[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4520975B2 - Coating method and coating apparatus - Google Patents

Coating method and coating apparatus Download PDF

Info

Publication number
JP4520975B2
JP4520975B2 JP2006329769A JP2006329769A JP4520975B2 JP 4520975 B2 JP4520975 B2 JP 4520975B2 JP 2006329769 A JP2006329769 A JP 2006329769A JP 2006329769 A JP2006329769 A JP 2006329769A JP 4520975 B2 JP4520975 B2 JP 4520975B2
Authority
JP
Japan
Prior art keywords
light receiving
light
substrate
unit
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006329769A
Other languages
Japanese (ja)
Other versions
JP2008142589A (en
Inventor
貴生 高木
賢哉 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006329769A priority Critical patent/JP4520975B2/en
Priority to KR1020070125327A priority patent/KR101202544B1/en
Publication of JP2008142589A publication Critical patent/JP2008142589A/en
Application granted granted Critical
Publication of JP4520975B2 publication Critical patent/JP4520975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Coating Apparatus (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、被処理基板上にスピンレス方式で処理液を塗布する塗布方法および塗布装置に係り、特に塵等の異物の介在によるノズルと基板との間の不所望な当接ないし擦接を防止する技術に関する。   The present invention relates to a coating method and a coating apparatus that apply a processing liquid on a substrate to be processed in a spinless manner, and in particular, prevents unwanted contact or rubbing between a nozzle and a substrate due to the presence of foreign matters such as dust. Related to technology.

LCD等のフラットパネルディスプレイ(FPD)の製造プロセスにおけるフォトリソグラフィー工程には、ガラス基板等の被処理基板に対してスリット状の吐出口を有する長尺形のレジストノズルを相対的に走査して基板上にレジスト液を塗布するスピンレスの塗布法がよく用いられている。   In a photolithography process in a manufacturing process of a flat panel display (FPD) such as an LCD, a long resist nozzle having a slit-like discharge port is scanned relative to a substrate to be processed such as a glass substrate. A spinless coating method in which a resist solution is applied on top is often used.

この種のスピンレス式塗布装置においては、たとえば載置台上に水平に支持した基板とノズル下端の吐出口との間に微小な(たとえば100μm程度の)ギャップを設定し、ノズル吐出口よりレジスト液を帯状に吐出させながら長尺形レジストノズルをノズル長手方向と直交する水平方向に移動させる。そうすると、レジストノズルの吐出口から基板上に溢れたレジスト液が上記ギャップからノズル後方に平坦に延びて、基板上に一定の膜厚でレジスト液の塗布膜が形成される(たとえば特許文献1)。   In this type of spinless coating apparatus, for example, a minute gap (for example, about 100 μm) is set between a substrate horizontally supported on a mounting table and a discharge port at the lower end of the nozzle, and a resist solution is supplied from the nozzle discharge port. The long resist nozzle is moved in a horizontal direction perpendicular to the longitudinal direction of the nozzle while discharging in a strip shape. Then, the resist liquid overflowing on the substrate from the discharge port of the resist nozzle extends flatly from the gap to the rear of the nozzle, and a coating film of the resist liquid is formed on the substrate with a certain thickness (for example, Patent Document 1). .

このようなスピンレス方式においては、比較的大きな(特にギャップ設定値を上回る大きさの)ゴミ、破片等の異物が基板上に付着し、あるいは基板と載置台との間に挟まっていると、レジストノズルが基板上面の近傍を水平移動する際に、レジストノズルの下端が異物を介して基板を擦り、あるいは下に挟まった異物の上で盛り上がっている基板に当って直接擦ってしまう。このようにレジストノズルが基板の上面を擦ると、基板が損傷ないし破損してその製品価値を失うだけでなく、非常に高価なレジストノズルも損傷して使えなくなることがある。   In such a spinless system, if a foreign object such as dust or debris that is relatively large (particularly larger than the gap setting value) adheres to the substrate or is sandwiched between the substrate and the mounting table, the resist When the nozzle moves horizontally in the vicinity of the upper surface of the substrate, the lower end of the resist nozzle rubs against the substrate through the foreign matter, or directly rubs against the substrate rising on the foreign matter sandwiched below. If the resist nozzle rubs the upper surface of the substrate in this way, the substrate may be damaged or broken to lose its product value, and a very expensive resist nozzle may be damaged and become unusable.

そこで、塗布走査に先行して、光ビームを利用して基板上の異物の有無あるいは基板の盛り上がりの有無を検出する光学式の障害物有無検査法が提案されている(たとえば特許文献2)。この技法は、レジストノズルの走査方向前方で、基板の上面近傍を横断する光ビームをそれぞれ投光および受光するように投光部および受光部を相対向させて基板の両側に配置して塗布走査の際にレジストノズルと一緒に水平移動させる。そして、水平移動の各位置で投光部からの光ビームを受光する受光部より出力される電気信号に基づいて受光量が所定の閾値を下回ったか否かを判定し、閾値を下回れば光ビームの光路上に塗布走査に支障を来たす障害物(異物または基板の盛り上がり)があると判定して塗布走査を停止させるようにしている。
特開平10−156255号公報 特開2006−102642号公報
Therefore, prior to coating scanning, an optical obstacle inspection method has been proposed in which a light beam is used to detect the presence or absence of foreign matter on the substrate or the presence or absence of swell of the substrate (for example, Patent Document 2). In this technique, in front of the scanning direction of the resist nozzle, coating and scanning are performed by arranging the light projecting part and the light receiving part opposite to each other so as to project and receive a light beam crossing the vicinity of the upper surface of the substrate, respectively. In this case, it is moved horizontally together with the resist nozzle. Then, based on the electrical signal output from the light receiving unit that receives the light beam from the light projecting unit at each horizontal movement position, it is determined whether or not the received light amount is below a predetermined threshold value. It is determined that there is an obstacle (foreign matter or swell of the substrate) that hinders the application scanning on the optical path, and the application scanning is stopped.
Japanese Patent Laid-Open No. 10-156255 JP 2006-10642 A

上記のような従来の光学式障害物有無検査法は、障害物(異物または基板の盛り上がり)の大きさの程度を正確に検出する技術や適確な比較基準値(閾値)を設定する技術を有していないため、モニタ機能としての信頼性が低いという課題を有している。   The conventional optical obstacle inspection method as described above is a technique for accurately detecting the size of the obstacle (foreign matter or substrate rise) and a technique for setting an appropriate comparison reference value (threshold). Since it does not have, it has the subject that the reliability as a monitor function is low.

すなわち、従来は、ギャップ設定値に合わせて光ビームの光路の高さ位置を設定ないし調整して、投光部から出射された光ビームの中で受光部に到達した分の光量的な割合に基づいて障害物の有無を判断している。しかしながら、この手法は、障害物を検出する感度が光ビームのビーム径に大きく依存する。このため、ビーム径が大きいと、検出感度が低くて、塗布走査に支障を来たすおそれのある基板上の異物や基板の盛り上がりを検出損ねることがある。また、ビーム径が小さすぎても、感度が高くなりすぎて、塗布走査に全く支障のない(無視できるほど)小さな基板上の異物や基板の盛り上がりを異常と判断して、塗布処理の動作を無駄に停止させてしまうことがある。このような誤判断ないし誤動作は、稼働率や生産性の低下に直結するため、実用上の大きな不利点になる。   That is, conventionally, the height position of the optical path of the light beam is set or adjusted in accordance with the gap setting value, and the light amount of the light beam emitted from the light projecting unit reaches the light receiving unit. Based on this, the presence or absence of obstacles is judged. However, in this method, the sensitivity for detecting an obstacle greatly depends on the beam diameter of the light beam. For this reason, when the beam diameter is large, the detection sensitivity is low, and it may fail to detect foreign matter on the substrate or the rise of the substrate that may interfere with coating scanning. Also, even if the beam diameter is too small, the sensitivity becomes too high and there is no problem with coating scanning (so much that it can be ignored). It may be stopped in vain. Such misjudgment or malfunction is directly linked to a decrease in operating rate and productivity, which is a great practical disadvantage.

また、従来は、受光部の出力(受光量)に対する比較基準値(閾値)を固定しており、受光部内の光電変換特性の変化や周囲状況(周囲光、周囲温度等)によって受光部の出力(受光量)が受ける影響を何等補償していない。この点においても、基板上の異物や基板の盛り上がりの中で塗布走査に支障の出るおそれがあるものだけを適確に検出するのは難しかった。   Conventionally, the comparison reference value (threshold value) for the output of the light receiving unit (the amount of received light) is fixed. There is no compensation for the effect of (light reception). In this respect as well, it is difficult to accurately detect only foreign matters on the substrate and those that may interfere with coating scanning among the swells of the substrate.

本発明は、上記のような従来技術の課題を解決するものであり、塗布走査に支障を来たすおそれのある基板上の異物や基板の盛り上がりを適確に検出できるようにして、スピンレス方式の塗布処理の安全性および生産性を向上させる塗布方法および塗布装置を提供することを目的とする。   The present invention solves the above-described problems of the prior art, and can detect the foreign matter on the substrate and the swell of the substrate that may interfere with the scanning of the coating accurately, thereby applying the spinless coating. An object of the present invention is to provide a coating method and a coating apparatus that improve the safety and productivity of processing.

上記の目的を達成するために、本発明の第1の観点における塗布方法は、被処理基板を所定の高さ位置で略水平に支持し、前記基板に対して上方の近接した位置から微小なギャップを介して処理液を吐出するノズルを相対的に水平方向で移動させる塗布走査を行って、前記基板上に前記処理液を塗布する塗布方法であって、前記基板の上面近傍を横断する指向性の高い光ビームを投光する投光部と、前記光ビームを受光するための受光面に一列またはマトリクス状に配置された複数の受光セルを有する受光部とを相対向させて前記基板の両側に配置する第1のステップと、前記塗布走査に先行して、前記基板の一端から他端に向かって前記投光部および前記受光部を前記基板に対して相対的に水平方向で移動させる検査走査を行う第2のステップと、前記検査走査の移動中に、一定のサイクルで、前記受光部の光電変換により前記光ビームの受光量を各々の受光セル毎に表すセル受光量信号を生成する第3のステップと、前記セル受光量信号に基づいて各々の受光セル毎に現時の受光量と所定の遅延時間前の受光量との差分を求める第4のステップと、前記受光量差分を所定の基準値と比較して判定を行う第5のステップと、前記判定の結果にしたがって前記基板に対する前記塗布走査の動作を制御する第6のステップとを有する。
In order to achieve the above object, the coating method according to the first aspect of the present invention supports a substrate to be processed substantially horizontally at a predetermined height position, and makes a minute from an adjacent position above the substrate. A coating method of coating the processing liquid on the substrate by performing a coating scan in which a nozzle that discharges the processing liquid is moved in a horizontal direction through a gap, and is directed to cross the vicinity of the upper surface of the substrate. A light projecting unit for projecting a light beam having a high property and a light receiving unit having a plurality of light receiving cells arranged in a line or matrix on a light receiving surface for receiving the light beam. Prior to the first step disposed on both sides and the application scanning, the light projecting unit and the light receiving unit are moved in a horizontal direction relative to the substrate from one end to the other end of the substrate. Second step for performing inspection scan And a third step of generating a cell received light amount signal representing the received light amount of the light beam for each light receiving cell by photoelectric conversion of the light receiving unit in a certain cycle during the movement of the inspection scan, A fourth step for obtaining a difference between the current received light amount and the received light amount before a predetermined delay time for each light receiving cell based on the cell received light amount signal; and comparing the received light amount difference with a predetermined reference value. And a sixth step of controlling the operation of the application scanning on the substrate according to the result of the determination.

また、本発明の第1の観点における塗布装置は、被処理基板を所定の高さ位置でほぼ水平に支持する支持部と、前記支持部に支持されている前記基板の上方に微小なギャップを介してノズルを配置し、塗布走査のために前記ノズルより処理液を吐出させる処理液供給部と、塗布走査のために前記ノズルと前記基板とを水平方向で相対的に移動させる塗布走査部と、前記基板の片側に配置され、前記基板の上面近傍を横断する指向性の高い光ビームを投光する投光部と、前記投光部と相対向して前記基板の反対側に配置され、前記光ビームを一列またはマトリクス状に配置された複数の受光セルで受光し、一定のサイクルで光電変換によって前記光ビームの受光量を各々の受光セル毎に表すセル受光量信号を生成する受光部と、前記塗布走査に先行して、前記基板の一端から他端に向かって前記投光部および前記受光部を前記基板に対して相対的に水平方向で移動させる検査走査部と、前記検査走査の移動中に、前記受光部より得られる前記セル受光量信号に基づいて各々の受光セル毎に現時の受光量と所定の遅延時間前の受光量との差分を演算する受光量差分演算部と、前記受光量差分演算部より得られる受光量差分を所定の基準値と比較して判定を行う判定部と、前記判定部より得られる判定結果にしたがって前記塗布走査の動作を制御する制御部とを有する。
The coating apparatus according to the first aspect of the present invention includes a support portion that supports a substrate to be processed substantially horizontally at a predetermined height position, and a minute gap above the substrate that is supported by the support portion. A processing liquid supply unit that disposes the nozzles and discharges the processing liquid from the nozzles for coating scanning; and a coating scanning unit that relatively moves the nozzles and the substrate in the horizontal direction for coating scanning; , Disposed on one side of the substrate, projecting a light beam having a high directivity across the upper surface vicinity of the substrate, and disposed on the opposite side of the substrate opposite to the projecting unit, A light receiving unit that receives the light beam by a plurality of light receiving cells arranged in a line or in a matrix and generates a cell light receiving amount signal that represents the light receiving amount of the light beam for each light receiving cell by photoelectric conversion in a certain cycle. And for the application scan An inspection scanning unit that moves the light projecting unit and the light receiving unit in a horizontal direction relative to the substrate from one end to the other end of the substrate, and during the movement of the inspection scan, A received light amount difference calculation unit that calculates a difference between the current received light amount and a received light amount before a predetermined delay time for each light receiving cell based on the cell received light amount signal obtained from the light receiving unit, and the received light amount difference calculation A determination unit that performs determination by comparing a difference in received light amount obtained from the unit with a predetermined reference value, and a control unit that controls the operation of the application scanning according to a determination result obtained from the determination unit.

上記第1の観点における塗布方法または塗布装置においては、受光部に一列またはマトリクス状に設けられる多数の受光セルの各々について現時の受光量と所定の遅延時間前の受光量との差分をとって、その差分の程度から検査走査の際に光ビームの進路を妨害する障害物の大きさの程度を割り出す。光ビームに触れた障害物の大きさの程度をセル単位の高い解像度で判別できるうえ、現時の検査走査位置における受光量の状態を同じ走査における所定遅延時間前の受光量に対する相対量(差分)として判定するので、受光部内の光電変換特性の変化や周囲状況(周囲光、周囲温度等)によって受光部の出力(受光量)が受ける影響を適確に補償またはキャンセルすることができる。このことによって、塗布走査上支障を来たすおそれのある大きな障害物と全く支障のない小さな障害物とを適確に区別することが可能であり、塗布走査の動作を適切に制御することができる。
In the coating method or the coating apparatus according to the first aspect, the difference between the current received light amount and the received light amount before a predetermined delay time is obtained for each of a plurality of light receiving cells provided in a line or matrix in the light receiving unit. From the degree of the difference, the magnitude of the obstacle that obstructs the path of the light beam during the inspection scan is determined. The degree of the size of the obstacle touching the light beam can be determined with high resolution in cell units, and the amount of light received at the current inspection scan position is the relative amount (difference) with respect to the amount of light received before a predetermined delay time in the same scan. Therefore, it is possible to accurately compensate or cancel the influence of the output of the light receiving unit (the amount of received light) due to changes in photoelectric conversion characteristics in the light receiving unit and ambient conditions (such as ambient light and ambient temperature). As a result, it is possible to accurately distinguish between a large obstacle that may cause a problem in coating scanning and a small obstacle that does not interfere at all, and the operation of coating scanning can be appropriately controlled.

本発明の好適な一態様によれば、上記塗布方法の第5のステップまたは上記塗布装置の判定部において、全受光セルの中で受光量差分の最大値が基準値を超えているか否かを判定する方法または手段、あるいは各々の受光セル毎に受光量差分が基準値を超えているか否かを判定して、基準値を超えているものがあれば該当する受光セルの範囲を判定する方法または手段が採られる。   According to a preferred aspect of the present invention, in the fifth step of the coating method or the determination unit of the coating apparatus, whether or not the maximum value of the received light amount difference among all the light receiving cells exceeds a reference value. Method or means for determining, or method for determining whether or not the difference in received light amount exceeds a reference value for each light receiving cell, and determining the range of the corresponding light receiving cell if there is a reference value exceeded Or measures are taken.

本発明の第2の観点における塗布方法は、被処理基板を所定の高さ位置で略水平に支持し、前記基板に対して上方の近接した位置から微小なギャップを介して処理液を吐出するノズルを相対的に水平方向に移動させる塗布走査を行って、前記基板上に前記処理液を塗布する塗布方法であって、前記基板の上面近傍を横断する指向性の高い光ビームをそれぞれ投光および受光するように前記基板の両側に投光部および受光部を相対向させて配置する第1のステップと、前記塗布走査に先行して、前記投光部および前記受光部を前記基板に対して相対的に水平方向に移動させる検査走査を行う第2のステップと、前記検査走査の移動中に、前記光ビームを受光する前記受光部の光電変換によって前記光ビームの受光量を表す受光量信号を生成する第3のステップと、前記受光部より出力される前記受光量信号に基づいて、現時の受光量と第1の遅延時間前の受光量との差分および前記現時の受光量と前記第1の遅延時間よりも長い第2の遅延時間前の受光量との差分をそれぞれ第1および第2の受光量差分として求める第4のステップと、前記第1および第2の受光量差分を所定の基準値と比較して判定を行う第5のステップと、前記判定の結果にしたがって前記基板に対する前記塗布走査の動作を制御する第6のステップとを有する。
In the coating method according to the second aspect of the present invention, the substrate to be processed is supported substantially horizontally at a predetermined height position, and the processing liquid is discharged from a position close to the substrate through a minute gap. A coating method for coating the processing liquid on the substrate by performing a coating scan that relatively moves the nozzle in a horizontal direction, each projecting a highly directional light beam that traverses the vicinity of the upper surface of the substrate. And a first step of disposing the light projecting unit and the light receiving unit on both sides of the substrate so as to receive light, and prior to the application scanning, the light projecting unit and the light receiving unit are placed on the substrate. A second step of performing an inspection scan that is moved relatively horizontally, and a received light amount that represents a received light amount of the light beam by photoelectric conversion of the light receiving unit that receives the light beam during the movement of the inspection scan Generate signal 3 and steps of, on the basis of the received light quantity signal output from the light receiving portion, the present time of the received light quantity and the light receiving amount of the first delay time difference and the present time of the first delay time before the amount of light received A fourth step for obtaining the difference between the received light amount before the longer second delay time as the first and second received light amount differences, and the first and second received light amount differences as a predetermined reference value A fifth step of making a determination by comparison, and a sixth step of controlling the operation of the coating scan on the substrate according to the result of the determination.

また、本発明の第2の観点における塗布装置は、被処理基板を所定の高さ位置でほぼ水平に支持する支持部と、前記支持部に支持されている前記基板の上方に微小なギャップを介してノズルを配置し、塗布走査のために前記ノズルより処理液を吐出させる処理液供給部と、塗布走査のために前記ノズルと前記基板とを相対的な水平方向で移動させる塗布走査部と、前記基板の片側に配置され、前記基板の上面近傍を横断する指向性の高い光ビームを投光する投光部と、前記投光部と相対向して前記基板の反対側に配置され、前記光ビームを受光して光電変換により前記光ビームの受光量を表す受光量信号を生成する受光部と、前記塗布走査に先行して、前記基板の一端から他端に向かって前記投光部および前記受光部を前記基板に対して相対的に水平方向で移動させる検査走査部と、前記検査走査の移動中に、前記受光部より得られる前記受光量信号に基づいて現時の受光量と第1の遅延前の受光量との差分および前記現時の受光量と前記第1の遅延時間よりも長い第2の遅延時間前の受光量との差分をそれぞれ第1および第2の受光量差分として演算する受光量差分演算部と、前記第1および第2の受光量差分を所定の基準値と比較して判定を行う判定部と、前記判定部より得られる判定結果にしたがって前記塗布走査の動作を制御する制御部とを有する。
In addition, the coating apparatus according to the second aspect of the present invention includes a support unit that supports a substrate to be processed substantially horizontally at a predetermined height position, and a minute gap above the substrate supported by the support unit. A processing liquid supply unit that disposes the nozzles and discharges the processing liquid from the nozzles for coating scanning; and a coating scanning unit that moves the nozzles and the substrate in a relative horizontal direction for coating scanning; , Disposed on one side of the substrate, projecting a light beam having a high directivity across the upper surface vicinity of the substrate, and disposed on the opposite side of the substrate opposite to the projecting unit, A light receiving unit that receives the light beam and generates a received light amount signal that represents a received light amount of the light beam by photoelectric conversion, and the light projecting unit from one end of the substrate toward the other end prior to the application scanning. And the light receiving part relative to the substrate An inspection scan unit that moves in the horizontal direction, during the movement of the inspection scan, the difference and the the amount of light received and the first delay before the received light amount of the present time on the basis of the received light quantity signals obtained from said light receiving portion A received light amount difference calculation unit that calculates a difference between a current received light amount and a received light amount before a second delay time longer than the first delay time as a first received light amount difference and a second received light amount difference; And a determination unit that performs determination by comparing the second received light amount difference with a predetermined reference value, and a control unit that controls the operation of the application scanning according to a determination result obtained from the determination unit.

上記第1の観点における塗布方法または塗布装置においては、現時の検査走査位置における受光量の状態を判定するための比較基準値に、同じ検査走査における第1所定時間前の受光量および第2所定時間前の受光量の2つを用いるので、受光部内の光電変換特性の変化や周囲状況(周囲光、周囲温度等)によって受光部の出力(受光量)が受ける影響を適確に補償(キャンセル)することができるとともに、塗布走査上支障を来たすおそれのある障害物が光ビームに触れれば、その形状またはプロファイルが如何なるものでも(特に基板の盛り上がりがなだらかであっても)確実に検出することができる。   In the coating method or the coating apparatus according to the first aspect, the received light amount before the first predetermined time and the second predetermined amount in the same inspection scan are used as the comparison reference value for determining the state of the received light amount at the current inspection scan position. Since the two received light amounts before the time are used, the effects of the light receiving unit output (light receiving amount) due to changes in photoelectric conversion characteristics in the light receiving unit and ambient conditions (ambient light, ambient temperature, etc.) are properly compensated (cancelled) ) And can reliably detect any shape or profile (especially even if the substrate swells gently) if an obstacle that may interfere with coating scanning touches the light beam. be able to.

本発明の好適な一態様によれば、上記塗布方法において、受光部が、光ビームを受光する受光面に一列またはマトリクス状に配置された複数の受光セルを有する。そして、第3のステップが、一定のサイクルで光ビームの受光量を各々の受光セル毎に表すセル受光量信号を出力し、第4のステップが、セル受光量信号に基づいて各々の受光セル毎に第1および第2の受光量差分を演算し、第5のステップが、全受光セルの中で第1または第2の受光量差分の少なくとも一方の最大値が基準値を超えているか否かを判定する。あるいは、第5のステップとして、各々の受光セル毎に第1および第2の受光量差分の少なくとも一方が基準値を超えているか否かを判定し、基準値を超えているものがあれば該当受光セルの範囲を判定するようにしてもよい。そして、第5のステップで光ビームの光路上に塗布走査に有害な障害物があるとの判定結果が出されたときは、第6のステップで直ちに前記ノズルの移動を停止させる措置、あるいは直ちにノズルを所定の高さ位置まで上昇移動させる措置がとられる。   According to a preferred aspect of the present invention, in the coating method, the light receiving unit includes a plurality of light receiving cells arranged in a line or matrix on the light receiving surface that receives the light beam. The third step outputs a cell received light amount signal indicating the received light amount of the light beam for each light receiving cell in a fixed cycle, and the fourth step outputs each light receiving cell based on the cell received light amount signal. The first and second received light amount differences are calculated every time, and the fifth step determines whether or not the maximum value of at least one of the first or second received light amount differences exceeds the reference value in all the light receiving cells. Determine whether. Alternatively, as the fifth step, it is determined whether at least one of the first and second received light amount differences exceeds the reference value for each light receiving cell, and if there is an object exceeding the reference value The range of the light receiving cell may be determined. Then, when it is determined in the fifth step that there is an obstacle that is harmful to coating scanning on the optical path of the light beam, a measure for immediately stopping the movement of the nozzle in the sixth step, or immediately Measures are taken to move the nozzle up to a predetermined height position.

また、好ましい一態様によれば、上記塗布装置において、受光部は、投光部からの光ビームを一列またはマトリクス状に配置された複数の受光セルで受光し、一定のサイクルで光電変換により光ビームの受光量を各々の受光セル毎に表すセル受光量信号を生成する。この場合、受光量差分演算部は、受光部からのセル受光量信号に基づいて各々の受光セル毎に第1および第2の受光量差分を演算する。判定部は、全ての受光セルの中で第1および第2の受光量差分の最大値を決定し、少なくとも一方の最大値が基準値を超えているか否かを判定する。あるいは、判定部は、各々の受光セル毎に第1および第2の受光量差分を基準値と比較し、第1および第2の受光量差分の少なくとも一方が基準値を超えている場合は該当受光セルの範囲を判定する。   According to a preferred aspect, in the coating apparatus, the light receiving unit receives the light beam from the light projecting unit with a plurality of light receiving cells arranged in a line or matrix, and performs light conversion by photoelectric conversion in a constant cycle. A cell received light amount signal representing the received light amount of the beam for each light receiving cell is generated. In this case, the received light amount difference calculation unit calculates the first and second received light amount difference for each light receiving cell based on the cell received light amount signal from the light receiving unit. The determination unit determines the maximum value of the first and second received light amount differences among all the light receiving cells, and determines whether at least one of the maximum values exceeds the reference value. Alternatively, the determination unit compares the first and second received light amount differences with the reference value for each light receiving cell, and applies when at least one of the first and second received light amount differences exceeds the reference value. The range of the light receiving cell is determined.

また、好ましい一態様によれば、受光部が、一定サイズの全体受光エリア内に多数の受光セルを一列またはマトリクス状に配置し、全体受光エリアの中の所望の一部のエリアを有効受光エリアとして任意に選択可能とする。この場合、受光量差分演算部は、有効受光エリアに含まれる複数の受光セルから得られるセル受光量信号のみについて受光量差分の演算処理を行う。   Further, according to a preferred aspect, the light receiving unit arranges a large number of light receiving cells in a line or a matrix in an entire light receiving area of a certain size, and a desired partial area in the entire light receiving area is an effective light receiving area. Can be arbitrarily selected. In this case, the received light amount difference calculation unit performs a received light amount difference calculation process on only the cell received light amount signals obtained from the plurality of light receiving cells included in the effective light receiving area.

また、好ましい一態様によれば、基板の厚みに応じて有効受光エリアの縦方向の位置またはサイズが可変調整される。この場合、投光部より出射された光ビームのうち、ビーム下端部が基板の一側面に当たって進路を遮られ、残りのビーム部分が基板上を横断して受光部に受光され、受光部では有効受光エリアの下端部が基板の上面よりも低い位置に設定されるのが好ましい。この有効受光エリア可変調整機能により、たとえば基板の厚みが比較的大きいときは有効受光エリアを高い位置へシフトし、基板の厚みが比較的小さいときは有効受光エリアを低い位置へシフトし、常に有効受光エリアが塗布ギャップの高さ空間を完全にカバーできるように位置合わせすることができる。   According to a preferred aspect, the position or size of the effective light receiving area in the vertical direction is variably adjusted according to the thickness of the substrate. In this case, of the light beam emitted from the light projecting unit, the lower end of the beam hits one side of the substrate to block the path, and the remaining beam crosses the substrate and is received by the light receiving unit. The lower end of the light receiving area is preferably set at a position lower than the upper surface of the substrate. This effective light receiving area variable adjustment function shifts the effective light receiving area to a higher position when the substrate thickness is relatively large, for example, and shifts the effective light receiving area to a lower position when the substrate thickness is relatively small. The light receiving area can be aligned so as to completely cover the height space of the application gap.

本発明の塗布方法および塗布装置によれば、上記のような構成および作用により、塗布走査に支障を来たすおそれのある基板上の異物や基板の盛り上がりを適確に検出することが可能であり、ひいてはスピンレス方式の塗布処理の安全性および生産性を向上させることができる。   According to the coating method and the coating apparatus of the present invention, it is possible to accurately detect the foreign matter on the substrate and the swell of the substrate that may interfere with the coating scanning by the configuration and operation as described above. As a result, the safety and productivity of the spinless coating process can be improved.

以下、添付図を参照して本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明の一実施形態におけるレジスト塗布装置の外観構成を示す。図2には、このレジスト塗布装置における塗布走査および検査走査中の要部の様子を示す。   In FIG. 1, the external appearance structure of the resist coating apparatus in one Embodiment of this invention is shown. FIG. 2 shows the state of the main part during coating scanning and inspection scanning in this resist coating apparatus.

このレジスト塗布装置は、被処理基板としてたとえばLCD用のガラス基板Gを水平に載置して保持するためのステージ10と、このステージ10上に載置される基板Gの上面(被処理面)に長尺形のレジストノズル12を用いてスピンレス法でレジスト液を塗布するための塗布処理部14とを有する。   The resist coating apparatus includes, for example, a stage 10 for horizontally placing and holding a glass substrate G for LCD as a substrate to be processed, and an upper surface (surface to be processed) of the substrate G placed on the stage 10. And a coating processing section 14 for applying a resist solution by a spinless method using a long resist nozzle 12.

ステージ10は、図示省略するが、ステージ上面または載置面に多数の吸引孔(または吸引溝)を有しており、それらの吸引孔を通じてバキューム力で基板Gを吸着保持するように構成されている。また、搬送装置の搬送アームとの間で基板Gの受け渡しを行うためにステージ上面から複数本のリフトピンを出没(昇降)させるリフトピン機構等も備えている。   Although not shown, the stage 10 has a large number of suction holes (or suction grooves) on the stage upper surface or the mounting surface, and is configured to suck and hold the substrate G by vacuum force through the suction holes. Yes. Further, in order to transfer the substrate G to and from the transfer arm of the transfer apparatus, a lift pin mechanism for moving a plurality of lift pins up and down (up and down) from the upper surface of the stage is also provided.

塗布処理部14は、レジストノズル12を含むレジスト液供給部16と、レジストノズル12をステージ10の上方でノズル長手方向と直交する水平方向(X方向)に水平移動させる走査部18と、レジストノズル12の高さ位置を調節または変更するためのノズル昇降機構20とを有している。   The coating processing unit 14 includes a resist solution supply unit 16 including a resist nozzle 12, a scanning unit 18 that horizontally moves the resist nozzle 12 above the stage 10 in a horizontal direction (X direction) perpendicular to the nozzle longitudinal direction, and a resist nozzle 12 and a nozzle lifting mechanism 20 for adjusting or changing the height position.

レジスト液供給部16においてレジストノズル12は、ノズル長手方向(Y方向)で基板Gの端から端までカバーするスリット状の吐出口12aを有しており、レジスト液供給源(図示せず)に通じるレジスト液供給管22に接続されている。走査部18は、レジストノズル12を水平に支持する逆さコ字状または門形の支持体24と、この支持体24をX方向で双方向に直進移動させる走査駆動部26とを有する。この走査駆動部26は、ボールねじ機構も使用可能であるが、塗布膜の均一性の観点からすれば機械振動の少ないリニアサーボモータ機構で構成されるのが好ましい。ノズル昇降機構20は、たとえばボールねじ機構で構成され、レジストノズル12の高さ位置を調節してノズル下端の吐出口12aとステージ10上の基板Gとの間の距離間隔つまり塗布ギャップg(図2)を任意の大きさに設定ないし調整できるだけでなく、レジストノズル12を瞬時に上昇移動させることもできるようになっている。図示のノズル昇降機構20はレジストノズル12を直接支持しているが、レジストノズル12よりも一回り大きな水平支持体にレジストノズル12を取り付け、該水平支持体を昇降駆動部に接続する構成も可能である。   In the resist solution supply unit 16, the resist nozzle 12 has a slit-like discharge port 12a that covers the substrate G from end to end in the longitudinal direction of the nozzle (Y direction), and serves as a resist solution supply source (not shown). It is connected to a resist solution supply pipe 22 that leads to it. The scanning unit 18 includes an inverted U-shaped or gate-shaped support 24 that supports the resist nozzle 12 horizontally, and a scanning drive unit 26 that moves the support 24 in both directions in the X direction. The scanning drive unit 26 can also use a ball screw mechanism, but is preferably composed of a linear servo motor mechanism with little mechanical vibration from the viewpoint of the uniformity of the coating film. The nozzle raising / lowering mechanism 20 is composed of, for example, a ball screw mechanism, and adjusts the height position of the resist nozzle 12 to adjust the distance between the discharge port 12a at the lower end of the nozzle and the substrate G on the stage 10, that is, the coating gap g (see FIG. In addition to setting or adjusting 2) to an arbitrary size, the resist nozzle 12 can also be moved up instantaneously. The illustrated nozzle raising / lowering mechanism 20 directly supports the resist nozzle 12, but it is also possible to attach the resist nozzle 12 to a horizontal support that is slightly larger than the resist nozzle 12 and connect the horizontal support to the elevation drive unit. It is.

塗布処理部14は、ステージ10上に基板Gが載置されている間に後述する制御部28による制御の下で塗布処理を行う。より詳細には、ステージ10の上方をX方向で縦断するようにレジストノズル12を走査部18が一定の速度で水平移動させながら、ステージ10上の基板Gに対してレジスト液供給部16がレジストノズル12の吐出口12aよりレジスト液を帯状に吐出させる。そうすると、基板G上に溢れたレジスト液Rがノズル後方へ平坦に延びて、塗布ギャップgに応じた一定の膜厚で基板G上にレジスト液Rの塗布膜RMが形成される(図2)。   The application processing unit 14 performs application processing under the control of the control unit 28 described later while the substrate G is placed on the stage 10. More specifically, the resist solution supply unit 16 moves the resist nozzle 12 with respect to the substrate G on the stage 10 while the scanning unit 18 moves the resist nozzle 12 horizontally at a constant speed so as to cross the upper side of the stage 10 in the X direction. The resist solution is discharged in a strip shape from the discharge port 12 a of the nozzle 12. Then, the resist solution R overflowing on the substrate G extends flatly to the rear of the nozzle, and a coating film RM of the resist solution R is formed on the substrate G with a certain film thickness corresponding to the coating gap g (FIG. 2). .

このレジスト塗布装置は、塗布処理部14において上記のようなレジスト塗布処理が行なわれる際にレジストノズル12の前方に塗布走査上の障害物があるか否かを前以て検査するための障害物検査モニタ30を備えている。上記したように、基板Gの上面に付着している異物や、基板Gとステージ10との間に挟まった異物による基板Gの盛り上がりがこの種の障害物になり得る。もっとも、あらゆる異物や基板Gの盛り上がりが塗布走査上の障害物になるわけではない。塗布走査で水平移動するレジストノズル12の下端が基板Gの上面に当接または擦接するほど、あるいはレジスト塗布膜の膜厚変動が許容範囲を超えるほど大きな異物や基板の盛り上がりが塗布走査上の支障を来たす障害物であり、そのように大きな障害物を検出したときは安全面から直ちに塗布走査を停止させるべきである。しかし、それ以外の小さな異物や基板の盛り上がりは塗布走査上無視してよく、そのような小さな障害物に対して塗布走査を停止させるのは生産効率の面から望ましくない。以下に述べるように、この実施形態における障害物検査モニタ30は、基板上の異物や基板の盛り上がりの中で塗布走査に支障の出るおそれがあるものだけを適確に検出する機能を有している。   This resist coating apparatus is an obstacle for inspecting in advance whether or not there is an obstacle in scanning of coating in front of the resist nozzle 12 when the resist coating process as described above is performed in the coating processing unit 14. An inspection monitor 30 is provided. As described above, the swell of the substrate G due to foreign matter adhering to the upper surface of the substrate G or foreign matter sandwiched between the substrate G and the stage 10 can be an obstacle of this kind. However, not all foreign matters and the swell of the substrate G are obstacles to the application scanning. As the lower end of the resist nozzle 12 that moves horizontally during coating scanning contacts or rubs against the upper surface of the substrate G, or the variation in the thickness of the resist coating film exceeds an allowable range, the larger foreign matter and the swell of the substrate interfere with the coating scanning. When such a large obstacle is detected, the application scanning should be stopped immediately from the viewpoint of safety. However, other small foreign matters and the rise of the substrate may be ignored in the application scanning, and it is not desirable from the viewpoint of production efficiency to stop the application scanning for such a small obstacle. As will be described below, the obstacle inspection monitor 30 in this embodiment has a function of accurately detecting only foreign substances on the substrate and swells of the substrate that may interfere with application scanning. Yes.

図1において、障害物検査モニタ30は、ステージ10上に載置されている基板Gの上面近傍を所定の高さ位置でY方向にほぼ水平に横断するように指向性の高い光ビーム(たとえばレーザビーム)LBを出射または投光する投光部32と、ステージ10上の基板GをY方向で挟んで投光部32と対向する位置に配置される受光部34とを有する。図示のように、投光部32および受光部34は支持体24の左右両側面から走査方向の前方に突き出ている一対の水平支持アーム36,38にそれぞれ取り付けられ、走査方向においてレジストノズル12よりも一定の距離(たとえば100mm〜200mm)だけ前方の位置で光ビームLBを略水平に投受光するようになっている。 In FIG. 1, an obstacle inspection monitor 30 is a light beam having a high directivity (for example, such that it crosses the vicinity of the upper surface of the substrate G placed on the stage 10 substantially horizontally in the Y direction at a predetermined height position). A light projecting unit 32 that emits or projects a laser beam LB; and a light receiving unit 34 that is disposed at a position facing the light projecting unit 32 with the substrate G on the stage 10 sandwiched in the Y direction. As shown in the figure, the light projecting unit 32 and the light receiving unit 34 are respectively attached to a pair of horizontal support arms 36 and 38 projecting forward from the left and right side surfaces of the support 24 in the scanning direction. In addition, the light beam LB is projected and received substantially horizontally at a position ahead by a certain distance (for example, 100 mm to 200 mm).

図3に、ステージ10上の基板Gと投光部32、受光部34および光ビームLBの光路との位置関係を示す。投光部32は、1個のLD(半導体レーザ)でもよいが、好ましくは多数のLDを横一列または縦横マトリクス状に配置してなる1次元LDアレイまたは2次元LDアレイからなり、発光駆動回路35(図9)より駆動電流の供給を受けて発光し、塗布ギャップg(たとえば100μm)よりも格段に大きなビーム径またはビームサイズ(たとえば2mm×2mm)を有する光ビームLBを出射する。この際、投光部32より出射された光ビームLBの下端部が基板Gの一側面で進路を断たれ、基板Gの上面よりも高い空間を水平に伝播するビーム部分だけが受光部34の受光面34aに到達するように、ビーム光路の高さ位置を設定または調整してよい。   FIG. 3 shows the positional relationship between the substrate G on the stage 10, the light projecting unit 32, the light receiving unit 34, and the optical path of the light beam LB. The light projecting unit 32 may be a single LD (semiconductor laser), but is preferably composed of a one-dimensional LD array or a two-dimensional LD array in which a number of LDs are arranged in a horizontal row or a vertical and horizontal matrix. 35 (FIG. 9) receives a drive current to emit light, and emits a light beam LB having a beam diameter or beam size (for example, 2 mm × 2 mm) much larger than the coating gap g (for example, 100 μm). At this time, the lower end portion of the light beam LB emitted from the light projecting unit 32 is cut off at one side surface of the substrate G, and only the beam portion that propagates horizontally in a space higher than the upper surface of the substrate G is the light receiving unit 34. The height position of the beam optical path may be set or adjusted so as to reach the light receiving surface 34a.

図4および図5に、受光部34の受光面34aに設けられる受光セルの配列構成を示す。受光部34は、一定サイズ(たとえば縦3mm×横3mm)の全受光エリアの中に多数の受光セルJを縦横マトリクス状に配置してなる2次元CCD(Charge-Coupled Device)からなり、一定サイクルθの周期で、各々の受光セルJ毎に受光した光を光電変換してその受光量を表す信号電荷またはアナログのセル受光量信号を生成し、所定の転送方法でセル受光量信号を時系列でシリアルに出力するようになっている。もっとも、後述する有効受光エリア選択回路46(図7)において、全受光エリアの中で指定した所望の一部のエリア(有効受光エリア)A内の受光セルJから得られたセル受光量信号のみを選択できるようになっている。   4 and 5 show the arrangement of the light receiving cells provided on the light receiving surface 34a of the light receiving unit 34. FIG. The light receiving unit 34 is formed of a two-dimensional CCD (Charge-Coupled Device) in which a large number of light receiving cells J are arranged in a vertical and horizontal matrix in an entire light receiving area of a certain size (for example, 3 mm in length × 3 mm in width). The light received for each light receiving cell J is photoelectrically converted with a period of θ to generate a signal charge or an analog cell light reception signal indicating the light reception amount, and the cell light reception signal is time-sequentially determined by a predetermined transfer method. It is designed to output serially. However, in the effective light receiving area selection circuit 46 (FIG. 7), which will be described later, only the cell light reception amount signal obtained from the light receiving cell J in the desired partial area (effective light receiving area) A designated in all the light receiving areas. Can be selected.

この有効受光エリア選択機能により、有効受光エリアAの位置(特に縦方向の位置)および/またはサイズ(範囲)を任意に可変調整することができる。たとえば、基板Gの厚みdが比較的大きいときは太線の枠で示す有効受光エリアAを高い位置へシフトし(図4)、基板Gの厚みdが比較的小さいときは有効受光エリアAを低い位置へシフトすることにより(図5)、常に有効受光エリアAが塗布ギャップgの高さ空間を完全にカバーできるように位置合わせすることができる。また、投光部32と受光部34との間の光軸合わせにおいても、この有効受光エリア選択機能を用いることによって、投光部32または受光部34の機械的な位置調整が不要になる。   With this effective light receiving area selection function, the position (particularly the vertical position) and / or size (range) of the effective light receiving area A can be arbitrarily variably adjusted. For example, when the thickness d of the substrate G is relatively large, the effective light receiving area A indicated by the bold frame is shifted to a higher position (FIG. 4), and when the thickness d of the substrate G is relatively small, the effective light receiving area A is lowered. By shifting to the position (FIG. 5), the effective light receiving area A can always be aligned so as to completely cover the height space of the coating gap g. Further, also in the optical axis alignment between the light projecting unit 32 and the light receiving unit 34, mechanical position adjustment of the light projecting unit 32 or the light receiving unit 34 becomes unnecessary by using this effective light receiving area selection function.

有効受光エリアAの最もシンプルな基本形態の一つは、図6に示すように横一列または1行分の複数(n個)の受光セルJ1〜Jnで構成される場合である。一例として、塗布ギャップgが100μmの場合、各受光セルJiのサイズは縦300μm×横300μmに選ばれ、その最下部の縦50μmの部分が基板Gの上面より低くなるように設定されてよい。図示省略するが、有効受光エリアAを縦一列の受光セルJ1〜Jnで構成することも可能である。   One of the simplest basic forms of the effective light receiving area A is a case where a plurality of (n) light receiving cells J1 to Jn for one horizontal row or one row are formed as shown in FIG. As an example, when the coating gap g is 100 μm, the size of each light receiving cell Ji is selected to be 300 μm in length × 300 μm in width, and the lowermost 50 μm portion may be set lower than the upper surface of the substrate G. Although not shown in the drawing, the effective light receiving area A can be configured by a vertical line of light receiving cells J1 to Jn.

図7に、障害物検査モニタ30において受光部34側に設けられるセル受光量信号処理回路40の構成を示す。このセル受光量信号処理回路40において、受光部34より一定サイクルθ毎に読み出される全受光エリア分のセル受光量信号は、ローパス・フィルタ(LPF)42でノイズ成分を除去されてからアナログ・ディジタル変換器44でA/D変換を受けてディジタル信号の形態で有効受光エリア選択回路46に入力される。   FIG. 7 shows a configuration of the cell light reception amount signal processing circuit 40 provided on the light receiving unit 34 side in the obstacle inspection monitor 30. In this cell received light amount signal processing circuit 40, the cell received light amount signal for the entire light receiving area read out from the light receiving unit 34 every constant cycle θ is removed from the noise component by the low-pass filter (LPF) 42 and then analog / digital. The A / D conversion is received by the converter 44 and input to the effective light receiving area selection circuit 46 in the form of a digital signal.

有効受光エリア選択回路46は、受光部34より各サイクルθの周期で読み出される全受光エリア分のセル受光量信号をいったんバッファメモリに格納してから、設定された有効受光エリアAの位置および範囲を指示するデータに基づいて、有効受光エリアA内の受光セルJ1〜Jnから読み出されたセル受光量信号[j〜jn]のみを該バッファメモリから時系列で読み出す。   The effective light receiving area selection circuit 46 temporarily stores in the buffer memory the cell received light amount signals for all the light receiving areas read out by the light receiving unit 34 at each cycle θ, and then sets the position and range of the effective light receiving area A that has been set. Only the cell received light amount signals [j to jn] read from the light receiving cells J1 to Jn in the effective light receiving area A are read from the buffer memory in time series.

有効受光エリア選択回路46より読み出された各サイクルのセル受光量信号[j1〜jn]は、第1ディレイ回路50に入力されるとともに、障害物有無判定回路54に入力される。第1ディレイ回路50は、入力した各サイクルのセル受光量信号[j1〜jn]を第1設定遅延時間T1だけ遅延させて出力する。第1ディレイ回路50より出力された各サイクルのセル受光量信号[j1'〜jn']は、後段の第2ディレイ回路52に入力されるとともに、障害物有無判定回路54に入力される。第2ディレイ回路52は、第1ディレイ回路50より入力した各サイクルのセル受光量信号[j1'〜jn']を第2設定遅延時間ΔT(ΔT=T2−T1)だけ遅延させて出力する。第2ディレイ回路52より出力された各サイクルのセル受光量信号[j1"〜jn"]は、障害物有無判定回路54に入力される。   The cell received light amount signals [j1 to jn] of each cycle read from the effective light receiving area selection circuit 46 are input to the first delay circuit 50 and to the obstacle presence / absence determination circuit 54. The first delay circuit 50 delays and outputs the received cell received light amount signal [j1 to jn] of each cycle by the first set delay time T1. The cell received light amount signals [j1 ′ to jn ′] for each cycle output from the first delay circuit 50 are input to the second delay circuit 52 at the subsequent stage and to the obstacle presence / absence determination circuit 54. The second delay circuit 52 delays and outputs the cell received light amount signal [j1 ′ to jn ′] of each cycle input from the first delay circuit 50 by a second set delay time ΔT (ΔT = T2−T1). The cell received light amount signal [j1 "to jn"] of each cycle output from the second delay circuit 52 is input to the obstacle presence / absence determination circuit 54.

こうして、障害物有無判定回路54には、有効受光エリア選択回路46より現時のセル受光量信号[j1〜jn]と、第1ディレイ回路50からの第1設定遅延時間T1前のセル受光量信号[j1'〜jn']と、第2ディレイ回路52からの第2設定遅延時間T2前のセル受光量信号[j1"〜jn"]とが同時に入力される。障害物有無判定回路54は、有効受光エリアAから所定の時間差をもって得られるこれら3組のセル受光量信号[j1〜jn],[j1'〜jJn'],[j1"〜jn"]に基づいて、現時の検査走査位置における光ビームLBの光路上に塗布走査上支障を来たすような実質的な障害物が有るか否かを判定する。   In this manner, the obstacle presence / absence determination circuit 54 receives the current cell received light amount signal [j1 to jn] from the effective light receiving area selecting circuit 46 and the cell received light amount signal before the first set delay time T1 from the first delay circuit 50. [J1 ′ to jn ′] and cell received light amount signals [j1 ″ to jn ″] before the second set delay time T2 from the second delay circuit 52 are input simultaneously. The obstacle presence / absence determination circuit 54 is based on these three sets of cell received light amount signals [j1 to jn], [j1 ′ to jJn ′] and [j1 ″ to jn ″] obtained with a predetermined time difference from the effective light receiving area A. Thus, it is determined whether or not there is a substantial obstacle on the optical path of the light beam LB at the current inspection scanning position that causes an obstacle in coating scanning.

設定部48は、有効受光エリア選択回路46、第1ディレイ回路50および第2ディレイ回路52に上記有効受光エリアAの位置および範囲、第1設定遅延時間T1、第2設定遅延時間T2の設定値をそれぞれ与えるとともに、障害物有無判定回路54には判定基準の各種設定値を与える。   The setting unit 48 sets the position and range of the effective light receiving area A, the first set delay time T1, and the second set delay time T2 to the effective light receiving area selection circuit 46, the first delay circuit 50, and the second delay circuit 52. Are given to the obstacle presence / absence judgment circuit 54.

図8に、障害物有無判定回路54の一構成例を示す。同時に入力される3組のセル受光量信号、つまり現時のセル受光量信号[j1〜jn]、第1設定遅延時間T1前のセル受光量信号[j1'〜jn']および第2設定遅延時間T2前のセル受光量信号[j1"〜jn"]は、それぞれ3つのバッファメモリ60,62,64に個別に格納される。   FIG. 8 shows a configuration example of the obstacle presence / absence determination circuit 54. Three sets of received cell light amount signals simultaneously input, that is, the current received cell light amount signal [j1 to jn], the received cell light amount signal [j1 ′ to jn ′] before the first set delay time T1, and the second set delay time. The cell received light amount signals [j1 "to jn"] before T2 are individually stored in the three buffer memories 60, 62, and 64, respectively.

第1差分演算回路66は、各々の受光セル毎に現時のセル受光量信号[j1〜jn]と第1設定遅延時間T1前のセル受光量信号[j1'〜jn']との差分つまり受光量差分を演算する。次いで、第1最大値決定回路68は、それらn個の受光量差分(j1'−j1)〜(jn'−jn)同士を比較してその中の最大値Max(ji'−ji)を決定する。   The first difference calculation circuit 66 receives, for each light receiving cell, a difference between the current cell light reception amount signal [j1 to jn] and the cell light reception amount signal [j1 ′ to jn ′] before the first set delay time T1, that is, light reception. Calculate the amount difference. Next, the first maximum value determination circuit 68 compares the n received light amount difference (j1′−j1) to (jn′−jn) to determine the maximum value Max (ji′−ji) therein. To do.

一方、第2差分演算回路70は、各々の受光セル毎に現時のセル受光量信号[j1〜jn]と第2設定遅延時間T2前のセル受光量信号[j1"〜jn"]との差分を演算する。次いで、第2最大値決定回路72は、それらn個の受光量差分(j1"−j1)〜(jn"−jn)同士を比較してその中の最大値Max(ji"−ji)を決定する。   On the other hand, the second difference calculation circuit 70 calculates the difference between the current cell received light amount signal [j1 to jn] and the cell received light amount signal [j1 "to jn"] before the second set delay time T2 for each light receiving cell. Is calculated. Next, the second maximum value determination circuit 72 compares the n received light amount differences (j1 "-j1) to (jn" -jn) to determine the maximum value Max (ji "-ji) among them. To do.

比較判定回路74は、大小比較により、第1最大値決定回路68で決定された受光量差分の最大値Max(ji'−ji)が第1比較基準値K1を超えているか否か、および第2最大値決定回路72で決定された受光量差分の最大値Max(ji"−ji)が第2比較基準値K2を超えているか否かを判定する。なお、第1および第2比較基準値K1,K2は同じ値でもよく、異なる値でもよい。そして、両受光量差分最大値Max(ji'−ji),Max(ji"−ji)のいずれも比較基準値K1,K2を超えていなければ「正常」つまり現時の検査走査位置における光ビームLBの光路上には塗布走査上支障を来たすような実質的な障害物はないと判定する。しかし、両受光量差分最大値Max(ji'−ji),Max(ji"−ji)の片方または双方が比較基準値K1,K2を超えているときは、「異常」つまり現時の検査走査位置における光ビームLBの光路上には塗布走査上支障を来たすおそれのある障害物が有ると判定する。こうして判定部74より一定サイクルθ毎に判定結果またはモニタ結果が得られる。このモニタ結果のデータは制御部28(図9)に与えられる。   The comparison determination circuit 74 determines whether or not the maximum value Max (ji′−ji) of the received light amount difference determined by the first maximum value determination circuit 68 exceeds the first comparison reference value K1 by the magnitude comparison. 2 It is determined whether or not the maximum value Max (ji "-ji) of the difference in received light amount determined by the maximum value determination circuit 72 exceeds the second comparison reference value K2. The first and second comparison reference values K1 and K2 may be the same value or different values, and both of the received light amount difference maximum values Max (ji′−ji) and Max (ji ″ −ji) must exceed the comparison reference values K1 and K2. If it is “normal”, that is, it is determined that there is no substantial obstacle on the optical path of the light beam LB at the current inspection scanning position that would impede the application scanning. However, when one or both of the maximum difference between received light amounts Max (ji′−ji) and Max (ji ″ −ji) exceed the comparison reference values K1 and K2, “abnormal”, that is, the current inspection scanning position. It is determined that there is an obstacle on the optical path of the light beam LB that may interfere with coating scanning. In this way, a determination result or a monitor result is obtained from the determination unit 74 every constant cycle θ. The data of the monitoring result is given to the control unit 28 (FIG. 9).

図9に、この実施形態のレジスト塗布装置における制御系の主要な構成を示す。制御部28は、1個または複数個のマイクロコンピュータを含み、ユニット内の各部、特に塗布処理部14のレジスト液供給部16、走査部18およびノズル昇降機構20や、障害物検査モニタ30の発光駆動回路35およびセル受光量信号処理回路40等の個々の動作と全体の動作(シーケンス)を制御する。特に、制御部28は、塗布処理および障害物検査に関する一切の制御や各種付加機能に関する一切の制御を実行するためのプログラム(ソフトウェア)を格納するプログラムメモリを有しており、マイクロコンピュータの中央演算制御部(CPU)がプログラムメモリから逐次所要のプログラムを読み出して実行するようになっている。また、プログラムの保存管理にハードディスク、光ディスク、フラッシュメモリ等の各種記憶媒体を用いることができる。   FIG. 9 shows the main configuration of the control system in the resist coating apparatus of this embodiment. The control unit 28 includes one or a plurality of microcomputers and emits light from each unit in the unit, in particular, the resist solution supply unit 16 of the coating processing unit 14, the scanning unit 18, the nozzle lifting mechanism 20, and the obstacle inspection monitor 30. The individual operation and overall operation (sequence) of the drive circuit 35 and the cell light reception amount signal processing circuit 40 are controlled. In particular, the control unit 28 has a program memory for storing a program (software) for executing all the controls related to the coating process and obstacle inspection and all the controls related to various additional functions. A control unit (CPU) reads and executes a required program sequentially from the program memory. Various storage media such as a hard disk, an optical disk, and a flash memory can be used for program storage management.

次に、この実施形態のレジスト塗布装置における障害物検査モニタ30の作用を説明する。ステージ10上の基板Gに対して、障害物検査モニタ30における検査走査は、図2に示すように、塗布処理部14における塗布走査と一緒に、かつ走査方向において適当な移動距離(100mm〜200mm)だけ先行して(前方で)行われる。この場合、投光部32および受光部34はレシストノズル12と一緒に一定速度VでX方向に水平移動し、この検査走査の移動中に一定サイクルθ毎に受光部34およびセル受光量信号処理回路40において上述したような有効受光エリアAからのセル受光量信号[j1〜jn]の読み出し、比較判定処理およびモニタ結果の出力が行われる。   Next, the operation of the obstacle inspection monitor 30 in the resist coating apparatus of this embodiment will be described. As shown in FIG. 2, the inspection scan on the substrate G on the stage 10 is performed along with the application scan in the application processing unit 14 and in an appropriate moving distance (100 mm to 200 mm). ) Only precedes (forward). In this case, the light projecting unit 32 and the light receiving unit 34 move horizontally in the X direction at a constant speed V together with the resist nozzle 12, and the light receiving unit 34 and the cell received light amount signal processing circuit at every constant cycle θ during the movement of the inspection scan. In 40, the cell received light amount signal [j1 to jn] is read from the effective light receiving area A as described above, the comparison determination process, and the output of the monitoring result are performed.

たとえば、有効受光エリアAの横幅が3mmで、走査速度Vが100mm/secである場合に、検査サイクルθを30msecに設定すると、図10に示すように、有効受光エリアAの横幅に等しいピッチ(θ1,θ2・・)で検査走査のモニタリングが行われる。また、検査サイクルθを15msecに設定すると、図11に示すように有効受光エリアAの横幅の1/2のピッチ(θ1,θ2・・)で検査走査のモニタリングが行われる。この場合、有効受光エリアAのセル数がたとえば10個[J1〜J10]であるとすると、あるサイクルθiで前半部[J1〜J5]が検査した同じ場所を次のサイクルθi+1で後半部[J6〜J10]が再度検査することができる。 For example, when the effective light-receiving area A has a horizontal width of 3 mm and the scanning speed V is 100 mm / sec, if the inspection cycle θ is set to 30 msec, a pitch equal to the horizontal width of the effective light-receiving area A as shown in FIG. Inspection scan is monitored at θ 1 , θ 2 . When the inspection cycle θ is set to 15 msec, the inspection scanning is monitored at a pitch (θ 1 , θ 2 ...) Of ½ of the lateral width of the effective light receiving area A as shown in FIG. In this case, assuming that the number of cells in the effective light receiving area A is, for example, 10 [J1 to J10], the same place inspected by the first half [J1 to J5] in a certain cycle θ i is the next cycle θ i + 1 . The latter half [J6 to J10] can be inspected again.

図12および図13に、障害物検査モニタ30によって検出される異物または障害物の代表例を幾つか示す。   12 and 13 show some typical examples of foreign objects or obstacles detected by the obstacle inspection monitor 30. FIG.

図12の(A)は、塗布ギャップgの高さレベル(100μm)よりもかなり低い(たとえば20〜60μmの)異物Q1が基板Gの上面に付着していた場合である。この場合は、受光部34の有効受光エリアAがこの異物Q1が有る場所まで来ると、現時の有効受光エリアA中でその異物Q1が投影された1個または数個の受光セルJiの受光量が幾らか低下することにより、時間的に第1設定遅延時間T1前(移動距離的にS1後方)の有効受光エリアA' における当該受光セルJiのセル受光量との間に、および時間的に第2設定遅延時間T2前(移動距離的にS2後方)の有効受光エリアA゛における当該受光セルJiのセル受光量との間にそれぞれ有意の差分が現れ、これらが受光量差分の最大値Max(ji'− ji),Max(ji"− ji)として第1および第2最大値決定回路68,72より出力される。しかし、比較判定回路74において、両受光量差分の最大値Max(ji'− ji),Max(ji"− ji)のいずれも基準値K1,K2を超えないため、「正常」のモニタ結果が出力される。したがって、障害物検査モニタ30で異物Q1が検出されても制御部28は塗布処理部14に塗布処理を続行させる。   FIG. 12A shows a case where a foreign substance Q1 considerably lower (for example, 20 to 60 μm) than the height level (100 μm) of the coating gap g is attached to the upper surface of the substrate G. In this case, when the effective light receiving area A of the light receiving unit 34 reaches the place where the foreign matter Q1 is present, the amount of light received by one or several light receiving cells Ji on which the foreign matter Q1 is projected in the current effective light receiving area A. Is somewhat reduced, so that the amount of light received by the light receiving cell Ji in the effective light receiving area A ′ before the first set delay time T1 (moving distance behind S1) and in time. A significant difference appears between the light receiving amount of the light receiving cell Ji in the effective light receiving area A ′ before the second set delay time T2 (backward of S2 in terms of movement distance), and these are the maximum values Max of the received light amount difference. (Ji′−ji), Max (ji ″ −ji) are output from the first and second maximum value determination circuits 68 and 72. However, in the comparison / determination circuit 74, the maximum value Max (ji of both received light amounts) '-Ji) Max (ji "- ji) for none of not exceeding the reference value K1, K2, the monitoring result of" normal "is output. Therefore, even if the foreign object Q1 is detected by the obstacle inspection monitor 30, the control unit 28 causes the coating processing unit 14 to continue the coating process.

なお、有効受光エリアAの横幅が3mm、走査速度Vが100mm/sec、検査サイクルθが15msecの場合、第1設定遅延時間T1および第2設定遅延時間T2はたとえば10msec、100msecにそれぞれ設定されてよい。   When the effective light receiving area A is 3 mm wide, the scanning speed V is 100 mm / sec, and the inspection cycle θ is 15 msec, the first set delay time T1 and the second set delay time T2 are set to 10 msec and 100 msec, for example. Good.

図12の(B)は、塗布ギャップgの高さレベルと同等またはそれよりも高い(たとえば100〜200μmの)異物Q2が基板Gの上面に付着していた場合である。この場合は、受光部34の有効受光エリアAがこの異物Q1の有る場所まで来ると、現時の有効受光エリアAの中でその異物Q2が投影された1個または数個の受光セルJiの受光量が大きく低下し、第1設定遅延時間T1前の有効受光エリアA' における当該受光セルJiのセル受光量との間に、および第2設定遅延時間T2前の有効受光エリアA゛における当該受光セルJiのセル受光量との間にそれぞれ相当大きな差分が現れ、それらが受光量差分の最大値Max(ji'− ji),Max(ji"− ji)として第1および第2最大値決定回路68,72よりそれぞれ出力される。そして、比較判定回路74において、両受光量差分の最大値Max(ji'− ji),Max(ji"− ji)のいずれも基準値K1,K2を超えることとなり、「異常」のモニタ結果が出力される。このように障害物検査モニタ30から「異常」のモニタ結果が出力されると、これに応じて制御部28は直ちに塗布処理部14に塗布処理を停止させる。すなわち、走査部18にレジストノズル12の移動を停止させ、レジスト液供給部16にレジスト液の吐出を停止させる。また、必要に応じて、レジストノズル12の走査移動を止める代わりに、ノズル昇降機構20によりレジストノズル12を上昇移動させて、異物Q2のはるか上方を通過させることも可能である。   FIG. 12B shows a case where foreign matter Q2 equal to or higher than the height level of the coating gap g (for example, 100 to 200 μm) adheres to the upper surface of the substrate G. In this case, when the effective light receiving area A of the light receiving unit 34 reaches the place where the foreign object Q1 is present, the light reception of one or several light receiving cells Ji on which the foreign object Q2 is projected in the current effective light receiving area A. The amount of light received decreases in the effective light receiving area A ′ before the first set delay time T1 and the light received in the effective light receiving area A ′ before the second set delay time T2. A considerably large difference appears between the cell light reception amount of the cell Ji and the first and second maximum value determination circuits as maximum values Max (ji′−ji) and Max (ji ″ −ji) of the light reception amount difference. 68 and 72. In the comparison / determination circuit 74, the maximum values Max (ji'-ji) and Max (ji "-ji) of both received light amount differences exceed the reference values K1 and K2. When The “abnormal” monitoring result is output. As described above, when the “abnormal” monitoring result is output from the obstacle inspection monitor 30, the control unit 28 immediately causes the coating processing unit 14 to stop the coating process. That is, the scanning unit 18 stops the movement of the resist nozzle 12 and the resist solution supply unit 16 stops the discharge of the resist solution. Further, if necessary, instead of stopping the scanning movement of the resist nozzle 12, the resist nozzle 12 can be moved up by the nozzle lifting mechanism 20 to pass far above the foreign matter Q2.

図13の(A)は、基板Gとステージ10との間に大きな粒状の異物Q3が挟まって基板Gが突状に塗布ギャップgの高さレベルよりも高く盛り上がっている場合である。この場合も、図12の(B)の場合と同様に、検査走査がこの基板盛り上がりH3まで来たところで、現時の有効受光エリアA中でその基板盛り上がりH3が投影された1つまたは数個の受光セルJiの受光量が大きく低下し、第1設定遅延時間T1前の有効受光エリアA' における当該受光セルJiのセル受光量との間、および第2設定遅延時間T2前の有効受光エリアA゛における当該受光セルJiのセル受光量との間に相当大きな差分が現れ、セル受光量信号処理回路40より「異常」のモニタ結果が出力される。そして、このモニタ結果出力に応答して制御部28は直ちに塗布処理部14に塗布処理を停止させる。   FIG. 13A shows a case where a large granular foreign material Q3 is sandwiched between the substrate G and the stage 10 and the substrate G protrudes in a protruding manner higher than the height level of the coating gap g. Also in this case, as in the case of FIG. 12B, when the inspection scan has reached this substrate swell H3, one or several of the substrate swell H3 projected in the current effective light receiving area A is projected. The light receiving amount of the light receiving cell Ji greatly decreases, and the effective light receiving area A between the light receiving amount of the light receiving cell Ji in the effective light receiving area A ′ before the first set delay time T1 and before the second set delay time T2. A considerable difference appears between the light reception cell Ji and the light reception amount of the light reception cell Ji, and the monitoring result “abnormal” is output from the cell light reception amount signal processing circuit 40. Then, in response to this monitor result output, the control unit 28 immediately causes the coating processing unit 14 to stop the coating process.

図13の(B)は、基板Gとステージ10との間に大きくかつ平坦な異物Q4が挟まって基板Gがなだらかに塗布ギャップgの高さレベルよりも高く盛り上がっている場合である。この場合は、検査走査がこのなだらかな基板盛り上がりH4に差し掛かかると、現時の有効受光エリアA内の各受光セルJiの受光量は少しずつ減少する。したがって、第1設定遅延時間T1前の有効受光エリアA'における当該受光セルJiのセル受光量との間、および第2設定遅延時間T2前の有効受光エリアA゛における当該受光セルJiのセル受光量との間にも小さな差分しか現れない。特に、第1設定遅延時間T1前の有効受光エリアA'は現時の有効受光エリアAよりも10mm後方でさほど離れていないため、現時の有効受光エリアA内で各受光セルJiの受光量が次第に大きく減少しても、第1設定遅延時間T1前の有効受光エリアA'内の各受光セルJiの受光量との差分はわずかしか増えない。しかし、第2設定遅延時間T2前の有効受光エリアA゛は現時の有効受光エリアAよりも100mm後方であるため、現時の有効受光エリアA内で各受光セルJiの受光量が次第に大きく減少すると、第2設定遅延時間T2前の有効受光エリアA゛内の各受光セルJiの受光量との間に大きな差分(開き)が出て、第2最大値決定回路72より出力される受光量差分の最大値Max(ji"− ji)が基準値K2を超えることとなり、比較判定回路74より「異常」のモニタ結果が出力される。このモニタ結果出力に応答して制御部28は直ちに塗布処理部14に塗布処理を停止させる。   FIG. 13B shows a case where a large and flat foreign matter Q4 is sandwiched between the substrate G and the stage 10 and the substrate G is gently raised above the height level of the coating gap g. In this case, when the inspection scan reaches the gentle substrate swell H4, the amount of light received by each light receiving cell Ji in the effective light receiving area A at this time decreases little by little. Therefore, cell light reception of the light receiving cell Ji in the effective light receiving area A ′ before the first set delay time T1 and in the effective light receiving area A ′ before the second set delay time T2 Only a small difference appears between the quantities. In particular, since the effective light receiving area A ′ before the first set delay time T1 is not so far behind the current effective light receiving area A by 10 mm, the light receiving amount of each light receiving cell Ji gradually increases in the current effective light receiving area A. Even if it greatly decreases, the difference from the received light amount of each light receiving cell Ji in the effective light receiving area A ′ before the first set delay time T1 increases only slightly. However, since the effective light receiving area A ′ before the second set delay time T2 is 100 mm behind the current effective light receiving area A, the amount of light received by each light receiving cell Ji gradually decreases in the current effective light receiving area A. A large difference (open) appears between the light receiving amount of each light receiving cell Ji in the effective light receiving area A ′ before the second set delay time T2, and the light receiving amount difference output from the second maximum value determining circuit 72 The maximum value Max (ji "-ji) exceeds the reference value K2, and the monitoring result of" abnormal "is output from the comparison determination circuit 74. In response to this monitor result output, the control unit 28 immediately causes the coating processing unit 14 to stop the coating process.

このように、通常は、現時の有効受光エリアA内の各受光セルJiの受光量とかなり前(第2設定遅延時間T2前)の有効受光エリアA゛内の各受光セルJiの受光量との差分の大きさだけから現時の検査走査位置における実質的な障害物の有無を殆ど確実に判定することができる。しかし、第2設定遅延時間T2前の有効受光エリアA"の検査位置で閾値を超えない傷害物が有った場合は、現時の検査位置に塗布ギャップgの高さレベルをわずかに超えるような障害物が有ってもこれを見落とす可能性がある。その場合に、現時の有効受光エリアA内の各受光セルJiの受光量と第1設定遅延時間T1前の有効受光エリアA'内の各受光セルJiの受光量との差分がいわば保険またはバックアップとして意味をなし、その中の最大値Max(ji'− ji)が基準値K1を超えて、「異常」のモニタ結果を出すことができる。   Thus, normally, the received light amount of each light receiving cell Ji in the effective light receiving area A in the current time and the received light amount of each light receiving cell Ji in the effective light receiving area A ′ considerably before (before the second set delay time T2) From the magnitude of the difference, it is possible to almost certainly determine the presence or absence of a substantial obstacle at the current inspection scanning position. However, if there is an obstacle that does not exceed the threshold at the inspection position of the effective light receiving area A "before the second set delay time T2, the height level of the application gap g is slightly exceeded at the current inspection position. Even if there is an obstacle, this may be overlooked, in which case the amount of light received by each light receiving cell Ji in the current effective light receiving area A and the effective light receiving area A ′ before the first set delay time T1. The difference from the amount of light received by each light receiving cell Ji makes sense as insurance or backup, and the maximum value Max (ji′−ji) among them exceeds the reference value K1, and an “abnormal” monitoring result can be obtained. it can.

上記のように、この実施形態における障害物検査モニタ30は、障害物検査の走査に用いる光ビームLBを基板Gの上面から塗布ギャップgの高さレベルまでの高さ空間を余裕をもってカバーできるビームサイズおよびビーム高さ位置に設定し、横一列または縦横マトリクス状に多数の受光セルを配列してなる受光部34の受光面34aで任意の位置または高さで有効受光エリアAを設定し、この有効受光エリアAに含まれる複数の受光セルから得られるセル受光量信号のみを選択的に読み出す。そして、選択的に読み出したセル受光量信号に基づいて、有効受光エリア内の各々の受光セル毎に現時の受光量と第1設定遅延時間T1前の受光量および第2設定遅延時間T2前の受光量との差分を演算して、両受光量差分の最大値Max(ji'− ji),Max(ji"− ji)の少なくとも一方が基準値K1,K2を超えている場合は、現時の検査走査の位置に塗布走査に支障を来たす障害物が有るとの判定結果つまり「異常」のモニタ結果を出すようにしている。   As described above, the obstacle inspection monitor 30 in this embodiment is a beam that can cover the light beam LB used for the obstacle inspection scan with sufficient margin from the upper surface of the substrate G to the height level of the coating gap g. The effective light receiving area A is set at an arbitrary position or height on the light receiving surface 34a of the light receiving unit 34, which is set to the size and the beam height position, and a large number of light receiving cells are arranged in a horizontal or vertical and horizontal matrix. Only cell received light amount signals obtained from a plurality of light receiving cells included in the effective light receiving area A are selectively read out. Then, based on the selectively received cell received light amount signal, the current received light amount, the received light amount before the first set delay time T1, and the second set delay time T2 before for each light receiving cell in the effective light receiving area. When the difference between the received light amount is calculated and at least one of the maximum values Max (ji′−ji) and Max (ji ″ −ji) of both received light amount exceeds the reference values K1 and K2, A determination result that there is an obstacle that hinders the application scan at the position of the inspection scan, that is, a monitor result of “abnormal” is output.

このような実施形態のモニタ方式によれば、塗布ギャップgのサイズに比して格段に小さな受光セル毎の受光量変化を塗布ギャップgのサイズに比して格段に大きな有効受光エリアAの範囲にわたって検査するので、如何なる障害物も高い解像度で正確にその大きさを検出し、これによって塗布走査上支障を来たすおそれのある大きな障害物と全く支障のない小さな障害物とを適確に区別することが可能であり、前者の障害物に対してはレジストノズル12と基板Gとの衝突または擦接を未然に防止できるとともに、後者の障害物に対しては塗布処理の無駄(無意味)な停止を適切に回避することができる。   According to the monitoring method of such an embodiment, the range of the effective light receiving area A in which the change in the amount of received light for each light receiving cell is much smaller than the size of the coating gap g is much larger than the size of the coating gap g. Because it is inspected over time, the size of any obstacle can be accurately detected with high resolution, thereby accurately distinguishing between large obstacles that may cause problems in application scanning and small obstacles that do not interfere at all. It is possible to prevent the former obstacle from colliding or rubbing between the resist nozzle 12 and the substrate G, and the latter obstacle is wasteful (nonsense). A stop can be avoided appropriately.

さらに、現時の検査走査位置における受光量の状態を判定するための比較基準値に同じ検査走査における所定時間前の受光量を用いるので、受光部内の光電変換特性の変化や周囲状況(周囲光、周囲温度等)によって受光部の出力(受光量)が受ける影響を適確に補償(キャンセル)することができる。しかも、少し前(第1設定時間T1前)の受光量とかなり前(第2設定時間T2前)の受光量の2つを比較基準値に用いるので、モニタ判定の精度ないし信頼性を一層向上させることができる。   Furthermore, since the received light amount before a predetermined time in the same inspection scan is used as a comparison reference value for determining the state of the received light amount at the current inspection scanning position, changes in photoelectric conversion characteristics in the light receiving unit and ambient conditions (ambient light, It is possible to accurately compensate (cancel) the influence of the output (light reception amount) of the light receiving unit due to the ambient temperature or the like. Moreover, since the received light amount a little before (before the first set time T1) and the received light amount a little before (before the second set time T2) are used as the comparison reference values, the accuracy or reliability of the monitor determination is further improved. Can be made.

以上、好適な実施形態について説明したが、本発明の技術思想の範囲内で種々の変形が可能である。   The preferred embodiment has been described above, but various modifications can be made within the scope of the technical idea of the present invention.

たとえば、図14に、障害物検査モニタ30の受光セル信号処理回路40に含まれる障害物有無判定回路54の別の構成例を示す。この構成例では、第1差分演算回路66、第2差分演算回路70の後段に第1比較判定回路76、第2比較判定回路78および障害物サイズ判定回路80をそれぞれ設ける。   For example, FIG. 14 shows another configuration example of the obstacle presence / absence determination circuit 54 included in the light receiving cell signal processing circuit 40 of the obstacle inspection monitor 30. In this configuration example, a first comparison / determination circuit 76, a second comparison / determination circuit 78, and an obstacle size determination circuit 80 are provided downstream of the first difference calculation circuit 66 and the second difference calculation circuit 70, respectively.

第1比較判定回路76は、第1差分演算回路66より出力される各々の受光セル毎の現時のセル受光量信号[j1〜jn]と第1設定遅延時間T1前のセル受光量信号[j1'〜jn']との差分を入力し、大小比較により、その中で第1比較基準値K1を超えているものが有ればその該当する受光セルを割り出して、その受光セルの識別情報を障害物サイズ判定回路80に知らせる。第2比較判定回路78は、第2差分演算回路70より出力される各々の受光セル毎の現時のセル受光量信号[j1〜jn]と第2設定遅延時間T2前のセル受光量信号[j1゛〜jn゛]との差分を入力し、大小比較により、その中で第2比較基準値K2を超えているものが有ればその該当する受光セルを割り出して、その受光セルの識別情報を障害物サイズ判定回路80に知らせる。   The first comparison / determination circuit 76 outputs the current cell received light amount signal [j1 to jn] for each light receiving cell output from the first difference calculation circuit 66 and the cell received light amount signal [j1 before the first set delay time T1. '~ Jn'] is input, and if there is a size comparison that exceeds the first comparison reference value K1, the corresponding light receiving cell is determined, and the identification information of the light receiving cell is obtained. The obstacle size determination circuit 80 is notified. The second comparison / judgment circuit 78 outputs the current cell received light amount signal [j1 to jn] output from the second difference calculating circuit 70 and the cell received light amount signal [j1 before the second set delay time T2]. "~ Jn"] is input, and if there is a size comparison that exceeds the second comparison reference value K2, the corresponding light receiving cell is determined, and the identification information of the light receiving cell is obtained. The obstacle size determination circuit 80 is notified.

障害物サイズ判定回路80は、第1比較判定回路76および第2比較判定回路78より受け取った該当受光セル識別情報から受光量差分値が比較基準値Kを超えている該当受光セルの範囲または領域を割り出して、それを所定の比較基準値(領域サイズ)Mと比較し、この比較基準値Mを超えなければ「正常」、超えていれば「異常」とのモニタ結果を出力する。   The obstacle size determination circuit 80 is a range or region of the corresponding light receiving cell in which the received light amount difference value exceeds the comparison reference value K from the corresponding light receiving cell identification information received from the first comparison determination circuit 76 and the second comparison determination circuit 78. Is compared with a predetermined comparison reference value (region size) M, and a monitoring result of “normal” is output if the comparison reference value M is not exceeded, and “abnormal” is output if the comparison reference value M is exceeded.

この構成例においては、有効受光エリアA内に多数の受光セルが縦横マトリクス状に配置されている場合に障害物の大きさ(特に高さ方向の大きさ)ないし形状を一層正確に検出することができる。   In this configuration example, when a large number of light receiving cells are arranged in an effective light receiving area A in a vertical and horizontal matrix, the size (particularly the size in the height direction) or shape of an obstacle can be detected more accurately. Can do.

また、上記実施形態における障害物検査モニタ30は、塗布走査の際に検出した障害物をレジストノズル12の下端が基板Gの上面に擦接ないし当接するか否かの観点から危険視すべきものと無視できるものとに区別したが、レジスト塗布膜の膜厚特性(特に膜厚均一性)の観点から危険視すべきものと無視できるものとに区別してモニタ結果を出すことも可能である。   Further, the obstacle inspection monitor 30 in the above embodiment should be regarded as dangerous from the viewpoint of whether or not the lower end of the resist nozzle 12 rubs against or contacts the upper surface of the substrate G with respect to the obstacle detected during the application scanning. Although a distinction is made between those that can be ignored, it is also possible to distinguish between those that should be considered dangerous and those that can be ignored from the viewpoint of the film thickness characteristics (particularly the film thickness uniformity) of the resist coating film.

また、別の変形例として、モニタ判定精度のある程度の低下を伴うが、現時の検査走査位置における受光量の状態を判定するための比較基準値として、2つの設定時間(T1,T2)前の受光量ではなく、1つの設定時間前の受光量のみで済ますことも可能である。また、検査走査を塗布走査と切離して実行することも可能である。また、検査走査および/または塗布走査においてレジストノズルを固定したまま基板ないしステージ側を水平移動させる塗布方式や、基板を気体の圧力でステージ上に浮上させて支持する塗布方式にも本発明は適用可能である。   Further, as another modification, although there is a certain decrease in the monitor determination accuracy, a comparison reference value for determining the state of the amount of received light at the current inspection scan position is two previous set times (T1, T2). It is possible to use only the received light amount before one set time instead of the received light amount. It is also possible to execute the inspection scan separately from the application scan. The present invention also applies to a coating method in which the substrate or the stage side is horizontally moved while the resist nozzle is fixed in the inspection scanning and / or coating scanning, and a coating method in which the substrate is floated and supported on the stage by a gas pressure. Is possible.

上記した実施形態はLCD用のレジスト塗布装置に係るものであったが、本発明は被処理基板上に塗布液を供給する任意のアプリケーションに適用可能である。本発明における塗布液としては、レジスト液以外にも、たとえば層間絶縁材料、誘電体材料、配線材料等の液体も可能である。本発明における被処理基板はLCD用ガラス基板に限らず、他のフラットパネルディスプレイ用基板、半導体ウエハ、CD基板、フォトマスク、プリント基板等も可能である。   Although the above-described embodiment relates to a resist coating apparatus for LCD, the present invention can be applied to any application that supplies a coating liquid onto a substrate to be processed. As the coating solution in the present invention, in addition to the resist solution, liquids such as an interlayer insulating material, a dielectric material, and a wiring material can be used. The substrate to be treated in the present invention is not limited to a glass substrate for LCD, but may be other flat panel display substrates, semiconductor wafers, CD substrates, photomasks, printed substrates and the like.

本発明の一実施形態におけるレジスト塗布装置の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of the resist coating apparatus in one Embodiment of this invention. 実施形態のレジスト塗布装置における塗布走査および検査走査中の要部の様子を示す部分側面図である。It is a partial side view which shows the mode of the principal part in the application | coating scanning and test | inspection scan in the resist coating device of embodiment. 実施形態においてステージ上の基板と投光部、受光部および光ビーム光路との関係を示す側面図である。It is a side view which shows the relationship between the board | substrate on a stage, a light projection part, a light-receiving part, and a light beam optical path in embodiment. 実施形態において受光部の受光面に設けられる受光セルの配列構成および有効受光エリアの一選択例を示す略正面図である。It is a schematic front view which shows the selection example of the arrangement structure of the light reception cell provided in the light-receiving surface of a light-receiving part and effective light-receiving area in embodiment. 実施形態における受光セルの配列構成および有効受光エリアの別の選択例を示す略正面図である。It is a schematic front view which shows another example of arrangement | positioning structure of the light reception cell in embodiment, and another selection example of an effective light reception area. 実施形態における有効受光エリアの最もシンプルな基本形態を示す略正面図である。It is a schematic front view which shows the simplest basic form of the effective light-receiving area in embodiment. 実施形態におけるセル受光量信号処理回路の構成を示すブロック図である。It is a block diagram which shows the structure of the cell received light amount signal processing circuit in embodiment. 実施形態のセル受光量信号処理回路における障害物有無判定回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of the obstruction presence / absence determination circuit in the cell received light amount signal processing circuit of the embodiment. 実施形態のレジスト塗布装置における主要な制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the main control systems in the resist coating device of embodiment. 実施形態の検査走査におけるモニタリングピッチの一例を示す図である。It is a figure which shows an example of the monitoring pitch in the test | inspection scan of embodiment. 実施形態の検査走査におけるモニタリングピッチの別の例を示す図である。It is a figure which shows another example of the monitoring pitch in the test | inspection scan of embodiment. 実施形態における障害物検査の一例を模式的に示す側面図である。It is a side view which shows typically an example of the obstruction inspection in embodiment. 実施形態における障害物検査の一例を模式的に示す側面図である。It is a side view which shows typically an example of the obstruction inspection in embodiment. 実施形態のセル受光量信号処理回路における障害物有無判定回路の別の構成例を示すブロック図である。It is a block diagram which shows another structural example of the obstruction presence / absence determination circuit in the cell received light amount signal processing circuit of the embodiment.

符号の説明Explanation of symbols

10 テーブル
12 レジストノズル
14 塗布処理部
16 レジスト液供給部
18 走査部
20 ノズル昇降機構
30 ノズル障害物モニタ
32 投光部
34 受光部
34a 受光面
40 セル受光量信号処理回路
DESCRIPTION OF SYMBOLS 10 Table 12 Resist nozzle 14 Application | coating process part 16 Resist liquid supply part 18 Scan part 20 Nozzle raising / lowering mechanism 30 Nozzle obstruction monitor 32 Light projection part 34 Light reception part 34a Light reception surface 40 Cell received light amount signal processing circuit

Claims (20)

被処理基板を所定の高さ位置で略水平に支持し、前記基板に対して上方の近接した位置から微小なギャップを介して処理液を吐出するノズルを相対的に水平方向で移動させる塗布走査を行って、前記基板上に前記処理液を塗布する塗布方法であって、
前記基板の上面近傍を横断する指向性の高い光ビームを投光する投光部と前記光ビームを受光するための受光面に一列またはマトリクス状に配置された複数の受光セルを有する受光部とを相対向させて前記基板の両側に配置する第1のステップと、
前記塗布走査に先行して、前記基板の一端から他端に向かって前記投光部および前記受光部を前記基板に対して相対的に水平方向で移動させる検査走査を行う第2のステップと、
前記検査走査の移動中に、一定のサイクルで、前記受光部の光電変換により前記光ビームの受光量を各々の受光セル毎に表すセル受光量信号を生成する第3のステップと、
前記セル受光量信号に基づいて各々の受光セル毎に現時の受光量と所定の遅延時間前の受光量との差分を求める第4のステップと、
前記受光量差分を所定の基準値と比較して判定を行う第5のステップと、
前記判定の結果にしたがって前記基板に対する前記塗布走査の動作を制御する第6のステップと
を有する塗布方法。
Application scanning in which a substrate to be processed is supported substantially horizontally at a predetermined height position, and a nozzle for discharging a processing liquid is moved in a relatively horizontal direction through a minute gap from a position close to the substrate. And applying the treatment liquid onto the substrate,
A light projecting unit that projects a light beam with high directivity that traverses the vicinity of the upper surface of the substrate, and a light receiving unit that has a plurality of light receiving cells arranged in a row or in a matrix on a light receiving surface for receiving the light beam; A first step in which the two are oppositely disposed on both sides of the substrate;
A second step of performing an inspection scan for moving the light projecting unit and the light receiving unit in a horizontal direction relative to the substrate from one end to the other end of the substrate prior to the application scanning;
A third step of generating a cell received light amount signal representing the received light amount of the light beam for each light receiving cell by photoelectric conversion of the light receiving unit in a certain cycle during the movement of the inspection scan;
A fourth step of obtaining a difference between the current received light amount and the received light amount before a predetermined delay time for each light receiving cell based on the cell received light amount signal;
A fifth step of making a determination by comparing the difference in received light amount with a predetermined reference value;
And a sixth step of controlling an operation of the application scanning on the substrate according to the result of the determination.
前記第5のステップが、全受光セルの中で前記受光量差分の最大値が前記基準値を超えているか否かを判定する請求項1に記載の塗布方法。   The coating method according to claim 1, wherein the fifth step determines whether or not a maximum value of the difference in received light amount exceeds the reference value in all light receiving cells. 前記第5のステップが、各々の受光セル毎に前記受光量差分が前記基準値を超えているか否かを判定して、前記基準値を超えているものがあれば該当する受光セルの範囲を判定する請求項1に記載の塗布方法。   In the fifth step, it is determined whether or not the difference in received light amount exceeds the reference value for each light receiving cell, and if there is a reference value exceeding the reference value, the range of the corresponding light receiving cell is determined. The coating method according to claim 1 for determining. 被処理基板を所定の高さ位置で略水平に支持し、前記基板に対して上方の近接した位置から微小なギャップを介して処理液を吐出するノズルを相対的に水平方向に移動させる塗布走査を行って、前記基板上に前記処理液を塗布する塗布方法であって、
前記基板の上面近傍を横断する指向性の高い光ビームをそれぞれ投光および受光するように前記基板の両側に投光部および受光部を相対向させて配置する第1のステップと、
前記塗布走査に先行して、前記投光部および前記受光部を前記基板に対して相対的に水平方向に移動させる検査走査を行う第2のステップと、
前記検査走査の移動中に、前記光ビームを受光する前記受光部の光電変換によって前記光ビームの受光量を表す受光量信号を生成する第3のステップと、
前記受光部より出力される前記受光量信号に基づいて、現時の受光量と第1の遅延時間前の受光量との差分および前記現時の受光量と前記第1の遅延時間よりも長い第2の遅延時間前の受光量との差分をそれぞれ第1および第2の受光量差分として求める第4のステップと、
前記第1および第2の受光量差分を所定の基準値と比較して判定を行う第5のステップと、
前記判定の結果にしたがって前記基板に対する前記塗布走査の動作を制御する第6のステップと
を有する塗布方法。
Application scanning in which a substrate to be processed is supported substantially horizontally at a predetermined height position, and a nozzle for discharging a processing liquid is moved relatively horizontally through a minute gap from a position close to the substrate. And applying the treatment liquid onto the substrate,
A first step of arranging a light projecting portion and a light receiving portion on opposite sides of the substrate so as to project and receive a highly directional light beam crossing the vicinity of the upper surface of the substrate, respectively;
A second step of performing an inspection scan for moving the light projecting unit and the light receiving unit in a horizontal direction relative to the substrate prior to the application scan;
A third step of generating a received light amount signal representing a received light amount of the light beam by photoelectric conversion of the light receiving unit that receives the light beam during the movement of the inspection scan;
Based on the received light amount signal output from the light receiving unit, the difference between the current received light amount and the received light amount before the first delay time and the second received light amount and the second delay time longer than the first delay time. A fourth step for obtaining a difference from the received light amount before the delay time as first and second received light amount differences,
A fifth step of making a determination by comparing the difference between the first and second received light amounts with a predetermined reference value;
And a sixth step of controlling an operation of the application scanning on the substrate according to the result of the determination.
前記受光部が、前記光ビームを受光する受光面に一列またはマトリクス状に配置された複数の受光セルを有し、
前記第3のステップが、一定のサイクルで、前記光ビームの受光量を各々の受光セル毎に表すセル受光量信号を出力し、
前記第4のステップが、前記セル受光量信号に基づいて各々の受光セル毎に前記第1および第2の受光量差分を演算し、
前記第5のステップが、全受光セルの中で前記第1または第2の受光量差分の少なくとも一方の最大値が前記基準値を超えているか否かを判定する請求項4に記載の塗布方法。
The light receiving unit has a plurality of light receiving cells arranged in a line or matrix on a light receiving surface that receives the light beam,
The third step outputs a cell received light amount signal representing the received light amount of the light beam for each light receiving cell in a fixed cycle,
The fourth step calculates the first and second received light amount difference for each light receiving cell based on the cell received light amount signal,
5. The coating method according to claim 4, wherein the fifth step determines whether or not a maximum value of at least one of the first or second received light amount difference among all the light receiving cells exceeds the reference value. .
前記受光部が、前記光ビームを受光する受光面に一列またはマトリクス状に配置された複数の受光セルを有し、
前記第3のステップが、一定のサイクルで、前記光ビームの受光量を各々の受光セル毎に表すセル受光量信号を出力し、
前記第4のステップが、前記セル受光量信号に基づいて各々の受光セル毎に前記第1および第2の受光量差分を演算し、
前記第5のステップが、各々の受光セル毎に前記第1および第2の受光量差分の少なくとも一方が前記基準値を超えているか否かを判定し、前記基準値を超えているものがあれば該当受光セルの範囲を判定する請求項4に記載の塗布方法。
The light receiving unit has a plurality of light receiving cells arranged in a line or matrix on a light receiving surface that receives the light beam,
The third step outputs a cell received light amount signal representing the received light amount of the light beam for each light receiving cell in a fixed cycle,
The fourth step calculates the first and second received light amount difference for each light receiving cell based on the cell received light amount signal,
In the fifth step, it is determined whether at least one of the first and second received light amount differences exceeds the reference value for each light receiving cell. 5. The coating method according to claim 4, wherein the range of the corresponding light receiving cell is determined.
前記投光部と前記受光部とを前記走査の方向において前記ノズルの前方に配置して前記ノズルと一緒に前記基板に対して相対的に移動させる請求項1〜6のいずれか一項に記載の塗布方法。   The said light projection part and the said light-receiving part are arrange | positioned ahead of the said nozzle in the said scanning direction, and are moved relatively with respect to the said board | substrate with the said nozzle. Application method. 前記第5のステップで前記光ビームの光路上に塗布走査に支障の出るおそれのある障害物があるとの判定結果が出されたときは、前記第6のステップで直ちに前記ノズルの移動を停止させる請求項7に記載の塗布方法。   If it is determined in the fifth step that there is an obstacle on the optical path of the light beam that may interfere with coating scanning, the nozzle immediately stops moving in the sixth step. The coating method according to claim 7. 前記第5のステップで前記光ビームの光路上に塗布走査に支障の出るおそれのある障害物があるとの判定結果が出されたときは、前記第6のステップで直ちに前記ノズルを所定の高さ位置まで上昇移動させる請求項7に記載の塗布方法。   If it is determined in the fifth step that there is an obstacle on the optical path of the light beam that may interfere with coating scanning, the nozzle is immediately moved to a predetermined height in the sixth step. The coating method according to claim 7, wherein the coating is moved up to a vertical position. 被処理基板を所定の高さ位置でほぼ水平に支持する支持部と、
前記支持部に支持されている前記基板の上方に微小なギャップを介してノズルを配置し、塗布走査のために前記ノズルより処理液を吐出させる処理液供給部と、
塗布走査のために前記ノズルと前記基板とを水平方向で相対的に移動させる塗布走査部と、
前記基板の片側に配置され、前記基板の上面近傍を横断する指向性の高い光ビームを投光する投光部と、
前記投光部と相対向して前記基板の反対側に配置され、前記光ビームを一列またはマトリクス状に配置された複数の受光セルで受光し、一定のサイクルで光電変換によって前記光ビームの受光量を各々の受光セル毎に表すセル受光量信号を生成する受光部と、
前記塗布走査に先行して、前記基板の一端から他端に向かって前記投光部および前記受光部を前記基板に対して相対的に水平方向で移動させる検査走査部と、
前記検査走査の移動中に、前記受光部より得られる前記セル受光量信号に基づいて各々の受光セル毎に現時の受光量と所定の遅延時間前の受光量との差分を演算する受光量差分演算部と、
前記受光量差分演算部より得られる受光量差分を所定の基準値と比較して判定を行う判定部と、
前記判定部より得られる判定結果にしたがって前記塗布走査の動作を制御する制御部と
を有する塗布装置。
A support part for supporting the substrate to be processed substantially horizontally at a predetermined height position;
A processing liquid supply unit that disposes a nozzle above the substrate supported by the support unit via a minute gap and discharges the processing liquid from the nozzle for application scanning;
An application scanning unit that relatively moves the nozzle and the substrate in the horizontal direction for application scanning;
A light projecting unit disposed on one side of the substrate and projecting a light beam having a high directivity across the vicinity of the upper surface of the substrate;
The light beam is received by a plurality of light receiving cells arranged opposite to the light projecting unit and opposite to the substrate, and arranged in a row or in a matrix, and received by the photoelectric conversion in a constant cycle. A light receiving unit for generating a cell light receiving amount signal representing the amount for each light receiving cell;
Prior to the coating scan, an inspection scanning unit that moves the light projecting unit and the light receiving unit in a horizontal direction relative to the substrate from one end to the other end of the substrate;
Received light amount difference for calculating the difference between the current received light amount and the received light amount before a predetermined delay time for each light receiving cell based on the cell received light amount signal obtained from the light receiving unit during the movement of the inspection scan An arithmetic unit;
A determination unit that performs determination by comparing the received light amount difference obtained from the received light amount difference calculation unit with a predetermined reference value;
And a control unit that controls the operation of the application scanning according to a determination result obtained from the determination unit.
前記判定部が、全ての受光セルの中で前記受光量差分の最大値を決定し、前記受光量差分の最大値が前記基準値を超えているか否かを判定する請求項10に記載の塗布装置。   The application according to claim 10, wherein the determination unit determines the maximum value of the difference in received light amount among all the light receiving cells, and determines whether the maximum value of the difference in received light amount exceeds the reference value. apparatus. 前記判定部が、各々の受光セル毎に前記受光量差分を前記基準値と比較して、前記基準値を超えているものがあれば該当する受光セルの範囲を判定する請求項10に記載の塗布装置。   The said determination part compares the said light reception amount difference for each light reception cell with the said reference value, and if there exists what exceeds the said reference value, the range of the corresponding light reception cell will be determined. Coating device. 前記受光部が、一定サイズの全体受光エリア内に多数の受光セルを一列またはマトリクス状に配置し、前記全体受光エリアの一部を形成する任意の部分エリアを有効受光エリアとして任意に選択可能とし、
前記受光量差分演算部が、前記有効受光エリアに含まれる複数の受光セルから得られるセル受光量信号のみを前記受光量差分の演算処理に用いる請求項10〜12のいずれか一項に記載の塗布装置。
The light receiving unit arranges a large number of light receiving cells in a row or matrix in a whole light receiving area of a certain size, and an arbitrary partial area forming a part of the whole light receiving area can be arbitrarily selected as an effective light receiving area. ,
The said light reception amount difference calculating part uses only the cell light reception amount signal obtained from the some light reception cell contained in the said effective light reception area for the calculation process of the said light reception amount difference. Coating device.
被処理基板を所定の高さ位置でほぼ水平に支持する支持部と、
前記支持部に支持されている前記基板の上方に微小なギャップを介してノズルを配置し、塗布走査のために前記ノズルより処理液を吐出させる処理液供給部と、
塗布走査のために前記ノズルと前記基板とを相対的な水平方向で移動させる塗布走査部と、
前記基板の片側に配置され、前記基板の上面近傍を横断する指向性の高い光ビームを投光する投光部と、
前記投光部と相対向して前記基板の反対側に配置され、前記光ビームを受光して光電変換により前記光ビームの受光量を表す受光量信号を生成する受光部と、
前記塗布走査に先行して、前記基板の一端から他端に向かって前記投光部および前記受光部を前記基板に対して相対的に水平方向で移動させる検査走査部と、
前記検査走査の移動中に、前記受光部より得られる前記受光量信号に基づいて現時の受光量と第1の遅延時間前の受光量との差分および前記現時の受光量と前記第1の遅延時間よりも長い第2の遅延時間前の受光量との差分をそれぞれ第1および第2の受光量差分として演算する受光量差分演算部と、
前記第1および第2の受光量差分を所定の基準値と比較して判定を行う判定部と、
前記判定部より得られる判定結果にしたがって前記塗布走査の動作を制御する制御部と
を有する塗布装置。
A support part for supporting the substrate to be processed substantially horizontally at a predetermined height position;
A processing liquid supply unit that disposes a nozzle above the substrate supported by the support unit via a minute gap and discharges the processing liquid from the nozzle for application scanning;
A coating scanning unit that moves the nozzle and the substrate in a relative horizontal direction for coating scanning;
A light projecting unit disposed on one side of the substrate and projecting a light beam having a high directivity across the vicinity of the upper surface of the substrate;
A light receiving unit disposed opposite to the substrate opposite to the light projecting unit, receiving the light beam and generating a received light amount signal representing the received light amount of the light beam by photoelectric conversion;
Prior to the coating scan, an inspection scanning unit that moves the light projecting unit and the light receiving unit in a horizontal direction relative to the substrate from one end to the other end of the substrate;
During the movement of the inspection scan, based on the received light amount signal obtained from the light receiving unit, the difference between the current received light amount and the received light amount before the first delay time, and the current received light amount and the first delay. A received light amount difference calculating unit that calculates a difference from the received light amount before the second delay time longer than the time as a first received light amount difference and a second received light amount difference;
A determination unit configured to perform determination by comparing the first and second received light amount differences with a predetermined reference value;
And a control unit that controls the operation of the application scanning according to a determination result obtained from the determination unit.
前記受光部が、前記光ビームを一列またはマトリクス状に配置された複数の受光セルで受光し、一定のサイクルで光電変換により前記光ビームの受光量を各々の受光セル毎に表すセル受光量信号を生成し、
前記受光量差分演算部が、前記セル受光量信号に基づいて各々の受光セル毎に前記第1および第2の受光量差分を演算し、
前記判定部が、全ての受光セルの中で前記第1および第2の受光量差分の最大値を決定し、少なくとも一方の最大値が前記基準値を超えているか否かを判定する請求項14に記載の塗布装置
The light receiving unit receives the light beam by a plurality of light receiving cells arranged in a line or in a matrix, and receives a light receiving amount signal of the light beam for each light receiving cell by photoelectric conversion in a constant cycle. Produces
The received light amount difference calculation unit calculates the first and second received light amount difference for each light receiving cell based on the cell received light amount signal,
The determination unit determines a maximum value of the first and second received light amount differences among all the light receiving cells, and determines whether at least one maximum value exceeds the reference value. The coating apparatus as described in.
前記受光部が、前記光ビームを一列またはマトリクス状に配置された複数の受光セルで受光し、一定のサイクルで光電変換によって前記光ビームの受光量を各々の受光セル毎に表すセル受光量信号を生成し、
前記受光量差分演算部が、前記セル受光量信号に基づいて各々の受光セル毎に前記第1および第2の受光量差分を演算し、
前記判定部が、各々の受光セル毎に前記第1および第2の受光量差分を前記基準値と比較し、前記第1および第2の受光量差分の少なくとも一方が前記基準値を超えている場合は該当受光セルの範囲を判定する請求項15に記載の塗布装置。
The light receiving unit receives the light beam by a plurality of light receiving cells arranged in a line or in a matrix, and a cell light receiving amount signal representing the light receiving amount of the light beam for each light receiving cell by photoelectric conversion in a constant cycle Produces
The received light amount difference calculation unit calculates the first and second received light amount difference for each light receiving cell based on the cell received light amount signal,
The determination unit compares the first and second received light amount differences with the reference value for each light receiving cell, and at least one of the first and second received light amount differences exceeds the reference value. The coating apparatus according to claim 15, wherein in the case, the range of the corresponding light receiving cell is determined.
前記検査走査部が、前記投光部および前記受光部を前記走査の方向において前記ノズルの前方に配置して前記ノズルと一緒に前記基板に対して相対的に移動させる請求項10〜16のいずれか一項に記載の塗布装置。   The inspection scanning unit arranges the light projecting unit and the light receiving unit in front of the nozzle in the scanning direction and moves the light projecting unit and the light receiving unit relative to the substrate together with the nozzle. A coating apparatus according to claim 1. 前記受光部が、一定サイズの全体受光エリア内に多数の受光セルを一列またはマトリクス状に配置し、前記全体受光エリアの中の所望の一部のエリアを有効受光エリアとして任意に選択可能とし、
前記受光量差分演算部が、前記有効受光エリアに含まれる複数の受光セルから得られるセル受光量信号のみを前記受光量差分の演算処理に用いる請求項15〜17のいずれか一項に記載の塗布装置。
The light receiving unit arranges a large number of light receiving cells in a row or matrix in a whole light receiving area of a certain size, and allows a desired partial area in the whole light receiving area to be arbitrarily selected as an effective light receiving area,
The light reception amount difference calculation unit uses only cell light reception amount signals obtained from a plurality of light reception cells included in the effective light reception area in the calculation process of the light reception amount difference. Coating device.
前記基板の厚みに応じて前記有効受光エリアの縦方向の位置またはサイズを可変調整する請求項13または請求項18に記載の塗布装置。   The coating apparatus according to claim 13 or 18, wherein the position or size of the effective light receiving area in the vertical direction is variably adjusted according to the thickness of the substrate. 前記投光部より出射された前記光ビームのうち、ビーム下端部が前記基板の一側面に当たって進路を遮られ、残りのビーム部分が前記基板上を横断して前記受光部に受光され、前記受光部では前記有効受光エリアの下端部が前記基板の上面よりも低い位置に設定される請求項19に記載の塗布装置。   Of the light beam emitted from the light projecting unit, the lower end of the beam hits one side surface of the substrate to block the path, and the remaining beam portion traverses the substrate and is received by the light receiving unit. The coating apparatus according to claim 19, wherein the lower end portion of the effective light receiving area is set at a position lower than the upper surface of the substrate.
JP2006329769A 2006-12-06 2006-12-06 Coating method and coating apparatus Active JP4520975B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006329769A JP4520975B2 (en) 2006-12-06 2006-12-06 Coating method and coating apparatus
KR1020070125327A KR101202544B1 (en) 2006-12-06 2007-12-05 Coating method and coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006329769A JP4520975B2 (en) 2006-12-06 2006-12-06 Coating method and coating apparatus

Publications (2)

Publication Number Publication Date
JP2008142589A JP2008142589A (en) 2008-06-26
JP4520975B2 true JP4520975B2 (en) 2010-08-11

Family

ID=39603362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329769A Active JP4520975B2 (en) 2006-12-06 2006-12-06 Coating method and coating apparatus

Country Status (2)

Country Link
JP (1) JP4520975B2 (en)
KR (1) KR101202544B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108909B2 (en) * 2010-03-12 2012-12-26 東京エレクトロン株式会社 Backside foreign matter detection method, backside foreign matter detection device, and coating device
JP5444079B2 (en) * 2010-03-29 2014-03-19 富士フイルム株式会社 Paper float detection device, paper transport device, and image recording device
KR101744531B1 (en) * 2011-05-31 2017-06-09 주식회사 케이씨텍 Substrate coater apparatus which prevents inhomogenoeous coated layer due to foreign susbstance on substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001195A (en) * 2000-06-19 2002-01-08 Toray Ind Inc Method and device for coating and method and device for manufacturing color filter
JP2005052821A (en) * 2003-07-23 2005-03-03 Tokyo Electron Ltd Coating method and coating device
JP2006061854A (en) * 2004-08-27 2006-03-09 Dainippon Screen Mfg Co Ltd Substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001195A (en) * 2000-06-19 2002-01-08 Toray Ind Inc Method and device for coating and method and device for manufacturing color filter
JP2005052821A (en) * 2003-07-23 2005-03-03 Tokyo Electron Ltd Coating method and coating device
JP2006061854A (en) * 2004-08-27 2006-03-09 Dainippon Screen Mfg Co Ltd Substrate processing apparatus

Also Published As

Publication number Publication date
KR20080052430A (en) 2008-06-11
KR101202544B1 (en) 2012-11-19
JP2008142589A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
TWI311502B (en) Optics foreigh material sensing device and processing liquid coating apparatus equipped with this
TWI397681B (en) Methods and systems for positioning a laser beam spot relative to a semiconductor integrated circuit using a processing target as a metrology target
JP4490779B2 (en) Substrate processing equipment
JP5108909B2 (en) Backside foreign matter detection method, backside foreign matter detection device, and coating device
CA2095171A1 (en) Semiconductor chip mounting method and apparatus
JP4417205B2 (en) Substrate processing equipment
JP4520975B2 (en) Coating method and coating apparatus
KR102627643B1 (en) Substrate transfer device
TWI412894B (en) Optical foreign material detection device and processing liquid coating apparatus equipped with this
JP2009136858A (en) Distance sensor for paste dispenser
JP2016148665A (en) Inspection system and inspection method
KR101314017B1 (en) Optical foreign material detector and processing solution coating device with that
JP4105613B2 (en) Substrate processing equipment
WO2006093349A1 (en) Inspecting apparatus and inspecting method
JP4994273B2 (en) Proximity exposure apparatus, substrate moving method of proximity exposure apparatus, and display panel substrate manufacturing method
JP5317428B2 (en) Substrate processing apparatus and substrate manufacturing method
JP4523442B2 (en) Coating film forming apparatus, coating film forming method, and computer program
KR100921833B1 (en) Apparatus and Method for Sensing Foreign Particles On or Below Glass for Flat Panel Display
JP4587950B2 (en) Substrate processing equipment
KR20090064024A (en) System for compensating focus of exposure fitting, method for compensating focus of exposure fitting, apparatus for detecting focus of exposure fitting, method for detecting focus of exposure fitting
JP4490803B2 (en) Substrate processing equipment
KR101990639B1 (en) Substrate inspection method and Substrate processing apparatus
JP2006071625A (en) Method and device for inspecting display panel, and method for manufacturing the display panel
JP2009244175A (en) Light receiving unit of measuring device, light receiving unit of attitude detection sensor, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4520975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250