[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4515814B2 - Mounting accuracy measurement method - Google Patents

Mounting accuracy measurement method Download PDF

Info

Publication number
JP4515814B2
JP4515814B2 JP2004134587A JP2004134587A JP4515814B2 JP 4515814 B2 JP4515814 B2 JP 4515814B2 JP 2004134587 A JP2004134587 A JP 2004134587A JP 2004134587 A JP2004134587 A JP 2004134587A JP 4515814 B2 JP4515814 B2 JP 4515814B2
Authority
JP
Japan
Prior art keywords
substrate
jig
mounting
workpiece
side mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004134587A
Other languages
Japanese (ja)
Other versions
JP2005317806A5 (en
JP2005317806A (en
Inventor
洋一 牧野
健 高野
朗 壁下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004134587A priority Critical patent/JP4515814B2/en
Publication of JP2005317806A publication Critical patent/JP2005317806A/en
Publication of JP2005317806A5 publication Critical patent/JP2005317806A5/ja
Application granted granted Critical
Publication of JP4515814B2 publication Critical patent/JP4515814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Description

本発明は、部品を基板上に実装する部品実装機において部品の基板上への装着精度を測定するために用いる装着精度測定方法及び装着精度測定装置並びに部品実装機に関する。 The present invention relates to a mounting accuracy measuring method, a mounting accuracy measuring apparatus, and a component mounting machine used for measuring the mounting accuracy of a component on a substrate in a component mounter for mounting the component on the substrate.

従来、部品実装機におけるIC等の電子部品の実装動作においては、部品供給部から装着ヘッド部に備えられる吸着ノズルで電子部品を吸着保持して、部品認識カメラにより吸着姿勢が認識され、XYロボットによってX方向及びY方向の位置決めを行って、回転方向であるθ方向の補正を装着ヘッド部で行い、所定位置に位置決めされた回路基板上に電子部品を装着する。   Conventionally, in an electronic component mounting operation such as an IC in a component mounter, an electronic component is sucked and held by a suction nozzle provided in a mounting head portion from a component supply unit, and a suction posture is recognized by a component recognition camera. Thus, positioning in the X direction and Y direction is performed, correction in the θ direction, which is the rotational direction, is performed by the mounting head unit, and the electronic component is mounted on the circuit board positioned at a predetermined position.

そして、このような部品実装機においては、電子部品実装前に装着精度の誤差が測定されている。この装着位置の誤差とは、電子部品を実装した場合における目標位置と、実際に実装された電子部品の位置との差分である。   In such a component mounting machine, an error in mounting accuracy is measured before electronic component mounting. The error of the mounting position is a difference between the target position when the electronic component is mounted and the position of the actually mounted electronic component.

また、従来、フリップチップボンダ等の部品実装機においては、装着精度の向上のために様々な装着精度測定方法が提案されており、例えば、部品実装機のオフライン中に、模擬的な電子部品の冶具を用いて基板上に実装して誤差を測定することにより行う。   Conventionally, in a component mounting machine such as a flip chip bonder, various mounting accuracy measuring methods have been proposed to improve the mounting accuracy. For example, when a component mounting machine is offline, This is done by mounting on a substrate using a jig and measuring the error.

ところで、専用の計測装置を必要とせずに、既存の部品実装機の保有する機能を利用して、装着位置の誤差となる装着位置オフセットを自動で計測、登録できるオフセット測定方法及びそれに用いる測定冶具が開示されている(例えば、特許文献1参照)。   By the way, an offset measuring method capable of automatically measuring and registering a mounting position offset that causes a mounting position error by using a function possessed by an existing component mounting machine without requiring a dedicated measuring device, and a measuring jig used therefor Is disclosed (for example, see Patent Document 1).

この装着精度測定方法及びそれに用いる測定冶具においては、部品実装機に基板冶具を搬入し、部品実装機によって基板冶具に小割冶具を実装し、部品実装機に搭載される認識カメラによって、基板冶具に付された小割冶具の位置を示す個別マークを認識して目標位置として取得し、認識カメラによって基板冶具に実装された小割冶具に付されている装着位置装着精度測定用マークを認識して実際に実装した位置の差分を装着位置オフセットとして求める。
特開2003−51700号公報
In this mounting accuracy measuring method and the measurement jig used therefor, the substrate jig is carried into the component mounting machine, the split jig is mounted on the board jig by the component mounting machine, and the substrate jig is mounted by the recognition camera mounted on the component mounting machine. The individual mark indicating the position of the split jig attached to is recognized and acquired as a target position, and a recognition camera recognizes the mounting position mounting accuracy measurement mark attached to the split jig mounted on the board jig. The difference between the actually mounted positions is obtained as the mounting position offset.
JP 2003-51700 A

しかしながら、従来の装着精度測定方法においては、基板カメラ側若しくは基板側がXYロボットと共に移動して測定を行うために、XYロボットの位置決めの精度の悪さが装着誤差の測定精度に少なからず影響してくるという問題がある。   However, in the conventional mounting accuracy measurement method, since the substrate camera side or the substrate side moves together with the XY robot to perform the measurement, the positioning accuracy of the XY robot has a considerable influence on the mounting error measurement accuracy. There is a problem.

図12を用いてXYロボットの装着精度についての説明を行う。図12は、部品実装機におけるXYロボットの装着時において自己発熱により生じるズレ量の実測値の一例を示す参考図である。   The mounting accuracy of the XY robot will be described with reference to FIG. FIG. 12 is a reference diagram illustrating an example of an actual measurement value of the amount of deviation caused by self-heating when the XY robot is mounted in the component mounter.

図12において、例えば、マッピング測定用ガラス基板1201を用いて測定を行う。この基板1201には、X方向に20mmピッチ×15点、Y方向に20mmピッチ×11点が形成されている。そして、これらのピッチに従って部品実装処理を行う。尚、図12においては、ズレ量のみを1000倍にしてプロットしているために、1マスずれた場合においてはズレ量が20μmになることを示している。   In FIG. 12, for example, measurement is performed using a glass substrate 1201 for mapping measurement. The substrate 1201 has 20 mm pitch × 15 points in the X direction and 20 mm pitch × 11 points in the Y direction. Then, component mounting processing is performed according to these pitches. In FIG. 12, since only the displacement amount is plotted at 1000 times, the displacement amount is 20 μm when it is shifted by 1 square.

そして、四角形状の点は実装目標位置、円形状の点は実際の実装位置を示している。すなわち、円形状と四角形状の2つの点が重なっている実装位置においては正確に実装されている一方、円形状と四角形状の2つの点が離れて実装されている箇所においては実装目標位置から離れて実装されていることを示している。   A square point indicates a mounting target position, and a circular point indicates an actual mounting position. That is, the mounting is performed accurately at the mounting position where the two points of the circular shape and the quadrangular shape overlap, while the mounting target position is at the position where the two points of the circular shape and the rectangular shape are mounted apart from each other. Indicates that it is implemented away.

図12においては、XYロボットの真直度については、10μm以下を達成しているものの、進行方向であるX方向のズレ量が最大15μm程となり、また、X方向での両端でのズレ量の変化量が小さいことから、中央部分においてX軸方向に大きく装着ズレが生じていることが解かる。   In FIG. 12, although the straightness of the XY robot is 10 μm or less, the amount of deviation in the X direction, which is the traveling direction, is about 15 μm at the maximum, and the amount of deviation at both ends in the X direction is changed. Since the amount is small, it can be seen that there is a large displacement in the X-axis direction at the central portion.

このように、フリップチップボンダ等の大型の部品実装機におけるXYロボットは、組み立て時において正確に直角度、真直度を出したとしても、実装動作の自己発熱によってXYロボットが熱伸びを起こしてしまい、直角度や真直度に歪が発生してしまうことが解かる。   As described above, even if an XY robot in a large component mounting machine such as a flip chip bonder has an accurate squareness and straightness at the time of assembly, the XY robot causes thermal expansion due to self-heating of the mounting operation. It can be seen that distortion occurs in the perpendicularity and straightness.

従って、温度伸び等を原因として真直度や直角度等において位置ずれが生じ、このため部品の基板上への装着精度に影響を与えているのみでなく、このXYロボットを用いる装着精度測定においても、上述したような温度歪が問題となり、装着精度の測定に少なからず影響を与えている。   Therefore, positional deviation occurs in straightness, squareness, etc. due to temperature expansion, etc., which not only affects the mounting accuracy of components on the board, but also in mounting accuracy measurement using this XY robot. The above-described temperature distortion is a problem and has a considerable influence on the measurement of mounting accuracy.

そして、従来、SMT(Surface Mount Technology)等の部品実装機においては装着精度は数十μmから数百μmのオーダが要求されているのに対して、特に、近年の半導体等の部品実装機においてはより高精度となる数μmオーダの実装精度が要求されている。従って、より精密な装着精度測定方法の実現も要求されている。   Conventionally, in component mounting machines such as SMT (Surface Mount Technology), the mounting accuracy is required to be on the order of several tens to several hundreds of micrometers. Therefore, mounting accuracy on the order of several μm, which is more accurate, is required. Therefore, realization of a more precise mounting accuracy measuring method is also required.

本発明は上記状況に鑑みてなされたものであり、部品実装機において、XYロボットの装着精度に影響されることなく、より正確に装着精度測定を行うことができる装着精度測定方法を提供することを目的とする。   The present invention has been made in view of the above situation, and provides a mounting accuracy measuring method capable of performing mounting accuracy measurement more accurately without being affected by mounting accuracy of an XY robot in a component mounter. With the goal.

上記課題を解決するために、本発明に係る装着精度測定方法は、部品実装機において、冶具ワークの冶具基板上への装着後における前記冶具ワークと前記冶具基板との間の装着誤差を測定する装着精度測定方法であって、前記部品実装機は、前記冶具ワークを吸着して前記冶具基板上の所定位置に装着する装着ヘッドと、前記装着ヘッドのX方向及びY方向の位置決めを行うXYロボットと、前記冶具基板及び前記冶具ワークを特定の視点位置から撮像する基板カメラとを備え、前記冶具ワークは、透明な部材から構成され、前記冶具基板上には、2つの基板側マークが形成されており、前記冶具ワーク上には、前記2つの基板側マークを基準位置として、2つのワーク側マークが前記2つの基板側マークのそれぞれに対応して形成されており、前記装着精度測定方法は、前記基板カメラで撮像される際に、対応する前記ワーク側マーク及び前記基板側マークごとに、当該対応する前記ワーク側マーク及び前記基板側マークが同一視野内に入る前記視点位置を取得する視点取得ステップと、前記視点取得ステップにおいて取得した視点位置から前記基板カメラが撮像した画像に基づいて、対応する前記ワーク側マーク及び前記基板側マークごとに、当該対応する前記基板側マーク及び前記ワーク側マークの位置関係を取得するとともに、前記冶具ワークの前記冶具基板上への理論的に装着誤差がなく装着された理論装着位置と前記基板側マークとの位置関係を取得する位置取得ステップと、前記位置取得ステップにおいて取得された、対応する前記基板側マーク及び前記ワーク側マークごとの位置関係と、前記冶具ワークの前記冶具基板上への理論的に装着誤差がなく装着された理論装着位置と前記基板側マークとの位置関係とを用いて、前記2つの基板側マーク間を結ぶ線分の中点と前記2つのワーク側マーク間を結ぶ線分の中点とのX方向及びY方向の差分であるΔX及びΔY、及び前記XYロボットにおける座標系であるロボット座標系と、装着された冶具ワークの直交する2辺をX方向及びY方向とする基板座標系とのなす角度の差分であるΔθを算出することで、装着位置の誤差を測定する誤差測定ステップとを含むことを特徴とする。
このため、本発明においては、透明な冶具ワーク及び冶具基板を用いて、ワーク側マーク及び基板側マークを同一視野内に入れて、その相対的な位置関係より装着精度の測定を行うことができるために、XYロボットの移動精度に影響されることなく装着精度測定を行うことが可能となる。また、位置取得ステップにおいて取得される位置関係を用いて、X方向、Y方向、回転方向の装着ずれを正確に算出することが可能となる。
In order to solve the above-described problems, a mounting accuracy measuring method according to the present invention measures a mounting error between the jig work and the jig substrate after mounting the jig work on the jig substrate in a component mounter. A mounting accuracy measuring method, wherein the component mounter includes a mounting head that sucks the jig workpiece and mounts the jig workpiece at a predetermined position on the jig substrate, and an XY robot that positions the mounting head in the X direction and the Y direction. And a substrate camera that images the jig substrate and the jig workpiece from a specific viewpoint position, the jig work is made of a transparent member , and two substrate side marks are formed on the jig substrate. On the jig workpiece, two workpiece side marks are respectively formed corresponding to the two substrate side marks with the two substrate side marks as a reference position. , The mounting accuracy measurement method, when imaged by the substrate camera, for each of the workpiece-side mark and the substrate-side mark corresponding, the work-side mark and the substrate-side mark the corresponding falls within the same visual field The viewpoint acquisition step for acquiring the viewpoint position , and the corresponding workpiece-side mark and the substrate-side mark for each corresponding workpiece-side mark based on the image captured by the substrate camera from the viewpoint position acquired in the viewpoint acquisition step. Acquires the positional relationship between the substrate side mark and the workpiece side mark, and acquires the positional relationship between the theoretical mounting position of the jig workpiece on the jig substrate with no theoretical mounting error and the substrate side mark. a position obtaining step of, acquired in the position acquisition step, said corresponding substrate-side mark and the workpiece-side Ma The two substrate-side marks using the positional relationship between the two workpieces and the positional relationship between the theoretical mounting position of the jig work on the jig substrate and the substrate-side mark. ΔX and ΔY which are the differences in the X and Y directions between the midpoint of the line segment connecting the two and the midpoint of the line segment connecting the two workpiece side marks, and the robot coordinate system which is the coordinate system in the XY robot And an error measurement step for measuring an error of the mounting position by calculating Δθ, which is a difference in angle with the substrate coordinate system in which two orthogonal sides of the mounted jig work are set in the X direction and the Y direction. It is characterized by including.
For this reason, in the present invention, using a transparent jig workpiece and jig substrate, the workpiece side mark and the substrate side mark can be placed in the same field of view, and the mounting accuracy can be measured from the relative positional relationship. Therefore, it is possible to perform mounting accuracy measurement without being affected by the movement accuracy of the XY robot. In addition, it is possible to accurately calculate the mounting displacement in the X direction, the Y direction, and the rotation direction using the positional relationship acquired in the position acquisition step.

尚、前記目的を達成するために、本発明は、装着精度測定方法の特徴的な構成ステップを手段とする装着精度測定装置としたり、この装着精度測定方法に用いる冶具ワーク、冶具基板、前記装着精度測定装置を備える部品実装機、又は装着精度測定方法の備えるステップをコンピュータに実行させることが可能なプログラムとすることが可能となる。 In order to achieve the above object, the present invention is a mounting accuracy measuring device using the characteristic configuration steps of the mounting accuracy measuring method as a means, or a jig work, a jig substrate , and the mounting used in this mounting accuracy measuring method. It is possible to provide a program capable of causing a computer to execute the steps included in the component mounting machine including the accuracy measuring device or the mounting accuracy measuring method.

本発明に係る装着精度測定方法においては、透明なガラス冶具基板及びガラス冶具ワークを用い、基板カメラを用いて基板側マークを基準としてXYロボットの位置決めを行い3方向での装着誤差を測定するために、XYロボットの精度に影響を受けない装着精度測定方法とすることが可能となる。   In the mounting accuracy measuring method according to the present invention, a transparent glass jig substrate and a glass jig work are used, and an XY robot is positioned with reference to a board side mark using a substrate camera to measure a mounting error in three directions. In addition, it is possible to provide a mounting accuracy measurement method that is not affected by the accuracy of the XY robot.

以下、本発明に係る装着精度測定方法について図面を参照しながら説明を行う。
(実施の形態1)
図1は、本発明に係るオフセット測定方法を用いる部品実装機100の外観図である。
Hereinafter, the mounting accuracy measuring method according to the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is an external view of a component mounter 100 using the offset measuring method according to the present invention.

部品実装機100は冶具ワーク101をガラス冶具基板102上に装着する処理を行うのみでなく、冶具ワーク101の装着後において装着位置の精度測定を行うことを特徴とする。   The component mounter 100 not only performs the process of mounting the jig work 101 on the glass jig substrate 102 but also measures the accuracy of the mounting position after the jig work 101 is mounted.

部品実装機100は、部品実装時においては、冶具ワーク101、ガラス冶具基板102、装着ヘッド103、基板カメラ104、部品認識カメラ105、搬送レール106、XYロボット107、ワッフルトレイ108を備える。   The component mounter 100 includes a jig work 101, a glass jig substrate 102, a mounting head 103, a substrate camera 104, a component recognition camera 105, a transport rail 106, an XY robot 107, and a waffle tray 108 at the time of component mounting.

冶具ワーク101は、ガラス等の透明な材質から構成されたガラスチップ部品であり、例えばダミーICの模様が形成されており、ガラス冶具基板102の所定位置に装着ヘッド103に吸着保持された状態から実装される。尚、本発明における実装には、透明性の高い両面テープ等を用いて装着を行う。   The jig workpiece 101 is a glass chip component made of a transparent material such as glass. For example, a pattern of a dummy IC is formed, and the jig work 101 is in a state where it is sucked and held by the mounting head 103 at a predetermined position of the glass jig substrate 102. Implemented. The mounting in the present invention is performed using a highly transparent double-sided tape or the like.

ガラス冶具基板102は、冶具ワーク101が透明性の高い両面テープを用いて装着される装着精度測定用の基板であり、透明なガラスで構成されている。尚、冶具基板102はガラスに限定されるものではなく、エッジング処理を行うことができる透明な材質であれば良い。   The glass jig substrate 102 is a substrate for mounting accuracy measurement on which the jig workpiece 101 is mounted using a highly transparent double-sided tape, and is made of transparent glass. Note that the jig substrate 102 is not limited to glass, but may be any transparent material that can perform an edging process.

装着ヘッド103は、XYロボット107により部品供給部であるワッフルトレイ108上に移動して、装着ヘッド103に設けられている吸着ノズルを用いて冶具ワーク101を吸着保持すると共に、部品認識カメラ105により吸着保持した冶具ワーク101の姿勢の認識を行い、この認識結果に基づいてX方向、Y方向、及び回転方向であるθ方向の補正を行った後に冶具基板102上に冶具ワーク101を装着する。   The mounting head 103 is moved onto the waffle tray 108 which is a component supply unit by the XY robot 107 and sucks and holds the jig work 101 by using the suction nozzle provided in the mounting head 103, and also by the component recognition camera 105. The posture of the jig workpiece 101 held by suction is recognized, and the jig workpiece 101 is mounted on the jig substrate 102 after correcting the X direction, the Y direction, and the θ direction which is the rotation direction based on the recognition result.

基板カメラ104は、基板の認識を行うために基板の隅に形成されているマークや、装着位置の認識を行う基板側マークのターゲットマークの認識に使用される。また、基板カメラ104の視野は例えば4mm角となる。   The substrate camera 104 is used for recognizing a mark formed at a corner of the substrate for recognizing the substrate and a target mark of a substrate side mark for recognizing the mounting position. The visual field of the substrate camera 104 is, for example, 4 mm square.

部品認識カメラ105は、装着ヘッド103に吸着保持された状態の冶具ワーク101のズレ量を認識し、このズレ量に基づいてXYロボット107はX方向及びY方向、装着ヘッド103は回転方向であるθ方向の補正を行う。   The component recognition camera 105 recognizes the shift amount of the jig work 101 held by the mounting head 103, and based on the shift amount, the XY robot 107 is in the X direction and the Y direction, and the mounting head 103 is in the rotation direction. Correction in the θ direction is performed.

搬送レール106は、例えば搬送ベルトや搬送アームを用いてガラス冶具基板102を実装処理を行うための位置に搬送する場合においてはガイド手段となる。
XYロボット107は、平面移動ロボットであり、例えばメモリ部に記録されている実装プログラムに基づいて駆動される。また、XYロボット107は、装着ヘッドをワッフルトレイ108に移動させる動作を行う。
The transport rail 106 serves as a guide means when the glass jig substrate 102 is transported to a position for performing a mounting process by using, for example, a transport belt or a transport arm.
The XY robot 107 is a planar mobile robot, and is driven based on a mounting program recorded in a memory unit, for example. Further, the XY robot 107 performs an operation of moving the mounting head to the waffle tray 108.

ワッフルトレイ108は、部品供給部に設置されるものであり、冶具ワーク101が配列される。
図2は、本発明に係る装着精度測定方法に用いる冶具ワーク101の説明図である。
The waffle tray 108 is installed in the component supply unit, and the jig work 101 is arranged.
FIG. 2 is an explanatory diagram of the jig work 101 used in the mounting accuracy measuring method according to the present invention.

図2(a)に示すように、冶具ガラス201を同じパターンにカッティングして複数の冶具ワーク101を作成する。従って、冶具ワーク101の精度は極めて正確に作成される。また、冶具ワーク101は、例えば8mm角に正確にカッティングされ、中心部にはダミーICの模様が形成される。 As shown in FIG. 2A, the jig glass 201 is cut into the same pattern to create a plurality of jig workpieces 101. Therefore, the accuracy of the jig workpiece 101 is created very accurately. Further, the jig work 101 is accurately cut to 8 mm square, for example, and a pattern of a dummy IC is formed at the center.

図2(b)には、冶具ワーク101の上面図を示し、8mm角の冶具ワーク101に、3mm角のICチップのダミー部分101b、及び直径1mmの冶具ワーク側マーク101aが対角線上に配置して形成されている。 In FIG. 2 (b), shows a top view of the jig workpiece 101, the jig workpiece 101 of 8mm square, IC chip of the dummy portion 101b of 3mm square, and the jig workpiece-side mark 101a having a diameter of 1mm are arranged diagonally Is formed.

図3は、本発明に係る装着精度測定方法に用いる他のガラス冶具基板301の平面図である。尚、ガラス冶具基板301には一部の装着位置において冶具ワーク101が装着されている。 FIG. 3 is a plan view of another glass jig substrate 301 used in the mounting accuracy measuring method according to the present invention. Note that the jig workpiece 101 is mounted on the glass jig substrate 301 at some mounting positions.

そして、ガラス冶具基板301には、冶具ワーク101の装着の際にターゲットとなる十字形状の中心位置のターゲットマーク304と、ガラス冶具基板301の搬送時の装着ズレ量を測定するため4隅に設けられるマーク302と、装着精度測定において基準位置となる基板側マーク303が形成されている。尚、ガラス冶具基板301はガラス等の透明の部材から構成されている。 The glass jig substrate 301 is provided at four corners in order to measure the target mark 304 at the center position of the cross shape that becomes a target when the jig work 101 is mounted, and the amount of mounting displacement when the glass jig substrate 301 is transported. And a substrate side mark 303 serving as a reference position in mounting accuracy measurement. The glass jig substrate 301 is made of a transparent member such as glass.

図4は、本実施の形態1に係る装着精度測定方法を説明するための概略図である。
冶具ワーク101は8mm角で形成され、表面には3mm角のダミーIC部分101bと、2箇所に直径が1mmである冶具ワーク側マーク101aが形成されている。
FIG. 4 is a schematic diagram for explaining the mounting accuracy measuring method according to the first embodiment.
The jig work 101 is formed in an 8 mm square, and a 3 mm square dummy IC portion 101b is formed on the surface, and a jig work side mark 101a having a diameter of 1 mm is formed in two places.

ガラス冶具基板102は、図4においては例えば10cm角の透明な基板であり、冶具ワーク101が装着されるターゲット位置102aと、5mm間隔で直径0.5mmの基板側マークが対角線上に2箇所において形成されている。 In FIG. 4, the glass jig substrate 102 is, for example, a 10 cm square transparent substrate, and a target position 102a on which the jig workpiece 101 is mounted and two substrate side marks having a diameter of 0.5 mm at intervals of 5 mm are diagonally located. Is formed.

そして、基板カメラ104は、実装処理後において、基板側マーク及び冶具ワーク側マークが同一視野内に入る位置に1回目及び2回目のカメラ視野位置を設定する。この視野位置の設定には、例えばガラス冶具基板102上に正確に形成されている基板側マークを用いて視野位置を決定する。従って、XYロボット107が移動する距離に影響されることなく、X方向、Y方向、及びθ方向の装着誤差を測定できる。 Then, after the mounting process, the board camera 104 sets the first and second camera field positions at positions where the board side mark and the jig work side mark fall within the same field of view. For setting the visual field position, the visual field position is determined using, for example, a substrate-side mark accurately formed on the glass jig substrate 102. Therefore, the mounting errors in the X direction, the Y direction, and the θ direction can be measured without being affected by the distance that the XY robot 107 moves.

図5は、本実施の形態1に係る装着精度測定においてX方向、Y方向、θ方向の装着ズレ量であるΔX、ΔY、及びΔθを示す平面図である。
基板側マーク302間を結ぶ線分の中点を基準位置501とし、また、冶具ワーク側マーク101a間を結ぶ線分の中点を実装位置502として、その位置のX方向及びY方向の差分に基づいて図5に示すようなΔX、ΔYが決定される。
FIG. 5 is a plan view showing ΔX, ΔY, and Δθ that are the amounts of mounting misalignment in the X direction, the Y direction, and the θ direction in the mounting accuracy measurement according to the first embodiment.
The midpoint of the line connecting between the substrate side marks 302 is set as the reference position 501 and the midpoint of the line connecting between the jig work side marks 101a is set as the mounting position 502, and the difference between the X direction and the Y direction of the position is set. Based on this, ΔX and ΔY as shown in FIG. 5 are determined.

また、回転方向の差分Δθは、ロボット座標系と、基板座標系のなす角度に基づいて算出される。
そして、本発明においては、冶具ワーク及び冶具基板が共に透明に構成されているために、装着後の精度を視覚的に認識することが可能となり、基板カメラを用いて装着位置の装着精度測定を行うことが可能となる。
Further, the rotation direction difference Δθ is calculated based on an angle formed by the robot coordinate system and the substrate coordinate system.
In the present invention, since the jig workpiece and the jig substrate are both configured to be transparent, it is possible to visually recognize the accuracy after mounting, and the mounting accuracy of the mounting position can be measured using the substrate camera. Can be done.

次に、装着精度測定の前に冶具ワークをガラス冶具基板上に装着する際の動作手順について説明する。
図6は、本実施の形態1に係る部品実装機100の基板装着までの動作手順を示すフローチャートである。尚、部品実装機100は、X軸テーブルとY軸テーブルとを備えたXYロボット107によってXY平面を自在に移動する装着ヘッド103により、部品供給部であるワッフルトレイ108から保持した冶具ワーク101を回路基板の所定位置に装着できるように構成される。
Next, an operation procedure when the jig work is mounted on the glass jig substrate before the mounting accuracy measurement will be described.
FIG. 6 is a flowchart showing an operation procedure until the board mounting of the component mounter 100 according to the first embodiment. The component mounter 100 uses a mounting head 103 that freely moves on an XY plane by an XY robot 107 having an X-axis table and a Y-axis table to hold a jig work 101 held from a waffle tray 108 that is a component supply unit. The circuit board is configured to be mounted at a predetermined position.

最初に、装着ヘッド103は、ワッフルトレイ108に移動し、吸着ノズルが下降して冶具ワーク101を吸着保持し(S601)、装着ヘッド103を部品認識カメラ105上に移動させることによって保持位置の所定位置からの位置ずれ量が検出される(S602)。   First, the mounting head 103 is moved to the waffle tray 108, the suction nozzle is lowered to suck and hold the jig work 101 (S601), and the mounting head 103 is moved onto the component recognition camera 105 to determine a predetermined holding position. A displacement amount from the position is detected (S602).

冶具ワーク101を基板102に装着するときには、部品認識カメラ105によって検出されたXY方向の位置ずれは、XYロボット107による装着ヘッド103のXY方向への移動動作によって補正され、回転方向であるθ方向での位置ずれは吸着ノズルの回転動作によって補正される(S603)。   When the jig workpiece 101 is mounted on the substrate 102, the positional deviation in the XY direction detected by the component recognition camera 105 is corrected by the movement operation of the mounting head 103 in the XY direction by the XY robot 107, and the θ direction which is the rotation direction. The positional deviation at is corrected by the rotation operation of the suction nozzle (S603).

また、ガラス冶具基板102は搬送レール106を介して部品実装機100に搬入されて所定位置に位置決め固定されるが、そのときの所定位置からの位置ずれはガラス冶具基板102に設けられた4隅のマークを装着ヘッド103に搭載された基板カメラ104で認識して位置ずれ量が検出され、冶具ワーク101の装着時の装着位置補正に反映される。   Further, the glass jig substrate 102 is carried into the component mounting machine 100 via the conveyance rail 106 and positioned and fixed at a predetermined position. The positional deviation from the predetermined position at that time is the four corners provided on the glass jig substrate 102. Is detected by the substrate camera 104 mounted on the mounting head 103, and the amount of displacement is detected and reflected in the mounting position correction when the jig work 101 is mounted.

図7は、本発明に係る装着精度測定方法を用いる部品実装機100の動作手順を示すフローチャートである。
最初に、上述の図6において説明された動作手順に従って冶具基板102上に装着された冶具ワーク101から装着精度測定の対象となる1つの冶具ワーク101を選択して、基板カメラ104は、冶具基板側マーク及びワーク側マークが同一の視野内に入るような視野位置を取得する(S702)。
FIG. 7 is a flowchart showing an operation procedure of the component mounter 100 using the mounting accuracy measuring method according to the present invention.
First, according to the operation procedure described in FIG. 6 described above, one jig work 101 to be subjected to mounting accuracy measurement is selected from the jig works 101 mounted on the jig board 102, and the board camera 104 A field-of-view position is acquired such that the side mark and the workpiece-side mark fall within the same field of view (S702).

次に、ガラス冶具基板102側に形成されている基板側マークを視野の基準位置として取得して(S703)、冶具ワーク側マークと基板側マークの相対位置が認識できる画像の撮像を行う(S704)。尚、1回目のカメラ視野及び2回目のカメラ視野の撮像においては、ループとなるS702からS704までの処理を繰り返すこととなる。   Next, the substrate side mark formed on the glass jig substrate 102 side is acquired as the reference position of the field of view (S703), and an image that can recognize the relative position of the jig work side mark and the substrate side mark is taken (S704). ). In the first camera field of view and the second camera field of view, the processing from S702 to S704 as a loop is repeated.

このように、冶具ワーク101の装着後において、本発明に係る装着精度測定方法を用いて、冶具ワーク101及びガラス冶具基板102の正規の装着位置からの誤差を測定するが、従来のようにメモリ部に記憶されている位置情報に基づいてXYロボットの位置を移動するのではなく、基板カメラ104を有する装着ヘッド103をXYロボット107により基板ストッパに最も近い冶具基板102に装着されている1つの冶具ワーク101のワーク側マーク及び冶具側マークを同時に認識できる視点位置まで移動させるために、従来のようにXYロボット107の精度に影響されることなく、装着位置の精度測定を行うことが可能となる。   As described above, after mounting the jig work 101, the error from the normal mounting position of the jig work 101 and the glass jig substrate 102 is measured using the mounting accuracy measuring method according to the present invention. Rather than moving the position of the XY robot based on the position information stored in the unit, the mounting head 103 having the substrate camera 104 is mounted on the jig substrate 102 closest to the substrate stopper by the XY robot 107. Since the workpiece side mark and the jig side mark of the jig workpiece 101 are moved to the viewpoint position where the jig side mark can be recognized at the same time, it is possible to measure the accuracy of the mounting position without being affected by the accuracy of the XY robot 107 as in the prior art. Become.

図8は、本発明に係る装着精度測定方法を説明するための参考図である。本発明の装着精度測定方法は、X方向、Y方向、及びθ方向の装着誤差ΔX、ΔY、及びΔθを求める方法である。尚、図8においてロボット座標系とは、部品実装機100のXYロボット107における座標系であり、基板座標系とは、装着された冶具ワーク101の直交する2辺をX方向及びY方向とする座標系となる。   FIG. 8 is a reference diagram for explaining the mounting accuracy measuring method according to the present invention. The mounting accuracy measuring method of the present invention is a method for determining mounting errors ΔX, ΔY, and Δθ in the X direction, the Y direction, and the θ direction. In FIG. 8, the robot coordinate system is a coordinate system in the XY robot 107 of the component mounting machine 100, and the board coordinate system is the two directions orthogonal to the mounted jig workpiece 101 in the X direction and the Y direction. Coordinate system.

図8における説明において、θは、ロボット座標系で測った基板座標系の傾きを示し、p1、p2は、基板側マーク801a、801bから理論的にずれがない状態で装着された部品マーク802a、802bへの基板座標系でのベクトルを示し、mは、基板側マーク801aから基板側マーク801bへの基板座標系でのベクトルを示し、r1、r2は、基板側マーク801a、801bから実際に装着された部品マーク803a、803bへの基板座標系でのベクトルを示し、R1,R2は、基板側マーク801a、801bから実際に装着された部品マーク803a、803bへのロボット座標系でのベクトルを示している。   In the description of FIG. 8, θ represents the inclination of the board coordinate system measured in the robot coordinate system, and p1 and p2 are component marks 802a mounted in a state where there is no theoretical deviation from the board side marks 801a and 801b. The vector in the substrate coordinate system to 802b is shown, m is the vector in the substrate coordinate system from the substrate side mark 801a to the substrate side mark 801b, and r1 and r2 are actually mounted from the board side marks 801a and 801b. R1 and R2 indicate vectors in the robot coordinate system from the board side marks 801a and 801b to the actually mounted component marks 803a and 803b. ing.

尚、p1、p2、mはCADデータから得ることができ、θ、R1、R2は基板カメラ104にて計測することができる。そして、計測結果から下記に説明するr1、r2を計算し、最後に装着ズレであるΔX、ΔY、及びΔθを求める。   Note that p1, p2, and m can be obtained from CAD data, and θ, R1, and R2 can be measured by the substrate camera 104. Then, r1 and r2, which will be described below, are calculated from the measurement results, and finally ΔX, ΔY, and Δθ that are mounting misalignments are obtained.

そして、装着精度測定方法におけるΔX、ΔY、及びΔθを求める計算手順についての説明を行うと、最初に、装着後の計測結果を下記の数1の計算式を用いてロボット座標系から基板座標系に変換する。   Then, the calculation procedure for obtaining ΔX, ΔY, and Δθ in the mounting accuracy measurement method will be described. First, the measurement result after mounting is converted from the robot coordinate system to the substrate coordinate system using the following equation (1). Convert to

Figure 0004515814
Figure 0004515814

尚、ここで、[―θ]は回転行列を示している。
そして、X方向及びY方向の装着ズレは、p1、p2とr1、r2との差の平均値となるために、下記の数2を用いて算出する。
Here, [-θ] indicates a rotation matrix.
Further, the mounting displacement in the X direction and the Y direction is calculated using the following formula 2 in order to obtain an average value of the difference between p1, p2 and r1, r2.

Figure 0004515814
Figure 0004515814

次に、回転方向のズレ量Δθの算出法を説明すると、理論上の部品マークの基板座標に対する傾きθcadを求めるために、部品マーク803aから部品マーク803bへのベクトル(−p1+m+p2)のx成分、y成分から数3を用いてarctanを計算する。     Next, the calculation method of the amount of deviation Δθ in the rotation direction will be described. In order to obtain the theoretical inclination θcad of the component mark with respect to the substrate coordinates, the x component of the vector (−p1 + m + p2) from the component mark 803a to the component mark 803b, Arctan is calculated from the y component using Equation (3).

Figure 0004515814
Figure 0004515814

また、同様に実際に装着された部品マークの基板座標に対する傾きθrealを求めるために、部品マーク803aから部品マーク803bへのベクトル(−r1+m+r2)のx成分及びy成分から数4を用いてarctanを計算する。   Similarly, in order to obtain the inclination θreal of the actually mounted component mark with respect to the board coordinates, arctan is calculated using Equation 4 from the x component and y component of the vector (−r1 + m + r2) from the component mark 803a to the component mark 803b. calculate.

Figure 0004515814
Figure 0004515814

そして、数5に示すように、θrealからθcadを引いた値を角度ズレΔθとして求めることができる。   Then, as shown in Equation 5, a value obtained by subtracting θcad from θreal can be obtained as the angle deviation Δθ.

Figure 0004515814
Figure 0004515814

図9は、本発明に係る装着精度側手方法における動作手順を示すフローチャートである。
最初に、実装処理後の透明なガラス冶具基板102と冶具ワーク101により、基板カメラ104を用いてR1、R2、θの計測を行う(S901)。
FIG. 9 is a flowchart showing an operation procedure in the mounting accuracy side-hand method according to the present invention.
First, R1, R2, and θ are measured using the substrate camera 104 by the transparent glass jig substrate 102 and the jig workpiece 101 after the mounting process (S901).

次に上述した数式を用いて部品実装機100に備わる演算部において3軸方向のズレ量であるΔX、ΔY、Δθを算出して(S902)、これらを用いて誤差の補正処理を行うことにより(S903)、部品実装機100はXYロボット107のプログラム上の動作位置を補正して、より高精度の部品実装を行うことができる。   Next, ΔX, ΔY, Δθ, which are misalignments in the three-axis directions, are calculated by the arithmetic unit provided in the component mounting machine 100 using the above-described mathematical expressions (S902), and error correction processing is performed using these. (S903) The component mounter 100 can correct the operation position on the program of the XY robot 107 and perform component mounting with higher accuracy.

図10は、本発明の装着精度測定方法に用いる他のガラス冶具基板1001の平面図である。
このガラス冶具基板1001には、上述した図3に示すガラス冶具基板301とは異なり、装着位置にダミーICとなるICマーク1002が形成されている。尚、部品認識においてターゲットとなる基板側マーク1003が形成されているのは図3におけるガラス冶具基板301と同様である。
FIG. 10 is a plan view of another glass jig substrate 1001 used in the mounting accuracy measuring method of the present invention.
Unlike the glass jig substrate 301 shown in FIG. 3 described above, an IC mark 1002 serving as a dummy IC is formed on the glass jig substrate 1001 at the mounting position. It is to be noted that the substrate side mark 1003 which is a target in component recognition is formed in the same manner as the glass jig substrate 301 in FIG.

以上の説明のように、本発明に係る装着精度測定方法は、透明なガラス冶具基板102及び冶具ワーク101を用いて実装処理を行い、基板カメラ104を用いて基板側マークと冶具ワーク側マークが同一の視野内に入るように視点位置を特定し、これを1つの冶具ワークに対して2箇所において撮像を行う。 As described above, the mounting accuracy measuring method according to the present invention performs the mounting process using the transparent glass jig substrate 102 and the jig work 101, and the board side mark and the jig work side mark are displayed using the board camera 104. The viewpoint position is specified so as to fall within the same field of view, and this is imaged at two locations for one jig work.

そして、基板カメラ104は2箇所を撮像するためにXYロボット107によって移動するが、その際においては、ガラス冶具基板102に正確に位置形成されている基板側マークを基準に、その相対位置として冶具ワーク側マークを計測して装着精度の誤差を測定するために、精度測定の際において温度伸び等の影響を受けるXYロボット107の精度の影響を受けることがなく、より高精度な装着精度測定が可能となる。   Then, the substrate camera 104 is moved by the XY robot 107 in order to take an image of two places. At this time, the jig is used as a relative position with respect to the substrate side mark formed accurately on the glass jig substrate 102. Since the workpiece side mark is measured to measure the mounting accuracy error, it is not affected by the accuracy of the XY robot 107, which is affected by temperature expansion, etc. during the accuracy measurement, so that a higher mounting accuracy measurement can be performed. It becomes possible.

また、本発明に係る装着精度測定方法は、冶具ワーク101及びガラス冶具基板102を用いることで行うことができるために、部品実装機100の顧客先、納入先等において簡便に装着精度の測定を行うことが可能となる。 In addition, since the mounting accuracy measuring method according to the present invention can be performed by using the jig work 101 and the glass jig substrate 102, the mounting accuracy can be easily measured at the customer or delivery destination of the component mounting machine 100. Can be done.

さらに、ガラス冶具基板102及び冶具ワーク101が共に透明な部材で構成されているために、表面からのみでなく、裏面である冶具基板102マーク側から見たワーク側マーク位置を測定することも可能となる。 Further, since both the glass jig substrate 102 and the jig workpiece 101 are made of transparent members, it is possible to measure the workpiece side mark position as seen from the jig substrate 102 mark side which is the back surface as well as from the front surface. It becomes.

そして、部品実装機100に備えられている基板カメラ104を用いてX方向、Y方向、θ方向の誤差の測定及び演算処理を行って、補正の結果を実装データのプログラム上に反映させ、より容易に装着精度測定方法の結果を用いて装着位置の補正処理を行って、より高精度の部品実装を行うことが可能となる。   Then, measurement and calculation processing of errors in the X direction, Y direction, and θ direction are performed using the board camera 104 provided in the component mounting machine 100, and the correction result is reflected on the mounting data program. It is possible to mount components with higher accuracy by easily correcting the mounting position using the result of the mounting accuracy measurement method.

また、本発明に係る装着精度測定方法により誤差の補正を行うことにより、装着誤差を数μmの範囲とする部品実装機を提供することが可能となる。
尚、本発明に係る装着精度測定方法は、上述したようなフリップチップボンダのような電子部品を基板に実装する際に装着ヘッド及びXYロボットを用いて実装対象となる基板の上面から実装する部品実装機のみでなく、装着ヘッドを固定して、装着される基板側を移動させて実装処理を行うロータリ型の部品実装機においても用いることができる。
In addition, by performing error correction by the mounting accuracy measuring method according to the present invention, it is possible to provide a component mounter in which the mounting error is in the range of several μm.
The mounting accuracy measuring method according to the present invention is a component that is mounted from the upper surface of a substrate to be mounted using a mounting head and an XY robot when mounting an electronic component such as a flip chip bonder as described above on a substrate. It can be used not only in a mounting machine but also in a rotary type component mounting machine in which a mounting head is fixed and a mounting board side is moved to perform a mounting process.

(実施の形態2)
次に、本発明の実施の形態2についての説明を行う。本実施の形態2においては、ガラス冶具ワークとガラス冶具基板に同様の模様が形成され、納入先で容易に装着精度を評価可能とする装着精度測定方法を提供する。
(Embodiment 2)
Next, the second embodiment of the present invention will be described. In the second embodiment, there is provided a mounting accuracy measuring method in which the same pattern is formed on the glass jig workpiece and the glass jig substrate, and the mounting accuracy can be easily evaluated at the delivery destination.

図11は、本実施の形態2に係る装着精度測定方法を説明するため、冶具基板及び冶具ワークに形成されるマークのみを示す上面図である。尚、装着精度測定に使用する部品実装機は図1と同様であるため説明は省略する。   FIG. 11 is a top view showing only the marks formed on the jig substrate and the jig workpiece in order to explain the mounting accuracy measuring method according to the second embodiment. The component mounter used for mounting accuracy measurement is the same as that shown in FIG.

図11においては、ガラス冶具ワークとガラス冶具基板には同じパターンのマークが形成されている。
図11(a)は、ガラス冶具基板上に形成されているオリジナルパターンを示している。また、図11(b)は、X方向及びY方向に正確に+0.5mmずらして装着した場合の図を示し、図11(c)には、冶具ワークがθ方向にずれて装着された場合の図を示し、図11(d)は、冶具ワークがX方向、Y方向、θ方向にずれて装着された場合の図を示している。
In FIG. 11, the mark of the same pattern is formed on the glass jig workpiece and the glass jig substrate.
FIG. 11A shows the original pattern formed on the glass jig substrate. FIG. 11 (b) shows a case where the jig work is mounted with a displacement of +0.5 mm accurately in the X direction and the Y direction, and FIG. 11 (c) shows a case where the jig work is mounted shifted in the θ direction. FIG. 11 (d) shows the case where the jig work is mounted shifted in the X direction, Y direction, and θ direction.

次に、装着誤差測定方法における冶具ワークの装着動作について説明を行う。
最初に、冶具ワークのパターン面を下面にしてトレイ上にセットする。
次に、基板カメラにて冶具ワークの吸着位置を事前認識して、装着ヘッドにおいて吸着処理を行う。この際における認識は、フリップチップボンダにおいては、ガラス冶具ワークに形成されている4.8mm角の2隅のマーク1104を分けて認識することで行うこととなる。また、ダイボンダにおいては、3mm角のダミーICとなる2隅エッジを分けて認識処理を行う。
Next, the mounting operation of the jig work in the mounting error measuring method will be described.
First, the jig workpiece is set on the tray with the pattern surface of the jig workpiece facing down.
Next, the suction position of the jig work is recognized in advance with the substrate camera, and suction processing is performed in the mounting head. The recognition at this time is performed by separately recognizing the two 4.8 mm square marks 1104 formed on the glass jig work in the flip chip bonder. Further, in the die bonder, the recognition process is performed by dividing two corner edges to be a 3 mm square dummy IC.

そして、個別マーク補正して、X方向及びY方向に+0.5mmずらして装着処理を行う。尚、この際には、ガラス冶具基板上に透明性の高い両面テープを貼り付けることにより冶具ワークを基板上に装着させる。   Then, individual mark correction is performed, and mounting processing is performed with a shift of +0.5 mm in the X and Y directions. In this case, the jig work is mounted on the substrate by sticking a highly transparent double-sided tape on the glass jig substrate.

そして、本実施の形態2に係る装着精度測定においては、視野位置として例えばガラス基板側マークが中心にくる位置にて2隅の丸マーク2個を同時に撮像する。基板側カメラは2隅を撮像する際にXYロボットによって移動するが、あくまで固定側の正確に位置形成されている冶具ガラス基板側マークを基準に、その相対位置としてワーク側マークを計測しているために、上述した実施の形態1と同様に、XYロボットの移動距離精度の影響を全く受けない装着精度測定方法とすることが可能となる。   In the mounting accuracy measurement according to the second embodiment, two round marks at two corners are simultaneously imaged as the visual field position, for example, at a position where the glass substrate side mark is at the center. The substrate side camera is moved by the XY robot when imaging two corners, but the workpiece side mark is measured as a relative position based on the jig glass substrate side mark accurately formed on the fixed side. Therefore, similarly to the first embodiment described above, it is possible to provide a mounting accuracy measurement method that is not affected by the movement distance accuracy of the XY robot.

本発明に係る装着精度測定方法は、フリップチップボンダ、ダイボンダ等の部品実装機の装着精度測定方法に用いることができ、特に、数μmオーダの高精度実装が要求される半導体実装等を行う部品実装機に用いる。   The mounting accuracy measuring method according to the present invention can be used for a mounting accuracy measuring method of a component mounting machine such as a flip chip bonder and a die bonder, and in particular, a component for performing semiconductor mounting or the like that requires high precision mounting of several μm order. Used for mounting machines.

本発明に係るオフセット測定方法を用いる部品実装機の外観図である。It is an external view of the component mounting machine using the offset measuring method according to the present invention. 本発明に係る装着精度測定方法に用いるガラス冶具ワークの説明図である。It is explanatory drawing of the glass jig workpiece | work used for the mounting accuracy measuring method which concerns on this invention. 本発明に係る装着精度測定方法に用いる他のガラス冶具基板の平面図である。It is a top view of the other glass jig substrate used for the mounting accuracy measuring method concerning the present invention. 実施の形態1に係る装着精度測定方法を説明するための概略図である。It is the schematic for demonstrating the mounting accuracy measuring method which concerns on Embodiment 1. FIG. 実施の形態1に係る装着精度測定においてX方向、Y方向、θ方向の装着ズレ量であるΔX、ΔY、及びΔθを示す平面図である。FIG. 7 is a plan view showing ΔX, ΔY, and Δθ, which are amounts of mounting misalignment in the X direction, the Y direction, and the θ direction in the mounting accuracy measurement according to the first embodiment. 実施の形態1に係る部品実装機の基板装着までの動作手順を示すフローチャートである。4 is a flowchart showing an operation procedure up to board mounting of the component mounter according to the first embodiment. 本発明に係る装着精度測定方法を用いる部品実装機の動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the component mounting machine using the mounting accuracy measuring method which concerns on this invention. 本発明に係る装着精度測定方法を説明するための参考図である。It is a reference figure for demonstrating the mounting accuracy measuring method which concerns on this invention. 本発明に係る装着精度側手方法における動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure in the mounting precision side hand method which concerns on this invention. 本発明の装着精度測定方法に用いる他のガラス冶具基板の平面図である。It is a top view of the other glass jig board | substrate used for the mounting accuracy measuring method of this invention. 本実施の形態2に係る装着精度測定方法を説明するため、冶具基板及び冶具ワークに形成されるマークのみを示す上面図である。It is a top view which shows only the mark formed in a jig | tool board | substrate and a jig workpiece | work for demonstrating the mounting accuracy measuring method which concerns on this Embodiment 2. FIG. 部品実装機におけるXYロボットの装着時におけるズレ量の実測値の一例を示す参考図である。It is a reference figure which shows an example of the measured value of the deviation | shift amount at the time of mounting | wearing of XY robot in a component mounting machine.

符号の説明Explanation of symbols

100 部品実装機
101 冶具ワーク
101a 冶具ワーク側マーク
101b ダミーIC
102 ガラス冶具基板
103 装着ヘッド
104 基板カメラ
105 部品認識カメラ
106 搬送レール
107 XYロボット
108 ワッフルトレイ
201 冶具ガラス
301 ガラス冶具基板
303 ガラス基板側マーク
304 ターゲット位置
1001 ガラス冶具基板
DESCRIPTION OF SYMBOLS 100 Component mounting machine 101 Jig work 101a Jig work side mark 101b Dummy IC
102 Glass jig substrate 103 Mounting head 104 Substrate camera 105 Component recognition camera 106 Transfer rail 107 XY robot 108 Waffle tray
201 Jig Glass 301 Glass Jig Substrate 303 Glass Substrate Side Mark 304 Target Position 1001 Glass Jig Substrate

Claims (6)

部品実装機において、冶具ワークの冶具基板上への装着後における前記冶具ワークと前記冶具基板との間の装着誤差を測定する装着精度測定方法であって、
前記部品実装機は、
前記冶具ワークを吸着して前記冶具基板上の所定位置に装着する装着ヘッドと、
前記装着ヘッドのX方向及びY方向の位置決めを行うXYロボットと、
前記冶具基板及び前記冶具ワークを特定の視点位置から撮像する基板カメラとを備え、
前記冶具ワークは、透明な部材から構成され、
前記冶具基板上には、2つの基板側マークが形成されており、前記冶具ワーク上には、前記2つの基板側マークを基準位置として、2つのワーク側マークが前記2つの基板側マークのそれぞれに対応して形成されており、
前記装着精度測定方法は
前記基板カメラで撮像される際に、対応する前記ワーク側マーク及び前記基板側マークごとに、当該対応する前記ワーク側マーク及び前記基板側マークが同一視野内に入る前記視点位置を取得する視点取得ステップと、
前記視点取得ステップにおいて取得した視点位置から前記基板カメラが撮像した画像に基づいて、対応する前記ワーク側マーク及び前記基板側マークごとに、当該対応する前記基板側マーク及び前記ワーク側マークの位置関係を取得するとともに、前記冶具ワークの前記冶具基板上への理論的に装着誤差がなく装着された理論装着位置と前記基板側マークとの位置関係を取得する位置取得ステップと、
前記位置取得ステップにおいて取得された、対応する前記基板側マーク及び前記ワーク側マークごとの位置関係と、前記冶具ワークの前記冶具基板上への理論的に装着誤差がなく装着された理論装着位置と前記基板側マークとの位置関係とを用いて、前記2つの基板側マーク間を結ぶ線分の中点と前記2つのワーク側マーク間を結ぶ線分の中点とのX方向及びY方向の差分であるΔX及びΔY、及び前記XYロボットにおける座標系であるロボット座標系と、装着された冶具ワークの直交する2辺をX方向及びY方向とする基板座標系とのなす角度の差分であるΔθを算出することで、装着位置の誤差を測定する誤差測定ステップとを含む
ことを特徴とする装着精度測定方法。
In the component mounting machine, a mounting accuracy measurement method for measuring a mounting error between the jig workpiece and the jig substrate after mounting the jig workpiece on the jig substrate,
The component mounter is
A mounting head that sucks the jig workpiece and mounts it on a predetermined position on the jig substrate;
An XY robot for positioning the mounting head in the X and Y directions;
A substrate camera that images the jig substrate and the jig workpiece from a specific viewpoint position;
The jig work is composed of a transparent member,
Two substrate-side marks are formed on the jig substrate, and the two workpiece-side marks are respectively formed on the jig workpiece with the two substrate-side marks as a reference position. It is formed corresponding to
The mounting precision measuring how is,
Viewpoint acquisition for acquiring the viewpoint position where the corresponding work-side mark and the substrate-side mark fall within the same field of view for each of the corresponding work-side mark and the substrate-side mark when imaged by the substrate camera Steps,
Based on the image captured by the substrate camera from the viewpoint position acquired in the viewpoint acquisition step, for each of the corresponding workpiece side mark and the substrate side mark, the positional relationship between the corresponding substrate side mark and the workpiece side mark And obtaining a positional relationship between the theoretical mounting position of the jig workpiece on the jig substrate without theoretical mounting error and the substrate-side mark, and
The positional relationship for each of the corresponding substrate-side mark and workpiece-side mark acquired in the position acquisition step, and the theoretical mounting position where the jig workpiece is mounted on the jig substrate theoretically without any mounting error. Using the positional relationship with the substrate side mark, the X direction and the Y direction of the midpoint of the line connecting the two substrate side marks and the midpoint of the line connecting the two workpiece side marks ΔX and ΔY which are the differences, and the difference in angle between the robot coordinate system which is the coordinate system in the XY robot and the substrate coordinate system in which two orthogonal sides of the mounted jig work are defined as the X direction and the Y direction. An error measurement step of measuring an error of the mounting position by calculating Δθ .
前記装着精度測定方法は、さらに、
前記誤差測定ステップにおいて算出された前記ΔX、前記ΔY、及び前記Δθに基づいて前記冶具ワークの前記冶具基板上への装着位置の補正を行う位置補正ステップを含む
ことを特徴とする請求項1記載の装着精度測定方法。
The mounting accuracy measurement method further includes:
The position correction step of correcting the mounting position of the jig work on the jig substrate based on the ΔX, ΔY, and Δθ calculated in the error measurement step. Mounting accuracy measurement method.
前記冶具ワークには、前記冶具ワークの対角線上の対向する位置に前記2つのワーク側マークが形成されるとともに、対象部品形状が前記2つのワーク側マークを結ぶ線分の中点上に形成され、
前記冶具基板には、前記冶具ワークが装着される位置に、前記2つの基板側マークが形成され、
対応する前記ワーク側マーク及び前記基板側マークは、前記基板カメラの撮像において同一視野内に入る位置に形成される
ことを特徴とする請求項1記載の装着精度測定方法。
In the jig workpiece, the two workpiece side marks are formed at opposite positions on the diagonal line of the jig workpiece, and the target part shape is formed on a midpoint of a line segment connecting the two workpiece side marks. ,
In the jig substrate, the two substrate side marks are formed at a position where the jig workpiece is mounted,
The mounting accuracy measuring method according to claim 1, wherein the corresponding workpiece side mark and the substrate side mark are formed at positions that fall within the same field of view in imaging by the substrate camera.
前記誤差測定ステップにおいては、さらに、前記冶具基板側を表面として前記ΔX、前記ΔY、及び前記Δθの測定が可能である
ことを特徴とする請求項1記載の装着精度測定方法。
The mounting accuracy measuring method according to claim 1, wherein in the error measuring step, the ΔX, ΔY, and Δθ can be measured with the jig substrate side as a surface.
冶具ワークの冶具基板上への装着後における前記冶具ワークと前記冶具基板との間の装着誤差を測定する装着精度測定装置であって、
前記冶具ワークを吸着して前記冶具基板上の所定位置に装着する装着ヘッドと、
前記装着ヘッドのX方向及びY方向の位置決めを行うXYロボットと、
前記冶具基板及び前記冶具ワークを特定の視点位置から撮像する基板カメラとを備え、
前記冶具ワークは、透明な部材から構成され、前記冶具基板上には、2つの基板側マークが形成されており、前記冶具ワーク上には、前記2つの基板側マークを基準位置として、2つのワーク側マークが前記2つの基板側マークのそれぞれに対応して形成されており、
前記装着精度測定装置は、さらに、
前記基板カメラで撮像される際に、対応する前記ワーク側マーク及び前記基板側マークごとに、当該対応する前記ワーク側マーク及び前記基板側マークが同一視野内に入る前記視点位置を取得する視点取得手段と、
前記視点取得手段において取得した視点位置から前記基板カメラが撮像した画像に基づいて、対応する前記ワーク側マーク及び前記基板側マークごとに、当該対応する前記基板側マーク及び前記ワーク側マークの位置関係を取得するとともに、前記冶具ワークの前記冶具基板上への理論的に装着誤差がなく装着された理論装着位置と前記基板側マークとの位置関係を取得する位置取得手段と、
前記位置取得手段が取得した、対応する前記基板側マーク及び前記ワーク側マークごとの位置関係と、前記冶具ワークの前記冶具基板上への理論的に装着誤差がなく装着された理論装着位置と前記基板側マークとの位置関係とを用いて、前記2つの基板側マーク間を結ぶ線分の中点と前記2つのワーク側マーク間を結ぶ線分の中点とのX方向及びY方向の差分であるΔX及びΔY、及び前記XYロボットにおける座標系であるロボット座標系と、装着された冶具ワークの直交する2辺をX方向及びY方向とする基板座標系とのなす角度の差分であるΔθを算出することで、装着位置の誤差を測定する誤差測定手段とを備える
ことを特徴とする装着精度測定装置。
A mounting accuracy measuring device for measuring a mounting error between the jig workpiece and the jig substrate after mounting the jig workpiece on the jig substrate,
A mounting head that sucks the jig workpiece and mounts it on a predetermined position on the jig substrate;
An XY robot for positioning the mounting head in the X and Y directions;
A substrate camera that images the jig substrate and the jig workpiece from a specific viewpoint position;
The jig workpiece is made of a transparent member, and two substrate side marks are formed on the jig substrate. On the jig workpiece, two substrate side marks are used as reference positions. A workpiece side mark is formed corresponding to each of the two substrate side marks,
The mounting accuracy measuring device further includes:
Viewpoint acquisition for acquiring the viewpoint position where the corresponding work-side mark and the substrate-side mark fall within the same field of view for each of the corresponding work-side mark and the substrate-side mark when imaged by the substrate camera Means,
Based on the image captured by the substrate camera from the viewpoint position acquired by the viewpoint acquisition unit, for each of the corresponding workpiece side mark and the substrate side mark, the positional relationship between the corresponding substrate side mark and the workpiece side mark And a position acquisition means for acquiring a positional relationship between the theoretical mounting position of the jig workpiece on the jig substrate without theoretical mounting error and the substrate side mark;
The positional relationship for each of the corresponding substrate side mark and the workpiece side mark acquired by the position acquisition means, the theoretical mounting position of the jig work mounted on the jig substrate theoretically without any mounting error, and the Difference in X direction and Y direction between the midpoint of the line connecting the two substrate side marks and the midpoint of the line connecting the two workpiece side marks using the positional relationship with the substrate side mark ΔX and ΔY, and Δθ, which is a difference in angle between the robot coordinate system which is a coordinate system in the XY robot and the substrate coordinate system in which two orthogonal sides of the mounted jig work are defined as the X direction and the Y direction And an error measuring means for measuring the error of the mounting position by calculating the mounting accuracy measuring device.
請求項記載の装着精度測定装置を備える
ことを特徴とする部品実装機。
A component mounting machine comprising the mounting accuracy measuring device according to claim 5 .
JP2004134587A 2004-04-28 2004-04-28 Mounting accuracy measurement method Expired - Fee Related JP4515814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134587A JP4515814B2 (en) 2004-04-28 2004-04-28 Mounting accuracy measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134587A JP4515814B2 (en) 2004-04-28 2004-04-28 Mounting accuracy measurement method

Publications (3)

Publication Number Publication Date
JP2005317806A JP2005317806A (en) 2005-11-10
JP2005317806A5 JP2005317806A5 (en) 2007-05-24
JP4515814B2 true JP4515814B2 (en) 2010-08-04

Family

ID=35444900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134587A Expired - Fee Related JP4515814B2 (en) 2004-04-28 2004-04-28 Mounting accuracy measurement method

Country Status (1)

Country Link
JP (1) JP4515814B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760752B2 (en) * 2007-03-29 2011-08-31 パナソニック株式会社 Component mounting device and mounting position accuracy measuring method in component mounting device
CN101981512A (en) 2008-03-31 2011-02-23 富士通株式会社 Alignment device for planar element, manufacturing equipment for the same, alignment method for the same, and manufacturing method for the same
JP5174583B2 (en) * 2008-08-25 2013-04-03 Juki株式会社 Control method of electronic component mounting apparatus
JP4898753B2 (en) * 2008-08-26 2012-03-21 ヤマハ発動機株式会社 Component mounting system, component mounting method, substrate sticking state detection device, operation condition data creation device, substrate sticking device, component mounting device, and inspection device
JP5024494B1 (en) * 2012-03-05 2012-09-12 富士ゼロックス株式会社 Method for manufacturing mounting device and substrate device
KR20170030548A (en) * 2014-06-11 2017-03-17 유니버셜 인스트루먼츠 코퍼레이션 Test device for establishing, verifying, and/or managing accuracy
DE102015112518B3 (en) * 2015-07-30 2016-12-01 Asm Assembly Systems Gmbh & Co. Kg Picking machine and method for loading a carrier with unhoused chips
US10290118B2 (en) * 2015-08-06 2019-05-14 Cognex Corporation System and method for tying together machine vision coordinate spaces in a guided assembly environment
WO2023286245A1 (en) * 2021-07-15 2023-01-19 株式会社Fuji Production support system and production support method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136000A (en) * 1999-11-05 2001-05-18 Fuji Mach Mfg Co Ltd Jig for detecting attaching accuracy of attaching apparatus and method for detecting attaching accuracy
JP2001174215A (en) * 1999-12-16 2001-06-29 Seiko Epson Corp Detection data correcting method for optical detecting means and position-detecting apparatus, equipped with optical detecting means and electronic component mounting apparatus
JP2002524884A (en) * 1998-09-02 2002-08-06 シーメンス プロダクション アンド ロジスティクス システムズ アクチエンゲゼルシャフト Method and apparatus for calibrating the moving distance and / or angular position of a holding device provided in a manufacturing apparatus for an electrical component group, and a calibration substrate
JP2002223099A (en) * 2001-01-24 2002-08-09 Sony Corp Computer readable program storage medium wherein program having mounting method and mounting function is recorded
JP2003332797A (en) * 2002-05-08 2003-11-21 Fuji Mach Mfg Co Ltd Method and program for acquiring positional error of printed wiring board, and system for mounting electronic circuit component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002524884A (en) * 1998-09-02 2002-08-06 シーメンス プロダクション アンド ロジスティクス システムズ アクチエンゲゼルシャフト Method and apparatus for calibrating the moving distance and / or angular position of a holding device provided in a manufacturing apparatus for an electrical component group, and a calibration substrate
JP2001136000A (en) * 1999-11-05 2001-05-18 Fuji Mach Mfg Co Ltd Jig for detecting attaching accuracy of attaching apparatus and method for detecting attaching accuracy
JP2001174215A (en) * 1999-12-16 2001-06-29 Seiko Epson Corp Detection data correcting method for optical detecting means and position-detecting apparatus, equipped with optical detecting means and electronic component mounting apparatus
JP2002223099A (en) * 2001-01-24 2002-08-09 Sony Corp Computer readable program storage medium wherein program having mounting method and mounting function is recorded
JP2003332797A (en) * 2002-05-08 2003-11-21 Fuji Mach Mfg Co Ltd Method and program for acquiring positional error of printed wiring board, and system for mounting electronic circuit component

Also Published As

Publication number Publication date
JP2005317806A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
KR100857257B1 (en) Screen printer and image sensor position alignment method
JP6012742B2 (en) Work equipment
JP4629584B2 (en) Mounting system and electronic component mounting method
EP2617053B1 (en) Apparatus and method for generating patterns on workpieces
JP5301329B2 (en) Electronic component mounting method
US6506614B1 (en) Method of locating and placing eye point features of a semiconductor die on a substrate
US20210291376A1 (en) System and method for three-dimensional calibration of a vision system
CN107768242B (en) Cutting method for workpiece
JP4515814B2 (en) Mounting accuracy measurement method
US6563530B1 (en) Camera position-correcting method and system and dummy component for use in camera position correction
EP2931014B1 (en) Apparatus and method for generating mounting data, and substrate manufacturing system
CN115666125B (en) Machine vision-based method for detecting and compensating positioning error of XY platform of chip mounter
JP5545737B2 (en) Component mounter and image processing method
KR101183101B1 (en) Method of die bonding for flip chip
JP2003234598A (en) Component-mounting method and component-mounting equipment
JP4927776B2 (en) Component mounting method
JP4798888B2 (en) Offset measurement method
TWI752603B (en) Mounting device for electronic parts
KR20120071842A (en) Apparatus and method for marking position recognition
JP3286105B2 (en) Mounting position correction method for mounting machine
JP2000258121A (en) Master substrate for calibrating a plurality of cameras and calibration method for image recognition camera
JPH11274794A (en) Method of inspecting component-mounting condition of mounting apparatus and tool for inspecting component-mounting condition
JP2009170586A (en) Method and apparatus for recognizing electronic component
JP2694462B2 (en) Positioning method for semiconductor wafer chips
JP2024068395A (en) Component mounting device, component mounting method and component positioning method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees