[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4517363B2 - Silicon electrode plate for plasma etching - Google Patents

Silicon electrode plate for plasma etching Download PDF

Info

Publication number
JP4517363B2
JP4517363B2 JP2005237255A JP2005237255A JP4517363B2 JP 4517363 B2 JP4517363 B2 JP 4517363B2 JP 2005237255 A JP2005237255 A JP 2005237255A JP 2005237255 A JP2005237255 A JP 2005237255A JP 4517363 B2 JP4517363 B2 JP 4517363B2
Authority
JP
Japan
Prior art keywords
silicon
silicon electrode
vapor deposition
chemical vapor
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005237255A
Other languages
Japanese (ja)
Other versions
JP2007053231A (en
Inventor
利玄 臂
孝志 米久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005237255A priority Critical patent/JP4517363B2/en
Publication of JP2007053231A publication Critical patent/JP2007053231A/en
Application granted granted Critical
Publication of JP4517363B2 publication Critical patent/JP4517363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

この発明は、パーティクル発生が少なくかつ使用寿命の長いプラズマエッチング用シリコン電極板に関するものである。   The present invention relates to a silicon electrode plate for plasma etching that generates less particles and has a long service life.

一般に、半導体集積回路を製造する工程において使用するSiウエハをエッチングするためのプラズマエッチング装置は、図4に示されるように、真空容器1内にシリコン電極板2および架台3が間隔をおいて設けられており、架台3の上にSiウエハ4を載置し、エッチングガス7をシリコン電極板2に設けられた貫通細孔5を通してSiウエハ4に向って流しながら高周波電源6により電極板2と架台3の間に高周波電圧を印加し、高周波電圧の印加によりシリコン電極板2と架台3の間の空間にプラズマ10を発生させ、このプラズマ10による物理反応と、シリコン−エッチングガス7による化学反応により、Siウエハ4の表面をエッチングする装置であることは知られている。シリコン電極板2はカーボンで構成された電極板が使用されたこともあったが、近年、主として単結晶シリコン、多結晶シリコンまたは柱状晶シリコンからなるシリコン電極板が使用されている。このシリコン電極板を使用してSiウエハをプラズマエッチングした場合、シリコン電極板に設けられた貫通細孔5は、シリコン電極板のSiウエハに対向する面に向かってラッパ状に広がりながら消耗し、寿命となる。この消耗を極力防止して、シリコン電極板の使用寿命を長くすべく、前記シリコン電極板の貫通細孔内面全面およびウエハと相対向する面(以下、下面という)の全面、さらに必要に応じて上面(下面の反対側の面)の全面に炭化ケイ素またはダイヤモンドライクカーボンなどのシリコンよりも消耗の少ない耐エッチング膜を形成してなる長寿命のプラズマエッチング用シリコン電極板が提案されている(特許文献1参照)。
特開2003−51485号公報
In general, in a plasma etching apparatus for etching a Si wafer used in a process of manufacturing a semiconductor integrated circuit, as shown in FIG. 4, a silicon electrode plate 2 and a pedestal 3 are provided in a vacuum container 1 at intervals. The Si wafer 4 is placed on the gantry 3, and the etching gas 7 flows through the through-hole 5 provided in the silicon electrode plate 2 toward the Si wafer 4, while the electrode plate 2 is connected to the electrode plate 2 by the high frequency power source 6. A high frequency voltage is applied between the gantry 3 and a plasma 10 is generated in the space between the silicon electrode plate 2 and the gantry 3 by the application of the high frequency voltage. A physical reaction by the plasma 10 and a chemical reaction by the silicon-etching gas 7 are generated. Thus, it is known that the apparatus etches the surface of the Si wafer 4. Although an electrode plate made of carbon has been used as the silicon electrode plate 2, in recent years, a silicon electrode plate mainly made of single crystal silicon, polycrystalline silicon or columnar crystal silicon has been used. When the silicon wafer is plasma etched using this silicon electrode plate, the through-hole 5 provided in the silicon electrode plate is consumed while spreading in a trumpet shape toward the surface of the silicon electrode plate facing the Si wafer, Life is reached. In order to prevent this consumption as much as possible and to prolong the service life of the silicon electrode plate, the entire inner surface of the through-hole of the silicon electrode plate and the entire surface facing the wafer (hereinafter referred to as the lower surface), and further if necessary There has been proposed a long-life silicon electrode plate for plasma etching in which an etching-resistant film that is less consumed than silicon such as silicon carbide or diamond-like carbon is formed on the entire upper surface (the surface opposite to the lower surface) (patent) Reference 1).
JP 2003-51485 A

確かに、従来の耐エッチング膜を形成したパーティクル発生の少ないプラズマエッチング用シリコン電極板は、その使用寿命が延びて長時間のプラズマエッチングが可能となったが、この従来の耐エッチング膜を形成したシリコン電極板を使用してプラズマエッチングを行うと、耐エッチング膜として被覆されている皮膜は炭化ケイ素またはダイヤモンドライクカーボンから構成されているために、プラズマエッチング開始当初は、実質的に、炭化ケイ素またはダイヤモンドライクカーボンからなる電極を使用してプラズマエッチングが行われているのと同じ効果を有し、微量の炭素が不純物としてSiウエハのエッチング面に付着したり、また前記炭化ケイ素またはダイヤモンドライクカーボンなどの耐エッチング膜が剥離してパーティクル発生の原因となるなどの問題点があった。   Certainly, the silicon electrode plate for plasma etching with less particle generation formed with the conventional etching resistant film has extended its service life and enabled long-time plasma etching, but this conventional etching resistant film was formed. When plasma etching is performed using a silicon electrode plate, since the film coated as an etching resistant film is composed of silicon carbide or diamond-like carbon, at the beginning of plasma etching, substantially silicon carbide or It has the same effect as plasma etching using an electrode made of diamond-like carbon, and a small amount of carbon adheres to the etched surface of the Si wafer as an impurity, or the silicon carbide or diamond-like carbon The etching resistant film peels off and There is a problem such as the cause of the occurrence.

そこで、本発明者等は、かかる課題を解決すべく研究を行った結果、
(イ)厚さ方向に平行に貫通細孔が設けられている単結晶シリコン、多結晶シリコンまたは柱状晶シリコンからなるシリコン電極基板の表面に、平均粒径が1μm以下の超微細結晶粒からなるシリコンの化学蒸着膜を形成したプラズマエッチング用シリコン電極板は、従来の単結晶シリコン、多結晶シリコンまたは柱状晶シリコンからなる通常のプラズマエッチング用シリコン電極板に比べて、パーティクルの発生数が同等または格段に少なくなり、さらに消耗速度が減少して使用寿命が向上する、
(ロ)その場合、前記シリコン電極基板の少なくとも下面にシリコンの化学蒸着膜を形成されていることが必要である、
(ハ)前記シリコン電極基板の下面の他にさらに前記シリコン電極基板の貫通細孔の内面にシリコンの化学蒸着膜が形成されることが一層好ましい、
(ニ)前記シリコン電極基板に形成されるシリコンの化学蒸着膜は、上面、下面、側面および貫通細孔の内面を含めて全面に形成されることがさらに一層好ましい、
(ホ)前記シリコン電極基板の表面に形成されるシリコンの化学蒸着膜は、平均粒径1μm以下の超微細結晶粒を有することがパーティクル発生を一層抑制する、などの研究結果が得られたのである。
Therefore, as a result of conducting research to solve such problems, the present inventors,
(A) The surface of a silicon electrode substrate made of single crystal silicon, polycrystalline silicon, or columnar crystal silicon having through-holes provided in parallel to the thickness direction is made of ultrafine crystal grains having an average grain size of 1 μm or less. The silicon electrode plate for plasma etching in which a chemical vapor deposition film of silicon is formed has the same number of particles as compared to the conventional silicon electrode plate for plasma etching made of single crystal silicon, polycrystalline silicon, or columnar crystal silicon. Remarkably less, and further reduce the consumption rate and improve the service life,
(B) In that case, it is necessary that a chemical vapor deposition film of silicon is formed on at least the lower surface of the silicon electrode substrate.
(C) It is more preferable that a chemical vapor deposition film of silicon is further formed on the inner surface of the through-hole of the silicon electrode substrate in addition to the lower surface of the silicon electrode substrate.
(D) It is still more preferable that the silicon chemical vapor deposition film formed on the silicon electrode substrate is formed on the entire surface including the upper surface, the lower surface, the side surface, and the inner surface of the through-hole,
(E) Since the chemical vapor deposition film of silicon formed on the surface of the silicon electrode substrate has ultrafine crystal grains having an average grain size of 1 μm or less, the results of research have been obtained, etc. is there.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)厚さ方向に平行に貫通細孔が設けられているシリコン電極基板の少なくとも下面全面に、平均粒径が1μm以下の超微細結晶粒からなるシリコンの化学蒸着膜を被覆してなるプラズマエッチング用シリコン電極板、
(2)厚さ方向に平行に貫通細孔が設けられているシリコン電極基板の少なくとも下面全面および前記貫通細孔内面に、平均粒径が1μm以下の超微細結晶粒からなるシリコンの化学蒸着膜を被覆してなるプラズマエッチング用シリコン電極板、
(3)厚さ方向に平行に貫通細孔が設けられているシリコン電極基板の表面全面および前記貫通細孔内面に、平均粒径が1μm以下の超微細結晶粒からなるシリコンの化学蒸着膜を被覆してなるプラズマエッチング用シリコン電極板、
(4)前記シリコン電極基板は、単結晶シリコン、多結晶シリコンおよび柱状晶シリコンの内のいずれかからなる前記(1)、(2)、(3)記載のプラズマエッチング用シリコン電極板、に特長を有するものである。
この発明のプラズマエッチング用シリコン電極板を図面に基づいて一層詳細に説明する。
図1は、厚さ方向に平行に貫通細孔5が設けられているシリコン電極基板2の下面8にシリコンの化学蒸着膜11が形成されたこの発明のプラズマエッチング用シリコン電極板の断面図である。
図2は、厚さ方向に平行に貫通細孔5が設けられているシリコン電極基板2の下面および貫通細孔5の内面にシリコンの化学蒸着膜11が形成されたこの発明のプラズマエッチング用シリコン電極板の断面図である。
図3は、厚さ方向に平行に貫通細孔が設けられているシリコン電極基板2の下面8、上面9、側面および貫通細孔5の内面にシリコンの化学蒸着膜11が形成されたこの発明のプラズマエッチング用シリコン電極板の断面図である。
図1〜3に示されるこの発明のプラズマエッチング用シリコン電極板は、通常の化学蒸着法により通常の単結晶シリコン、多結晶シリコンまたは柱状晶シリコンからなるシリコン電極基板2の表面に、平均粒径が1μm以下の超微細結晶粒からなるシリコンの化学蒸着膜11を形成することにより製造することができる。
The present invention has been made based on the results of such research,
(1) Plasma obtained by coating a chemical vapor deposition film of silicon made of ultrafine crystal grains having an average grain size of 1 μm or less on at least the entire lower surface of a silicon electrode substrate provided with through pores parallel to the thickness direction. Silicon electrode plate for etching,
(2) A chemical vapor deposition film of silicon comprising ultrafine crystal grains having an average grain size of 1 μm or less on at least the entire lower surface of the silicon electrode substrate provided with through pores parallel to the thickness direction and the inner surface of the through pores. A silicon electrode plate for plasma etching, coated with
(3) A silicon chemical vapor deposition film composed of ultrafine crystal grains having an average grain size of 1 μm or less is formed on the entire surface of the silicon electrode substrate in which through-holes are provided in parallel to the thickness direction and on the inner surface of the through-holes. A silicon electrode plate for plasma etching formed by coating;
(4) the silicon electrode substrate, a single crystal silicon, the consisting of any of the polycrystalline silicon and the columnar crystal silicon (1), (2), (3) Symbol mounting of plasma etching silicon electrode plates, the It has features.
The silicon electrode plate for plasma etching according to the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a sectional view of a silicon electrode plate for plasma etching according to the present invention in which a chemical vapor deposition film 11 of silicon is formed on a lower surface 8 of a silicon electrode substrate 2 in which through-holes 5 are provided in parallel to the thickness direction. is there.
FIG. 2 shows the silicon for plasma etching of the present invention in which a chemical vapor deposition film 11 of silicon is formed on the lower surface of the silicon electrode substrate 2 in which the through-holes 5 are provided in parallel with the thickness direction and on the inner surface of the through-holes 5. It is sectional drawing of an electrode plate.
FIG. 3 shows the present invention in which a chemical vapor deposition film 11 of silicon is formed on the lower surface 8, the upper surface 9, the side surface and the inner surface of the through-hole 5 of the silicon electrode substrate 2 in which the through-hole is provided in parallel with the thickness direction. It is sectional drawing of the silicon electrode plate for plasma etching.
The silicon electrode plate for plasma etching of the present invention shown in FIGS. 1 to 3 has an average particle size on the surface of a silicon electrode substrate 2 made of ordinary single crystal silicon, polycrystalline silicon, or columnar crystal silicon by an ordinary chemical vapor deposition method. Can be manufactured by forming a silicon chemical vapor deposition film 11 made of ultrafine crystal grains of 1 μm or less .

前述の如く、前記シリコン電極基板2の表面に形成されるシリコンの化学蒸着膜11は平均粒径が1μm以下の超微細結晶粒を有するが、シリコンの化学蒸着膜11の平均粒径が1μmを越えるとパーティクルの発生が増加し、さらに消耗速度が大きくなって使用寿命が短くなるからである。 As described above, the silicon chemical vapor deposition film 11 formed on the surface of the silicon electrode substrate 2 has ultrafine crystal grains having an average grain diameter of 1 μm or less, but the silicon chemical vapor deposition film 11 has an average grain diameter of 1 μm. If it exceeds the limit, the generation of particles increases, the consumption rate increases, and the service life is shortened.

この発明のプラズマエッチング用シリコン電極板は、表面に、平均粒径が1μm以下の超微細結晶粒からなるシリコンの化学蒸着膜を形成することによりプラズマエッチング中に発生するパーティクルの数が少なくなり、使用寿命が延びてプラズマエッチングによる半導体集積回路を効率良く生産することができ、半導体装置産業の発展に大いに貢献しうるものである。
The silicon electrode plate for plasma etching of the present invention reduces the number of particles generated during plasma etching by forming a silicon chemical vapor deposition film composed of ultrafine crystal grains having an average grain size of 1 μm or less on the surface, The service life can be extended, semiconductor integrated circuits by plasma etching can be efficiently produced, and can greatly contribute to the development of the semiconductor device industry.

この発明のプラズマエッチング用シリコン電極板を実施例に基づいて具体的に説明する。
実施例1
直径:300mmの単結晶シリコンインゴットを用意し、このインゴットをダイヤモンドバンドソーにより厚さ:4mmに輪切り切断して単結晶シリコン円板を作製し、この単結晶シリコン円板に内径:2.5mmの貫通細孔を孔間ピッチ:8mmで形成することにより外径:300mm、厚さ:4mmを有する単結晶シリコン電極基板を作製した。
The silicon electrode plate for plasma etching according to the present invention will be specifically described based on examples.
Example 1
A single crystal silicon ingot having a diameter of 300 mm is prepared, and this ingot is cut into a thickness of 4 mm using a diamond band saw to produce a single crystal silicon disk, and an inner diameter of 2.5 mm is penetrated through the single crystal silicon disk. A single crystal silicon electrode substrate having an outer diameter of 300 mm and a thickness of 4 mm was produced by forming the pores with a pitch between the holes of 8 mm.

この作製した外径:300mmを有する単結晶シリコン電極基板を通常の化学蒸着装置に装入しセットし、原料ガスであるモノシラン(SiH)を化学蒸着装置に導入し、単結晶シリコン電極基板を表1に示される成長温度に加熱し、単結晶シリコン電極基板の下面全面および貫通細孔の内面に、厚さ:1mmを有し表1に示される平均結晶粒径を有するSi化学蒸着膜を形成することにより本発明Si化学蒸着膜被覆単結晶シリコン電極板1〜2および比較Si化学蒸着膜被覆単結晶シリコン電極板1〜2を作製した。Si化学蒸着膜の平均結晶粒径はFESEM/EBSP法により結晶粒界と結晶粒(面)と分離した画像を抽出し、この画像から各結晶粒の面積を求め、さらにその面積から円相当径を算出することにより求めた。 The produced single crystal silicon electrode substrate having an outer diameter of 300 mm was charged and set in a normal chemical vapor deposition apparatus, and monosilane (SiH 4 ) as a raw material gas was introduced into the chemical vapor deposition apparatus, and the single crystal silicon electrode substrate was A Si chemical vapor deposition film having a thickness of 1 mm and an average crystal grain size shown in Table 1 is heated on the entire lower surface of the single crystal silicon electrode substrate and the inner surface of the through-holes to the growth temperature shown in Table 1. The Si chemical vapor deposition film-coated single crystal silicon electrode plates 1 and 2 and the comparative Si chemical vapor deposition film coated single crystal silicon electrode plates 1 and 2 of the present invention were produced. The average crystal grain size of the Si chemical vapor deposition film is obtained by extracting images separated from the crystal grain boundaries and crystal grains (planes) by the FESEM / EBSP method, obtaining the area of each crystal grain from this image, and further calculating the equivalent circle diameter from the area. Was calculated by calculating.

さらに、前記単結晶シリコン円板に内径:0.5mmの貫通細孔を孔間ピッチ:8mmで形成することにより外径:300mm、厚さ:3mmを有する従来単結晶シリコン電極板を作製した。   Further, a conventional single crystal silicon electrode plate having an outer diameter of 300 mm and a thickness of 3 mm was formed by forming through pores having an inner diameter of 0.5 mm in the single crystal silicon disk with an inter-hole pitch of 8 mm.

このようにして作製した本発明Si化学蒸着膜被覆単結晶シリコン電極板1〜2、比較Si化学蒸着膜被覆単結晶シリコン電極板1〜2およびSi化学蒸着膜を被覆することのない従来単結晶シリコン電極板をそれぞれエッチング装置にセットし、さらに予めCVDによりSiO2 層を形成したウエハをエッチング装置にセットし、
チャンバー内圧力:10-1Torr、
エッチングガス組成:90sccmCHF3 +4sccmO2 +150sccmHe、
高周波電力:2kW、
周波数:20kHz、
の条件で、ウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始から25分間経過した時点でのウエハ表面に付着した粒径:0.16μm以上のパーティクル数を測定し、その結果を表1に示した。前記パーティクル数の測定は、トプコン製のパーティクルカウンター(WM−3000)を使用し、ウエハ表面をレーザ光により走査し、付着したパーティクルからの光散乱強度を測定することによりパーティクルの位置と大きさを認識することにより行った。
The thus produced Si chemical vapor deposition film-coated single crystal silicon electrode plates 1-2 of the present invention, the comparative Si chemical vapor deposition film coated single crystal silicon electrode plates 1-2, and the conventional single crystal without covering the Si chemical vapor deposition film Each silicon electrode plate is set in an etching apparatus, and a wafer on which a SiO 2 layer is formed in advance by CVD is set in an etching apparatus.
Chamber internal pressure: 10 −1 Torr,
Etching gas composition: 90 sccm CHF 3 +4 sccm O 2 +150 sccm He,
High frequency power: 2kW
Frequency: 20kHz,
Under the above conditions, plasma etching of the SiO 2 layer on the wafer surface was performed, and the number of particles with a particle size of 0.16 μm or more adhered to the wafer surface after 25 minutes from the start of etching was measured. It was shown to. The number of particles is measured using a TOPCON particle counter (WM-3000), the wafer surface is scanned with laser light, and the light scattering intensity from the adhered particles is measured to determine the position and size of the particles. Done by recognizing.

さらにエッチング開始から25分間経過した時点での本発明Si化学蒸着膜被覆単結晶シリコン電極板1〜2、比較Si化学蒸着膜被覆単結晶シリコン電極板1〜2および従来単結晶シリコン電極板における中心(Xを半径とすると、X=0の位置)、中心から50mm離れた位置および中心から100mm離れた位置における浸食深さ(μm)(ここで浸食深さとは電極板の厚さの減少量を示す)をそれぞれ測定し、浸食深さ×60/25=消耗速度(μm/時)を求め、その結果を表1―1に示した。   Further, the center of the present invention Si chemical vapor deposition film-coated single crystal silicon electrode plates 1-2, comparative Si chemical vapor deposition film coated single crystal silicon electrode plates 1-2, and the conventional single crystal silicon electrode plate when 25 minutes have elapsed from the start of etching. (Where X is a radius, X = 0 position), erosion depth (μm) at a position 50 mm away from the center and a position 100 mm away from the center (where the erosion depth is the decrease in thickness of the electrode plate) The erosion depth × 60/25 = consumption rate (μm / hour) was determined, and the results are shown in Table 1-1.

Figure 0004517363
Figure 0004517363

Figure 0004517363
Figure 0004517363

実施例2
直径:300mmの多結晶シリコンインゴットを用意し、このインゴットをダイヤモンドバンドソーにより厚さ:4mmに輪切り切断して多結晶シリコン円板を作製し、この多結晶シリコン円板に内径:2.5mmの貫通細孔を孔間ピッチ:8mmで形成することにより外径:300mm、厚さ:3mmを有する多結晶シリコン電極基板を作製した。
Example 2
A polycrystalline silicon ingot with a diameter of 300 mm is prepared, and this ingot is cut into a thickness of 4 mm with a diamond band saw to produce a polycrystalline silicon disc. The inner diameter of the polycrystalline silicon disc is 2.5 mm. A polycrystalline silicon electrode substrate having an outer diameter of 300 mm and a thickness of 3 mm was formed by forming the pores with a pitch between the holes of 8 mm.

この作製した外径:300mmを有する多結晶シリコン電極基板を通常の化学蒸着装置に装入しセットし、原料ガスであるモノシラン(SiH)を化学蒸着装置に導入し、多結晶シリコン電極基板を表2に示される成長温度に加熱し、多結晶シリコン電極基板の下面全面および貫通細孔の内面に、厚さ:1mmを有し表2に示される平均結晶粒径を有するSi化学蒸着膜を形成することにより本発明Si化学蒸着膜被覆多結晶シリコン電極板1〜2および比較Si化学蒸着膜被覆多結晶シリコン電極板1〜2を作製した。Si化学蒸着膜の平均結晶粒径はFESEM/EBSP法により結晶粒界と結晶粒(面)と分離した画像を抽出し、この画像から各結晶粒の面積を求め、さらにその面積から円相当径を算出することにより求めた。 The produced polycrystalline silicon electrode substrate having an outer diameter of 300 mm is set in an ordinary chemical vapor deposition apparatus, and monosilane (SiH 4 ) as a raw material gas is introduced into the chemical vapor deposition apparatus. A Si chemical vapor deposition film having a thickness of 1 mm and an average crystal grain size shown in Table 2 is formed on the entire lower surface of the polycrystalline silicon electrode substrate and the inner surface of the through-holes by heating to the growth temperature shown in Table 2. The Si chemical vapor deposition film-coated polycrystalline silicon electrode plates 1 and 2 and the comparative Si chemical vapor deposition film-coated polycrystalline silicon electrode plates 1 and 2 of the present invention were produced. The average crystal grain size of the Si chemical vapor deposition film is obtained by extracting images separated from the crystal grain boundaries and crystal grains (planes) by the FESEM / EBSP method, obtaining the area of each crystal grain from this image, and further calculating the equivalent circle diameter from the area. Was calculated by calculating.

さらに、前記多結晶シリコン円板に内径:0.5mmの貫通細孔を孔間ピッチ:8mmで形成することにより外径:300mm、厚さ:4mmを有する従来多結晶シリコン電極板を作製した。   Furthermore, a conventional polycrystalline silicon electrode plate having an outer diameter of 300 mm and a thickness of 4 mm was produced by forming through-holes having an inner diameter of 0.5 mm in the polycrystalline silicon disk with an inter-hole pitch of 8 mm.

このようにして作製した本発明Si化学蒸着膜被覆多結晶シリコン電極板1〜2、比較Si化学蒸着膜被覆多結晶シリコン電極板1〜2およびSi化学蒸着膜を被覆することのない従来多結晶シリコン電極板をそれぞれエッチング装置にセットし、さらに予めCVDによりSiO2 層を形成したウエハをエッチング装置にセットし、
チャンバー内圧力:10-1Torr、
エッチングガス組成:90sccmCHF3 +4sccmO2 +150sccmHe、
高周波電力:2kW、
周波数:20kHz、
の条件で、ウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始から25分間経過した時点でのウエハ表面に付着した粒径:0.16μm以上のパーティクル数を測定し、その結果を表2に示した。前記パーティクル数の測定は、トプコン製のパーティクルカウンター(WM−3000)を使用し、ウエハ表面をレーザ光により走査し、付着したパーティクルからの光散乱強度を測定することによりパーティクルの位置と大きさを認識することにより行った。
The present invention Si chemical vapor deposition film-coated polycrystalline silicon electrode plates 1-2, comparative Si chemical vapor deposition film-coated polycrystalline silicon electrode plates 1-2, and conventional polycrystal without coating with Si chemical vapor deposition film silicon electrode plates were each set in an etching apparatus, a wafer was formed a SiO 2 layer was set in an etching apparatus by further advance CVD,
Chamber internal pressure: 10 −1 Torr,
Etching gas composition: 90 sccm CHF 3 +4 sccm O 2 +150 sccm He,
High frequency power: 2kW
Frequency: 20kHz,
Under the conditions described above, plasma etching of the SiO 2 layer on the wafer surface was performed, and the number of particles having a particle size of 0.16 μm or more adhered to the wafer surface when 25 minutes had elapsed from the start of etching was measured. It was shown to. The number of particles is measured using a TOPCON particle counter (WM-3000), the wafer surface is scanned with laser light, and the light scattering intensity from the adhered particles is measured to determine the position and size of the particles. Done by recognizing.

さらにエッチング開始から25分間経過した時点での本発明Si化学蒸着膜被覆多結晶シリコン電極板1〜2、比較Si化学蒸着膜被覆多結晶シリコン電極板1〜2および従来多結晶シリコン電極板における中心(Xを半径とすると、X=0の位置)、中心から50mm離れた位置および中心から100mm離れた位置における浸食深さ(μm)(ここで浸食深さとは電極板の厚さの減少量を示す)をそれぞれ測定し、浸食深さ×60/25=消耗速度(μm/時)から消耗速度を求め、その結果を表2―1に示した。   Furthermore, the center of the present invention Si chemical vapor deposition film-coated polycrystalline silicon electrode plates 1-2, comparative Si chemical vapor deposition film-coated polycrystalline silicon electrode plates 1-2, and the conventional polycrystalline silicon electrode plate after 25 minutes from the start of etching. (Where X is a radius, X = 0 position), erosion depth (μm) at a position 50 mm away from the center and a position 100 mm away from the center (where the erosion depth is the decrease in thickness of the electrode plate) The erosion rate was determined from the erosion depth × 60/25 = consumption rate (μm / hour), and the results are shown in Table 2-1.

Figure 0004517363
Figure 0004517363

Figure 0004517363
Figure 0004517363

実施例3
直径:300mmの柱状晶シリコンインゴットを用意し、このインゴットをダイヤモンドバンドソーにより厚さ:4mmに輪切り切断して柱状晶シリコン円板を作製し、この柱状晶シリコン円板に内径:2.5mmの貫通細孔を孔間ピッチ:8mmで形成することにより外径:300mm、厚さ:3mmを有する柱状晶シリコン電極基板を作製した。
Example 3
A columnar silicon ingot having a diameter of 300 mm is prepared, and this ingot is cut into a thickness of 4 mm with a diamond band saw to produce a columnar silicon disk, and an inner diameter of 2.5 mm is penetrated through the columnar silicon disk. A columnar crystal silicon electrode substrate having an outer diameter of 300 mm and a thickness of 3 mm was formed by forming the pores at an inter-hole pitch of 8 mm.

この作製した外径:300mmを有する柱状晶シリコン電極基板を通常の化学蒸着装置に装入しセットし、原料ガスであるモノシラン(SiH)を化学蒸着装置に導入し、柱状晶シリコン電極基板を表3に示される成長温度に加熱し、柱状晶シリコン電極基板の下面全面および貫通細孔の内面に厚さ:1mmを有し、表3に示される平均結晶粒径を有するSi化学蒸着膜を形成することにより本発明Si化学蒸着膜被覆柱状晶シリコン電極板1〜2および比較Si化学蒸着膜被覆柱状晶シリコン電極板1〜2を作製した。Si化学蒸着膜の平均結晶粒径はFESEM/EBSP法により結晶粒界と結晶粒(面)と分離した画像を抽出し、この画像から各結晶粒の面積を求め、さらにその面積から円相当径を算出することにより求めた。 The produced columnar silicon electrode substrate having an outer diameter of 300 mm is set in an ordinary chemical vapor deposition apparatus, monosilane (SiH 4 ) as a raw material gas is introduced into the chemical vapor deposition apparatus, and the columnar silicon electrode substrate is mounted. A Si chemical vapor deposition film having a thickness of 1 mm on the entire lower surface of the columnar crystal silicon electrode substrate and the inner surface of the through-holes and having an average crystal grain size shown in Table 3 is heated to the growth temperature shown in Table 3. The Si chemical vapor deposition film-covered columnar silicon electrode plates 1 and 2 and the comparative Si chemical vapor deposition film-coated columnar silicon electrode plates 1 and 2 of the present invention were produced. The average crystal grain size of the Si chemical vapor deposition film is obtained by extracting images separated from the crystal grain boundaries and crystal grains (planes) by the FESEM / EBSP method, obtaining the area of each crystal grain from this image, and further calculating the equivalent circle diameter from the area. Was calculated by calculating.

さらに、前記柱状晶シリコン円板に内径:0.5mmの貫通細孔を孔間ピッチ:8mmで形成することにより外径:300mm、厚さ:4mmを有する従来柱状晶シリコン電極板を作製した。   Further, a conventional columnar crystal silicon electrode plate having an outer diameter of 300 mm and a thickness of 4 mm was formed by forming through-holes having an inner diameter of 0.5 mm in the columnar crystal silicon disk with an inter-hole pitch of 8 mm.

このようにして作製した本発明Si化学蒸着膜被覆柱状晶シリコン電極板1〜2、比較Si化学蒸着膜被覆柱状晶シリコン電極板1〜2およびSi化学蒸着膜を被覆することのない従来柱状晶シリコン電極板をそれぞれエッチング装置にセットし、さらに予めCVDによりSiO2 層を形成したウエハをエッチング装置にセットし、
チャンバー内圧力:10-1Torr、
エッチングガス組成:90sccmCHF3 +4sccmO2 +150sccmHe、
高周波電力:2kW、
周波数:20kHz、
の条件で、ウエハ表面のSiO2 層のプラズマエッチングを行ない、エッチング開始から25分間経過した時点でのウエハ表面に付着した粒径:0.16μm以上のパーティクル数を測定し、その結果を表3に示した。前記パーティクル数の測定は、トプコン製のパーティクルカウンター(WM−3000)を使用し、ウエハ表面をレーザ光により走査し、付着したパーティクルからの光散乱強度を測定することによりパーティクルの位置と大きさを認識することにより行った。
The present invention Si chemical vapor deposition film coated columnar silicon electrode plates 1-2, comparative Si chemical vapor deposition film coated columnar silicon electrode plates 1-2, and conventional columnar crystals not coated with Si chemical vapor deposition film Each silicon electrode plate is set in an etching apparatus, and a wafer on which a SiO 2 layer is formed in advance by CVD is set in an etching apparatus.
Chamber internal pressure: 10 −1 Torr,
Etching gas composition: 90 sccm CHF 3 +4 sccm O 2 +150 sccm He,
High frequency power: 2kW
Frequency: 20kHz,
Under the conditions, plasma etching of the SiO 2 layer on the wafer surface was performed, and the number of particles having a particle size of 0.16 μm or more adhered to the wafer surface when 25 minutes had elapsed from the start of etching was measured. It was shown to. The number of particles is measured using a TOPCON particle counter (WM-3000), the wafer surface is scanned with laser light, and the light scattering intensity from the adhered particles is measured to determine the position and size of the particles. Done by recognizing.

さらにエッチング開始から25分間経過した時点での本発明Si化学蒸着膜被覆柱状晶シリコン電極板1〜2、比較Si化学蒸着膜被覆柱状晶シリコン電極板1〜2および従来柱状晶シリコン電極板における中心(Xを半径とすると、X=0の位置)、中心から50mm離れた位置および中心から100mm離れた位置における浸食深さ(μm)(ここで浸食深さとは電極板の厚さの減少量を示す)をそれぞれ測定し、浸食深さ×60/25=消耗速度(μm/時)を求め、その結果を表3―1に示した。   Further, the center of the Si chemical vapor deposition film-coated columnar silicon electrode plates 1 and 2 of the present invention, the comparative Si chemical vapor deposition film-coated columnar silicon electrode plates 1 and 2 and the conventional columnar silicon electrode plate when 25 minutes have passed since the start of etching. (Where X is a radius, X = 0 position), erosion depth (μm) at a position 50 mm away from the center and a position 100 mm away from the center (where the erosion depth is the decrease in thickness of the electrode plate) The erosion depth × 60/25 = consumption rate (μm / hour) was determined, and the results are shown in Table 3-1.

Figure 0004517363
Figure 0004517363

Figure 0004517363
Figure 0004517363

表1〜表3−1に示される結果から、
(a)Si化学蒸着膜を被覆した本発明Si化学蒸着膜被覆単結晶シリコン電極板1〜2は、従来単結晶シリコン電極板に比べてパーティクルの発生が同等であり消耗速度が遅いこと、
(b)本発明Si化学蒸着膜被覆多結晶シリコン電極板1〜2は、従来多結晶シリコン電極板に比べてパーティクルの発生が格段に少なく消耗速度が遅いこと、
(c)本発明Si化学蒸着膜被覆柱状晶シリコン電極板1〜2は従来柱状晶シリコン電極板に比べてパーティクルの発生が格段に少なく消耗速度が遅いこと、などがわかる。
From the results shown in Tables 1 to 3-1,
(A) The present invention Si chemical vapor deposition film-coated single crystal silicon electrode plates 1 and 2 coated with a Si chemical vapor deposition film have the same generation of particles and a slower consumption rate than conventional single crystal silicon electrode plates.
(B) The present invention Si chemical vapor deposition film-coated polycrystalline silicon electrode plates 1 and 2 have significantly less generation of particles than the conventional polycrystalline silicon electrode plates, and the consumption rate is slow.
(C) It can be seen that the Si chemical vapor deposition film-coated columnar crystal silicon electrode plates 1 and 2 of the present invention have much less generation of particles and a slower consumption rate than the conventional columnar crystal silicon electrode plates.

この発明のプラズマエッチング用シリコンシリコン電極板の断面説明図である。It is sectional explanatory drawing of the silicon-silicon electrode plate for plasma etching of this invention. この発明のプラズマエッチング用シリコンシリコン電極板の断面説明図である。It is sectional explanatory drawing of the silicon-silicon electrode plate for plasma etching of this invention. この発明のプラズマエッチング用シリコンシリコン電極板の断面説明図である。It is sectional explanatory drawing of the silicon-silicon electrode plate for plasma etching of this invention. 従来のプラズマエッチング装置の断面説明図である。It is sectional explanatory drawing of the conventional plasma etching apparatus.

符号の説明Explanation of symbols

1:真空容器、2:電極基板、3:架台、4:Siウエハ、5:貫通細孔、6:高周波電源、7:プラズマエッチングガス、8:下面、9:上面、10:ブラズマ、11:シリコンの化学蒸着膜、   1: vacuum container, 2: electrode substrate, 3: mount, 4: Si wafer, 5: through-hole, 6: high frequency power supply, 7: plasma etching gas, 8: lower surface, 9: upper surface, 10: plasma, 11: Chemical vapor deposition film of silicon,

Claims (4)

厚さ方向に平行に貫通細孔が設けられているシリコン電極基板の少なくともウエハと相対向する面(以下、下面という)の全面に、平均粒径が1μm以下の超微細結晶粒からなるシリコンの化学蒸着膜を被覆してなることを特徴とするプラズマエッチング用シリコン電極板。 A silicon electrode substrate having through-holes parallel to the thickness direction is formed of ultrafine crystal grains having an average grain size of 1 μm or less on the entire surface (hereinafter referred to as a lower surface) opposite to the wafer. A silicon electrode plate for plasma etching, which is formed by coating a chemical vapor deposition film. 厚さ方向に平行に貫通細孔が設けられているシリコン電極基板の少なくとも下面の全面および前記貫通細孔内面に、平均粒径が1μm以下の超微細結晶粒からなるシリコンの化学蒸着膜を被覆してなることを特徴とするプラズマエッチング用シリコン電極板。 A silicon chemical vapor deposition film made of ultrafine crystal grains having an average grain size of 1 μm or less is coated on at least the entire lower surface of the silicon electrode substrate provided with through pores parallel to the thickness direction and the inner surface of the through pores. A silicon electrode plate for plasma etching, characterized by comprising: 厚さ方向に平行に貫通細孔が設けられているシリコン電極基板の表面全面および前記貫通細孔内面に、平均粒径が1μm以下の超微細結晶粒からなるシリコンの化学蒸着膜を被覆してなることを特徴とするプラズマエッチング用シリコン電極板。 A silicon chemical vapor deposition film composed of ultrafine crystal grains having an average grain size of 1 μm or less is coated on the entire surface of the silicon electrode substrate provided with through pores parallel to the thickness direction and the inner surface of the through pores. A silicon electrode plate for plasma etching, characterized in that 前記シリコン電極基板は、単結晶シリコン、多結晶シリコンおよび柱状晶シリコンの内のいずれかからなることを特徴とする請求項1、2、3のいずれか一項に記載のプラズマエッチング用シリコン電極板。 The silicon electrode substrate is a single crystal silicon, polycrystalline silicon and columnar crystal silicon electrode plate for plasma etching according to any one of claims 1, 2, 3, characterized in that it consists of any of the silicon .
JP2005237255A 2005-08-18 2005-08-18 Silicon electrode plate for plasma etching Active JP4517363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237255A JP4517363B2 (en) 2005-08-18 2005-08-18 Silicon electrode plate for plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237255A JP4517363B2 (en) 2005-08-18 2005-08-18 Silicon electrode plate for plasma etching

Publications (2)

Publication Number Publication Date
JP2007053231A JP2007053231A (en) 2007-03-01
JP4517363B2 true JP4517363B2 (en) 2010-08-04

Family

ID=37917475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237255A Active JP4517363B2 (en) 2005-08-18 2005-08-18 Silicon electrode plate for plasma etching

Country Status (1)

Country Link
JP (1) JP4517363B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517369B2 (en) * 2005-08-18 2010-08-04 三菱マテリアル株式会社 Silicon ring for plasma etching equipment
JP5158367B2 (en) * 2008-12-03 2013-03-06 株式会社島津製作所 Method for manufacturing shower electrode of plasma CVD apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237715A (en) * 1990-02-15 1991-10-23 Fujitsu Ltd Etching method
JPH04151826A (en) * 1990-10-15 1992-05-25 Matsushita Electric Ind Co Ltd Dry etching device for oxide film
JPH09283495A (en) * 1996-04-17 1997-10-31 Sony Corp Electrode and discharge-generating device
JPH1017393A (en) * 1996-06-28 1998-01-20 Nisshinbo Ind Inc Plasma etching electrode and its manufacture
JPH10125651A (en) * 1996-10-17 1998-05-15 Shin Etsu Chem Co Ltd Perforated electrode plate
JP2002110572A (en) * 2000-07-25 2002-04-12 Internatl Business Mach Corp <Ibm> Multi-deposition sacvd reactor
JP2003051485A (en) * 2001-08-03 2003-02-21 Mitsubishi Materials Corp Coating silicon electrode plate for plasma etching
WO2003040059A1 (en) * 2001-11-08 2003-05-15 Bridgestone Corporation Process for producing silicon carbide sinter jig for use in semiconductor production and silicon carbide sinter jig obtained by the process
JP2004079961A (en) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp Silicon electrode plate for plasma etching
JP2005217350A (en) * 2004-02-02 2005-08-11 Toto Ltd Member for semiconductor production system having plasma resistance and its production process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237715A (en) * 1990-02-15 1991-10-23 Fujitsu Ltd Etching method
JPH04151826A (en) * 1990-10-15 1992-05-25 Matsushita Electric Ind Co Ltd Dry etching device for oxide film
JPH09283495A (en) * 1996-04-17 1997-10-31 Sony Corp Electrode and discharge-generating device
JPH1017393A (en) * 1996-06-28 1998-01-20 Nisshinbo Ind Inc Plasma etching electrode and its manufacture
JPH10125651A (en) * 1996-10-17 1998-05-15 Shin Etsu Chem Co Ltd Perforated electrode plate
JP2002110572A (en) * 2000-07-25 2002-04-12 Internatl Business Mach Corp <Ibm> Multi-deposition sacvd reactor
JP2003051485A (en) * 2001-08-03 2003-02-21 Mitsubishi Materials Corp Coating silicon electrode plate for plasma etching
WO2003040059A1 (en) * 2001-11-08 2003-05-15 Bridgestone Corporation Process for producing silicon carbide sinter jig for use in semiconductor production and silicon carbide sinter jig obtained by the process
JP2004079961A (en) * 2002-08-22 2004-03-11 Mitsubishi Materials Corp Silicon electrode plate for plasma etching
JP2005217350A (en) * 2004-02-02 2005-08-11 Toto Ltd Member for semiconductor production system having plasma resistance and its production process

Also Published As

Publication number Publication date
JP2007053231A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4417197B2 (en) Susceptor device
JP4905855B2 (en) Focus ring and shield ring for plasma etching
JP2011018772A (en) Susceptor for silicon carbide single crystal film forming device
JP2007207840A (en) Susceptor arrangement
JP4517369B2 (en) Silicon ring for plasma etching equipment
JP2003051485A (en) Coating silicon electrode plate for plasma etching
JP4517363B2 (en) Silicon electrode plate for plasma etching
JP4045592B2 (en) Silicon electrode plate for plasma etching
TW556283B (en) Silicon/graphite composite ring for supporting silicon wafer, and dry etching apparatus equipped with the same
JP4517364B2 (en) Silicon electrode plate for plasma etching
JP4849247B2 (en) Composite silicon electrode with small in-plane variation of specific resistance value and manufacturing method thereof
JP4517370B2 (en) Silicon ring for plasma etching equipment
JP2007273707A (en) Method for carrying out uniformly plasma etching of wafer surface using silicon electrode board of almost the same size as wafer
JP5088483B2 (en) Composite silicon ring for plasma etching equipment to support wafer
JP2006207012A (en) Yttrium-based ceramic coated material and method of manufacturing the same
JP4045591B2 (en) Electrode plate for plasma etching
JP4535283B2 (en) Single crystal silicon electrode plate for plasma etching with less in-plane variation of specific resistance
JP2003051491A (en) Electrode plate for plasma-etching apparatus
JP4883368B2 (en) Single crystal silicon electrode plate for plasma etching
JP5182136B2 (en) Electrode plate assembly for plasma processing apparatus and plasma processing apparatus
JP2000306886A (en) Plasma etching electrode
JP2004228500A (en) Shower plate for plasma treatment, and manufacturing method therefor
JP2019009271A (en) Electrode plate for plasma processing apparatus and manufacturing method of electrode plate for plasma processing apparatus
JP2006128281A (en) Silicon electrode board coated with etching-resistance film for plasma etching
JP4863082B2 (en) Silicon electrode plate for plasma etching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3