JP4523365B2 - Quantum cryptographic communication device - Google Patents
Quantum cryptographic communication device Download PDFInfo
- Publication number
- JP4523365B2 JP4523365B2 JP2004253242A JP2004253242A JP4523365B2 JP 4523365 B2 JP4523365 B2 JP 4523365B2 JP 2004253242 A JP2004253242 A JP 2004253242A JP 2004253242 A JP2004253242 A JP 2004253242A JP 4523365 B2 JP4523365 B2 JP 4523365B2
- Authority
- JP
- Japan
- Prior art keywords
- photon
- receiver
- quantum
- pulse train
- transceiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Communication System (AREA)
Description
本発明は、量子暗号通信装置に関し、特に従来よりも長い距離離れた送信機と受信機に対して量子暗号鍵を供給することができる量子暗号通信装置に関する。 The present invention relates to a quantum cryptography communication device, and more particularly, to a quantum cryptography communication device capable of supplying a quantum cryptography key to a transmitter and a receiver that are separated from each other by a longer distance than before.
近年、光子1個レベルの光を用いることにより、物理的に安全性が保証された量子暗号通信の研究が進められている。量子暗号は、離れた地点にいる2つの通信機間で暗号通信を行うための秘密鍵を供給する暗号化方式の1つで、量子鍵配送とも呼ばれている(特許文献1)。量子鍵配送にも各種方式があるが、ここでは、本発明に類似の差動位相シフト量子鍵配送方式について説明する(非特許文献1)。 In recent years, research on quantum cryptography communication in which safety is physically guaranteed by using light of one photon level has been advanced. Quantum cryptography is one of encryption methods for supplying a secret key for performing cryptographic communication between two communication devices located at distant points, and is also called quantum key distribution (Patent Document 1). Although there are various methods for quantum key distribution, here, a differential phase shift quantum key distribution method similar to the present invention will be described (Non-patent Document 1).
図3は従来の差動位相シフト量子鍵配送装置の基本構成を示す。送信機1は、0またはπでランダムに位相変調した一定間隔のコヒーレント光パルス列2を、パルス当り平均1個光子未満として送出する。この平均光子数1個未満という状態は、通常のレーザ光を大きく減衰させることにより実現される。このようなパルス列2を光子検出すると、あるパルスでは光子が検出されるが、あるパルスでは何も検出されない、という検出結果となる。どのパルスで光子が検出されるかはまったくの確率的で、検出するまで不確定である。 FIG. 3 shows a basic configuration of a conventional differential phase shift quantum key distribution device. The transmitter 1 transmits a coherent optical pulse train 2 having a constant interval that is randomly phase-modulated with 0 or π as an average of less than one photon per pulse. This state where the average number of photons is less than one is realized by greatly attenuating normal laser light. When such a pulse train 2 is photon detected, a photon is detected with a certain pulse, but nothing is detected with a certain pulse. At which pulse photons are detected is quite probabilistic and uncertain until detected.
送信機1から送出されたパルス列は伝送路3を経て、受信機4に到達する。受信機4は、受信パルス列を光分岐器(光カップラ)5で2つに分岐し、光遅延回路(光遅延線)6により一方に遅延を加えたのち、2×2の光カップラ(光合波器)7により再び合波する。この合波カップラ7の2つの出力ポートには、それぞれ第1の光子検出器8と第2の光検出器9とが備えられている。 The pulse train transmitted from the transmitter 1 reaches the receiver 4 through the transmission path 3. The receiver 4 branches the received pulse train into two by an optical branching device (optical coupler) 5, adds a delay to one by an optical delay circuit (optical delay line) 6, and then a 2 × 2 optical coupler (optical multiplexing). Combine) again by 7). The two output ports of the multiplexing coupler 7 are provided with a first photon detector 8 and a second photodetector 9, respectively.
ここで、上記分岐・合波回路5〜7で一方に与える遅延時間は、入力されるパルス列の時間間隔に等しいものとする。このようにすると、合波カップラ7では、前後のパルスが重なり合って合波される。入力パルス列は0またはπで位相変調されている。従って、分岐・合波経路の伝播位相が適当であれば、重なり合うパルスの位相差は0またはπとなっている。干渉の結果、位相差が0ならば、第1の光子検出器8が、位相差πなら第2の光子検出器9が、光子を検出することになる。 Here, the delay time given to one of the branching / combining circuits 5 to 7 is assumed to be equal to the time interval of the input pulse train. If it does in this way, in the multiplexing coupler 7, the front and back pulses will be overlapped and combined. The input pulse train is phase-modulated by 0 or π. Therefore, if the propagation phase of the branching / combining path is appropriate, the phase difference between the overlapping pulses is 0 or π. If the phase difference is 0 as a result of the interference, the first photon detector 8 detects the photon, and if the phase difference is π, the second photon detector 9 detects the photon.
以上の構成を用いて、送信機1と受信機4は以下の手順により秘密鍵を得る。まず、受信機4は、上記の受信構成により光子を検出する。この時、検出した時刻と検出器(8または9のいずれか)を記録する。必要な個数だけ光子が送受信された後、受信機4は送信機1に光子検出時刻を知らせる。送信機1は、知らされた検出時刻と自分の位相変調データとから、受信機4がどちらの検出器で光子を検出したかを知ることができる。 Using the above configuration, the transmitter 1 and the receiver 4 obtain a secret key by the following procedure. First, the receiver 4 detects photons by the above reception configuration. At this time, the detected time and the detector (either 8 or 9) are recorded. After the necessary number of photons are transmitted and received, the receiver 4 informs the transmitter 1 of the photon detection time. The transmitter 1 can know from which detector the receiver 4 has detected a photon from the notified detection time and its own phase modulation data.
そこで、第1の光子検出器8をビット「0」、第2の光子検出器9をビット「1」と予め取り決めておけば、送信機1と受信機4は同じビット列を得ることができる。この手順において、受信機1から送信機4へ知らされるのは光子検出時刻のみで、ビット情報は外部には出されない。したがって、これからビット情報が他の受信機(図示しない)を通じて他人に盗聴されることはない。また、送られているのはパルスあたり平均1光子未満の光なので、他の受信機が信号の一部を分岐してビット情報を得ることはできない。なぜなら、光子が2分割されることはないので、他の受信機が分岐により光子検出すると、その光子は受信機4には届かず、送信機1が送信したビット列と受信機4が受信したビット列とが一致しないからである。このように、以上の構成と手順とにより送受信機1,4が得るビット列は、外部から盗聴されることのないビット列となっている。そこで、このビット列を暗号データを生成・再生するための秘密鍵している。 Therefore, if the first photon detector 8 is preliminarily determined to be bit “0” and the second photon detector 9 is preliminarily determined to be bit “1”, the transmitter 1 and the receiver 4 can obtain the same bit string. In this procedure, only the photon detection time is notified from the receiver 1 to the transmitter 4, and no bit information is output to the outside. Therefore, the bit information is not eavesdropped by another person through another receiver (not shown). Also, since the light that is being transmitted is an average of less than one photon per pulse, other receivers cannot branch part of the signal to obtain bit information. Because the photon is not divided into two, when another receiver detects the photon by branching, the photon does not reach the receiver 4, but the bit string transmitted by the transmitter 1 and the bit string received by the receiver 4 This is because does not match. Thus, the bit string obtained by the transceivers 1 and 4 by the above configuration and procedure is a bit string that is not wiretapped from the outside. Therefore, this bit string is a secret key for generating / reproducing the encrypted data.
上記のような従来の差動位相シフト量子鍵配送方式では、分岐による盗聴を避けるため、光子1個レベルの光パルスを送受信している。ところで、実際の伝送路3には損失があり、このため、光子の一部は伝送路3で消失して受信機4には届かない。伝送路3が長いと損失も大きく、光子が受信機4に届く確率は小さくなる。一方、一般に光子検出器8,9は、実際には光子が入力されていないのにあたかも光子を検出したかのような動作をすることがある。光子検出器8,9の誤動作は、入力光子がある程度多ければ無視できるが、入力光子数が少ないと、相対的に誤動作による誤信号が多くなり、正しい秘密鍵生成ができなくなる。すなわち、伝送距離が長く、損失が大きいと量子鍵配送システムが正しく動作しなくなるため、伝送可能距離が制限されることになる。 In the conventional differential phase shift quantum key distribution system as described above, a single-photon level optical pulse is transmitted and received in order to avoid eavesdropping due to branching. By the way, there is a loss in the actual transmission path 3, and for this reason, some of the photons are lost in the transmission path 3 and do not reach the receiver 4. When the transmission line 3 is long, the loss is large, and the probability that the photon reaches the receiver 4 is small. On the other hand, in general, the photon detectors 8 and 9 sometimes operate as if photons were detected even though no photons were actually input. The malfunction of the photon detectors 8 and 9 can be ignored if the number of input photons is large to some extent. However, if the number of input photons is small, the number of erroneous signals due to malfunction increases relatively, and a correct secret key cannot be generated. That is, if the transmission distance is long and the loss is large, the quantum key distribution system does not operate correctly, and thus the transmission distance is limited.
本発明は、上記の点に鑑みて成されたもので、その目的は、量子鍵配送可能とされた従来の限界距離よりも長い距離はなれた送信機と受信機とに対して量子暗号鍵を供給することができる量子暗号通信装置を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a quantum encryption key to a transmitter and a receiver that are separated from each other by a distance longer than a conventional limit distance that enables quantum key distribution. An object of the present invention is to provide a quantum cryptography communication device that can be supplied.
上記目的を達成するため、請求項1の発明は、複数の送受信機間において送受信されるデータを暗号化し、復号化するための秘密鍵を供給する量子暗号通信装置において、ポンプ光を非線形光学結晶に照射することにより同時に得られる量子相関のあるシグナル光子とアイドラー光子とからなる光子対を一定の時間間隔のパルス列として出力する量子相関光子対発生器と、前記量子相関光子対発生器から出力される光子対パルス列のうちのシグナル光子パルス列を受信する第1の送受信機の受信機と、前記量子相関光子対発生器から出力される光子対パルス列のうちのアイドラー光子パルス列を受信する第2の送受信機の受信機とを有し、前記量子相関光子対発生器は前記第1の送受信機の受信機と前記第2の送受信機の受信機との中間位置に配置され、前記第1の送受信機の受信機と前記第2の送受信機の受信機が、前記量子相関光子対発生器から送出された光子を同時刻にそれぞれ検出した光子検出事象から、前記秘密鍵を生成する、ことを特徴とする。 To achieve the above object, a first aspect of the invention, and encrypts the data between a plurality of transceivers, in a quantum cryptography communication apparatus supplies a secret key for decoding, the nonlinear optical crystal pump light and quantum correlated photon pair generator for outputting a pair of photons consisting of a signal photon and idler photon with quantum correlation obtained simultaneously by irradiating a pulse train having a constant time interval, the quantum correlated photon pair generator or RaIzuru receiving a first transceiver of a receiver that receives a signal photon pulse train of photon pairs pulse train forces, the idler photon pulse train of the photon-to-pulse train which is the quantum correlated photon pair generator or RaIzuru force and a receiver of the second transceiver, the quantum correlated photon pair generator middle position between the receiver of the second transceiver and the receiver of the first transceiver Disposed, the first receiver of the receiver and the second transceiver transceivers, photons sent from said quantum correlated photon pair generator from photon detection events detected respectively at the same time, the secret A key is generated .
ここで、前記第1の送受信機の受信機と前記第2の送受信機の受信機は、それぞれ、入力された光子パルス列を2経路に分岐する分岐手段と、前記分岐手段により分岐された光子パルス列の一方を分岐された光子パルス列の他方に対して1パルス分遅延する遅延手段と、2×2の入出力端子を有し、前記分岐手段で分岐された光子パルス列の他方をその第1の入力端子に入力し、前記遅延手段で遅延された光子パルス列をその第2の入力端子に入力する光カップラと、前記光カップラの第1の出力端子に接続されて光子パルス列の検出を行なう第1の光子検出手段と、前記光カップラの第2の出力端子に接続されて光子パルス列の検出を行なう第2の光子検出手段とを有することを特徴とすることができる。
Here, the receiver of the first transmitter / receiver and the receiver of the second transmitter / receiver respectively include a branching unit that branches the input photon pulse train into two paths, and a photon branched by the branching unit. delay means for delaying one pulse to the other photon pulse train which is branched one pulse train, having input and output terminals of the 2 × 2, the other photon pulse train which is branched by the branching means that An optical coupler that inputs to the first input terminal and inputs the photon pulse train delayed by the delay means to the second input terminal, and a photon pulse train connected to the first output terminal of the optical coupler. First photon detection means for performing detection, and second photon detection means for detecting a photon pulse train connected to the second output terminal of the optical coupler may be provided.
また、前記量子相関光子対発生器は、前記ポンプ光を発生する手段を含み、光パラメトリック過程により該ポンプ光から前記光子対を成す前記シグナル光子と前記アイドラー光子とを同時に発生することを特徴とすることができる。 Further, the quantum correlated photon pair generator, characterized in that said pump includes means for generating a light occurs simultaneously with said said signal photon constituting whether we said photon pair the pump light idler photons by the optical parametric process It can be.
一般に、信号伝送装置の伝送距離は、送信パワーと最小受信感度の差とで決まる。本発明に係る量子相関光子対発生器の光子対発生効率と従来技術(図3)における送信機の光子送信効率とが同じであると想定すると、その量子相関光子対発生器から受信機までの伝送距離は、従来技術での送受信機間距離と同じになる。量子相関光子対発生器は受信機A、Bの中間点に置かれているので、受信機A、B間の距離は、従来技術の送受信機間距離の2倍となる。すなわち、本発明により、秘密鍵を共有する2者間の距離を従来よりも長くすることができる。 In general, the transmission distance of a signal transmission device is determined by the difference between transmission power and minimum reception sensitivity. Assuming that the photon pair generation efficiency of the quantum correlation photon pair generator according to the present invention and the photon transmission efficiency of the transmitter in the prior art (FIG. 3) are the same, from the quantum correlation photon pair generator to the receiver. The transmission distance is the same as the distance between the transmitter and the receiver in the prior art. Since the quantum correlation photon pair generator is placed at the intermediate point between the receivers A and B, the distance between the receivers A and B is twice the distance between the transmitter and the receiver in the prior art. That is, according to the present invention, the distance between two parties sharing a secret key can be made longer than before.
以下、図面を参照して本発明を実施するための最良の形態を詳細に説明する。 The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
図1は、本発明の一実施の形態における量子暗号通信装置の構成を示す。離れた地点に1組の受信機A 41と受信機B 42があり、その中間位置に本発明に係る量子相関光子対発生器11が配置されている。受信機A,Bの構成は、図3で既述した従来例とほぼ同様であり、それぞれ光分岐器(光カップラ)5、光遅延回路(光遅延線)6、光合波器(光カップラ)7、一対の光子検出器8,9、および2つの受信機間の情報交換の手段としての情報交換装置10を備えている。情報交換装置10はCPU等から構成される。
FIG. 1 shows a configuration of a quantum cryptography communication device according to an embodiment of the present invention. There is a pair of
量子相関光子対発生器11は、ポンプ光源12と光非線形媒質13とを有し、2つの光子を必ず同時に出力する装置である。具体的には、例えば、光パラメトリック過程(optical parametric process)を利用して2つの光子、すなわち後述のシグナル光子とアイドラー光子を出力する。
The quantum correlation
ポンプ光源12からの光を光非線形媒質13に入力し、光非線形媒質13から出力されるシグナル光子とアイドラー光子を、それぞれ受信機A,B 41,42に送信する。光子検出器A1,A2,B1,B2 8,8,9,9からの信号は、情報交換装置(CPU)10,10に入力され、ここで、光子検出時刻および検出した検出器が記録される。そして、情報交換装置(CPU)10,10を介して相手の受信機A,B 41,42に、互いに光子検出時刻を知らせ合う。
Light from the
上記の光パラメトリック過程とは光非線形現象の一種で、例えば、ポンプ光源12で発生させた光周波数fpのポンプ光と光周波数fsのシグナル光を2次の光非線形結晶13に入力すると、非線形分極P=c2EpEs *から光周波数fi=fp−fsの周波数光が新たに発生する(c2:非線形感受率、Ep:ポンプ光電場、Es:シグナル光電場、*は複素共役)。慣例的に、その新たに発生する光はアイドラー光(idler light)と呼ばれる。量子力学的に言うと、これは、ポンプ光子とシグナル光子からアイドラー光子が発生する現象で、エネルギー保存則により3つの光子間には図2に示すような関係がある。この関係は、1つのポンプ光子(fp)が消滅して、シグナル光子(fs)とアイドラー光子(fi)が1つずつ生成される過程、とみることができる。シグナル光入力はこの過程を促進する働きをするが、ポンプ光が充分強ければ、シグナル光入力無しでも自発的にこの過程が起きる。
A type of optical nonlinear phenomena and said optical parametric process, for example, if you enter the signal light of the pump light and the optical frequency f s of the optical frequency f p which is generated by the
すなわち、ポンプ光のみの入力から、シグナル光子とアイドラー光子が発生する。この際、エネルギー保存則を満たすために、シグナル光子とアイドラー光子は必ず対で発生する。このような相関を持った光子のペアを量子相関光子対という。 That is, a signal photon and an idler photon are generated from an input of only pump light. At this time, in order to satisfy the energy conservation law, the signal photon and the idler photon are always generated in pairs. A pair of photons having such a correlation is called a quantum correlation photon pair.
図1の量子相関光子対発生器11は、このような相関のある光子のペアを発生する装置である。なお、光パラメトリック過程を利用して相関光子対を発生させる場合、相互作用するポンプ光、シグナル光、アイドラー光の位相には、後述のようにある関係が成り立っている。上記のように、古典的には、アイドラー光はP=c2EpEs *という非線形分極から発生する。この表式の位相をみると、φi=φp−φs(φi:アイドラー分極波の位相=アイドラー光位相、φp:ポンプ光位相、φs:シグナル光位相)という関係にあることがわかる。光パラメトリック過程により発生する量子相関光子対にもこの関係がそのまま成り立っている。なお、本実施形態では、量子相関光子対発生器11で用いるポンプ光のコヒーレンス時間は、次に述べるパルス列の時間間隔よりも充分長いものとする。
The quantum correlation
図1の構成において、量子相関光子対発生器11からは上記のような量子相関光子対が発せられ、シグナル光子は受信機A 41へ、アイドラー光子は受信機B 42へ、それぞれ伝送路31,32を通して送信される。送信されるこれら光子は、一定時間間隔のパルス列であるとする。また、発生するシグナル光子/アイドラー光子は平均1パルス当り1ペア以下であるとする。
In the configuration of FIG. 1, the quantum correlation
41,42で示す受信機A、受信機Bに送られたパルスは光カップラ(光分岐器)5のC1、C3により2分岐され、一方に時間遅延を与えられた後に、各々2×2の光カップラ7のC2、C4により合波される。ここで、遅延回路6のLa,Lbで与えられる遅延時間は、伝送されるパルス列の時間間隔に等しいものとする。そして、光カップラC2の2つの出力ポートには光子検出器A1、A2が、光カップラC4の2つの出力ポートには光子検出器B1、B2が、それぞれ備えられている。 The pulses sent to the receivers A and B indicated by 41 and 42 are branched into two by C1 and C3 of the optical coupler (optical splitter) 5, and given a time delay to one, 2 × 2 each. It is combined by C2 and C4 of the optical coupler 7. Here, it is assumed that the delay time given by La and Lb of the delay circuit 6 is equal to the time interval of the transmitted pulse train. The two output ports of the optical coupler C2 are provided with photon detectors A1 and A2, and the two output ports of the optical coupler C4 are provided with photon detectors B1 and B2.
以上の構成を用いて、受信機A 41、受信機B 42は秘密鍵を共有することができる。その原理及び手順を以下に式を用いて説明する。量子力学的表示を用いると、量子相関光子対発生器11からの出力状態|Ψ0>は次のように表される。
Using the above configuration, the
ここで、|A,t>は時刻tに受信機A 41に向かってシグナル光子が送信される状態、|B,t>は時刻tに受信機B 42に向かってアイドラー光子が送信される状態を表す。2つの状態は量子相関関係あり、ペア|A,t>|B,t>として発生する。a exp(iφ)は1つのペアの確率振幅(複素数)で、aが振幅部(実数)、φが位相である。さらに詳しくは、φは、シグナル光子状態|A,t>の位相φsと、アイドラー光子状態|B,t>の位相φiの足し合わせφ=φs+φiとなっている。光子対はパルス列として出力されており、各パルスは添え字jで識別される。
Here, | A, t> is a state in which signal photons are transmitted toward
発生した光子は、伝送路31,32を通って受信機A 41、受信機B 42に達する。受信機入力段階での状態は、
The generated photons reach the
と記述される。ここで、|INa,t>は時刻tにシグナル光子が受信機Aに入力される状態、|INb,t>は時刻tにアイドラー光子が受信機Bに入力される状態を表し、tj’’は時刻tj’に光子対源11から出力された光子が受信機A,Bに到達する時刻である。各状態には、光子対源11から受信機Aまでの伝播位相φa、光子対源11から受信機Bまでの伝播位相φb、が付加されている。なお簡単のため、伝播損は無視した。伝播損を考慮するには、係数aを対応する値に置き換えればよい。
Is described. Here, | IN a , t> represents a state in which a signal photon is input to the receiver A at time t, and | IN b , t> represents a state in which an idler photon is input to the receiver B at time t, t j ″ is the time when the photon output from the
各状態は光カップラ5,7により分岐されて再び合波される。ひとつの光カップラ透過による状態変化は、例えば受信機Aに入力された1光子状態がカップラC1により分岐される場合、 Each state is branched by the optical couplers 5 and 7 and combined again. For example, when the one-photon state input to the receiver A is branched by the coupler C1, the state change due to the transmission of one optical coupler is:
と表される。|Sa,t>は受信機A内の短経路Saに1光子が出力される状態、|La,t>は受信機A内の長経路Laに1光子が出力される状態、である。各カップラについても同様に表される。また、経路伝播に際しては、各状態に伝播位相θが付加される。さらに、2分岐経路における伝播時間差を考慮しながら、各状態変化を逐次記述していくと、光カップラC2、C4の出力端における状態を次のように表わすことができる。 It is expressed. | S a, t> is state 1 photon short path S a in the receiver A is outputted, | L a, t> is state 1 photon long path L a in the receiver A is output, It is. The same applies to each coupler. Further, in the path propagation, a propagation phase θ is added to each state. Furthermore, when each state change is described sequentially while considering the propagation time difference in the two-branch path, the state at the output end of the optical couplers C2 and C4 can be expressed as follows.
ここで、|A1,t>、|A2,t>、|B1,t>、|B2,t>はそれぞれ時刻tに1光子が光子検出器A1、A2、B1、B2へ出力される状態、θSa、θLaはそれぞれ受信機A内の短経路Sa、長経路Laにおける伝播位相、θSb、θLbはそれぞれ受信機B内の短経路Sb、長経路Lbにおける伝播位相である。時刻tjは、受信機への入力時刻がtj’’であった光子が短経路を通って光子検出器に到達する時刻である。長短経路の伝播時間差は入力パルス列の時間間隔に等しいとしているので、受信機への入力時刻がtj’’であった光子が長経路を通って光子検出器に到達する時刻はtj+1となっている。上式(4)はいくつかの項から成り立っている。第1項は時刻tjに受信機A、Bがともに光子を検出する状態、第2項は時刻tj+1に受信機A、Bがともに光子を検出する状態、第3項は時刻tj+1に受信機Aが、時刻tjに受信機Bが、光子を検出する状態、第4項は時刻tjに受信機Aが、時刻tj+1に受信機Bが、光子を検出する状態、を表している。 Here, | A1, t>, | A2, t>, | B1, t>, | B2, t> are states in which one photon is output to photon detectors A1, A2, B1, B2 at time t, in theta Sa, short path S a in theta La each receiver a, propagation phase in the long path L a, θ Sb, θ Lb is short path S b of each receiver in the B, the propagation phase in the long path L b is there. Time t j is the time when the photon whose input time to the receiver is t j ″ reaches the photon detector through the short path. Since the propagation time difference between the long and short paths is equal to the time interval of the input pulse train, the time when the photon whose input time to the receiver is t j ″ reaches the photon detector through the long path is t j + 1. ing. The above equation (4) consists of several terms. The first term time t j to the receiver A, B are both state detecting photons, the second term time t j + 1 to the receiver A, B are both state detecting photons, the third term at time t j + 1 The receiver A is in a state in which the receiver B detects the photon at time t j , and the fourth term represents the state in which the receiver A detects the photon at time t j and the receiver B detects the photon at time t j + 1. ing.
ここで、受信機A、Bがともに時刻tj0で光子を検出する事象、すなわち|A,tj0>|B,tj0>という状態に着目する。上式(4)の第1項を基準にしてj=j0とすると、この光子検出事象を起こすのは、第1項においてj=j0である状態と、第2項においてj=j0−1である状態である。これらを抜き出し、さらに括弧を展開すると次式(5)が得られる。 Here, attention is paid to an event in which the receivers A and B both detect photons at time t j0 , that is, a state of | A, t j0 > | B, t j0 >. If j = j0 with reference to the first term of the above equation (4), this photon detection event occurs when j = j0 in the first term and j = j0-1 in the second term. It is a certain state. When these are extracted and the parentheses are further expanded, the following expression (5) is obtained.
ここでは、Δφj0=φj0−1−φj0、Δθa=θLa−θSa、Δθb=θLb−θSbと置き換えてある。上式(5)において、φj0は光子対源11から発せられる光子対状態の位相であり、詳しくはシグナル光子状態の位相φsとアイドラー光子状態の位相φiの足し合わせφ=φs+φiである。量子相関光子対発生器11についての説明の項で述べたように、光パラメトリック現象により光子対を発生させる場合、φs+φiはポンプ光位相に等しい。また、本実施形態では、ポンプ光のコヒーレンス時間は発生光子対のパルス間隔よりも十分長いとしている。このようにすると、隣り合うパルスについてのφs+φiは同じ値、すなわちφj0−1=φj0となる。したがって、Δφj0=0となる。さらに、上式(5)において、Δθa+Δθb=0であると設定する。このような設定は、受信機A、Bの分岐・合波回路の伝播位相を調整することにより可能である。
In this case, Δφ j0 = φ j0-1 -φ j0 , Δθ a = θ La -θ Sa, are replaced by Δθ b = θ Lb -θ Sb. In the above equation (5), φ j0 is the phase of the photon pair state emitted from the
以上のように設定すると、式(5)は次式(6)のようになる。 If it sets as mentioned above, a formula (5) will turn into a following formula (6).
上式(6)は、受信機A 41の第1の光子検出器A1 8による光子検出と、受信機B 42の第1の光子検出器B1 8による光子検出、または受信機A 41の第2の光子検出器A2 9による光子検出と、受信機B 42の第2の光子検出器B2 9による光子検出とは、必ず対になっていることを示している。
The above equation (6) indicates that photon detection by the first photon detector A1 8 of the
この光子検出事象を利用すると、受信機A、Bは以下の手順により共通の秘密鍵を所有することができる。
(1)まず、受信機A、Bは必要な数だけ光子を受信する。この際、光子を検出した光子検出時刻と、光子が8と9のどちらの検出器で検出されたかを記録する。
(2)受信機A、Bは光子を検出した時刻を互いに知らせ合う。
(3)受信機A、Bは同じ時刻に光子を検出した事象について、検出器A1、B1で光子検出した場合にはビット「0」、検出器A2、B2で光子検出した場合にはビット「1」、とする。
(4)両者A、Bが同じ時刻に光子検出した場合には、光子検出する検出器には前述のような相関関係、すなわち検出器A1が光子検出すれば必ず検出器B1が光子検出し、検出器A2が光子検出すれば必ず検出器B2が光子検出する、という関係が成り立っている。したがって、受信機A、Bは同じビット列を得ることになる。
Using this photon detection event, the receivers A and B can have a common secret key by the following procedure.
(1) First, the receivers A and B receive the required number of photons. At this time, the photon detection time when the photon is detected and the detector of whether the photon is detected by 8 or 9 are recorded.
(2) The receivers A and B inform the time when the photons are detected.
(3) For the event that the receivers A and B detect photons at the same time, bit “0” is detected when the detectors A1 and B1 detect photons, and bit “0” is detected when the detectors A2 and B2 detect photons. 1 ”.
(4) When both photons A and B detect photons at the same time, the detector for detecting photons has the above-described correlation, that is, if the detector A1 detects photons, the detector B1 always detects photons, The relationship is established that whenever the detector A2 detects photons, the detector B2 detects photons. Therefore, the receivers A and B obtain the same bit string.
上記手順において、受信機A、B間で交わされるのは検出時刻であり、検出器情報は外部には知られない。そこで、このビット列を秘密鍵とすることができる。 In the above procedure, it is the detection time that is exchanged between the receivers A and B, and the detector information is not known to the outside. Therefore, this bit string can be used as a secret key.
(他の実施の形態)
上記では、本発明の好適な実施形態を例示して説明したが、本発明の実施形態は上記例示に限定されるものではなく、特許請求の範囲に記載の範囲内であれば、その構成要素の置換、変更、追加、個数の増減の設計変更等の各種変形は、全て本発明の実施形態に含まれる。
(Other embodiments)
In the above, the preferred embodiments of the present invention have been described by way of example. However, the embodiments of the present invention are not limited to the above-described examples, and the constituent elements thereof are within the scope of the claims. Various modifications such as replacement, change, addition, and design change such as increase / decrease in number are all included in the embodiment of the present invention.
1 送信機
2 パルス列
3 伝送路
4 受信機
5 光分岐器(光カップラ)
6 光遅延回路(光遅延線)
7 光合波器(光カップラ)
8 第1の光子検出器
9 第2の光子検出器
11 量子相関光子対発生器(光子対源)
12 ポンプ光源
13 光非線形媒質
14 伝送路
31,32 伝送路
41,42 受信機
1 Transmitter 2 Pulse train 3 Transmission path 4 Receiver 5 Optical splitter (optical coupler)
6 Optical delay circuit (optical delay line)
7 Optical multiplexer (optical coupler)
8 First photon detector 9
12 Pump light source 13 Optical nonlinear medium 14
Claims (3)
ポンプ光を非線形光学結晶に照射することにより同時に得られる量子相関のあるシグナル光子とアイドラー光子とからなる光子対を一定の時間間隔のパルス列として出力する量子相関光子対発生器と、
前記量子相関光子対発生器から出力される光子対パルス列のうちのシグナル光子パルス列を受信する第1の送受信機の受信機と、
前記量子相関光子対発生器から出力される光子対パルス列のうちのアイドラー光子パルス列を受信する第2の送受信機の受信機と
を有し、
前記量子相関光子対発生器は前記第1の送受信機の受信機と前記第2の送受信機の受信機との中間位置に配置され、
前記第1の送受信機の受信機と前記第2の送受信機の受信機が、前記量子相関光子対発生器から送出された光子を同時刻にそれぞれ検出した光子検出事象から、前記秘密鍵を生成する、
ことを特徴とする量子暗号通信装置。 In a quantum cryptography communication device that supplies a secret key for encrypting and decrypting data transmitted and received between a plurality of transceivers ,
A quantum correlation photon pair generator that outputs a photon pair of signal photons and idler photons with quantum correlation obtained simultaneously by irradiating the nonlinear optical crystal with pump light as a pulse train of a constant time interval;
A receiver of the first transceiver for receiving a signal photon pulse train of the photon-to-pulse train which is the quantum correlated photon pair generator or RaIzuru force,
And a receiver of the second transceiver for receiving the idler photon pulse train of the photon-to-pulse train which is the quantum correlated photon pair generator or RaIzuru force,
The quantum correlated photon pair generator is disposed at an intermediate position between the receiver of the first transceiver and the receiver of the second transceiver ;
The secret key is generated from a photon detection event in which the receiver of the first transceiver and the receiver of the second transceiver respectively detect the photons transmitted from the quantum correlation photon pair generator at the same time. To
A quantum cryptography communication device characterized by the above.
入力された光子パルス列を2経路に分岐する分岐手段と、
前記分岐手段により分岐された光子パルス列の一方を分岐された光子パルス列の他方に対して1パルス分遅延する遅延手段と、
2×2の入出力端子を有し、前記分岐手段で分岐された光子パルス列の他方をその第1の入力端子に入力し、前記遅延手段で遅延された光子パルス列をその第2の入力端子に入力する光カップラと、
前記光カップラの第1の出力端子に接続されて光子パルス列の検出を行なう第1の光子検出手段と、
前記光カップラの第2の出力端子に接続されて光子パルス列の検出を行なう第2の光子検出手段と
を有することを特徴とする請求項1に記載の量子暗号通信装置。 The receiver of the first transceiver and the receiver of the second transceiver are respectively
Branching means for branching the input photon pulse train into two paths;
Delay means for delaying one of the photon pulse trains branched by the branching means by one pulse with respect to the other of the branched photon pulse trains;
2 × 2 input / output terminals, the other of the photon pulse trains branched by the branching means is input to the first input terminal, and the photon pulse train delayed by the delaying means is the second input An optical coupler that inputs to the terminal;
First photon detection means connected to the first output terminal of the optical coupler for detecting a photon pulse train;
2. The quantum cryptography communication device according to claim 1, further comprising: a second photon detection unit that is connected to a second output terminal of the optical coupler and detects a photon pulse train.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253242A JP4523365B2 (en) | 2004-08-31 | 2004-08-31 | Quantum cryptographic communication device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253242A JP4523365B2 (en) | 2004-08-31 | 2004-08-31 | Quantum cryptographic communication device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006074249A JP2006074249A (en) | 2006-03-16 |
JP4523365B2 true JP4523365B2 (en) | 2010-08-11 |
Family
ID=36154418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004253242A Expired - Fee Related JP4523365B2 (en) | 2004-08-31 | 2004-08-31 | Quantum cryptographic communication device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4523365B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11493384B1 (en) | 2021-06-22 | 2022-11-08 | Agency For Defense Development | Apparatus for single-pixel imaging with quantum light |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4612509B2 (en) * | 2005-09-06 | 2011-01-12 | 日本電信電話株式会社 | Quantum encryption key sharing system and quantum encryption key generation method |
JP4792330B2 (en) * | 2006-05-25 | 2011-10-12 | 日本電信電話株式会社 | Quantum key distribution system and quantum key generation method |
JP4755231B2 (en) * | 2008-09-01 | 2011-08-24 | 日本電信電話株式会社 | Quantum key distribution system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003156772A (en) * | 2001-11-22 | 2003-05-30 | Nippon Telegr & Teleph Corp <Ntt> | Photon pair generator |
JP2004187268A (en) * | 2002-12-04 | 2004-07-02 | Nippon Telegr & Teleph Corp <Ntt> | Quantum key delivery method and quantum key delivery system |
-
2004
- 2004-08-31 JP JP2004253242A patent/JP4523365B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003156772A (en) * | 2001-11-22 | 2003-05-30 | Nippon Telegr & Teleph Corp <Ntt> | Photon pair generator |
JP2004187268A (en) * | 2002-12-04 | 2004-07-02 | Nippon Telegr & Teleph Corp <Ntt> | Quantum key delivery method and quantum key delivery system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11493384B1 (en) | 2021-06-22 | 2022-11-08 | Agency For Defense Development | Apparatus for single-pixel imaging with quantum light |
Also Published As
Publication number | Publication date |
---|---|
JP2006074249A (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4462806B2 (en) | Quantum cryptographic key distribution system | |
JP3799196B2 (en) | Quantum cryptographic communication system based on quantum coherence | |
US11411724B2 (en) | Continuous variable quantum secret sharing | |
JP5146681B2 (en) | Quantum cryptography transmission system and optical circuit | |
JP2008270873A (en) | Quantum key distribution system, and transmission device and receiving device thereof | |
JP4724014B2 (en) | Quantum cryptographic key distribution device and key information wiretapping detection method | |
JP2008066981A (en) | Secret key delivery device and secret key delivery method | |
JP4777069B2 (en) | Quantum cryptographic communication system and method, polarization / phase modulation converter, and phase / polarization modulation converter | |
JP2007318445A (en) | Quantum key distribution system and quantum key creating method | |
JP4746588B2 (en) | Quantum cryptographic communication device and quantum cryptographic communication method | |
JP4523365B2 (en) | Quantum cryptographic communication device | |
JP4421975B2 (en) | Photodetector and quantum cryptography communication system | |
JP4421977B2 (en) | Quantum cryptographic communication device | |
JP4755231B2 (en) | Quantum key distribution system | |
JP4705123B2 (en) | Quantum cryptographic key distribution system | |
JP6257042B2 (en) | Quantum key distribution system and quantum key distribution method | |
JP4591972B2 (en) | Quantum key distribution system | |
JP4705077B2 (en) | Quantum cryptography system | |
JP4621116B2 (en) | Quantum secret sharing system and quantum secret key generation method | |
JP2008294946A (en) | Quantum cryptographic communication system and method | |
JP7518393B2 (en) | Quantum Key Distribution System | |
JP4142637B2 (en) | Quantum cryptography communication device and secret key generation method using quantum cryptography communication device | |
JP2009147460A (en) | Quantum encryption apparatus | |
JP7518392B2 (en) | Quantum Digital Signature System | |
JP2010283694A (en) | Quantum encryption communication apparatus, and quantum encryption communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060713 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091102 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100510 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100527 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140604 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |