings 3. Three variable pitch blades (not shown) are respectively supported by the three sets of slewing ring bearings 3. The respective turning axis lines of the three sets of turning ring bearings 3 are arranged at equal angular intervals of 120 degrees on the same plane.

図2は、1組の旋回輪軸受3の外周側領域部分を斜軸投影断面で示している。旋回輪軸受3は、ロータヘッド1の側に固着される外輪4と翼の側に固着される内輪5とから形成されている。外輪4の内周面と内輪5の外周面との間には、第1転動体列6と第2転動体列7とが介設されている。第1転動体列6と第2転動体列7のそれぞれの要素は、玉、ローラのような転動体として形成されている。第1転動体列6と第2転動体列7は、旋回軸心線Lの旋回軸方向に適正間隔Dで離隔している。   FIG. 2 shows a region on the outer peripheral side of the pair of slewing ring bearings 3 in an oblique axis projected cross section. The slewing ring bearing 3 is formed of an outer ring 4 fixed to the rotor head 1 side and an inner ring 5 fixed to the blade side. A first rolling element row 6 and a second rolling element row 7 are interposed between the inner peripheral surface of the outer ring 4 and the outer peripheral surface of the inner ring 5. The respective elements of the first rolling element row 6 and the second rolling element row 7 are formed as rolling elements such as balls and rollers. The 1st rolling element row | line | column 6 and the 2nd rolling element row | line | column 7 are spaced apart by the appropriate space | interval D in the turning axis direction of the turning axis line L. FIG.

外輪4と内輪5の表面に生成される面圧のFEM解析の結果は、その面上に線描されている。2列の第1転動体列6と第2転動体列7のそれぞれの転動体を保持するリテーナ(保持器)は、単一体又は一体物として形成されている。第1転動体列6と第2転動体列7として、多様な公知の複列転がり軸受を利用する。複列転がり軸受として、2列球面(玉)軸受、2列球面ころ軸受(自動調心ころ軸受)を利用することができる。   The results of FEM analysis of the surface pressure generated on the surfaces of the outer ring 4 and the inner ring 5 are drawn on the surfaces. The retainers (retainers) for holding the rolling elements of the two first rolling element rows 6 and the second rolling element row 7 are formed as a single body or as an integral body. Various known double row rolling bearings are used as the first rolling element row 6 and the second rolling element row 7. As the double row rolling bearing, a double row spherical (ball) bearing, a double row spherical roller bearing (self-aligning roller bearing) can be used.

図3は、荷重f1と荷重f2が荷重等配又は荷重不等配で旋回軸方向に配分され、円周方向に面圧を均等化する(面圧差分布を平坦化する)2領域を示している。円周方向座標は、同一円周上に並ぶ複数の転動体である玉の玉番号で離散化される。一体的物体の外輪4は、第1転動体列6に旋回軸方向に位置的に対応する第1旋回軸方向外輪部位8と、第2転動体列7に旋回軸方向に位置的に対応する第2旋回軸方向外輪部位9とに仮想的に領域分けされる。一体的物体の内輪5は、第1転動体列6に旋回軸方向に位置的に対応する第1旋回軸方向内輪部位11と、第2転動体列7に旋回軸方向に位置的に対応する第2旋回軸方向内輪部位12とに仮想的に領域分けされる。第1旋回軸方向外輪部位8と第2旋回軸方向外輪部位9は、旋回軸心線Lに直交する仮想的中心面Sで旋回軸方向に二分されている。第1旋回軸方向内輪部位11と第2旋回軸方向内輪部位12は、仮想的中心面Sで旋回軸方向に二分されている。   FIG. 3 shows two regions in which the load f1 and the load f2 are distributed in the direction of the swivel axis with the load even or uneven, and the surface pressure is equalized in the circumferential direction (the surface pressure difference distribution is flattened). Yes. The circumferential direction coordinates are discretized by the ball numbers of balls that are a plurality of rolling elements arranged on the same circumference. The outer ring 4 of the integral object corresponds to the first turning axis direction outer ring portion 8 that corresponds in position to the first rolling element row 6 in the turning axis direction, and to the second rolling element row 7 in position corresponding to the turning axis direction. The region is virtually divided into the second turning axis direction outer ring portion 9. The inner ring 5 of the integral object corresponds to the first turning axis direction inner ring portion 11 that corresponds in position to the first rolling element row 6 in the turning axis direction and to the second rolling element row 7 in position corresponding to the turning axis direction. The region is virtually divided into a second turning axis direction inner ring portion 12. The first turning axis direction outer ring portion 8 and the second turning axis direction outer ring portion 9 are divided into two in the turning axis direction by a virtual center plane S orthogonal to the turning axis L. The first turning axis direction inner ring portion 11 and the second turning axis direction inner ring portion 12 are bisected by the virtual center plane S in the turning axis direction.

図4は、本発明による風車用旋回輪軸受構造の荷重分配の実現態を示している。第1旋回軸方向外輪部位8の外側周面に作用する荷重f1が第2旋回軸方向外輪部位9の外側周面に作用する荷重f2より小さい場合には、第1転動体列6の玉の玉直径は第2転動体列7の玉の玉直径より小さい。玉の荷重負荷能力は玉径が大きいほど大きいので、荷重と玉直径の大小関係は、第1旋回軸方向外輪部位8と第2旋回軸方向外輪部位9の変形度又は内部応力分布を均等化(平坦化)する。荷重f1より大きい荷重f2の一部は、第1転動体列6に分配されて支持される。本実現態では、荷重不等配に係わらず面圧分布は平坦化される。   FIG. 4 shows a realization of load distribution in the wind turbine slewing ring bearing structure according to the present invention. If the load f1 acting on the outer peripheral surface of the first turning axis direction outer ring portion 8 is smaller than the load f2 acting on the outer peripheral surface of the second turning axis direction outer ring portion 9, the balls of the first rolling element row 6 The ball diameter is smaller than the ball diameter of the balls in the second rolling element row 7. Since the load capacity of the ball is larger as the ball diameter is larger, the magnitude relationship between the load and the ball diameter equalizes the degree of deformation or the internal stress distribution of the first turning axis direction outer ring portion 8 and the second turning axis direction outer ring portion 9. (Flatten). A part of the load f2 larger than the load f1 is distributed and supported by the first rolling element row 6. In this realization state, the surface pressure distribution is flattened regardless of the uneven load distribution.

図5は、本発明による風車用旋回輪軸受構造の荷重分配の他の実現態を示している。第2旋回軸方向外輪部位9の外側周面に作用する荷重f2が第1旋回軸方向外輪部位8の外側周面に作用する荷重f1より大きい場合には、第1旋回軸方向外輪部位8の半径方向厚さを第2旋回軸方向外輪部位9の半径方向厚さより厚くする。第1転動体列6と第2転動体列7の直径は同じである。第1旋回軸方向外輪部位8の剛性が第2旋回軸方向外輪部位9の剛性より大きく、その結果として、大きい剛性の方に荷重が多く作用するようになり、f2が小さくなりf1が大きなるので、第1転動体列6と第2転動体列7の荷重の等配が実現される。荷重等配により、軸受の面圧(面圧差分布)が均等化される。第1旋回軸方向外輪部位8と第2旋回軸方向外輪部位9のこのような大小関係は、一般的傾向として正しいが、現実には現物についてFEM解析の結果に基づいて、その厚み、その形状、仮想的中心面Sの旋回軸心線方向位置が定められる。本実施例では、荷重分配を等配として実現することができる。   FIG. 5 shows another embodiment of load distribution of the wind turbine slewing ring bearing structure according to the present invention. When the load f2 acting on the outer circumferential surface of the second turning axis direction outer ring portion 9 is larger than the load f1 acting on the outer circumferential surface of the first turning axis direction outer ring portion 8, the first turning axis direction outer ring portion 8 The radial thickness is made thicker than the radial thickness of the second turning axis direction outer ring portion 9. The diameters of the first rolling element row 6 and the second rolling element row 7 are the same. The rigidity of the first turning axis direction outer ring part 8 is larger than the rigidity of the second turning axis direction outer ring part 9, and as a result, a larger load is applied to the larger rigidity, f2 becomes smaller and f1 becomes larger. Therefore, the equal distribution of the loads of the first rolling element row 6 and the second rolling element row 7 is realized. The surface pressure (surface pressure difference distribution) of the bearing is equalized by the load distribution. Such a magnitude relationship between the first turning axis direction outer ring portion 8 and the second turning axis direction outer ring portion 9 is correct as a general tendency, but in reality, the thickness and shape of the actual product based on the result of FEM analysis The position of the virtual center plane S in the direction of the pivot axis is determined. In this embodiment, the load distribution can be realized as an even distribution.

図6は、本発明による風車用旋回輪軸受構造の荷重等配の更に他の実現態を示している。本実現態は、外輪4と内輪5の形状を調整する点で、図5の実施例に同じである。f1とf2の大小関係に対応して、外輪4と内輪5の旋回軸方向の幅の大小関係が定められる。又は、f1とf2の大小関係に対応して、第1旋回軸方向外輪部位8と第2旋回軸方向外輪部位9の旋回軸方向の幅の大小関係、又は、第1旋回軸方向内輪部位11と第2旋回軸方向内輪部位12の旋回軸方向の幅の大小関係が定められる。本実施例では、荷重分配を等配として実現することができる。   FIG. 6 shows still another realization of the load distribution of the wind turbine slewing ring bearing structure according to the present invention. This mode of realization is the same as the embodiment of FIG. 5 in that the shapes of the outer ring 4 and the inner ring 5 are adjusted. Corresponding to the magnitude relation between f1 and f2, the magnitude relation of the width of the outer ring 4 and the inner ring 5 in the direction of the turning axis is determined. Alternatively, corresponding to the magnitude relationship between f1 and f2, the magnitude relation of the width in the turning axis direction of the first turning axis direction outer ring portion 8 and the second turning axis direction outer ring portion 9, or the first turning axis direction inner ring portion 11 And the width relationship of the second turning axis direction inner ring portion 12 in the turning axis direction is determined. In this embodiment, the load distribution can be realized as an even distribution.

図7は、本発明による風車用旋回輪軸受構造の荷重等配の更に他の実現態を示している。f1とf2の大小関係に対応して、第1転動体列6の玉の直径R1と第2転動体列7の玉の直径R2とに僅かな差ΔRが与えられる。
ΔR=R2−R1=K・(f2−f1)
K:微小値
外輪4と内輪5で第1転動体列6と第2転動体列7を挟み、第1転動体列6と第2転動体列7を外輪4と内輪5とで強く挟圧して第1転動体列6と第2転動体列7を挟持する場合に、第1旋回軸方向外輪部位8の外側周面に作用する荷重f1が第2旋回軸方向外輪部位9の外側周面に作用する荷重f2より大きい場合には、玉直径の僅かに大きい玉7の方が予圧力が大きいために剛性が大きくなり、その結果として、大きい剛性の方に荷重が多く作用するようになり、f1が小さくなりf2が大きくなるので、第1転動体列6と第2転動体列7の荷重の等配が実現される。本実現態では、予圧力を調整することにより軸受の面圧の均等化(面圧差分布の平坦化)を実現することができる。本実現態の予圧調整の考えに従って、第1転動体列6の環状列の直径R1’と第2転動体列7の環状列の直径R2’との間に僅かな差を設けることにより、軸受の面圧分布を両列間で均等化(平坦化)することができる。
FIG. 7 shows still another realization of the load distribution of the wind turbine slewing ring bearing structure according to the present invention. Corresponding to the magnitude relationship between f1 and f2, a slight difference ΔR is given to the ball diameter R1 of the first rolling element row 6 and the ball diameter R2 of the second rolling element row 7.
ΔR = R2-R1 = K · (f2-f1)
K: The first rolling element row 6 and the second rolling element row 7 are sandwiched between the minute value outer ring 4 and the inner ring 5, and the first rolling element row 6 and the second rolling element row 7 are strongly clamped between the outer ring 4 and the inner ring 5. Thus, when the first rolling element row 6 and the second rolling element row 7 are sandwiched, the load f1 acting on the outer circumferential surface of the first turning axis direction outer ring portion 8 is the outer circumferential surface of the second turning axis direction outer ring portion 9. When the load f2 is larger than the load f2, the ball 7 having a slightly larger ball diameter has a higher preload and thus has a higher rigidity. As a result, a larger load is applied to the larger rigidity. , F1 is reduced and f2 is increased, so that the load distribution between the first rolling element row 6 and the second rolling element row 7 is equalized. In this realization state, it is possible to achieve equalization of the bearing surface pressure (flattening of the surface pressure difference distribution) by adjusting the preload. By providing a slight difference between the diameter R1 ′ of the annular row of the first rolling element row 6 and the diameter R2 ′ of the annular row of the second rolling element row 7 in accordance with the idea of preload adjustment in this realization state, Can be equalized (flattened) between the two rows.

図8は、荷重等配の更に他の実現態を示している。f1とf2の大小関係に対応する厚みの輪板13が第1旋回軸方向外輪部位8の側周面に取り付けられ、f1とf2の大小関係に対応する厚みの輪板13が第2旋回軸方向外輪部位9の側周面に取り付けられ、f1とf2の大小関係に対応する厚みの輪板13’が第1旋回軸方向内輪部位11の側周面に取り付けられ、又は、f1とf2の大小関係に対応する厚みの輪板13’が第2旋回軸方向内輪部位12の側周面に取り付けられる。又は、第1旋回軸方向外輪部位8に取り付けられる輪板13の厚みと第1旋回軸方向内輪部位11に取り付けられる輪板13’の厚みは、f1とf2の大小関係に対応して調整される。又は、第2旋回軸方向外輪部位9に取り付けられる輪板13の厚みと第2旋回軸方向内輪部位12に取り付けられる輪板13’の厚みは、f1とf2の大小関係に対応して調整される。剛性の調整により荷重分配を等配として実現することができる。   FIG. 8 shows still another realization of load equalization. A ring plate 13 having a thickness corresponding to the magnitude relationship between f1 and f2 is attached to the side peripheral surface of the first turning axis direction outer ring portion 8, and a ring plate 13 having a thickness corresponding to the magnitude relationship between f1 and f2 is the second turning shaft. A ring plate 13 ′ having a thickness corresponding to the magnitude relationship between f1 and f2 is attached to the side circumferential surface of the first turning axis direction inner ring portion 11, or between f1 and f2. A ring plate 13 ′ having a thickness corresponding to the magnitude relationship is attached to the side peripheral surface of the second turning axis direction inner ring portion 12. Alternatively, the thickness of the ring plate 13 attached to the first turning axis direction outer ring portion 8 and the thickness of the ring plate 13 ′ attached to the first turning axis direction inner ring portion 11 are adjusted in accordance with the magnitude relationship between f1 and f2. The Alternatively, the thickness of the ring plate 13 attached to the second turning axis direction outer ring portion 9 and the thickness of the ring plate 13 'attached to the second turning axis direction inner ring portion 12 are adjusted in accordance with the magnitude relationship between f1 and f2. The The load distribution can be realized as an even distribution by adjusting the rigidity.

図9〜図12は、既述の荷重分配により分配される荷重のFEM解析結果(横軸:内外輪の1周に関する角度座標であり、玉番号で離散化されている。)を示している。図9は、f1とf2の分配率を変えてFEM解析を行った結果のうちロータヘッド側の玉荷重を示している。図9のf1は、ロータヘッド側の玉荷重分布を示している。図10は、その分配率に基づく翼側の玉荷分布重を示している。ロータヘッド側の玉荷重は、翼側の玉荷重より大きい。分配率50%の通常荷重がかけられる場合の玉荷重分布は、分配率59%又は分配率61%の通常荷重がかけられる場合の玉荷重分布に比べて、全周域でロータヘッド側で小さく抑えられている。図11は、図9の玉荷重に対応するロータヘッド側の面圧を示している。図12は、図10の玉荷重分布に対応する面圧を示している。分配率50%の通常荷重がかけられる場合の面圧分布は、分配率59%又は分配率61%の通常荷重がかけられる場合の面圧分布に比べて、全周域でロータヘッド側で小さく抑えられている。このように玉荷重分布と面圧分布が大きい側でそれらの値が小さく抑えられ、それらが小さい側で大きくなっていて、両分布が平坦化されている。図9〜図12は、両列の玉荷重差分布と面圧差分布が平坦化されることを示し、等配が適正分配であることを示している。   9 to 12 show the FEM analysis results of the load distributed by the load distribution described above (horizontal axis: angular coordinates relating to one round of the inner and outer rings, which are discretized by ball numbers). . FIG. 9 shows the ball load on the rotor head side among the results of FEM analysis performed by changing the distribution ratios of f1 and f2. F1 in FIG. 9 indicates the ball load distribution on the rotor head side. FIG. 10 shows the load distribution weight on the wing side based on the distribution ratio. The ball load on the rotor head side is larger than the ball load on the wing side. The ball load distribution when a normal load with a distribution rate of 50% is applied is smaller on the rotor head side in the entire circumference than the ball load distribution when a normal load with a distribution rate of 59% or a distribution rate of 61% is applied. It is suppressed. FIG. 11 shows the surface pressure on the rotor head side corresponding to the ball load of FIG. FIG. 12 shows the surface pressure corresponding to the ball load distribution of FIG. The surface pressure distribution when a normal load with a distribution rate of 50% is applied is smaller on the rotor head side in the entire circumference than the surface pressure distribution when a normal load with a distribution rate of 59% or a distribution rate of 61% is applied. It is suppressed. Thus, those values are suppressed small on the side where the ball load distribution and the surface pressure distribution are large, and they are large on the small side, and both distributions are flattened. 9 to 12 show that the ball load difference distribution and the surface pressure difference distribution in both rows are flattened, and that the equal distribution is an appropriate distribution.

図13〜図16は、図8の輪板(1枚の天板)の付加による荷重分配に対応する荷重のFEM解析結果を示している。分配率が50%に近い48%である場合に、玉荷重と面圧とが大きいロータヘッド側で、その玉荷重差分布とその面圧差分布とが全般に更に平坦化されていることを示している。   FIGS. 13 to 16 show FEM analysis results of loads corresponding to load distribution by adding the ring plate (one top plate) of FIG. When the distribution ratio is 48%, which is close to 50%, the ball load difference distribution and the surface pressure difference distribution are generally further flattened on the rotor head side where the ball load and the surface pressure are large. ing.

その他の実施例:
荷重不等配の更に他の実施例として、2列球面ころ軸受を用いることにより、ころに対して予圧を調整することにより、軸受の負荷能力が上がり、多少の荷重不均等は吸収できる。第1転動体列6の保持器と第2転動体列7の保持器を一体化することは、面圧の均等化(平坦化)のために有効である。1円周上の玉荷重を均等化することは効果的である。その玉荷重を均等化するために、外輪4の転がり面と内輪5の転がり面をともに非真円に形成し、又は、外輪4と内輪5の一方を非真円に形成し、その玉に与える予圧を調整することにより、軸受の面圧分布を均等化(平坦化)することができる。
Other examples:
As still another embodiment of uneven load distribution, by using a two-row spherical roller bearing, adjusting the preload on the roller increases the load capacity of the bearing and can absorb some load unevenness. The integration of the cage of the first rolling element row 6 and the cage of the second rolling element row 7 is effective for equalizing (flattening) the surface pressure. It is effective to equalize the ball load on one circle. In order to equalize the ball load, both the rolling surface of the outer ring 4 and the rolling surface of the inner ring 5 are formed in a non-round shape, or one of the outer ring 4 and the inner ring 5 is formed in a non-round shape. By adjusting the preload to be applied, the surface pressure distribution of the bearing can be equalized (flattened).

図1は、本発明の適用対象を示す旋回輪軸受構造を示す斜軸投影図である。FIG. 1 is an oblique projection showing a slewing ring bearing structure showing an application target of the present invention. 図2は、図1の一部の斜軸投影断面図である。FIG. 2 is a cross sectional view of the oblique axis projection of a part of FIG. 図3は、旋回輪軸受の領域分割を示す断面図である。FIG. 3 is a cross-sectional view showing a region division of the slewing ring bearing. 図4は、本発明による風車用旋回輪軸受構造の実現態を示す断面図である。FIG. 4 is a cross-sectional view showing a realization of the wind turbine slewing ring bearing structure according to the present invention. 図5は、本発明による風車用旋回輪軸受構造の他の実現態を示す断面図である。FIG. 5 is a cross-sectional view showing another embodiment of the wind turbine slewing ring bearing structure according to the present invention. 図6は、本発明による風車用旋回輪軸受構造の更に他の実現態を示す断面図である。FIG. 6 is a sectional view showing still another embodiment of the wind turbine slewing ring bearing structure according to the present invention. 図7は、本発明による風車用旋回輪軸受構造の更に他の実現態を示す断面図である。FIG. 7 is a sectional view showing still another embodiment of the wind turbine slewing ring bearing structure according to the present invention. 図8は、本発明による風車用旋回輪軸受構造の更に他の実現態を示す断面図である。FIG. 8 is a sectional view showing still another embodiment of the wind turbine slewing ring bearing structure according to the present invention. 図9は、本発明による風車用旋回輪軸受構造の玉荷重分布を示すグラフである。FIG. 9 is a graph showing the ball load distribution of the wind turbine slewing ring bearing structure according to the present invention. 図10は、本発明による風車用旋回輪軸受構造の他の玉荷重分布を示すグラフである。図である。FIG. 10 is a graph showing another ball load distribution of the slewing ring bearing structure for wind turbines according to the present invention. FIG. 図11は、本発明による風車用旋回輪軸受構造の面圧分布を示すグラフである。FIG. 11 is a graph showing the surface pressure distribution of the slewing ring bearing structure for a wind turbine according to the present invention. 図12は、本発明による風車用旋回輪軸受構造の他の面圧分布を示すグラフである。FIG. 12 is a graph showing another surface pressure distribution of the slewing ring bearing structure for wind turbines according to the present invention. 図13は、本発明による風車用旋回輪軸受構造の更に他の玉荷重分布を示すグラフである。FIG. 13 is a graph showing still another ball load distribution of the wind turbine slewing ring bearing structure according to the present invention. 図14は、本発明による風車用旋回輪軸受構造の更に他の玉荷重分布を示すグラフである。図である。FIG. 14 is a graph showing still another ball load distribution of the wind turbine slewing ring bearing structure according to the present invention. FIG. 図15は、本発明による風車用旋回輪軸受構造の更に他の面圧分布を示すグラフである。FIG. 15 is a graph showing still another surface pressure distribution of the slewing ring bearing structure for wind turbines according to the present invention. 図16は、本発明による風車用旋回輪軸受構造の更に他の面圧分布を示すグラフである。FIG. 16 is a graph showing still another surface pressure distribution of the slewing ring bearing structure for wind turbines according to the present invention. 図17は、公知の旋回輪軸受構造を示す斜軸投影図である。FIG. 17 is an oblique projection showing a known slewing ring bearing structure. 図18は、公知の旋回輪軸受を示す斜軸投影図である。FIG. 18 is an oblique projection showing a known slewing ring bearing.

符号の説明Explanation of symbols

1…本体(ロータヘッド)
3…旋回輪軸受
4…外輪
5…内輪
6…第1転動体列
7…第2転動体列
13…輪板
1 ... Main body (rotor head)
3 ... slewing ring bearing 4 ... outer ring 5 ... inner ring 6 ... first rolling element row 7 ... second rolling element row 13 ... wheel plate

Claims (3)

本体と、
前記本体に支持され複数の可変ピッチ翼をそれぞれに旋回自在に支持する複数の旋回輪軸受とを具え、
前記旋回輪軸受は、
内輪と、
外輪と、
前記内輪と前記外輪の間に介設される第1転動体列と、
前記内輪と前記外輪の間に介設される第2転動体列とを備え、
前記第1転動体列と前記第2転動体列は互いに旋回軸方向に並び、
前記第1転動体列が受ける第1荷重分布は、前記第1転動体列の円周方向位置に対応する第1転動体番号の第1分布関数として表され、前記第2転動体列が受ける第2荷重分布は、前記第2転動体列の円周方向位置に対応する第2転動体番号の第2分布関数として表され、
前記旋回輪軸受は、前記第1荷重分布と前記第2荷重分布との荷重差を積極的に小さくする荷重分配構造を有し、
前記荷重分配構造は、前記外輪の側周面又は前記内輪の側周面に接合する輪板を備え、
前記輪板は前記外輪又は前記内輪に前記第1転動体列の側と前記第2転動体列の側とで異なる剛性を付加する
風車用旋回輪軸受構造。
The body,
A plurality of slewing ring bearings that are supported by the main body and pivotally support each of the plurality of variable pitch blades;
The slewing ring bearing is
Inner ring,
Outer ring,
A first rolling element row interposed between the inner ring and the outer ring;
A second rolling element row interposed between the inner ring and the outer ring,
The first rolling element row and the second rolling element row are aligned with each other in the turning axis direction,
The first load distribution received by the first rolling element row is expressed as a first distribution function of the first rolling element number corresponding to the circumferential position of the first rolling element row, and is received by the second rolling element row. The second load distribution is expressed as a second distribution function of the second rolling element number corresponding to the circumferential position of the second rolling element row,
The slewing ring bearing has a load distribution structure that actively reduces a load difference between the first load distribution and the second load distribution,
The load distribution structure includes a ring plate joined to a side peripheral surface of the outer ring or a side peripheral surface of the inner ring,
The wheel plate is a slewing ring bearing structure for windmills, which adds different rigidity to the outer ring or the inner ring on the first rolling element row side and the second rolling element row side .
前記荷重分配構造は、前記第1転動体列を保持する第1リテーナを単一環に形成し、且つ、前記第2転動体列を保持する第2リテーナを単一環に形成し、前記第1リテーナと第2リテーナとは同体の単一環として形成される
請求項1風車用旋回輪軸受構造。
In the load distribution structure, the first retainer that holds the first rolling element row is formed in a single ring, and the second retainer that holds the second rolling element row is formed in a single ring, and the first retainer The slewing ring bearing structure for a wind turbine according to claim 1, wherein the first retainer and the second retainer are formed as a single ring.
前記荷重分配構造は、前記旋回輪軸受を2列球面ころの転がり軸受として構成する
請求項1風車用旋回輪軸受構造。
The wind turbine slewing ring bearing structure according to claim 1 , wherein the load distribution structure configures the slewing ring bearing as a rolling bearing of a two-row spherical roller.
JP2004045449A 2004-02-20 2004-02-20 Winding wheel bearing structure for windmill Expired - Lifetime JP4533642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045449A JP4533642B2 (en) 2004-02-20 2004-02-20 Winding wheel bearing structure for windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045449A JP4533642B2 (en) 2004-02-20 2004-02-20 Winding wheel bearing structure for windmill

Publications (2)

Publication Number Publication Date
JP2005337267A JP2005337267A (en) 2005-12-08
JP4533642B2 true JP4533642B2 (en) 2010-09-01

Family

ID=35491073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045449A Expired - Lifetime JP4533642B2 (en) 2004-02-20 2004-02-20 Winding wheel bearing structure for windmill

Country Status (1)

Country Link
JP (1) JP4533642B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097428A1 (en) 2012-12-19 2014-06-26 三菱重工業株式会社 Renewable energy-type power generator
US11454219B2 (en) 2019-05-10 2022-09-27 General Electric Company Rotor assembly having a pitch bearing with a stiffener ring

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047792B2 (en) 2005-07-05 2011-11-01 Vestas Wind Systems A/S Wind turbine pitch bearing, and use hereof
EP2045464B2 (en) 2007-10-01 2016-08-24 Siemens Aktiengesellschaft Pitch bearing for wind turbine rotor blades
JP4939508B2 (en) 2008-09-26 2012-05-30 三菱重工業株式会社 STRESS ANALYSIS DEVICE AND STRESS ANALYSIS PROGRAM FOR WIND TURBINE STRUCTURE AND WIND POWER GENERATION SYSTEM
JP5463211B2 (en) * 2010-06-09 2014-04-09 株式会社日立製作所 Tilting pad type journal bearing device and steam turbine using the same
JP5495979B2 (en) 2010-06-28 2014-05-21 三菱重工業株式会社 Wind power generator
WO2014097427A1 (en) 2012-12-19 2014-06-26 三菱重工業株式会社 Renewable energy power generation device
WO2014128879A1 (en) * 2013-02-21 2014-08-28 三菱重工業株式会社 Bearing structure and wind power generation device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397701U (en) * 1977-01-12 1978-08-08
JPS61171917A (en) * 1985-01-25 1986-08-02 Nippon Seiko Kk Multi-row roller bearing
JPH0427216U (en) * 1990-06-28 1992-03-04
JPH068857U (en) * 1992-07-07 1994-02-04 セイコーエプソン株式会社 ball bearing
JPH07310645A (en) * 1994-05-13 1995-11-28 Mitsubishi Heavy Ind Ltd Windmill blade
JPH10318255A (en) * 1997-05-14 1998-12-02 Minebea Co Ltd Bearing device
JP2002098136A (en) * 2000-09-21 2002-04-05 Nsk Ltd Double row ball bearing
JP2003172345A (en) * 2001-12-07 2003-06-20 Koyo Seiko Co Ltd Axle pinion bearing device and vehicular final reduction gear
JP2003294033A (en) * 2002-04-03 2003-10-15 Koyo Seiko Co Ltd Double-row rolling bearing and assembling method therefor
JP2004150472A (en) * 2002-10-29 2004-05-27 Minebea Co Ltd Bearing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397701U (en) * 1977-01-12 1978-08-08
JPS61171917A (en) * 1985-01-25 1986-08-02 Nippon Seiko Kk Multi-row roller bearing
JPH0427216U (en) * 1990-06-28 1992-03-04
JPH068857U (en) * 1992-07-07 1994-02-04 セイコーエプソン株式会社 ball bearing
JPH07310645A (en) * 1994-05-13 1995-11-28 Mitsubishi Heavy Ind Ltd Windmill blade
JPH10318255A (en) * 1997-05-14 1998-12-02 Minebea Co Ltd Bearing device
JP2002098136A (en) * 2000-09-21 2002-04-05 Nsk Ltd Double row ball bearing
JP2003172345A (en) * 2001-12-07 2003-06-20 Koyo Seiko Co Ltd Axle pinion bearing device and vehicular final reduction gear
JP2003294033A (en) * 2002-04-03 2003-10-15 Koyo Seiko Co Ltd Double-row rolling bearing and assembling method therefor
JP2004150472A (en) * 2002-10-29 2004-05-27 Minebea Co Ltd Bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097428A1 (en) 2012-12-19 2014-06-26 三菱重工業株式会社 Renewable energy-type power generator
US11454219B2 (en) 2019-05-10 2022-09-27 General Electric Company Rotor assembly having a pitch bearing with a stiffener ring

Also Published As

Publication number Publication date
JP2005337267A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US7927019B2 (en) Slewing bearing structure
CN107664161B (en) Bearing structure
US20090257697A1 (en) Bearing And Method For Transferring Forces Through A Bearing Of A Wind Turbine
JP4533642B2 (en) Winding wheel bearing structure for windmill
WO2005050038A1 (en) Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
JP2010508480A (en) Bearing structure for rotatably supporting a planetary gear on a planetary carrier
KR20140033342A (en) Axial-radial rolling contact bearing, in particular for supporting rotor blades on a wind turbine
JP2013137074A (en) Bearing for wind power generator and wind power generator
WO2006033320A1 (en) Double-row self-aligning roller bearing and main shaft support structure for wind-turbine generator
CN110520641A (en) Rolling bearing system and wind turbine
ES2902740T3 (en) Large multi-row bearing
WO2021060389A1 (en) Double row tapered roller bearing
CN113468691B (en) Design method of transmission shafting of wind generating set
WO2013088201A1 (en) Bearing, wind energy converter and method of manufacturing a bearing
CN112780489B (en) Variable pitch bearing and method for prolonging service life of variable pitch bearing
CN112955671B (en) Rolling bearing device and wind power plant
WO2022051878A1 (en) Self-aligning roller bearing of asymmetric structure
US11885294B2 (en) Wind turbine, wind turbine rotor blade, and blade bearing for a wind turbine
CN113767227A (en) Large rolling bearing
JP7456851B2 (en) Double row tapered roller bearing
JP2009275860A (en) Revolving bearing
JP6909089B2 (en) Multi-row self-aligning roller bearing
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP2017057952A (en) Double row self-aligning roller bearing
CN108071682A (en) A kind of spheric roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R151 Written notification of patent or utility model registration

Ref document number: 4533642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term