[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4521654B2 - Granulated product and granulation method - Google Patents

Granulated product and granulation method Download PDF

Info

Publication number
JP4521654B2
JP4521654B2 JP2003119519A JP2003119519A JP4521654B2 JP 4521654 B2 JP4521654 B2 JP 4521654B2 JP 2003119519 A JP2003119519 A JP 2003119519A JP 2003119519 A JP2003119519 A JP 2003119519A JP 4521654 B2 JP4521654 B2 JP 4521654B2
Authority
JP
Japan
Prior art keywords
granulated product
powder
granulated
core
lactose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003119519A
Other languages
Japanese (ja)
Other versions
JP2004323409A (en
Inventor
桂 高野
新一 種谷
正靭 堀尾
和夫 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalton Corp
Original Assignee
Dalton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalton Corp filed Critical Dalton Corp
Priority to JP2003119519A priority Critical patent/JP4521654B2/en
Publication of JP2004323409A publication Critical patent/JP2004323409A/en
Application granted granted Critical
Publication of JP4521654B2 publication Critical patent/JP4521654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Glanulating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、結合剤を用いずに造粒した核粒子の表面に粉末(粉体)を付着させて被覆した造粒物およびこの造粒物を形成する方法に関するものである。
【0002】
【従来の技術】
例えば、気管支喘息等の治療に用いられる吸入剤は、薬剤を吸入して直接肺に投与する経肺投与製剤である。このような吸入剤は、直接患部に投与できる上に、肺は表面積が広く、また、初回肝通過効果や、消化液による代謝分解を回避できるため、風邪薬等の一般薬や患者の苦痛を伴う注射剤が主であったインシュリン等の投与の方法としても注目されている。
【0003】
このような、経肺投与剤では、気管支および肺胞へ到達可能な粒子径は1〜7μmといわれ、所定の粒子径のエアロゾルとして投与する。その投与方法には、薬剤液を圧縮空気等によってエアロゾルとするネブライザー法やフロンガスにより液薬剤を噴霧する加圧式定量噴霧吸入法、およびヒトの吸気により2.3μmの微粉末薬剤を分散しながら吸入する粉末吸入法等がある。
【0004】
近年、粉末吸入法は、ネブライザー法に比べ、吸入器が簡便で携帯に便利であるため、また加圧式定量噴霧吸入法のように、環境問題となっているフロンガスを使用しないため、注目されている。
【0005】
粉末吸入剤は、薬剤の径が2.3μmと微剤で、付着性が大で、凝集しやすい粒子であるため、流れ性が悪く、吸入時に一次粒子まで再分散させることが困難である。
【0006】
また、投与量の少ない薬剤は、乳糖等の担体による希釈が必要である。しかし、薬効に不必要な物質は、気管支、肺胞に到達しないことが望ましい。そのために、60〜100μmの乳糖粒子を担体として、その表面に薬剤を付着させることにより吸入時に表面より解離するようにすることが一般に用いられている。
【0007】
しかし、乳糖の添加量が少ないと、大きな乳糖粒子では付着性が小である。また、重量基準で添加の量を決定するため、粒子個数が少なくなり、そのため担体粒子表面に付着できない過剰な薬剤粒子が増大し、凝集し、分散性が低下する。
【0008】
また、10〜20μmの径の小さい乳糖粒子を担体に用いた場合、吸入時の分散性が良くなることが報告されているが、流れ性は悪くなる。さらに結合剤を用いずに造粒することは不可能である。
【0009】
本発明の発明者等は、比較的小さい粒径例えば吸入剤として用いる場合、肺に入らない下限の粒径である7μm以上、特に10〜20μmの粒子径の担体と薬剤等粉体とを混合して造粒した造粒物で、十分な粉体を含みまた分散性のよい造粒物を開発した。
【0010】
また、前記のような小さい粒子径の担体に十分な粉体を効率的に含有させることを可能にする造粒物の製造方法を開発した。
【0011】
そして特願2002−117551号として出願した。
【0012】
それは、表面に微細な凹凸が形成されている担体に薬剤微粉末を混合して造粒を行なって得られた造粒物である。
【0013】
また、このような造粒物の製法は、例えば担体となる乳糖を粉砕機により粉砕し、この粉砕して表面に凹凸が形成された担体と薬剤微粉末との混合物を流動圧縮造粒法(特許文献1参照)により造粒するもので、結合剤を用いずに容易に造粒物を形成し得るものである。
【特許文献1】
特開平4−100532号
【0014】
【発明が解決しようとする課題】
以上述べた造粒物は、分散性が良く、例えば前述のような吸入剤として利用するのに極めて有効である。
【0015】
しかし、担体に比べて薬剤である粉末の混合量が微量である場合、均一な造粒物が得られない欠点がある。
【0016】
以上は、経肺投与製剤について、結合剤を用いない造粒方法を利用して造粒することにより得られた分散性の良い造粒物の問題点について述べたが、他の薬剤やその他の造粒物にも、結合剤を用いずに造粒した造粒物を形成することにより有効な造粒物が得られる。
【0017】
本発明は、微粉末の混合が均一である粒子径の比較的大きな粒体と粉末とよりなり分散性のよい造粒物を提供するものである。
【0018】
更に、本発明は、分散性の良い造粒物であって、強度を改善した造粒物を提供するものである。
【0019】
また、本発明は、上記のような造粒物の造粒方法を提供するものである。
【0020】
【課題を解決するための手段】
本発明の造粒物は、結合剤を用いずに核となる原料のみを造粒した核粒子の表面に結合剤を用いることなしに核粒子とは異なる原料の粉体を付着させて被覆したもので、分散性のよい造粒物である。
【0021】
また、本発明の造粒物は、前記のように結合剤を用いることなしに造粒した核粒子の表面に薬剤である粉体を付着させて被覆させたものであって、分散性が良くまた核粒子に対して均一に粉体が付着した造粒物、特に核粒子に対し薬剤である粉体の分量が微量であっても均一に付着されている造粒物である。
【0022】
また、本発明の造粒物は結合剤を用いずに造粒した核粒子にワックスを付着させて被覆したものを加熱してワックスを固化させて核粒子を保護するようにした造粒物である。
【0023】
更に本発明の造粒方法は、核となる原料を結合剤を用いずに流動圧縮造粒法により造粒することにより核粒子を形成し、この核粒子と核となる原料とは異なる原料よりなる粉体を混合し、この混合物を流動圧縮造粒法により造粒することによって核粒子の表面に粉体を付着させて被覆した造粒物を形成する方法である。
【0024】
この本発明の造粒物、造粒方法において、核粒子の原料はその性質、粒径はいかなるものでも良く、また粉体の性質、粒径もどのようなものでもよい。特に粉体の粒子径は、その付着力等の性質により望ましい粒子径にして用いれば良く、例えば付着力が大である原料の場合、粉体より大きな径のものを用いてもよい。
【0025】
【発明の実施の形態】
次に、本発明の造粒物の実施の形態について述べる。
【0026】
まず、本発明の造粒物の第1の実施の形態は、核となる造粒物(核粒子)が市販の450メッシュ乳糖をボールミルにて粉砕したものを結合剤を用いずに造粒したもので、また粉体が、エテンザミドをジェットミルにて粉砕して粉体としたもので、この核となる乳糖の造粒物(核粒子)にエテンザミドの粉体のみを結合剤を用いることなしに付着させることによりこれを被覆した造粒物である。
【0027】
この核となる造粒物の乳糖(核粒子)とエテンザミド(粉体)の粒径、比表面積は次の表の通りである。

Figure 0004521654
【0028】
これら造粒物は、核となる乳糖(核粒子)に対してエテンザミド(粉体)は、夫々1%、2%である。
【0029】
この粉体を被覆する前の核となる乳糖と、これに1%のエテンザミドを混入して造粒を行ない乳糖の表面にエテンザミドを付着させて被覆したものと、2%のエテンザミドを混入して造粒を行ない乳糖の表面に付着させて被覆したものを示したのが図1である。
【0030】
この図において、(A)が核となる乳糖造粒物のみ、(B)が核となる乳糖の造粒物(核粒子)にその1%のエテンザミドの粉体を混入して造粒して付着させて被覆したもの、(C)が核となる乳糖の造粒物(核粒子)にその2%のエテンザミドの粉体を混入して造粒して付着させて被覆したものである。
【0031】
図から明らかなように、(A)の核となる造粒物と、(B)、(C)に示す造粒物はほぼ同一形状であって、これら造粒物は、形状、大きさ共にほぼ揃ったものである。
【0032】
また、図2は、核となる造粒物(核粒子)および夫々1%、2%の粉体を混入した造粒物{図の(A)、(B)、(C)}の粒度分布を示すものである。
【0033】
また、図3は造粒中のエテンザミドの含有量を示す。
【0034】
この図3から明らかなように、エテンザミドの含有量が、いずれもエテンザミド添加量の92%〜102%であり、均一にコーティングされていることが解る。
【0035】
更に、図4は、本発明の造粒物の強度分布を示す。この図よりエテンザミド添加量が乳糖の1%の造粒物は、核粒子とほぼ同じ強度であり、乳糖の2%の造粒物は、強度がやや小である。
【0036】
しかし、エテンザミドの添加量が1%、2%共に強度が5〜20kPaで、容易に解砕し得るものである。
【0037】
更に、図5には、本発明の前記コーティング造粒物の分散性評価を示す。
【0038】
この図より明らかなように、本発明の造粒物は、良好な分散性を有する。
【0039】
したがって、本発明の造粒物を前述のような薬剤(吸入剤)等に利用すれば極めて効果的である。
【0040】
次に本発明の方法の実施の形態を、前記実施の形態の造粒物を形成した時の方法を例として述べる。
【0041】
前述のように、本発明の造粒物を造粒するためには、流動圧縮造粒方法が用いられる。したがって、まず流動圧縮造粒方法について簡単に説明する。
【0042】
この流動圧縮造粒方法は、ほぼ乾燥状態にての造粒が可能であって、例えば原材料が付着力を有するものの場合、乾燥状態において、圧縮を行なって凝集物を形成し、流動層法等によって球形で圧密度の高い造粒物を形成し得る。
【0043】
この造粒方法は、例えば流動層装置内において装置内のガス圧を上昇せしめて原材料に圧力を加えて圧縮を行なうことによる凝集物の形成と所定時間後に気流の方向を逆転せしめることにより流動化を行ない、球形造粒物の形成を同一装置内にて同時に行うものである。
【0044】
以上述べた、流動圧縮造粒法による造粒を行なう流動圧縮造粒装置は、図 6に示す構成である。
【0045】
この流動圧縮造粒装置は、造粒槽下部に第1の弁を介して接続する送風機と、造粒槽下部に第2の弁を介して接続する吸引装置と、造粒槽上部に設けた排気口とを備えたもので、前記第1の弁を開き又第2の弁を閉じることにより送風機102よりのエアーにより流動化し、次の第1の弁を閉じ第2の弁を開くことによって吸引して槽内の粉粒体に圧力を加えることによって造粒する。このように、図6に示す造粒装置を用いれば、流動化と圧密化とを交互に行なうことが可能である。
【0046】
図6において101は造粒槽、102は送風機、103は調温調湿装置、104は第1の弁、107は第2の弁、108は網上に投入されている原料である。また、110は第3の弁、111は第4の弁である。
【0047】
この構成で第2の弁107と第4の弁111は閉じたまま第1の弁104と第3の弁110を開くことによってエアーは矢印Aのように流れる。これによって槽内の粉体原料108は流動化され前述のように原料自身の付着力によって又は調温調湿装置による僅かに湿気又は有機溶剤蒸気が与えられての付着による凝集物の形成が行なわれる。次に第1の弁104と第3の弁110を閉め第2の弁107と第4の弁111を開くとエアーは矢印Bのように流れる。つまり造粒槽101内の気体は吸引されこれによって前述の圧縮造粒が行なわれる。これによって凝集物が圧密化され粒体が得られる。又この操作は繰り返し行なってもよい。
【0048】
本発明の造粒物は、まず核となる造粒物(核粒子)を形成する。そのため、粉粒体を図6に示す装置を用い流動圧縮造粒方法により造粒する。例えば、核となる造粒物(核粒子)として原料粒子が乳糖の場合について述べる。市販の450メッシュ通過の乳糖を原料としてボールミルにより粒度および比表面積を調整した。また粉体としては、エテンザミドをジェットミルにて粉砕したものを用いた。
【0049】
最初、粉砕し調整した乳糖を原料として、前記の流動圧縮造粒方法により、核となる乳糖の造粒物(核粒子)を形成した。
【0050】
この乳糖の造粒物(核粒子)と、それの1%の量の粉砕した模擬薬剤のエテンザミド(粉体)とを混合して、流動圧縮造粒法により、結合剤を加えることなしに核粒子である乳糖の造粒物の表面にエテンザミドの粉体を付着させて被覆した。
【0051】
同様の方法において、2%のエテンザミドを混合して核粒子の表面に粉体を付着させ被覆した。
【0052】
以上述べた本発明の造粒物は、核となる造粒物の原料とこの粒子に付着させる粉体の原料とを適宜選択することにより、異なった性質を有する造粒物になし得る。
【0053】
例えば、本発明の造粒物の他の例として、核となる物質を結合剤を用いずに造粒して造粒物(核粒子)を形成し、この核粒子にワックスの粉体を付着させて被覆して本発明の造粒物とし、この造粒物を加熱してワックスを固化することにより、ワックスにより比較的強く保護された造粒物になし得る。
【0054】
この造粒物の例を次に示す。
【0055】
まず、乳糖を粉砕したものを、結合剤を用いずに流動圧縮造粒法を用いて造粒して核となる粒子を形成する。一方ワックス粉体として、ポリエチレングリコールの微粉末を用いた。この乳糖の造粒物とポリエチレングリコール微粉末とを1%の割り合いにて混合したものを、結合剤を用いずに流動圧縮造粒法により造粒した結果、乳糖の造粒物(核粒子)の表面にポリエチレングリコール微粉末がコーティングされた本発明の造粒物が得られた。この造粒物を85℃の加温空気により溶融、固化することにより、乳糖の造粒物をワックスの硬い層にて覆った造粒物が得られた。
【0056】
以上述べたように、本発明の造粒方法によれば、性質の異なる各種の造粒物が得られる。即ち、核となる造粒物(核粒子)の材料とその表面に付着させて被覆すべき粉末の材料とを目的に合わせて選択することによって、種々の性質をもった造粒物が可能になる。
【0057】
つまり、前記実施の形態にて述べた本発明の造粒物およびその造粒物を造粒するための造粒方法は一例であって、核粒子の原料は乳糖に限らず、また粉体は薬剤、ワックスに限るものではない。また、核粒子である乳糖の粒径も一例であり、使用目的等に応じて適宜選択し得る。同様に粉体の径も、上記実施の形態にて示した粒径に限らず、例えば通常粉体と呼ばれるものの粒径よりも大きな粒径の原料であって、核粒子の表面に結合剤を用いることなしに付着させ得るものであれば良い。
【0058】
【発明の効果】
本発明の造粒物は、結合剤を用いずに造粒物である粒子の表面に結合剤を用いずに粉体を付着させて被覆したものであって、分散性の良い造粒物である。しかも夫々の核粒子に対し、粉体が均一に付着した造粒物である。また、核粒子と粉体との原料の選択によって、各種の使用目的に合った造粒物になし得る。更に本発明の方法によれば、前記本発明の造粒物の製造が可能である。
【図面の簡単な説明】
【図1】 核粒子および本発明の造粒物を示す図
【図2】 図1に示す核粒子、造粒物の粒度分布を示す図
【図3】 本発明の造粒物中の粉体(エテンザミド)の含有量を示す図
【図4】 図1に示す核粒子、造粒物の強度を示す図
【図5】 本発明の造粒物の分散性を示すグラフ
【図6】 本発明の造粒方法にて用いられる流動圧縮造粒装置の構成を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a granulated product in which a powder (powder) is attached to the surface of a core particle granulated without using a binder and a method for forming the granulated product.
[0002]
[Prior art]
For example, inhalants used for the treatment of bronchial asthma and the like are transpulmonary administration formulations in which a drug is inhaled and directly administered to the lung. Such inhalants can be administered directly to the affected area, and the lungs have a large surface area.In addition, the effects of passing through the first liver and metabolic degradation by the digestive fluid can be avoided, which can reduce the pain of general drugs such as cold medicines and patient pain. It is also attracting attention as a method of administration of insulin and the like, which mainly consisted of accompanying injections.
[0003]
In such a pulmonary administration agent, the particle diameter that can reach the bronchi and alveoli is said to be 1 to 7 μm, and it is administered as an aerosol having a predetermined particle diameter. The administration method includes a nebulizer method in which the drug solution is aerosolized with compressed air, etc., a pressurized quantitative spray inhalation method in which the liquid drug is sprayed with chlorofluorocarbon, and a 2.3 μm fine powder drug inhaled while being dispersed by human inhalation. There are powder inhalation methods.
[0004]
In recent years, the powder inhalation method has attracted attention because the inhaler is simpler and more convenient to carry than the nebulizer method, and it does not use Freon gas, which is an environmental problem, unlike the pressurized quantitative spray inhalation method. Yes.
[0005]
The powder inhaler is a fine agent with a drug diameter of 2.3 μm, large adhesion, and easy to aggregate. Therefore, the powder inhaler has poor flowability and is difficult to re-disperse to primary particles during inhalation.
[0006]
A drug with a small dose needs to be diluted with a carrier such as lactose. However, it is desirable that substances unnecessary for medicinal effects do not reach the bronchi and alveoli. For this purpose, it is generally used that lactose particles of 60 to 100 μm are used as a carrier so as to dissociate from the surface upon inhalation by attaching a drug to the surface.
[0007]
However, if the amount of lactose added is small, the adhesion of small lactose particles is small. Further, since the amount of addition is determined on a weight basis, the number of particles is reduced, so that excessive drug particles that cannot adhere to the surface of the carrier particles increase, aggregate, and dispersibility decreases.
[0008]
In addition, when lactose particles having a small diameter of 10 to 20 μm are used as a carrier, it has been reported that dispersibility upon inhalation is improved, but flowability is deteriorated. Furthermore, it is impossible to granulate without using a binder.
[0009]
The inventors of the present invention mix a carrier having a relatively small particle size, for example, an inhalant with a particle size of 7 μm or more, particularly 10-20 μm, which is the lower limit particle size that does not enter the lung, and a powder such as a drug. A granulated product that has been granulated and contains sufficient powder and has good dispersibility has been developed.
[0010]
In addition, a method for producing a granulated product has been developed that makes it possible to efficiently contain a sufficient amount of powder in a carrier having a small particle diameter as described above.
[0011]
And it applied as Japanese Patent Application No. 2002-117551.
[0012]
It is a granulated product obtained by mixing and granulating drug fine powder on a carrier having fine irregularities formed on the surface.
[0013]
In addition, such a granulated product can be produced by, for example, pulverizing lactose serving as a carrier with a pulverizer, and subjecting a mixture of the carrier and fine drug powder, which has been crushed to form irregularities, to a fluid compression granulation method ( (See Patent Document 1), and a granulated product can be easily formed without using a binder.
[Patent Document 1]
Japanese Patent Laid-Open No. 4-100532
[Problems to be solved by the invention]
The granulated material described above has good dispersibility and is extremely effective for use as an inhalant as described above, for example.
[0015]
However, there is a drawback that a uniform granulated product cannot be obtained when the amount of the powder, which is a drug, is small compared to the carrier.
[0016]
The above describes the problems of granulated products with good dispersibility obtained by granulation using a granulation method that does not use a binder for transpulmonary administration. An effective granulated product can also be obtained by forming a granulated product that has been granulated without using a binder.
[0017]
The present invention provides a granulated product having good dispersibility, which is composed of a powder having a relatively large particle size and a powder having a uniform mixing of fine powder and a powder.
[0018]
Furthermore, the present invention provides a granulated product having good dispersibility and improved strength.
[0019]
Moreover, this invention provides the granulation method of the above granulated materials.
[0020]
[Means for Solving the Problems]
The granulated product of the present invention was coated by adhering a powder of a raw material different from the core particle without using the binder on the surface of the core particle obtained by granulating only the core material without using the binder. It is a granulated product with good dispersibility.
[0021]
Further, the granulated product of the present invention is a product obtained by adhering and covering the surface of the core particles granulated without using a binder as described above and having good dispersibility. Further, it is a granulated product in which the powder is uniformly attached to the core particles, in particular, a granulated product that is uniformly attached to the core particles even if the amount of the powder as a drug is very small.
[0022]
The granulated product of the present invention is a granulated product in which the core particles granulated without using a binder are coated with wax and heated to solidify the wax to protect the core particles. is there.
[0023]
Furthermore, the granulation method of the present invention forms a core particle by granulating the core raw material by a fluid compression granulation method without using a binder, and the core particle is different from the raw material different from the core raw material. The obtained powder is mixed, and the mixture is granulated by a fluid compression granulation method to form a granulated material coated with the powder adhered to the surface of the core particle.
[0024]
In the granulated product and granulation method of the present invention, the raw material of the core particles may have any properties and particle diameters, and the powder properties and particle diameters may be any. In particular, the particle diameter of the powder may be set to a desirable particle diameter depending on properties such as the adhesion force. For example, in the case of a raw material having a large adhesion force, a particle having a larger diameter than the powder may be used.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the granulated product of the present invention will be described.
[0026]
First, in the first embodiment of the granulated product of the present invention, a granulated product (core particle) as a core was granulated from a commercially available 450 mesh lactose pulverized with a ball mill without using a binder. In addition, the powder is obtained by pulverizing ethenamide with a jet mill to form a powder, and only the ethenamide powder is used as a granule (core particle) of lactose as a core without using a binder. This is a granulated product coated with this.
[0027]
The particle size and specific surface area of the lactose (core particles) and ethenamide (powder) of the granulated product as the core are as shown in the following table.
Figure 0004521654
[0028]
In these granules, ethenamide (powder) is 1% and 2%, respectively, with respect to lactose (core particles) as a core.
[0029]
Lactose as the core before coating this powder, 1% etenzamide mixed in this, granulated and coated with ethenamide on the surface of lactose, and 2% etenzamide mixed Fig. 1 shows a granulated material that is coated on the surface of lactose.
[0030]
In this figure, (A) is the only lactose granulated product with the core, and (B) is the granulated lactose (core particle) with the 1% etezamide powder mixed into the core. The one coated and coated, (C) is a lactose granulated product (core particle) mixed with 2% etenzamid powder and granulated and adhered.
[0031]
As is clear from the figure, the granulated product that is the core of (A) and the granulated product shown in (B) and (C) have almost the same shape, and these granulated products are both in shape and size. They are almost complete.
[0032]
FIG. 2 shows the particle size distribution of a granulated product (core particle) and a granulated product {1 (A), (B), (C)} in FIG. Is shown.
[0033]
Moreover, FIG. 3 shows the content of ethenamide during granulation.
[0034]
As is apparent from FIG. 3, the content of etenzamide is 92% to 102% of the added amount of etezamide, and it can be seen that the coating is uniformly performed.
[0035]
Furthermore, FIG. 4 shows the strength distribution of the granulated product of the present invention. From this figure, the granulated product with 1% etenzamid addition of lactose has almost the same strength as the core particles, and the granulated product with 2% lactose has a slightly lower strength.
[0036]
However, the addition amount of ethenzamide is 1% and 2%, and the strength is 5 to 20 kPa and can be easily crushed.
[0037]
Further, FIG. 5 shows the evaluation of dispersibility of the coated granulated product of the present invention.
[0038]
As is clear from this figure, the granulated product of the present invention has good dispersibility.
[0039]
Therefore, it is extremely effective to use the granulated product of the present invention for the above-mentioned medicine (inhalant).
[0040]
Next, an embodiment of the method of the present invention will be described by taking the method when the granulated product of the above embodiment is formed as an example.
[0041]
As described above, the fluid compression granulation method is used to granulate the granulated product of the present invention. Therefore, first, the fluid compression granulation method will be briefly described.
[0042]
This fluid compression granulation method enables granulation in a substantially dry state. For example, in the case where the raw material has an adhesive force, in the dry state, compression is performed to form an aggregate, and a fluidized bed method or the like. Can form a granulated product having a spherical shape and a high pressure density.
[0043]
In this granulation method, fluidization is achieved by, for example, forming aggregates by increasing the gas pressure in the fluidized bed device and applying pressure to the raw materials to compress the material and reversing the direction of the airflow after a predetermined time. And the formation of the spherical granulated material is performed simultaneously in the same apparatus.
[0044]
The fluid compression granulation apparatus which performs granulation by the fluid compression granulation method described above has the configuration shown in FIG.
[0045]
This fluid compression granulator was provided in the upper part of the granulation tank, the blower connected to the lower part of the granulation tank via the first valve, the suction device connected to the lower part of the granulation tank via the second valve. By opening the first valve and closing the second valve, fluidizing with air from the blower 102, closing the next first valve and opening the second valve It granulates by applying pressure to the granular material in the tank by suction. Thus, fluidization and consolidation can be performed alternately by using the granulator shown in FIG.
[0046]
In FIG. 6, 101 is a granulation tank, 102 is a blower, 103 is a temperature and humidity control device, 104 is a first valve, 107 is a second valve, and 108 is a raw material put on the net. Reference numeral 110 denotes a third valve, and 111 denotes a fourth valve.
[0047]
With this configuration, air flows as shown by an arrow A by opening the first valve 104 and the third valve 110 while the second valve 107 and the fourth valve 111 are closed. As a result, the powder raw material 108 in the tank is fluidized, and as described above, aggregates are formed by the adhesion of the raw material itself or by a slight humidity or organic solvent vapor given by the temperature control device. It is. Next, when the first valve 104 and the third valve 110 are closed and the second valve 107 and the fourth valve 111 are opened, air flows as indicated by an arrow B. That is, the gas in the granulation tank 101 is sucked and the above-described compression granulation is performed. As a result, the aggregates are consolidated and granules are obtained. This operation may be repeated.
[0048]
The granulated product of the present invention first forms a granulated product (core particle) as a nucleus. Therefore, the granular material is granulated by the fluid compression granulation method using the apparatus shown in FIG. For example, a case where raw material particles are lactose as a granulated material (core particles) serving as a core will be described. The particle size and specific surface area were adjusted by a ball mill using commercially available lactose passing through 450 mesh. As the powder, ethenzamide pulverized with a jet mill was used.
[0049]
First, a lactose granule (core particle) serving as a nucleus was formed by the above-described fluid compression granulation method using pulverized and adjusted lactose as a raw material.
[0050]
This lactose granulation (core particles) and 1% of the pulverized simulated drug ethenamide (powder) are mixed, and the core is added by fluid compression granulation without adding a binder. The surface of the granulated lactose particles was coated with ethenamide powder.
[0051]
In the same manner, 2% etenzamide was mixed and powder was attached to the surface of the core particles to coat.
[0052]
The granulated product of the present invention described above can be made into a granulated product having different properties by appropriately selecting the raw material of the granulated product as a core and the raw material of the powder adhered to the particles.
[0053]
For example, as another example of the granulated product of the present invention, a core substance is granulated without using a binder to form a granulated product (core particle), and a wax powder is attached to the core particle. Thus, the granulated product of the present invention is coated, and the granulated product is heated to solidify the wax, whereby the granulated product is protected relatively strongly by the wax.
[0054]
The example of this granulated material is shown next.
[0055]
First, pulverized lactose is granulated using a fluid compression granulation method without using a binder to form core particles. On the other hand, a fine powder of polyethylene glycol was used as the wax powder. As a result of granulating this lactose granulated product and polyethylene glycol fine powder at a rate of 1% by the fluid compression granulation method without using a binder, the lactose granulated product (core particles) The granulated product of the present invention having a surface coated with polyethylene glycol fine powder was obtained. This granulated product was melted and solidified with heated air at 85 ° C. to obtain a granulated product in which the lactose granulated product was covered with a hard layer of wax.
[0056]
As described above, according to the granulation method of the present invention, various granulated products having different properties can be obtained. In other words, it is possible to create a granulated product with various properties by selecting the material of the core granulated material (core particle) and the material of the powder to be deposited on the surface according to the purpose. Become.
[0057]
That is, the granulated product of the present invention described in the above embodiment and the granulation method for granulating the granulated product are examples, and the raw material of the core particles is not limited to lactose, and the powder is It is not limited to drugs and wax. Moreover, the particle size of lactose which is a core particle is also an example, and can be appropriately selected according to the purpose of use. Similarly, the diameter of the powder is not limited to the particle diameter shown in the above embodiment. For example, the powder is a raw material having a particle diameter larger than that of what is usually called powder, and a binder is applied to the surface of the core particle. Any material can be used as long as it can be attached without being used.
[0058]
【The invention's effect】
The granulated product of the present invention is a granulated product having a good dispersibility, in which a powder is adhered to the surface of the granulated particles without using a binder, without using a binder. is there. Moreover, it is a granulated product in which powder is uniformly attached to each core particle. Further, depending on the selection of raw materials for the core particles and the powder, a granulated product suitable for various purposes can be obtained. Furthermore, according to the method of the present invention, the granulated product of the present invention can be produced.
[Brief description of the drawings]
FIG. 1 is a diagram showing core particles and the granulated product of the present invention. FIG. 2 is a diagram showing particle size distribution of the core particles and granulated product shown in FIG. 1. FIG. 3 is a powder in the granulated product of the present invention. FIG. 4 is a diagram showing the content of (ethenzamid). FIG. 4 is a diagram showing the strength of the core particle and granulated product shown in FIG. 1. FIG. 5 is a graph showing the dispersibility of the granulated product of the present invention. The figure which shows the structure of the fluid compression granulator used by the granulation method of

Claims (1)

核となる原料のみを流動圧縮造粒法にて造粒して核粒子を形成し、前記核粒子に前記原料とは異なる原料のみよりなる粉体を混入して流動圧縮造粒法にて造粒して造粒物を形成する造粒方法。    Only the raw material that becomes the core is granulated by the fluid compression granulation method to form the core particle. A granulation method in which granules are formed into granules.
JP2003119519A 2003-04-24 2003-04-24 Granulated product and granulation method Expired - Lifetime JP4521654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119519A JP4521654B2 (en) 2003-04-24 2003-04-24 Granulated product and granulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119519A JP4521654B2 (en) 2003-04-24 2003-04-24 Granulated product and granulation method

Publications (2)

Publication Number Publication Date
JP2004323409A JP2004323409A (en) 2004-11-18
JP4521654B2 true JP4521654B2 (en) 2010-08-11

Family

ID=33498723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119519A Expired - Lifetime JP4521654B2 (en) 2003-04-24 2003-04-24 Granulated product and granulation method

Country Status (1)

Country Link
JP (1) JP4521654B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168573A1 (en) * 2008-09-30 2010-03-31 LEK Pharmaceuticals D.D. Formulations comprising ezetimibe
CN115209877A (en) * 2020-03-11 2022-10-18 泽井制药株式会社 Granules and formulations using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210152A (en) * 1991-03-26 1994-08-02 Nara Kikai Seisakusho:Kk Method for suppress increase in proportion of amorphous state and recrystallization in crystalline organic compound
WO2001026630A1 (en) * 1999-10-12 2001-04-19 Kaken Pharmaceutical Co., Ltd. Powdery inhalational preparations and process for producing the same
JP2003313118A (en) * 2002-04-19 2003-11-06 Fuji Paudal Co Ltd Granule and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210152A (en) * 1991-03-26 1994-08-02 Nara Kikai Seisakusho:Kk Method for suppress increase in proportion of amorphous state and recrystallization in crystalline organic compound
WO2001026630A1 (en) * 1999-10-12 2001-04-19 Kaken Pharmaceutical Co., Ltd. Powdery inhalational preparations and process for producing the same
JP2003313118A (en) * 2002-04-19 2003-11-06 Fuji Paudal Co Ltd Granule and method for producing the same

Also Published As

Publication number Publication date
JP2004323409A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US8962063B2 (en) Methods and systems for dosing and coating inhalation powders onto carrier particles
Newman et al. Evolution of dry powder inhaler design, formulation, and performance
Frijlink et al. Dry powder inhalers for pulmonary drug delivery
US5922354A (en) Methods and system for processing dispersible fine powders
AU2001282743B2 (en) Electro-powder
Silva et al. Sustainable strategies for nano-in-micro particle engineering for pulmonary delivery
WO2001095874A2 (en) Highly efficient delivery of a large therapeutic mass aerosol
AU2001275368A1 (en) Highly efficient delivery of a large therapeutic mass aerosol
AU2001282743A1 (en) Electro-powder
SK14912002A3 (en) Pharmaceutical formulations for dry powder inhalers in the form of hard-pellets
CN102858326A (en) Process for preparing carrier particles for dry powders for inhalation
WO2005079755A3 (en) Interleukin-13 antagonist powders, spray-dried particles, and methods
JP2000515787A (en) Drug carrier containing large agglomerated drug particles and method for producing the same
AU2009276498A1 (en) Formulations containing large-size carrier particles for dry powder inhalation aerosols
US20060002995A1 (en) Pharmaceutical porous particles
Carvalho et al. Dry powder inhalation for pulmonary delivery: recent advances and continuing challenges
Saiful Hassan et al. Effect of particle formulation on dry powder inhalation efficiency
JP4521654B2 (en) Granulated product and granulation method
AU2003287132B2 (en) Pharmaceutical porous particles
JP2003313118A (en) Granule and method for producing the same
Desai et al. Methods for reduction of cohesive forces between carrier and drug in DPI formulation
Morton et al. Developing Dry Powder Inhaler Formulations
JPH10218763A (en) Transpulmonary inhalation preparation and its production
JP2001072586A (en) Powdery inhaling preparation and its production
CN115381799B (en) Method for preparing spherical particles for amoxicillin inhalation by vortex mixing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4521654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term