[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4521821B2 - オレフィン類重合用固体触媒成分の製造方法 - Google Patents

オレフィン類重合用固体触媒成分の製造方法 Download PDF

Info

Publication number
JP4521821B2
JP4521821B2 JP2005097137A JP2005097137A JP4521821B2 JP 4521821 B2 JP4521821 B2 JP 4521821B2 JP 2005097137 A JP2005097137 A JP 2005097137A JP 2005097137 A JP2005097137 A JP 2005097137A JP 4521821 B2 JP4521821 B2 JP 4521821B2
Authority
JP
Japan
Prior art keywords
component
compound
titanium
phthalate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005097137A
Other languages
English (en)
Other versions
JP2006274105A (ja
Inventor
元基 保坂
拓雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2005097137A priority Critical patent/JP4521821B2/ja
Publication of JP2006274105A publication Critical patent/JP2006274105A/ja
Application granted granted Critical
Publication of JP4521821B2 publication Critical patent/JP4521821B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

本発明は、ポリマーの立体規則性および収率を高度に維持することができ、さらに微粉の少ない重合体を得ることのできるオレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体又は共重合体の製造方法に関する。
従来、オレフィン類の重合においては、マグネシウム、チタン、電子供与性化合物及びハロゲンを必須成分として含有するオレフィン類重合用固体触媒成分が数多く提案されており、特にマグネシウム原料としてジエトキシマグネシウムを代表とするアルコキシマグネシウム化合物を用いて調製された固体触媒成分が、性能が高く工業的にも広く用いられている。
例えば、特許文献1(特開昭63−3010号公報)においては、ジアルコキシマグネシウム、芳香族ジカルボン酸ジエステル、芳香族炭化水素化合物およびチタンハロゲン化物を接触して得られた生成物を、粉末状態で加熱処理することにより調製した固体触媒成分と、有機アルミニウム化合物および有機ケイ素化合物よりなるオレフィン類重合用触媒とオレフィンの重合方法が提案されている。
また、特許文献2(特開平1−315406号公報)においては、ジエトキシマグネシウムとアルキルベンゼンとで形成された懸濁液に、四塩化チタンを接触させ、次いでフタル酸ジクロライドを加えて反応させることによって固体生成物を得、該固体生成物を更にアルキルベンゼンの存在下で四塩化チタンと接触反応させることによって調製された固体触媒成分と、有機アルミニウム化合物および有機ケイ素化合物より成るオレフィン類重合用触媒と該触媒の存在下でのオレフィンの重合方法が提案されている。
上記の各従来技術は、その目的が生成重合体中に残留する塩素やチタン等の触媒残渣を除去する所謂、脱灰工程を省略し得る程の高活性を有するとともに、併せて立体規則性重合体の収率の向上や、重合時の触媒活性の持続性を高めることに注力したものであり、それぞれ優れた成果を上げているが、この種の高活性型触媒成分と有機アルミニウム化合物およびケイ素化合物に代表される電子供与性化合物とからなる組成の重合用触媒を用いてオレフィン類の重合を行うと、固体触媒成分自体の微粉および重合した際の反応熱による粒子破壊のため、生成重合体中に微粉が多く含まれ、粒度分布もブロード化する傾向があった。微粉重合体が多くなると、均一な反応の継続を妨げ、重合体移送時における配管の閉塞をもたらす等のプロセス障害の原因となり、また粒度分布が広くなると結果的に重合体の成形加工にまで好ましくない影響を及ぼすため、微粉重合体が可及的に少なく、かつ均一粒径で粒度分布の狭い重合体を希求する要因となっていた。
この問題を解決する方法として、特許文献3(特開平6−157659号公報)においては、芳香族炭化水素化合物と四塩化チタンの混合溶液に、球状のジアルコキシマグネシウム、芳香族炭化水素化合物およびフタル酸ジエステルの懸濁液を添加し、反応させ、さらに四塩化チタンと反応させて得られる固体触媒成分を用いたオレフィン類重合用触媒が提案されている。
また特許文献4(特開平6−287225号公報)においては、球状のジアルコキシマグネシウム、芳香族炭化水素化合物およびフタル酸ジエステルとの懸濁液を、芳香族炭化水素化合物と四塩化チタンとの混合溶液に加えて反応させ、得られた反応生成物を芳香族炭化水素化合物で洗浄し、再度四塩化チタンと反応させて得られた固体成分を乾燥させ、微粉除去処理行程を経て得られるオレフィン類重合用固体触媒成分が提案されている。
さらに特許文献5(特開平6−287217号公報)において、球状のジアルコキシマグネシウム、芳香族炭化水素化合物およびフタル酸ジエステルとの懸濁液を、芳香族炭化水素化合物と四塩化チタンとの混合溶液に加えて反応させ、得られた反応生成物を芳香族炭化水素化合物で洗浄し、再度四塩化チタンと反応させて得られた固体成分を乾燥させ、微粉除去処理を施したのち、粉末状の非イオン性界面活性剤を添加する処理行程を経て得られるオレフィン類重合用固体触媒成分が提案されている。
上記の提案は固体触媒成分自体の微粉を除去し、結果として生成した重合体の微粉量をある程度低減させるという効果は認められるものの、特にマイクロファインと呼ばれる超微粉重合体の発生は依然としてあり、さらなる微粉重合体発生の少ない触媒の開発が望まれていたが、上記従来技術では係る課題を解決するには充分ではなかった。
一方、従来技術として、塩化マグネシウムやジエトキシマグネシウムなどのマグネシウム化合物を、アルコキチタン化合物で全て溶解して均一溶液を形成し、その後析出させて固体触媒成分を調製する方法が知られている。
例えば特許文献6(特開昭62−18405号公報)には、チタンのアルコキシ化合物、ジアルコキシマグネシウム、芳香族ジカルボン酸のジエステル、ハロゲン化炭化水素化合物、特定式で表されるチタンハロゲン化物を接触させて得られ、特定式で表されるケイ素化合物および有機アルミニウム化合物と組み合わせて用いられるオレフィン類重合用触媒成分が提案されている。
また、特許文献7(特開平3−72503号公報)には、特定式で表されるマグネシウム化合物、テトラアルキルチタン化合物、および特定式で表されるケイ素化合物を加熱反応させ、ついで該反応生成物を特定式で表されるハロゲン含有チタン化合物および特定式で表される電子供与性化合物で処理することによって得られるオレフィン類重合用固体触媒成分が開示されている。
しかしながら、これらの従来方法による触媒は、微粉重合体の発生の少ない触媒ではあるものの、未だ十分とは言えず、更なる微粉重合体発生の少ない触媒の開発が望まれている。
特開昭63−3010号公報(特許請求の範囲) 特開平1−315406号公報(特許請求の範囲) 特開平6−157659号公報(特許請求の範囲) 特開平6−287225号公報(特許請求の範囲) 特開平6−287217号公報(特許請求の範囲) 特開昭62−18405号公報(特許請求の範囲) 特開平3−72503号公報(特許請求の範囲)
従って、本発明の目的は、オレフィンの重合に供した際、ポリマーの立体規則性および収率を高度に維持でき、しかも微粉が少ない重合体を得ることができるオレフィン類重合触媒の成分となるオレフィン類重合用固体触媒成分並びに触媒を提供することにある。
かかる実情において、本発明者は鋭意検討を重ねた結果、(1)固体触媒成分を形成する際に生成する微粉、およびこれを用いてオレフィン類を重合した際の微粉重合体は、原料であるジアルコキシマグネシウムをハロゲン化チタン化合物と接触させる際に起きるハロゲン化反応を制御して固体触媒成分を調製することで低減できること、(2)このように調製した固体触媒成分による触媒が、ポリマーの活性および立体規則性を高度に維持し、且つ微粉の少ない重合体が得られること等を見出し、本発明を完成するに至った。
すなわち、本発明は、エステル化合物の存在下、アルコキシ含有マグネシウム化合物を、常温で液体の不活性有機溶媒に懸濁させ、該アルコキシ含有マグネシウムに対し、モル比で0.3未満のハロゲン化チタン化合物を接触させて懸濁液を得、次いで該懸濁液と、少なくとも完全にアルコキシ含有マグネシウム化合物をハロゲン化する量のハロゲン化チタン化合物を接触させ調製するオレフィン類重合用固体触媒成分の製造方法を提供するものである。
また、本発明は、(A)前記オレフィン類重合用固体触媒成分、(B)下記一般式(1);R AlQ3−p (1)
(式中、Rは炭素数1〜4のアルキル基を示し、Qは水素原子あるいはハロゲン原子を示し、pは0<p≦3の実数である。)で表される有機アルミニウム化合物から形成されるオレフィン類重合用触媒を提供するものである。
また、本発明は、上記のオレフィン類重合用触媒の存在下に行なうオレフィン類重合体又は共重合体の製造方法を提供するものである。
本発明のオレフィン類重合用固体触媒成分を用いて調製した触媒は、ポリマーの立体規則性および収率を高度に維持しながら、極めて微粉の少ない重合体を得ることができる。従って、汎用ポリオレフィンを低コストで提供し得る。
本発明のオレフィン類重合用固体触媒成分(以下、単に「成分A」ということがある。)は、先ず第1段階(以下、「第1段階」ということがある。)として、電子供与性化合物の存在下、アルコキシ含有マグネシウム化合物に、その一部をハロゲン化するハロゲン化チタン化合物を接触させる。アルコキシ含有マグネシウム化合物(以下、単に「成分a」ということがある。)としては、ジアルコキシマグネシウムが好ましい。ジアルコキシマグネシウムとしては、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、エトキシメトキシマグネシウム、エトキシプロポキシマグネシウム、ブトキシエトキシマグネシウム等の粉末状のものが挙げられ、ジエトキシマグネシウムが特に好ましい。これらのジアルコキシマグネシウムは、単独あるいは2種以上併用することもできる。
上記ジアルコキシマグネシウムは、金属マグネシウムを、触媒の存在下にアルコールと反応させて得たものでもよい。触媒としては、例えば、臭化メチル、塩化メチル、臭化エチル、塩化エチルなどのハロゲン化アルキル、塩化マグネシウム、塩化アルミニウムなどの金属ハロゲン化物、ジエトキシマグネシウムなどのジアルコキシマグネシウム、沃素、酢酸エステルなどが使用される。この中でも特に沃素およびジエトキシマグネシウムが好ましい。金属マグネシウムとアルコールは、公知の方法で反応することができるが、好ましい接触反応方法としては、金属マグネシウムとアルコールの反応系への最終添加割合を金属マグネシウム/アルコール(重量比)=1/9〜1/15とし、前記最終添加割合の金属マグネシウムとアルコールを、アルコールの還流下であり触媒を含有する反応系に連続的または断続的に添加し、5〜80分間に亘り反応させ、次いで、アルコールの還流下に1〜30時間保持し、熟成反応を行い、ジアルコキシマグネシウムを得る。触媒は反応工程の初期に添加しておくことが好ましい。
更に、本発明において好適なジアルコキシマグネシウムは粒状であり、その形状は不定形あるいは球状のものを使用し得る。例えば球状のジアルコキシマグネシウムを使用した場合、より良好な粒子形状と狭い粒度分布を有する重合体粉末が得られ、重合操作時の生成重合体粉末の取扱い操作性が向上し、生成重合体粉末に含まれる微粉に起因する閉塞等の問題が解消される。本発明では、特に球状のジアルコキシマグネシウムを原料に用い、この原料の形状をそのまま保持して固体触媒成分を製造する方法において極めて有効である。
上記の球状ジアルコキシマグネシウム粉末は、必ずしも真球状である必要はなく、楕円形状あるいは馬鈴薯形状のものを用いることもできる。具体的にその粒子の形状は、長軸径lと短軸径wとの比(l/w)が3以下であり、好ましくは1から2であり、より好ましくは1から1.5である。
また、上記ジアルコキシマグネシウム粉末の平均粒径は1から200μmのものが使用し得る。好ましくは5から150μmである。球状のジアルコキシマグネシウム粉末の場合、その平均粒径は1から100μm、好ましくは5から50μmであり、更に好ましくは10から40μmである。また、その粒度分布については、微粉及び粗粉の少ない、粒度分布の狭いものを使用することが望ましい。具体的には、5μm以下の粒子が20%以下であり、好ましくは10%以下である。一方、100μm以上の粒子が10%以下であり、好ましくは5%以下である。更にその粒度分布をln(D90/D10)(ここで、D90は積算粒度で90%における粒径、D10は積算粒度で10%における粒径である。)で表すと3以下であり、好ましくは2以下である。
上記の如き球状のジアルコキシマグネシウム粉末の製造方法は、例えば特開昭58−41832号公報、特開昭62−51633号公報、特開平3−74341号公報、特開平4−368391号公報、特開平8−73388号公報などに例示されている。
本発明で用いられるハロゲン化チタン化合物(以下、単に「成分b」ということがある。)は、二価、三価あるいは四価のハロゲン化チタン化合物であって、好ましくは四価のハロゲン化チタン化合物である。四価のハロゲン化チタン化合物としては、下記一般式(3);Ti(OR4−n (3)
(式中、Rは炭素数1〜4のアルキル基を示し、Yは塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を示し、nは0または1〜3の整数である。)で表されるチタンハライドもしくはアルコキシチタンハライド群から選択される化合物の1種あるいは2種以上である。
具体的には、チタンハライドとして四塩化チタン、四臭化チタン、四ヨウ化チ等のチタンテトラハライド、アルコキシチタンハライドとしてメトキシチタントリクロライド、エトキシチタントリクロライド、プロポキシチタントリクロライド、n−ブトキシチタントリクロライド、ジメトキシチタンジクロライド、ジエトキシチタンジクロライド、ジプロポキシチタンジクロライド、ジ−n−ブトキシチタンジクロライド、トリメトキシチタンクロライド、トリエトキシチタンクロライド、トリプロポキシチタンクロライド、トリ−n−ブトキシチタンクロライド等が例示される。このうち、チタンテトラハライドが好ましく、特に好ましくは四塩化チタンである。これらのチタン化合物は単独あるいは2種以上併用することもできる。
本発明においては、成分(a)がジアルコキシマグネシウムの場合、電子供与性化合物の存在下、先ず成分(a)のジアルコキシマグネシウムの一部をハロゲン化する量のハロゲン化チタン化合物を接触させる(第1段階)。つまり、第1段階の反応として、ジアルコキシマグネシウムを完全にハロゲン化させさせないことが重要である。具体的には、ジアルコキシマグネシウムが完全にハロゲン化される理論量より少ないハロゲン化チタン化合物を接触させ反応してハロゲン化する。あるいは、ジアルコキシマグネシウムに完全にハロゲン化される理論量またそれ以上の量のハロゲン化チタン化合物を接触させてもよいが、温度をハロゲン化反応の速度が極めて遅い領域で行なってもよい。しかしながら、ジアルコキシマグネシウムのハロゲン化反応の速度は比較的速く反応速度を温度によって制御することは難しいため、前者の接触させるハロゲン化チタン化合物の量によりハロゲン化反応を制御することが好ましい。
上記第1段階の反応において一部をハロゲン化するとは、ジアルコキシマグネシウムの1つのアルコキシ基がハロゲン原子に置換すること、また複数のジアルコキシマグネシウム分子のうち、2つのアルコキシ基がハロゲン原子に置換されるものとハロゲン化されないものが並存することの両者を意味する。
第1段階において、成分(a)として球状のジアルコキシマグネシウム粉末を用いた場合、特に微粉を低減するという面で有効であるが、このような粉末状のジアルコキシマグネシウムを四塩化チタンなどのハロゲン化チタン化合物でハロゲン化した場合、ハロゲン化反応が激しく、その反応熱によるジアルコキシマグネシウム粒子が破壊され微粉が発生してしまう。これに対して本発明はこのジアルコキシマグネシウムのハロゲン化反応に着目して、第1段階のハロゲン化は、ジアルコキシマグネシウムの1部をハロゲン化し、反応熱を抑制し粒子破壊を抑えるとともに、ジエトキシマグネシウム粒子の表面近傍を選択的に先ずハロゲン化することにより、粒子表面を平滑化しかつ強固にすることによって、この最初の製造段階での微粉発生およびその後の固体触媒成分の製造段階での微粉の発生を抑制することが可能となった。この第1段階のハロゲン化反応は、ジアルコキシマグネシウムにハロゲン化チタン化合物を一括して接触させて行なうこともできるが、ハロゲン化チタン化合物を断続的あるいは連続的に分割して接触させて行なうこともできる。
第1段階のハロゲン化反応において、成分(a)としてジアルコキシマグネシウムを用い、ハロゲン化チタン化合物として四塩化チタンを用いた場合、その接触量はジアルコキシマグネシウム1モルに対して、0.5モル未満、好ましくは0.4モル未満、特に好ましくは0.3モル未満である。反応温度については、成分(a)の一部がハロゲン化される温度であればよいが、好ましくは−30〜30℃、好ましくは−20〜20℃、特に好ましくは−10〜10℃である。なお、反応時間は1分以上、好ましくは5分以上、より好ましくは10分以上である。
また、上記の成分(a)と成分(b)の接触は、ハロゲン化反応の制御の面から、不活性有機溶媒の存在下に行なうことが好ましく、不活性有機溶媒(以下、単に「成分d」ということがある。)としては、上記のハロゲン化チタン化合物を溶解しかつジアルコキシマグネシウムは溶解しないものであり、具体的にはペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサンなどの飽和炭化水素化合物、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素化合物、塩化メチレン、1,2−ジクロロベンゼンなどのハロゲン化炭化水素化合物、ジエチルエーテルなどのエーテル類等が挙げられる。これらの中でもトルエン、キシレンなどの室温で液体の芳香族炭化水素化合物およびヘキサン、ヘプタン、シクロヘキサンなどの室温で液体の飽和炭化水素化合物が好ましく用いられる。
また、第1段階のハロゲン化反応は電子供与性化合物(以下、単に「成分(c)」ということがある。)の存在下で行う。第1段階のハロゲン化反応の際に電子供与性化合物を共存させることにより、アルコキシマグネシウムのハロゲン化反応の際の反応熱での粒子の破壊による微粉発生を抑制することができる。
電子供与性化合物としてはアルコール類、フェノール類、エーテル類、エステル類、ケトン類、アルデヒド類、アミン類、アミド類、ニトリル類、イソシアネート類等が挙げられる。
具体的には、メタノール、エタノール、n−プロパノール、2−エチルヘキサノール等のアルコール類、フェノール、クレゾール等のフェノール類、メチルエーテル、エチルエーテル、プロピルエーテル、ブチルエーテル、アミルエーテル、ジフェニルエーテル、9,9−ビス(メトキシメチル)フルオレン、2−イソプロピル−2−イソペンチル−1,3―ジメトキシプロパン等のエーテル類、ギ酸メチル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキシル、プロピオン酸エチル、酪酸エチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル、安息香酸フェニル、p−トルイル酸メチル、p−トルイル酸エチル、p−メトキシ安息香酸エチル、p−エトキシ安息香酸エチル、アニス酸メチル、アニス酸エチル等のモノカルボン酸エステル類、マレイン酸ジエチル、マレイン酸ジブチル、ジメチルマロン酸ジエチル、ジエチルマロン酸ジエチル、ジ−n−プロピルマロン酸ジエチル、ジイソプロピルマロン酸ジエチル、ジ−n−ブチルマロン酸ジエチル、ジイソブチルマロン酸ジエチル、ジ−sec−ブチルマロン酸ジエチル、アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル、アジピン酸ジブチル、アジピン酸ジイソデシル、アジピン酸ジオクチル、フタル酸ジエステル、フタル酸ジエステル誘導体等のジカルボン酸エステル類、アセトン、メチルエチルケトン、メチルブチルケトン、アセトフェノン、ベンゾフェノン等のケトン類、フタル酸ジクロライド、テレフタル酸ジクロライド等の酸ハライド類、アセトアルデヒド、プロピオンアルデヒド、オクチルアルデヒド、ベンズアルデヒド等のアルデヒド類、メチルアミン、エチルアミン、トリブチルアミン、ピペリジン、アニリン、ピリジン等のアミン類、オレイン酸アミド、ステアリン酸アミド等のアミド類、アセトニトリル、ベンゾニトリル、トルニトリル等のニトリル類、イソシアン酸メチル、イソシアン酸エチル等のイソシアネート類を挙げることができる。
上記の電子供与性化合物のうち、安息香酸エチル、p−トルイル酸メチル、p−トルイル酸エチル、p−エトキシ安息香酸エチル、アニス酸エチルなどのモノカルボン酸エステル、またフタル酸ジエステルおよびフタル酸ジエステル誘導体などの芳香族ジカルボン酸ジエステルなどのエステル類が、アルコキシマグネシウムのハロゲン化反応の際の反応熱での粒子の破壊による微粉発生をより一層抑制することができる点で好ましく用いられる。このうち、フタル酸ジエステルの具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジ−n−プロピル、フタル酸ジ−iso−プロピル、フタル酸ジ−n−ブチル、フタル酸ジ−iso−ブチル、フタル酸エチルメチル、フタル酸メチル(iso−プロピル)、フタル酸エチル(n−プロピル)、フタル酸エチル(n−ブチル)、フタル酸エチル(iso−ブチル)、フタル酸ジ−n−ペンチル、フタル酸ジ−iso−ペンチル、フタル酸ジ−neo−ペンチル、フタル酸ジヘキシル、フタル酸ジ−n−ヘプチル、フタル酸ジ−n−オクチル、フタル酸ビス(2,2−ジメチルヘキシル)、フタル酸ビス(2−エチルヘキシル)、フタル酸ジ−n−ノニル、フタル酸ジ−iso−デシル、フタル酸ビス(2,2−ジメチルヘプチル)、フタル酸n−ブチル(iso−ヘキシル)、フタル酸n−ブチル(2−エチルヘキシル)、フタル酸n−ペンチルヘキシル、フタル酸n−ペンチル(iso−ヘキシル)、フタル酸iso−ペンチル(ヘプチル)、フタル酸n−ペンチル(2−エチルヘキシル)、フタル酸n−ペンチル(iso−ノニル)、フタル酸iso−ペンチル(n−デシル)、フタル酸n−ペンチルウンデシル、フタル酸iso−ペンチル(iso−ヘキシル)、フタル酸n−ヘキシル(2,2−ジメチルヘキシル)、フタル酸n−ヘキシル(2−エチルヘキシル)、フタル酸n−ヘキシル(iso−ノニル)、フタル酸n−ヘキシル(n−デシル)、フタル酸n−ヘプチル(2−エチルヘキシル)、フタル酸n−ヘプチル(iso−ノニル)、フタル酸n−ヘプチル(neo−デシル)、フタル酸2−エチルヘキシル(iso−ノニル)が例示され、これらの1種あるいは2種以上が使用される。
また、フタル酸ジエステル誘導体としては、下記一般式(4);
4−i(COOR)(COOR) (4)
(式中、Rは炭素数1〜8のアルキル基又はハロゲン原子を示し、RおよびRは炭素数1〜12のアルキル基を示し、RとRは同一であっても異なってもよく、また、置換基Rの数iは1又は2であり、iが2のとき、Rは同一であっても異なってもよい。)で表わされるものが好ましい。
上記一般式(4)において、Rが炭素数1〜8のアルキル基である場合の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、2,2−ジメチルブチル基、2,2−ジメチルペンチル基、イソオクチル基、2,2−ジメチルヘキシル基であり、Rがハロゲン原子である場合の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子である。Rは好ましくはメチル基、臭素原子又はフッ素原子であり、より好ましくはメチル基または臭素原子である。また、置換基Rの数iは1又は2であり、iが2のとき、Rは同一でもあっても異なってもよい。iが1の場合、Rは上記一般式(3)のフタル酸エステル誘導体の3位、4位、5位又は6位の位置の水素原子と置換し、iが2の場合、Rは4位および5位の位置の水素原子と置換するものが好ましい。
上記一般式(4)において、RおよびRとしては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、2,2−ジメチルブチル基、2,2−ジメチルペンチル基、またはイソオクチル基、2,2−ジメチルヘキシル基、n−ノニル基、イソノニル基、n−デシル基、イソデシル基、n−ドデシル基である。この中でもエチル基、n−ブチル基、イソブチル基、t−ブチル基、ネオペンチル基、イソヘキシル基、イソオクチル基が好ましく、エチル基、n−ブチル基、ネオペンチル基が特に好ましい。
上記一般式(4)で表されるフタル酸ジエステル誘導体としては、4−メチルフタル酸ジエチル、4−メチルフタル酸ジ−n−ブチル、4−メチルフタル酸ジイソブチル、4−ブロモフタル酸ジネオペンチル、4−ブロモフタル酸ジエチル、4−ブロモフタル酸ジ−n−ブチル、4−ブロモフタル酸ジイソブチル、4−メチルフタル酸ジネオペンチル、4,5−ジメチルフタル酸ジネオペンチル、4−メチルフタル酸ジネオペンチル、4−エチルフタル酸ジネオペンチル、4−メチルフタル酸−t−ブチルネオペンチル、4−エチルフタル酸−t−ブチルネオペンチル、4,5−ジメチルフタル酸ジネオペンチル、4,5−ジエチルフタル酸ジネオペンチル、4,5−ジメチルフタル酸−t−ブチルネオペンチル、4,5−ジエチルフタル酸−t−ブチルネオペンチル、3−フルオロフタル酸ジネオペンチル、3−クロロフタル酸ジネオペンチル、4−クロロフタル酸ジネオペンチル、4−ブロモフタル酸ジネオペンチルが挙げられ、これらの1種あるいは2種以上が使用される。
なお、上記のエステル類は、2種以上組み合わせて用いることも好ましく、その際用いられるエステルのアルキル基の炭素数合計が他のエステルのそれと比べ、その差が4以上になるように該エステル類を組み合わせることが望ましい。
次いで上記のようにアルコキシ含有マグネシウム化合物の一部をハロゲン化する量のハロゲン化チタン化合物を接触させて一部をハロゲン化した後、少なくとも完全にハロゲン化する量のハロゲン化チタン化合物を接触させる(第2段階)。第2段階においては、成分(a)がジアルコキシマグネシウムの場合、第1段階のハロゲン化反応でハロゲン化されなかったジアルコキシマグネシウムおよび1つのアルコキシ基しかハロゲン化されていないモノアルコキシマグネシウムハライドを完全にハロゲン化する量以上の量のハロゲン化チタン化合物を接触させて、ジアルコキシマグネシウムを完全にハロゲン化するとともに、生成したハロゲン化マグネシウム上に触媒として有効なチタン成分(活性点)を担持させる。この第2段階の反応においてもハロゲン化反応の制御の面から、不活性有機溶媒の存在下に行なうことが好ましい。この第2段階のハロゲン化反応は、ジアルコキシマグネシウムにハロゲン化チタン化合物を一括して接触させて行なうこともできるが、ハロゲン化チタン化合物を断続的あるいは連続的に分割して接触させて行なうこともできる。
第2段階のハロゲン化反応において、アルコキシ含有マグネシウム化合物としてジアルコキシマグネシウムを用い、ハロゲン化チタン化合物として四塩化チタンを用いた場合、その接触量はジアルコキシマグネシウム1モルに対して、0.5〜3.0モル、好ましくは1.0〜2.5モル、特に好ましくは1.5〜2.5モルである。反応温度については、アルコキシ含有マグネシウム化合物の一部がハロゲン化される温度であればよいが、好ましくは−30〜30℃、好ましくは−20〜20℃、特に好ましくは−10〜10℃である。なお、反応時間は1分以上、好ましくは10分以上、より好ましくは30分以上である。
上記第1段階のハロゲン化と第2段階のハロゲン化反応は、上述したように段階的にハロゲン化チタン化合物を接触させて行なうが、第1段階のハロゲン化反応の後、得られた固体物を必要に応じて上述した不活性有機溶媒で洗浄してもよく、また洗浄せずに連続してハロゲン化チタン化合物を固体物に接触させて第2段階のハロゲン化反応を行うこともできる。
本発明のオレフィン類重合用固体触媒成分(A)の具体的な調製方法としては、 成分(a)を成分(d)に懸濁させ、この懸濁液に成分(c)を添加し、次いで成分(b)を該懸濁液に添加して反応させ(第1段階)、その後、成分(b)を該懸濁液に新たに添加して反応させ固体触媒成分(A)を得る(第2段階)方法、成分(a)および成分(c)を成分(d)に懸濁させ、この懸濁液を成分(b)の中に添加して反応させる(第1段階)、その後、成分(b)を新たに添加して反応させ固体触媒成分(A)を得る(第2段階)方法および成分(a)を成分(d)に懸濁させ、この懸濁液に成分(c)を添加し、次いで成分(b)を該懸濁液に添加して反応させる(第1段階)、その後、成分(b)および成分(c)を該懸濁液に新たに添加して反応させ固体触媒成分(A)を得る(第2段階)方法が挙げられる。これらの方法において、固体触媒成分(A)は必要に応じて芳香族炭化水素などの不活性溶媒で洗浄して、さらに成分(b)と接触させることもできる。
以上を踏まえ、本願における固体触媒成分(A)の特に好ましい調製方法としては、成分(a)および成分(c)を成分(d)に懸濁させて形成した懸濁液に、成分(b)を−20〜20℃で接触させた後、第1段階のハロゲン化反応処理を行う。次いでこの懸濁液に成分(b)を−10〜20℃で添加し、その後昇温して50〜130℃の範囲で反応させる。得られた固体反応生成物を常温で液体の炭化水素化合物で洗浄(中間洗浄)した後、再度成分(b)を、成分(b)の存在下に、−20〜130℃で接触させ、反応処理を行い、次いで常温で液体の炭化水素化合物で洗浄(最終洗浄)し、固体触媒成分(A)を得る。
固体触媒成分(A)を調製する際の成分(c)および成分(d)の使用量比は、調製法により異なるため一概には規定できないが、例えばジアルコキシマグネシウム1モルに対し、成分(c)が0.01〜10モル、好ましくは0.01〜1モル、より好ましくは0.02〜0.6モルであり、成分(d)が0.001〜500モル、好ましくは0.001〜100モル、より好ましくは0.005〜10モルである。
また本発明における固体触媒成分(A)中のチタン、マグネシウム、ハロゲン原子、電子供与性化合物の含有量は特に規定されないが、好ましくは、チタンが1.0〜8.0重量%、好ましくは1.0〜6.0重量%、より好ましくは1.0〜4.0重量%、マグネシウムが10〜70重量%、より好ましくは10〜50重量%、特に好ましくは15〜40重量%、更に好ましくは15〜25重量%、ハロゲン原子が20〜85重量%、より好ましくは30〜85重量%、特に好ましくは40〜80重量%、更に好ましくは45〜75重量%、また電子供与性化合物が合計0.5〜30重量%、より好ましくは合計1〜25重量%、特に好ましくは合計2〜20重量%である。
本発明のオレフィン類重合用触媒を形成する際に用いられる有機アルミニウム化合物(B)(以下単に「成分(B)」ということがある。)としては、上記一般式(1)で表される化合物であれば、特に制限されないが、Rとしては、エチル基、イソブチル基が好ましく、Qとしては、水素原子、塩素原子、臭素原子が好ましく、pは、2又は3が好ましく、3が特に好ましい。このような有機アルミニウム化合物(B)の具体例としては、トリエチルアルミニウム、ジエチルアルミニウムクロライド、トリイソブチルアルミニウム、ジエチルアルミニウムブロマイド、ジエチルアルミニウムハイドライドが挙げられ、1種あるいは2種以上が使用できる。好ましくは、トリエチルアルミニウム、トリイソブチルアルミニウムである。
また本発明の触媒では上記成分(A)及び成分(B)の他に外部電子供与性化合物(C)(以下単に「成分(C)」ということがある。)を用いることができる。特にプロピレンの立体規則性重合を行う際、成分(C)を用いることにより、触媒の活性および重合体の立体規則性を向上させることができる。
外部電子供与性化合物(C)としては、酸素原子あるいは窒素原子を含有する有機化合物であり、例えばアルコール類、フェノール類、エーテル類、エステル類、ケトン類、酸ハライド類、アルデヒド類、アミン類、アミド類、ニトリル類、イソシアネート類、Si−O−C結合を含む有機ケイ素化合物等が挙げられる。
具体的には、メタノール、エタノール、n−プロパノール、2−エチルヘキサノール等のアルコール類、フェノール、クレゾール等のフェノール類、メチルエーテル、エチルエーテル、プロピルエーテル、ブチルエーテル、アミルエーテル、ジフェニルエーテル、9,9−ビス(メトキシメチル)フルオレン、2−イソプロピル−2−イソペンチル−1,3―ジメトキシプロパン等のエーテル類、ギ酸メチル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキシル、プロピオン酸エチル、酪酸エチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル、安息香酸フェニル、p−メトキシ安息香酸エチル、p−エトキシ安息香酸エチル、p−トルイル酸メチル、p−トルイル酸エチル、アニス酸メチル、アニス酸エチル等のモノカルボン酸エステル類、マレイン酸ジエチル、マレイン酸ジブチル、アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル、アジピン酸ジブチル、アジピン酸ジイソデシル、アジピン酸ジオクチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、フタル酸ジブチル、フタル酸ジペンチル、フタル酸ジヘキシル、フタル酸ジヘプチル、フタル酸ジオクチル、フタル酸ジノニル、フタル酸ジデシル等のジカルボン酸エステル類、アセトン、メチルエチルケトン、メチルブチルケトン、アセトフェノン、ベンゾフェノン等のケトン類、フタル酸ジクロライド、テレフタル酸ジクロライド等の酸ハライド類、アセトアルデヒド、プロピオンアルデヒド、オクチルアルデヒド、ベンズアルデヒド等のアルデヒド類、メチルアミン、エチルアミン、トリブチルアミン、ピペリジン、アニリン、ピリジン等のアミン類、オレイン酸アミド、ステアリン酸アミド等のアミド類、アセトニトリル、ベンゾニトリル、トルニトリル等のニトリル類、イソシアン酸メチル、イソシアン酸エチル等のイソシアネート類等を挙げることができる。
上記のなかでも特に安息香酸エチル、p−メトキシ安息香酸エチル、p−エトキシ安息香酸エチル、p−トルイル酸メチル、p−トルイル酸エチル、アニス酸メチル、アニス酸エチル等のモノカルボン酸エステル類が好ましい。
また有機ケイ素化合物も成分(C)として好ましく用いられ、下記一般式(2);
Si(OR4−q (2)
(式中、Rは炭素数1〜12のアルキル基、シクロアルキル基、フェニル基、ビニル基、アリル基、アラルキル基のいずれかで、同一または異なっていてもよい。Rは炭素数1〜4のアルキル基、シクロアルキル基、フェニル基、ビニル基、アリル基、アラルキル基を示し、同一または異なっていてもよい。qは0≦q≦3の整数である。)で表される化合物が用いられる。
このような有機ケイ素化合物としては、フェニルアルコキシシラン、アルキルアルコキシシラン、フェニルアルキルアルコキシシラン、シクロアルキルアルコキシシラン、シクロアルキルアルキルアルコキシシラン等を挙げることができる。
上記の有機ケイ素化合物を具体的に例示すると、トリメチルメトキシシラン、トリメチルエトキシシラン、トリ−n−プロピルメトキシシラン、トリ−n−プロピルエトキシシラン、トリ−n−ブチルメトキシシラン、トリイソブチルメトキシシラン、トリ−t−ブチルメトキシシラン、トリ−n−ブチルエトキシシラン、トリシクロヘキシルメトキシシラン、トリシクロヘキシルエトキシシラン、シクロヘキシルジメチルメトキシシラン、シクロヘキシルジエチルメトキシシラン、シクロヘキシルジエチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジイソプロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジイソプロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジイソブチルジメトキシシラン、ジ−t−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、n−ブチルメチルジメトキシシラン、ビス(2−エチルヘキシル)ジメトキシシラン、ビス(2−エチルヘキシル)ジエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン、ビス(3−メチルシクロヘキシル)ジメトキシシラン、ビス(4−メチルシクロヘキシル)ジメトキシシラン、ビス(3,5−ジメチルシクロヘキシル)ジメトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルシクロペンチルジエトキシシラン、シクロヘキシルシクロペンチルジプロポキシシラン、3−メチルシクロヘキシルシクロペンチルジメトキシシラン、4−メチルシクロヘキシルシクロペンチルジメトキシシラン、3,5−ジメチルシクロヘキシルシクロペンチルジメトキシシラン、3−メチルシクロヘキシルシクロヘキシルジメトキシシラン、4−メチルシクロヘキシルシクロヘキシルジメトキシシラン、3,5−ジメチルシクロヘキシルシクロヘキシルジメトキシシラン、シクロペンチルメチルジメトキシシラン、シクロペンチルメチルジエトキシシラン、シクロペンチルエチルジエトキシシラン、シクロペンチル(イソプロピル)ジメトキシシラン、シクロペンチル(イソブチル)ジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルエチルジエトキシシラン、シクロヘキシル(n−プロピル)ジメトキシシラン、シクロヘキシル(イソプロピル)ジメトキシシラン、シクロヘキシル(n−プロピル)ジエトキシシラン、シクロヘキシル(イソブチル)ジメトキシシラン、シクロヘキシル(n−ブチル)ジエトキシシラン、シクロヘキシル(n−ペンチル)ジメトキシシラン、シクロヘキシル(n−ペンチル)ジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルエチルジメトキシシラン、フェニルエチルジエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリエトキシシラン、n−ブチルトリメトキシシラン、イソブチルトリメトキシシラン、t−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、2−エチルヘキシルトリメトキシシラン、2−エチルヘキシルトリエトキシシラン、シクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等を挙げることができる。
上記の中でも、ジ−n−プロピルジメトキシシラン、ジイソプロピルジメトキシシラン、ジ−n−ブチルジメトキシシラン、ジイソブチルジメトキシシラン、ジ−t−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、t−ブチルトリメトキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルエチルジエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、シクロペンチルメチルジメトキシシラン、シクロペンチルメチルジエトキシシラン、シクロペンチルエチルジエトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルシクロペンチルジエトキシシラン、3−メチルシクロヘキシルシクロペンチルジメトキシシラン、4−メチルシクロヘキシルシクロペンチルジメトキシシラン、3,5−ジメチルシクロヘキシルシクロペンチルジメトキシシランが好ましく用いられ、該有機ケイ素化合物(C)は1種あるいは2種以上組み合わせて用いることができる。
本発明のオレフィン類重合用触媒の存在下にオレフィン類の重合もしくは共重合を行う。オレフィン類としては、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、ビニルシクロヘキサン等であり、これらのオレフィン類は1種あるいは2種以上併用することができる。とりわけ、エチレン、プロピレン及び1−ブテンが好適に用いられる。特に好ましくはプロピレンである。プロピレンの重合の場合、他のオレフィン類との共重合を行うこともできる。共重合されるオレフィン類としては、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、ビニルシクロヘキサン等であり、これらのオレフィン類は1種あるいは2種以上併用することができる。とりわけ、エチレン及び1−ブテンが好適に用いられる。
各成分の使用量比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、通常成分(B)は成分(A)中のチタン原子1モル当たり、1〜2000モル、好ましくは50〜1000モルの範囲で用いられる。成分(C)は、(B)成分1モル当たり、0.002〜10モル、好ましくは0.01〜2モル、特に好ましくは0.01〜0.5モルの範囲で用いられる。
各成分の接触順序は任意であるが、重合系内にまず成分(B)を装入し、成分(A)を接触させることが望ましい。成分(C)を用いる場合、まず成分(B)を装入し、次いで成分(C)を接触させ、次いで成分(A)を接触させることが望ましい。更にあるいは重合系内にまず成分(B)を装入し、一方で成分(A)と成分(C)とを予め接触させ、接触させた成分(A)、成分(C)を重合系内に装入接触させ触媒を形成することも好ましい態様である。このように予め成分(A)と成分(C)とを接触させて処理することによって、触媒の対水素活性および生成ポリマーの結晶性をより向上させることが可能となる。
本発明における重合方法は、有機溶媒の存在下でも非存在下でも行うことができ、またプロピレン等のオレフィン単量体は、気体及び液体のいずれの状態でも用いることができる。重合温度は200℃以下、好ましくは100℃以下であり、重合圧力は10MPa以下、好ましくは5MPa以下である。また、連続重合法、バッチ式重合法のいずれでも可能である。更に重合反応を1段で行ってもよいし、2段以上で行ってもよい。
更に、本発明において成分(A)及び成分(B)、又は成分(C)から形成される触媒を用いてオレフィンを重合するにあたり(本重合ともいう。)、触媒活性、立体規則性及び生成する重合体の粒子性状等を一層改善させるために、本重合に先立ち予備重合を行うことが望ましい。予備重合の際には、本重合と同様のオレフィン類あるいはスチレン等のモノマーを用いることができる。具体的には、オレフィン類の存在下に成分(A)、成分(B)または成分(C)を接触させ、成分(A)1gあたり0.1〜100gのオレフィンを予備的に重合させ、さらに成分(B)または成分(C)を接触させ触媒を形成する。
予備重合を行うに際して、各成分及びモノマーの接触順序は任意であるが、好ましくは、不活性ガス雰囲気あるいはプロピレンなどの重合を行うガス雰囲気に設定した予備重合系内にまず成分(B)を装入し、次いで成分(A)を接触させた後、プロピレン等のオレフィン及び/または1種あるいは2種以上の他のオレフィン類を接触させる。
本発明のオレフィン類重合用触媒の存在下で、オレフィン類の重合を行った場合、従来の触媒を使用した場合に較べ、ポリマーの立体規則性および収率を高度に維持でき、しかも微粉が少なく粒度分布の均一な重合体を得ることができる。
以下、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
〈固体触媒成分の調製〉
撹拌機を具備し、窒素ガスで充分に置換された、容量500mlの丸底フラスコに、平均粒子径35μmの球状ジエトキシマグネシウム粉末10g、フタル酸ジ−n−ブチル4ml及びトルエン80mlを装入し、懸濁液を形成し0℃に冷却した。この懸濁液に、四塩化チタン2mlを添加し、0℃で30分攪拌し第1段階のハロゲン化反応を行った。次いで、四塩化チタン18mlを0℃で添加後、90℃に昇温して2時間攪拌し、第2段階のハロゲン化反応を行った。反応終了後、生成物を90℃のトルエン100mlで4回洗浄(中間洗浄)し、新たに四塩化チタン15mlを加えて、撹拌しながら100℃で1時間の反応処理(第2処理)を行った。次いで、生成物を40℃のヘプタン100mlで7回洗浄し、濾過、乾燥して、粉末状の固体触媒成分(A)を得た。この固体触媒成分中のチタン含有量を測定したところ、2.9重量%であった。なお、実施例1において、第1段階における四塩化チタンの接触量は、ジエトキシマグネシウム1モルに対して、0.2モルであり、第2段階における四塩化チタンの接触量は、ジエトキシマグネシウム1モルに対して、1.9モルである。
〈重合触媒の形成および重合〉
窒素ガスで完全に置換された内容積2.0リットルの撹拌機付オートクレーブに、トリエチルアルミニウム1.32mmol、シクロヘキシルメチルジメトキシシラン0.13mmolおよび前記固体触媒成分をチタン原子として0.0026mmol装入し、重合用触媒を形成した。その後、水素ガス1.5リットル、液化プロピレン1.4リットルを装入し、20℃で5分間予備重合を行なった後に昇温し、70℃で1時間重合反応を行った。このときの固体触媒成分1g当たりの重合活性、生成重合体中の沸騰n−ヘプタン不溶分の割合(HI)、生成重合体のメルトフローレイトの値(MFR)、生成固体重合体の44μm以下又は105μm以下の微粉の量、生成固体重合体の平均粒径および粒度分布を表1に示した。
なお、ここで使用した固体触媒成分当たりの重合活性は下式により算出した。
重合活性=生成重合体(g)/固体触媒成分(g)
また、生成重合体中の沸騰n−ヘプタン不溶分の割合(HI)は、この生成重合体を沸騰n−ヘプタンで6時間抽出したときのn−ヘプタンに不溶解の重合体の割合(重量%)とした。さらに、生成重合体(a)のメルトフローレイトの値(MFR)は、ASTM D 1238に準じて測定した。また、生成固体重合体の45μm以下の微粉または106μm以下の微粉の量は330メッシュまたは140メッシュの篩上に置いた生成ポリマーにエタノールを流し、篩を通過した微粒子を含むエタノール懸濁液を遠心分離することにより固体分(微粒子)を回収し、さらに減圧乾燥して重量を測る方法により、生成固体重合体の平均粒径は、JISK0069に従い粒度分布を測定し、積算重量50%に相当する粒子径を求める方法により測定した。
平均粒子径35μmの球状ジエトキシマグネシウム粉末の代わりに平均粒子径52μmの球状ジエトキシマグネシウム粉末を用いた以外は、実施例1と同じ条件で、重合触媒の形成及び重合を行なった。得られた結果を表1に示す。
フタル酸−n−ブチル4mlの代りにフタル酸イソブチルを用いて重合触媒の形成及び重合を行った以外は、実施例1と同じ条件で、重合触媒の形成及び重合を行なった。得られた結果を表1に示す。
〈固体触媒成分の調製〉
撹拌機を具備し、窒素ガスで充分に置換された、容量500mlの丸底フラスコに、平均粒子径35μmの球状ジエトキシマグネシウム粉末10g、フタル酸ジクロライド2ml及びトルエン80mlを装入し、懸濁液を形成し0℃に冷却した。この懸濁液に、四塩化チタン2mlを添加し、0℃で30分攪拌し第1段階のハロゲン化反応を行った。次いで、四塩化チタン18ml、フタル酸−n−ブチル2mlを0℃で添加後、90℃に昇温して2時間攪拌し、第2段階のハロゲン化反応を行った。反応終了後、生成物を90℃のトルエン100mlで4回洗浄(中間洗浄)し、新たに四塩化チタン15mlを加えて、撹拌しながら100℃で1時間の反応処理(第2処理)を行った。次いで、生成物を40℃のヘプタン100mlで7回洗浄し、濾過、乾燥して、粉末状の固体触媒成分(A)を得た。この固体触媒成分中のチタン含有量を測定したところ、2.5重量%であった。なお、実施例4において、第1段階における四塩化チタンの接触量及び第2段階における四塩化チタンの接触量は、実施例1と同様である。
<重合用触媒の形成及び重合>
上記で得られた固体触媒成分を用いた以外は、実施例1と同様に重合用触媒の形成及び重合を行った。得られた結果を表1に示す。
比較例1
〈固体触媒成分の調製〉
撹拌機を具備し、窒素ガスで充分に置換された、容量500mlの丸底フラスコに、ジエトキシマグネシウム10g、トルエン80ml、四塩化チタン20ml及びフタル酸ジブチル2.4mlを装入し、懸濁状態とした。次いで、該懸濁液を−5℃で2時間反応させた(低温熟成処理)。その後、さらに90℃まで昇温した後、撹拌しながら2時間反応処理(第1処理)を行った。反応終了後、生成物を90℃のトルエン100mlで4回洗浄(中間洗浄)し、新たにチタンテトラクロライド20mlを加えて、撹拌しながら100℃で1時間の反応処理(第2処理)を行った。次いで、生成物を40℃のヘプタン100mlで7回洗浄し、濾過、乾燥して、粉末状の固体触媒成分(A)を得た。この固体触媒成分中のチタン含有量を測定したところ、3.7重量%であった。なお、比較例1において、第1処理における四塩化チタンの接触量は、ジエトキシマグネシウム1モルに対して、2モルであり、第2段階におけるチタンテトラクロライドの接触量は、ジエトキシマグネシウム1モルに対して、2.1モルである。
〈重合触媒の形成および重合〉
上記で得られた固体触媒成分を用いた以外は実施例1と同様に実験を行った。得られた結果を表1に示した。
Figure 0004521821
表1の結果から、本発明の方法により得られた固体触媒成分および触媒を用いてプロピレンの重合を行うことにより、高活性および高立体規則性を維持し、極めて微粉重合体の発生が少ないことがわかる。
本発明の触媒成分及び重合触媒を調製する工程を示すフローチャート図である。

Claims (1)

  1. エステル化合物の存在下、アルコキシ含有マグネシウム化合物を、常温で液体の不活性有機溶媒に懸濁させ、該アルコキシ含有マグネシウムに対し、モル比で0.3未満のハロゲン化チタン化合物を接触させて懸濁液を得、次いで該懸濁液と、少なくとも完全にアルコキシ含有マグネシウム化合物をハロゲン化する量のハロゲン化チタン化合物を接触させ調製することを特徴とするオレフィン類重合用固体触媒成分の製造方法。
JP2005097137A 2005-03-30 2005-03-30 オレフィン類重合用固体触媒成分の製造方法 Active JP4521821B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097137A JP4521821B2 (ja) 2005-03-30 2005-03-30 オレフィン類重合用固体触媒成分の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097137A JP4521821B2 (ja) 2005-03-30 2005-03-30 オレフィン類重合用固体触媒成分の製造方法

Publications (2)

Publication Number Publication Date
JP2006274105A JP2006274105A (ja) 2006-10-12
JP4521821B2 true JP4521821B2 (ja) 2010-08-11

Family

ID=37209158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097137A Active JP4521821B2 (ja) 2005-03-30 2005-03-30 オレフィン類重合用固体触媒成分の製造方法

Country Status (1)

Country Link
JP (1) JP4521821B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272170A (zh) * 2009-01-07 2011-12-07 东邦钛株式会社 烯烃类聚合用固体催化剂成分、制造方法和催化剂以及烯烃类聚合物的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415666B (zh) 2006-04-07 2013-07-17 可儿康株式会社 二烷氧基镁颗粒材料及其合成方法
JP5254048B2 (ja) * 2009-01-07 2013-08-07 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分の製造方法
TW201906806A (zh) * 2017-06-15 2019-02-16 日商東邦鈦股份有限公司 二烷氧基鎂、二烷氧基鎂之製造方法、烯烴類聚合用固體觸媒成分及烯烴類聚合體之製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269808A (ja) * 2003-03-12 2004-09-30 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分及び触媒

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202306A (en) * 1981-06-08 1982-12-11 Idemitsu Kosan Co Ltd Polymerization of olefin
JP3537534B2 (ja) * 1995-01-31 2004-06-14 三菱化学株式会社 オレフィン重合用固体触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269808A (ja) * 2003-03-12 2004-09-30 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分及び触媒

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272170A (zh) * 2009-01-07 2011-12-07 东邦钛株式会社 烯烃类聚合用固体催化剂成分、制造方法和催化剂以及烯烃类聚合物的制造方法
CN102272170B (zh) * 2009-01-07 2014-06-18 东邦钛株式会社 烯烃类聚合用固体催化剂成分、制造方法和催化剂以及烯烃类聚合物的制造方法

Also Published As

Publication number Publication date
JP2006274105A (ja) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4402353B2 (ja) ジアルコキシマグネシウムの製造方法並びにオレフィン類重合用固体触媒成分及び触媒
JP4688135B2 (ja) オレフィン類重合用固体触媒成分および触媒
JP4098588B2 (ja) オレフィン類重合用固体触媒成分および触媒
JP5208544B2 (ja) オレフィン類重合用固体触媒成分、その製造方法及び触媒並びにこれを用いたオレフィン類重合体の製造方法
JP5305694B2 (ja) オレフィン類重合用固体触媒成分、その製造方法及び触媒並びにこれを用いたオレフィン類重合体の製造方法
JP4521821B2 (ja) オレフィン類重合用固体触媒成分の製造方法
JP2003040918A (ja) オレフィン類重合用固体触媒成分および触媒
JP3885035B2 (ja) オレフィン類重合用固体触媒成分の製造方法
JP2007045881A (ja) オレフィン類重合用固体触媒成分および触媒並びにこれを用いたオレフィン類重合体の製造方法
JP3822586B2 (ja) オレフィン類重合用固体触媒成分前駆体の製造方法並びにオレフィン類重合用固体触媒成分及び触媒
JP4712171B2 (ja) オレフィン類重合用固体触媒成分および触媒並びに電子供与体
JP4187625B2 (ja) オレフィン類重合用固体触媒成分前駆体の製造方法並びにオレフィン類重合用固体触媒成分及び触媒
JP3885034B2 (ja) オレフィン類重合用固体触媒成分の調製方法
JP3765278B2 (ja) オレフィン類重合用固体触媒成分及び触媒
JP3578374B2 (ja) オレフィン類重合用触媒
JP3785302B2 (ja) オレフィン類重合用固体触媒成分および触媒
JP5254048B2 (ja) オレフィン類重合用固体触媒成分の製造方法
JP2008074948A (ja) オレフィン類重合用固体触媒成分、重合用触媒およびオレフィン類重合体の製造法
JP3679068B2 (ja) オレフィン類重合用固体触媒成分及び触媒
JP5172205B2 (ja) オレフィン類重合用固体触媒成分の製造方法
JP4738583B2 (ja) オレフィン類重合用固体触媒成分および触媒
JP4540055B2 (ja) オレフィン類重合用固体触媒成分の製造方法
JP4034108B2 (ja) オレフィン類重合用触媒
JP2005187653A (ja) オレフィン類重合用固体触媒成分前駆体の製造方法並びにオレフィン類重合用固体触媒成分及び触媒
JP2001172316A (ja) オレフィン類重合用触媒および重合方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4521821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250