JP4514824B2 - Method for producing labeled silica nanoparticles for immunochromatographic reagent, method for producing conjugate pad for immunochromatographic method, and method for using test strip for immunochromatographic method using the same - Google Patents
Method for producing labeled silica nanoparticles for immunochromatographic reagent, method for producing conjugate pad for immunochromatographic method, and method for using test strip for immunochromatographic method using the same Download PDFInfo
- Publication number
- JP4514824B2 JP4514824B2 JP2009040039A JP2009040039A JP4514824B2 JP 4514824 B2 JP4514824 B2 JP 4514824B2 JP 2009040039 A JP2009040039 A JP 2009040039A JP 2009040039 A JP2009040039 A JP 2009040039A JP 4514824 B2 JP4514824 B2 JP 4514824B2
- Authority
- JP
- Japan
- Prior art keywords
- immunochromatographic
- silica nanoparticles
- immunochromatography
- substance
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Description
本発明は、標識物質を含有したシリカナノ粒子の製造方法、イムノクロマト法用コンジュゲートパッドの製造方法、及びそれを用いたイムノクロマト法用テストストリップの使用方法に関する。
The present invention relates to a method of manufacturing a labeling substance silica particles containing a method for producing a conjugate pad for immunochromatography and a method using a test strip for immunochromatography method using the same.
イムノクロマト法とは、被検物質が毛細管現象により多孔質支持体内を移動し、標識粒子に捕捉され、更に多孔質支持体に局所的(例えば、ライン状)に固定化された捕捉物質と効率的に接触することによって前記被検物質が濃縮され、捕捉物質が固定化されたラインが発色することによって被検物質の有無を判定する免疫測定法をいう。
イムノクロマト法の特徴として下記の3点が挙げられる。
(1)判定までに要する時間が20分以下であり迅速な検査が可能である。
(2)検体を滴下するだけで測定でき、操作が簡便であるため、複数の検体処理が可能である。
(3)特別な検出装置を必要とせず、判定が容易なため一般消費者が自身で検査できる。
これらの特徴を利用して、イムノクロマト法は妊娠検査薬やインフルエンザ検査薬に用いられており、新たなPOCT(Point Of Care Testing)の手法として注目を集めている(例えば、特許文献1参照)。
ここで、POCTとは、患者にできる限り近い場所で診断のための検査をいう。従来は採取した血液、尿、患部組織などの検体は、病院の中央検査室や専門の検査センターに送られデータを出すので、診断の確定までに時間がかかっていた(例えば、1日以上)。POCTによれば、瞬時に提供される検査情報をもとに迅速かつ的確な治療が可能となることから、病院での緊急検査や手術中の検査が可能になるので、最近、医療現場でニーズが高い。
The immunochromatography method is efficient because the test substance moves through the porous support by capillary action, is captured by the labeled particles, and is immobilized locally (for example, in a line) on the porous support. This is an immunoassay method for determining the presence or absence of a test substance when the test substance is concentrated by contact with the substance and the line on which the capture substance is immobilized is colored.
The following three points can be mentioned as features of the immunochromatography method.
(1) The time required for determination is 20 minutes or less, and rapid inspection is possible.
(2) Since the measurement can be performed simply by dropping the specimen and the operation is simple, a plurality of specimens can be processed.
(3) Since a determination is easy without requiring a special detection device, a general consumer can inspect himself / herself.
Utilizing these characteristics, immunochromatography is used for pregnancy test drugs and influenza test drugs, and has attracted attention as a new POCT (Point Of Care Testing) technique (see, for example, Patent Document 1).
Here, POCT refers to a test for diagnosis at a place as close as possible to the patient. Conventionally, collected blood, urine, affected tissue, and other specimens are sent to the hospital's central laboratory or specialized examination center, and data is output, so it took time to confirm the diagnosis (for example, more than one day) . According to POCT, since rapid and accurate treatment is possible based on examination information provided instantly, emergency examinations at hospitals and examinations during surgery are possible. Is expensive.
現在イムノクロマト法では標識物質として金ナノ粒子が最もよく使用されている(例えば、特許文献2参照)。金ナノ粒子は吸光度が高いため視認性に優れるものの、色を一色しか出すことができないため、色の選択の余地がないことが問題であった。また大きい粒径の金粒子や凝集を起こした金粒子は色が黒ずんでしまうため、クリアな色が出せない場合があることが問題であった。 Currently, gold nanoparticles are most often used as a labeling substance in immunochromatography (see, for example, Patent Document 2). Although gold nanoparticles have a high absorbance and are excellent in visibility, since only one color can be produced, there is a problem that there is no room for color selection. In addition, since gold particles having a large particle diameter or agglomerated gold particles are darkened, there is a problem that a clear color may not be produced.
本発明の目的は、上記の問題点に鑑みて、含有される標識物質を変えることで様々な色相、蛍光波長等を付与することができ、かつ凝集等によっても黒ずんだ色にならないイムノクロマト用標識シリカナノ粒子の製造方法、イムノクロマト法用コンジュゲートパッドの製造方法、及びそれを用いたイムノクロマト法用テストストリップの使用方法を提供することにある。
In view of the above problems, an object of the present invention is to provide an immunochromatographic label that can give various hues, fluorescence wavelengths, and the like by changing the labeling substance contained therein, and that does not become dark due to aggregation or the like. method for producing silica particles, is to provide a method of manufacturing a conjugate pad for immunochromatography and the use of the test strip immunochromatographic method using the same.
本発明の上記の課題は下記手段により達成された。
(1)検体を認識する物質で表面修飾されたシリカナノ粒子であって、吸光物質又は蛍光物質からなる標識物質を有してなる平均粒径20〜600nmの前記シリカナノ粒子を、合成高分子及び天然高分子で処理することを特徴とするイムノクロマト法用標識試薬シリカナノ粒子の製造方法。
(2)前記合成高分子がポリエチレングリコールであり、前記天然高分子がウシ血清アルブミン(BSA)であることを特徴とする(1)に記載のイムノクロマト法用標識試薬シリカナノ粒子の製造方法。
(3)前記シリカナノ粒子を含有する液中に、前記合成高分子を含有する溶液及び天然高分子を含有する溶液を順次に添加することを特徴とする(1)又は(2)に記載のイムノクロマト法用標識試薬シリカナノ粒子の製造方法。
(4)(1)〜(3)のいずれか1項に記載の製造方法でイムノクロマト法用標識試薬シリカナノ粒子を得る工程、及び
前記シリカナノ粒子を含有する液を、ガラスファイバーパッドに粒子重量が単位面積(cm2)当たり50μg〜2mgとなるように含浸させ、続いて室温で減圧乾燥する工程を有することを特徴とするイムノクロマト法用コンジュゲートパッドの製造方法。
(5)(4)に記載の方法で製造されるイムノクロマト法用コンジュゲートパッドと、抗体溶液を塗布、滴下ないしは噴霧後、乾燥して物理吸着により固定化した抗体固定化部を有するメンブレンと、吸収パッドとがこの順に直列連結してなるイムノクロマト法用テストストリップを用い、その前記イムノクロマト法用コンジュゲートパッドに、検体を含有する液体を滴下し、前記イムノクロマト法用標識試薬シリカナノ粒子を前記検体を含有する液体に再分散させると共に、前記イムノクロマト法用標識試薬シリカナノ粒子と検体の結合反応を生じさせ、前記イムノクロマト法用標識試薬シリカナノ粒子と検体との複合体及び検体と結合反応を生じなかった前記イムノクロマト法用標識試薬シリカナノ粒子を毛細管現象でメンブレンを移動させることを特徴とする、前記イムノクロマト法用テストストリップの使用方法。
The above object of the present invention has been achieved by the following means.
(1) Silica nanoparticles surface-modified with a substance for recognizing a specimen, the silica nanoparticles having an average particle diameter of 20 to 600 nm having a labeling substance made of a light-absorbing substance or a fluorescent substance. A method for producing a silica nanoparticle labeling reagent for immunochromatography, which comprises treating with a polymer.
(2) The method for producing a labeling reagent silica nanoparticle according to (1), wherein the synthetic polymer is polyethylene glycol and the natural polymer is bovine serum albumin (BSA).
(3) The immunochromatography according to (1) or (2), wherein a solution containing the synthetic polymer and a solution containing a natural polymer are sequentially added to the liquid containing the silica nanoparticles. A method for producing a labeling reagent silica nanoparticle.
(4) A step of obtaining a labeling reagent silica nanoparticle for immunochromatography by the production method according to any one of (1) to (3) , and
An immunochromatography method comprising a step of impregnating a liquid containing silica nanoparticles into a glass fiber pad so that the particle weight is 50 μg to 2 mg per unit area (cm 2 ), followed by drying under reduced pressure at room temperature. Of producing a conjugate pad for use in a medical device
(5) A conjugate pad for immunochromatography produced by the method according to (4), a membrane having an antibody immobilization part coated with an antibody solution, dropped or sprayed, dried and immobilized by physical adsorption; Using an immunochromatographic test strip in which an absorption pad is connected in series in this order, a liquid containing the specimen is dropped onto the immunochromatographic conjugate pad, and the immunochromatographic labeling reagent silica nanoparticles are added to the specimen. Redispersed in the contained liquid, and caused a binding reaction between the immunochromatographic labeling reagent silica nanoparticles and the specimen, and did not cause a binding reaction between the immunochromatographic labeling reagent silica nanoparticles and the specimen and the specimen. Labeling reagent for immunochromatography Silica nanoparticles move through capillary membrane And characterized in that, the use of test strips for the immunochromatographic.
(6) 前記標識物質の種類又はその含有量が異なることにより区別される2種類以上の標識シリカナノ粒子を用い、2種類以上の検体を同時に検出することを特徴とする、(5)に記載のイムノクロマト法試薬、
(7) 前記標識物質が、吸光物質であり、前記吸光物質の吸光スペクトルにおける吸光最大波長が、200〜800nmの範囲にあることを特徴とする(5)又は(6)に記載のイムノクロマト法試薬、
(8) 前記吸光スペクトルの極大波長における、前記シリカナノ粒子のモル吸光係数が5×107M−1cm−1以上であることを特徴とする(7)に記載のイムノクロマト法試薬、
(9) 前記標識物質が、蛍光物質であり、前記蛍光物質を含有してなるシリカナノ粒子が発する蛍光を検出することにより高感度検出を可能としたことを特徴とする(5)又は(6)に記載のイムノクロマト法試薬、
(10) 前記蛍光が、青色蛍光、黄色蛍光、オレンジ色蛍光又は赤色蛍光であることを特徴とする(9)に記載のイムノクロマト法試薬、
(6) The method according to (5), wherein two or more types of specimens are detected simultaneously using two or more types of labeled silica nanoparticles that are distinguished by different types or contents of the labeling substances. Immunochromatographic reagents,
(7) The immunochromatography reagent according to (5) or (6), wherein the labeling substance is a light-absorbing substance, and an absorption maximum wavelength in an absorption spectrum of the light-absorbing substance is in the range of 200 to 800 nm. ,
(8) The immunochromatography reagent according to (7), wherein a molar extinction coefficient of the silica nanoparticles at the maximum wavelength of the absorption spectrum is 5 × 10 7 M −1 cm −1 or more,
(9) The labeling substance is a fluorescent substance, and high-sensitivity detection is enabled by detecting fluorescence emitted from silica nanoparticles containing the fluorescent substance (5) or (6) An immunochromatographic reagent according to
(10) The immunochromatography reagent according to (9), wherein the fluorescence is blue fluorescence, yellow fluorescence, orange fluorescence, or red fluorescence,
(11) 試料添加用部材、(5)〜(10)のいずれか1項に記載のイムノクロマト法試薬としての標識シリカナノ粒子を含浸させてなる部材、抗体固定化部を有するメンブレン及び吸収パッドが直列連結してなるイムノクロマト法用テストストリップ、
(12) 同一の前記抗体固定化部における発色の色相の違いまたは蛍光波長の違いによって2種類以上の検体を同時に検出することを特徴とする(11)に記載のイムノクロマト法用テストストリップ、
(13) 前記(9)又は(10)に記載のイムノクロマト法試薬を用いてなる検出システムであって、前記シリカナノ粒子が発する蛍光の検出に用いる励起光源の波長が200nm〜400nmであることを特徴とするイムノクロマト法用蛍光検出システム、
(14) 前記励起光源から特定の波長の励起光のみを透過するフィルタと、前記励起光を除去し蛍光のみを透過するフィルタとを備えることを特徴とする(13)に記載のイムノクロマト法用蛍光検出システム、
(15) さらに、前記蛍光を受光する光電子倍増管又はCCD検出器を備え、前記光電子倍増管又はCCD検出器により前記蛍光を検出し、前記蛍光の強度を測定することにより検体を定量することを特徴とする(14)に記載のイムノクロマト法用蛍光検出システム、及び
(16) 前記励起光源が、水銀ランプ、ハロゲンランプ、キセノンランプのいずれかであることを特徴とする(13)〜(15)のいずれか1項に記載のイムノクロマト法用蛍光検出システム
を提供するものである。
(11) A sample addition member, a member impregnated with labeled silica nanoparticles as an immunochromatography reagent according to any one of (5) to (10), a membrane having an antibody immobilization part, and an absorption pad are connected in series. Test strip for immunochromatography,
(12) The immunochromatographic test strip according to (11), wherein two or more kinds of specimens are simultaneously detected based on a difference in hue of color development or a difference in fluorescence wavelength in the same antibody-immobilized portion,
(13) A detection system using the immunochromatography reagent according to (9) or (10), wherein the wavelength of an excitation light source used for detection of fluorescence emitted from the silica nanoparticles is 200 nm to 400 nm. A fluorescence detection system for immunochromatography,
(14) The immunochromatography fluorescence according to (13), comprising: a filter that transmits only excitation light of a specific wavelength from the excitation light source; and a filter that removes the excitation light and transmits only fluorescence. Detection system,
(15) Further, a photomultiplier tube or a CCD detector that receives the fluorescence is provided, the fluorescence is detected by the photomultiplier tube or the CCD detector, and the specimen is quantified by measuring the intensity of the fluorescence. (14) The immunochromatographic fluorescence detection system according to (14), and (16) The excitation light source is any one of a mercury lamp, a halogen lamp, and a xenon lamp (13) to (15) The fluorescence detection system for immunochromatography described in any one of the above.
本発明の製造方法によれば、様々な吸光特性および蛍光特性を付与することができるので、各種イムノクロマト法に好適に用いられるイムノクロマト法試薬用標識シリカナノ粒子及びこれを用いたコンジュゲートパッドを製造することができる。
また、本発明のイムノクロマト法用テストストリップの使用方法によれば以下のすべて又はいずれかの作用効果を奏する。
・様々な吸光特性および蛍光特性を付与することができ、複数種の検体の同時分析に好適である。
・複数種の検体の同時検出、定量又は判定が可能であり、新たなPOCTの診断手法として好適である。
・蛍光検出による高感度検出ないしは定量が可能である。
According to the production method of the present invention , since various light absorption characteristics and fluorescence characteristics can be imparted , labeled silica nanoparticles for immunochromatography reagents suitably used for various immunochromatography methods and conjugate pads using the same are produced. be able to.
Moreover, according to the method for using the immunochromatographic test strip of the present invention, all or any of the following effects can be obtained.
- it is possible to impart various absorption characteristics and fluorescence properties, is suitable for the simultaneous analysis of a plurality of types of analytes.
Simultaneous detection of multiple types of analytes, are possible quantitative or judgment, is suitable as a diagnostic method of a new POCT.
・ Highly sensitive detection or quantification is possible by fluorescence detection .
まず、本発明の製造方法及びこれにより得られるイムノクロマト法試薬用標識シリカナノ粒子について説明する。本発明の製造方法により得られるイムノクロマト法試薬用標識シリカナノ粒子は、標識物質を含有してなるシリカナノ粒子からなる。前記標識シリカナノ粒子の平均粒径は20〜600nmであることが好ましく、60〜300nmであることがより好ましい。粒径が小さすぎると、検出感度が低下し、粒径が大きすぎると、イムノクロマト法に用いられる多孔質支持体(メンブレン)の目詰まりの原因となる。
本発明において、前記平均粒径は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)等の画像から無作為に選択した50個のシリカナノ粒子の合計の投影面積からシリカナノ粒子の占有面積を画像処理装置によって求め、この合計の占有面積を、選択したシリカナノ粒子の個数(50個)で割った値に相当する円の直径の平均値(平均円相当直径)を求めたものである。
粒度分布の変動係数いわゆるCV値は特に制限はないが、10%以下が好ましく、8%以下がより好ましい。
本明細書及び特許請求の範囲において、単分散とはCV値15%以下の粒子群をいう。
本発明において、用いるシリカ粒子は特に制限はなく、任意のいかなる調製方法によって得られたシリカ粒子であってもよい。例えば、Journal of Colloid and Interface Science, 159, 150−157(1993)に記載のゾル−ゲル法で調製されるシリカ粒子等が挙げられる。
本発明者らは、蛍光色素化合物含有コロイドシリカ粒子の調製方法について特許出願している(例えば、特願2005−376401)。その方法に準じて得られた、標識物質を含有するシリカナノ粒子を用いることが特に好ましい。
具体的には、前記標識物質を含有するシリカナノ粒子は、前記標識物質とシラン化合物とを反応させ、共有結合、イオン結合その他の化学的に結合もしくは吸着させて得られた生成物に1又は2種以上のシラン化合物を重合させることにより調製することができる。
前記標識物質を含有するシリカナノ粒子の好ましい調製方法の態様としては、N−ヒドロキシスクシンイミド(NHS)エステル基、マレイミド基、イソシアナート基、イソチオシアナート基、アルデヒド基、パラニトロフェニル基、ジエトキシメチル基、エポキシ基、シアノ基等の活性基を有する前記標識物質と、それら活性基と対応して反応する置換基(例えば、アミノ基、水酸基、チオール基)を有するシランカップリング剤とを反応させ、共有結合させて得られた生成物に1又は2種以上のシラン化合物を重合させることにより調製することができる。
First, the production method of the present invention and the labeled silica nanoparticles for immunochromatography reagent obtained thereby will be described. The labeled silica nanoparticles for immunochromatography reagent obtained by the production method of the present invention are composed of silica nanoparticles containing a labeling substance . Preferably has an average particle diameter before Symbol labeled silica nanoparticles is 20 to 600 nm, more preferably 60 to 300 nm. If the particle size is too small, the detection sensitivity decreases, and if the particle size is too large, the porous support (membrane) used in the immunochromatography method becomes clogged.
In the present invention, the average particle size is determined from the total projected area of 50 silica nanoparticles randomly selected from an image of a transmission electron microscope (TEM), a scanning electron microscope (SEM), etc. Is obtained by an image processing apparatus, and the average value of the diameters of circles (average circle equivalent diameter) corresponding to the value obtained by dividing the total occupied area by the number of selected silica nanoparticles (50) is obtained.
The variation coefficient of the particle size distribution, the so-called CV value, is not particularly limited, but is preferably 10% or less, more preferably 8% or less.
In the present specification and claims, monodisperse means a particle group having a CV value of 15% or less.
In the present invention, the silica particles used are not particularly limited, and may be silica particles obtained by any arbitrary preparation method. Examples thereof include silica particles prepared by the sol-gel method described in Journal of Colloid and Interface Science, 159, 150-157 (1993).
The present inventors have applied for a patent for a method for preparing fluorescent dye compound-containing colloidal silica particles (for example, Japanese Patent Application No. 2005-376401). It is particularly preferable to use silica nanoparticles containing a labeling substance obtained according to the method.
Specifically, the silica nanoparticle containing the labeling substance reacts with the product obtained by reacting the labeling substance with a silane compound and covalently bonding, ionic bonding, or other chemical bonding or adsorption. It can be prepared by polymerizing two or more silane compounds.
Preferred embodiments of the silica nanoparticles containing the labeling substance include N-hydroxysuccinimide (NHS) ester group, maleimide group, isocyanate group, isothiocyanate group, aldehyde group, paranitrophenyl group, diethoxymethyl. The labeling substance having an active group such as a group, an epoxy group or a cyano group is reacted with a silane coupling agent having a substituent (for example, an amino group, a hydroxyl group or a thiol group) that reacts with the active group. The product obtained by covalent bonding can be prepared by polymerizing one or more silane compounds.
前記活性基を有する前記標識物質の具体例として、5−(及び−6)−カルボキシテトラメチルローダミン・スクシンイミジルエステル(商品名、emp Biotech GmbH社製)等のNHSエステル基を有する標識物質を挙げることができる。 Specific examples of the labeling substance having the active group include labeling substances having an NHS ester group such as 5- (and -6) -carboxytetramethylrhodamine succinimidyl ester (trade name, manufactured by emp Biotech GmbH). Can be mentioned.
前記置換基を有するシランカップリング剤の具体例として、γ-アミノプロピルトリエトキシシラン(APS)、3−[2−(2−アミノエチルアミノ)エチルアミノ]プロピル-トリエトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン等のアミノ基を有するシランカップリング剤を挙げることができる。中でも、APSが好ましい。 Specific examples of the silane coupling agent having a substituent include γ-aminopropyltriethoxysilane (APS), 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxysilane, N-2 ( Examples thereof include silane coupling agents having an amino group such as (aminoethyl) 3-aminopropylmethyldimethoxysilane and 3-aminopropyltrimethoxysilane. Of these, APS is preferable.
前記重合させる前記シラン化合物としては、特に制限はされないが、テトラエトキシシラン(TEOS)、γ-メルカプトプロピルトリメトキシシラン(MPS)、γ-メルカプトプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン(APS)、3−チオシアナトプロピルトリエトキシシラン、3−グリシジルオキシプロピルトリエトキシシラン、3−イソシアナトプロピルトリエトキシシラン、及び3−[2−(2−アミノエチルアミノ)エチルアミノ]プロピル−トリエトキシシランを挙げることができる。中でも、TEOS、MPS又はAPSが好ましい。 The silane compound to be polymerized is not particularly limited, but tetraethoxysilane (TEOS), γ-mercaptopropyltrimethoxysilane (MPS), γ-mercaptopropyltriethoxysilane, γ-aminopropyltriethoxysilane (APS). ), 3-thiocyanatopropyltriethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3- [2- (2-aminoethylamino) ethylamino] propyl-triethoxy Mention may be made of silane. Among these, TEOS, MPS, or APS is preferable.
上述のように調製すると、球状、もしくは、球状に近いシリカ粒子が製造できる。球状に近いシリカ粒子とは、具体的には長軸と短軸の比が2以下の形状である。
所望の平均粒径のシリカ粒子を得るためには、YM−10、YM−100(いずれも商品名、ミリポア社製)等の限外ろ過膜を用いて限外ろ過を行い、粒径が大きすぎたり小さすぎる粒子を除去するか、または適切な重力加速度で遠心分離を行い、上清または沈殿のみを回収することで可能である。
When prepared as described above, spherical or nearly spherical silica particles can be produced. The nearly spherical silica particles specifically have a shape in which the ratio of the major axis to the minor axis is 2 or less.
In order to obtain silica particles having a desired average particle size, ultrafiltration is performed using an ultrafiltration membrane such as YM-10, YM-100 (both trade names, manufactured by Millipore), and the particle size is large. It is possible to remove particles that are too small or too small, or to centrifuge at an appropriate gravitational acceleration and collect only the supernatant or precipitate.
本発明において、前記標識物質は、前記標識シリカナノ粒子中において固定化された状態にある。前記標識物質は蛍光物質または吸光物質などの機能性物質が挙げられる。蛍光物質または吸光物質に関して特に制限はなく、有機分子、無機化合物、半導体粒子等である。前記標識物質が蛍光物質または吸光物質の場合、前記標識シリカナノ粒子に対する蛍光物質または吸光物質の濃度が20mmol/l以上であることが好ましく、40〜80mmol/lであることがより好ましい。
ここで、「前記標識シリカナノ粒子に対する蛍光物質または吸光物質の濃度」とは、蛍光物質あるいは吸光物質のモル数を、前記標識シリカナノ粒子の体積で割ったものである。蛍光物質あるいは吸光物質のモル数は、前記標識シリカナノ粒子の吸光度もしくは蛍光強度から求めたものであり、また前記標識シリカナノ粒子の体積は、前記標識シリカナノ粒子分散液から前記標識シリカナノ粒子を遠心分離または限外ろ過によって回収し、乾燥させ、質量を求め、シリカ粒子の密度を2.3g/cm3として求めたものである。
In the present invention, the labeling substance is in a state of being immobilized in the labeled silica nanoparticles. Examples of the labeling substance include functional substances such as fluorescent substances and light-absorbing substances. There is no restriction | limiting in particular regarding a fluorescent substance or a light absorbing substance, It is an organic molecule, an inorganic compound, a semiconductor particle, etc. When the labeling substance is a fluorescent substance or a light-absorbing substance, the concentration of the fluorescent substance or the light-absorbing substance with respect to the labeled silica nanoparticles is preferably 20 mmol / l or more, and more preferably 40 to 80 mmol / l.
Here, “the concentration of the fluorescent substance or light-absorbing substance with respect to the labeled silica nanoparticles” is obtained by dividing the number of moles of the fluorescent substance or light-absorbing substance by the volume of the labeled silica nanoparticles. The number of moles of the fluorescent substance or light-absorbing substance is determined from the absorbance or fluorescence intensity of the labeled silica nanoparticles, and the volume of the labeled silica nanoparticles is determined by centrifuging the labeled silica nanoparticles from the labeled silica nanoparticle dispersion or It collect | recovered by ultrafiltration, it was made to dry, the mass was calculated | required, and the density of the silica particle was calculated | required as 2.3 g / cm < 3 >.
前記標識シリカナノ粒子をイムノクロマト法に用いるためには、検体を認識する物質(例えば、抗体、抗原、DNA、RNAなどの生体分子)で表面修飾されていることが好ましい。
本明細書及び特許請求の範囲において、検体を含有する試料液体としては特に制限ないが、尿、血液などが挙げられる。
本明細書及び特許請求の範囲において、検出、定量、検査、診断、判定の対象としての検体は、抗原、抗体、DNA、RNA、糖、糖鎖、リガンド、受容体、ペプチド、化学物質等が挙げられる。より具体的には、妊娠の重要なマーカーとして、抗原である、尿中のヒトゴナドトロピン(hCG)・ペプチドホルモンを検体として妊娠の有無を判定もしくは診断することが挙げられる。
前記標識シリカナノ粒子と前記検体を認識する物質を結合させる方法としては特に制限は無く、静電的引力、ファンデルワールス力、疎水性相互作用等によって前記検体を認識する物質を前記標識シリカナノ粒子に吸着させても良いし、架橋剤や縮合剤によって化学結合で結合させても良い。また、前記標識シリカナノ粒子表面にMPS(γ−メルカプトプロピルトリエトキシシラン)等のチオール基を有するシランカップリング剤を用いてチオール基を導入し、前記検体を認識する物質のチオール基とS−S結合によって結合させても良い。
また、前記標識シリカナノ粒子表面の生体分子(例えば、抗体、抗原、DNA、RNA)などの前記検体を認識する物質を結合したときに粒子が凝集する場合は、予め、前記標識シリカナノ粒子表面に交互吸着法によって表面処理を施しておいても良い。交互吸着法とは、電荷を有する基板や粒子の表面に電荷を持った高分子を静電的引力で吸着させることで、基板や粒子の表面に高分子の薄膜を形成する手法である。前記標識シリカナノ粒子の表面に交互吸着処理を行うことにより粒子表面に電荷を付与できるため、粒子間に静電的反発力が生じ、分散性が向上する。また、粒子に結合した高分子は排除体積を持つことから、立体反発力の効果によっても分散性が向上する。
In order to use the labeled silica nanoparticles in an immunochromatography method, the surface is preferably modified with a substance that recognizes a specimen (for example, a biomolecule such as an antibody, an antigen, DNA, or RNA).
In the present specification and claims, the sample liquid containing the specimen is not particularly limited, and examples thereof include urine and blood.
In the present specification and claims, specimens to be detected, quantified, tested, diagnosed, and judged include antigens, antibodies, DNA, RNA, sugars, sugar chains, ligands, receptors, peptides, chemical substances, etc. Can be mentioned. More specifically, an important marker of pregnancy includes determining or diagnosing the presence or absence of pregnancy using urinary human gonadotropin (hCG) / peptide hormone as an antigen.
The method for binding the labeled silica nanoparticles to the substance for recognizing the analyte is not particularly limited, and a substance for recognizing the analyte by electrostatic attraction, van der Waals force, hydrophobic interaction or the like is added to the labeled silica nanoparticles. You may make it adsorb | suck and may make it couple | bond by a chemical bond with a crosslinking agent or a condensing agent. In addition, a thiol group is introduced on the surface of the labeled silica nanoparticle using a silane coupling agent having a thiol group such as MPS (γ-mercaptopropyltriethoxysilane), and the thiol group of the substance for recognizing the specimen and SS You may combine by a coupling | bonding.
In addition, when particles aggregate when binding a substance that recognizes the specimen, such as biomolecules (for example, antibodies, antigens, DNA, RNA) on the surface of the labeled silica nanoparticles, the surfaces of the labeled silica nanoparticles are alternated in advance. Surface treatment may be performed by an adsorption method. The alternating adsorption method is a method of forming a polymer thin film on the surface of a substrate or particle by adsorbing a charged polymer to the surface of the substrate or particle having a charge by electrostatic attraction. By performing alternate adsorption treatment on the surface of the labeled silica nanoparticles, the surface of the particles can be charged, so that electrostatic repulsive force is generated between the particles, and dispersibility is improved. Further, since the polymer bonded to the particles has an excluded volume, the dispersibility is improved also by the effect of the steric repulsive force.
次に、本発明において好適に用いられるイムノクロマト法試薬について説明する。このイムノクロマト法試薬は、前記本発明の製造方法により得られる標識シリカナノ粒子からなり、前述のように検体を認識する物質で表面修飾されていることが好ましい。
Next, an immunochromatographic reagent suitably used in the present invention will be described. Immunochromatographic reagent this, the composed label silica particles obtained by the production method of the present invention, it is preferable that the surface-modified with recognizing substance sample as described above.
上記のイムノクロマト法試薬として、前述のように前記標識物質として吸光物質又は蛍光物質を含有してなるシリカナノ粒子からなることが好ましい。
前記吸光物質としては、前記任意の光源による光を吸光する物質であれば特に制限はなく、プレートリーダー等の汎用の検出器(例えば、Vmax(商品名、Molecular Devices社製)、マイクロプレートリーダーMPR−A4i(商品名、東ソー社製))による検出およびデータの互換性の観点から、吸光スペクトルにおける吸光最大波長が200〜800nmの範囲内にある吸光物質が好ましく、吸光スペクトルにおける吸光最大波長が400〜700nmの範囲にある吸光物質がより好ましい。
ここで、「吸光最大波長」とは、吸光スペクトルにおいて、吸収ピークが複数存在する場合において、前記吸収ピークの中で、吸光度が最大であるものの波長をいう。
吸光スペクトルにおける吸光最大波長が200〜800nmの範囲内に存在する吸光物質である限り、任意の吸光性色素を用いることができるが、下記式で表されるDYQ−660(商品名、Dyomics GmbH社製)のNHSエステル等が好ましい。
The immunochromatography reagent is preferably composed of silica nanoparticles containing a light-absorbing substance or a fluorescent substance as the labeling substance as described above.
The light-absorbing substance is not particularly limited as long as it absorbs light from the arbitrary light source, and is a general-purpose detector such as a plate reader (for example, Vmax (trade name, manufactured by Molecular Devices), microplate reader MPR. -A4i (trade name, manufactured by Tosoh Corp.)) and a light-absorbing substance having a maximum absorption wavelength in the range of 200 to 800 nm is preferable, and a maximum absorption wavelength in the absorption spectrum is 400. More preferred is a light-absorbing material in the range of ~ 700 nm.
Here, “absorption maximum wavelength” refers to the wavelength of the absorption peak having the maximum absorbance in the case where there are a plurality of absorption peaks in the absorption spectrum.
Any light-absorbing dye can be used as long as it is a light-absorbing substance having an absorption maximum wavelength in the range of 200 to 800 nm in the absorption spectrum, but DYQ-660 represented by the following formula (trade name, Dynamics GmbH) NHS ester etc.) are preferable.
前記吸光物質を含有させてなるシリカナノ粒子は、5×107M−1cm−1以上のモル吸光係数εとすることができ、εが2×108M−1cm−1〜1×1011M−1cm−1であることが好ましい。
前記吸光物質を含有させてなるシリカナノ粒子の吸光度、吸光スペクトル及びεは、任意の吸光光度計ないしはプレートリーダーを用いて、水分散液、エタノール分散液、N,N−ジメチルフォルムアミド分散液等の分散液として測定できる。
「前記吸光物質を含有させてなるシリカナノ粒子のモル吸光係数ε」とは、前記吸光物質を含有させてなるシリカナノ粒子の分散液について吸光度を測定し、ランベルト−ベールの式に適用することにより得られた、前記分散液中における前記吸光物質を含有させてなるシリカナノ粒子のモル吸光係数εをいう。
The silica nanoparticles containing the light-absorbing substance can have a molar extinction coefficient ε of 5 × 10 7 M −1 cm −1 or more, and ε is 2 × 10 8 M −1 cm −1 to 1 × 10. It is preferably 11 M −1 cm −1 .
The absorbance, absorption spectrum, and ε of the silica nanoparticles containing the light-absorbing substance can be measured using an arbitrary absorptiometer or plate reader, such as an aqueous dispersion, an ethanol dispersion, an N, N-dimethylformamide dispersion, etc. It can be measured as a dispersion.
“Molar extinction coefficient ε of silica nanoparticles containing the light-absorbing substance” is obtained by measuring the absorbance of the dispersion of silica nanoparticles containing the light-absorbing substance and applying it to the Lambert-Beer equation. It refers to the molar extinction coefficient ε of the silica nanoparticles containing the light-absorbing substance in the dispersion.
上記のイムノクロマト法試薬において、前記標識物質として蛍光物質を含有してなるシリカナノ粒子であって、検体を認識する物質で表面修飾されたシリカナノ粒子を用いる場合には、前記シリカナノ粒子が発する蛍光を検出することにより高感度検出ないしは定量が可能である。
前記蛍光物質は特に制限はないが、汎用の検出器(例えば、AE−6931FXCF プリントグラフ(商品名、ATTO社製))による検出およびデータの互換性の観点から、青色蛍光(440〜490nm)、黄色蛍光(540〜590nm)、オレンジ色蛍光(590〜620nm)又は赤色蛍光(620〜740nm)である蛍光物質が好ましい。
In the above immunochromatography reagent, when silica nanoparticles containing a fluorescent substance as the labeling substance and surface-modified with a substance that recognizes a sample are used, the fluorescence emitted from the silica nanoparticles is detected. By doing so, highly sensitive detection or quantification is possible.
Although there is no restriction | limiting in particular in the said fluorescent substance, From a viewpoint of the detection by a general purpose detector (for example, AE-6931FXCF print graph (brand name, ATTO company make)) and the compatibility of data, blue fluorescence (440-490 nm), A fluorescent substance having yellow fluorescence (540 to 590 nm), orange fluorescence (590 to 620 nm) or red fluorescence (620 to 740 nm) is preferable.
次に、本発明のイムノクロマト法用テストストリップの使用方法について説明する。
本発明の方法に好適に用いられるイムノクロマト法用テストストリップは、
(1)試料添加用部材(サンプルパッド)と前記標識シリカ粒子を含浸させてなる部材(コンジュゲートパッド)とが、
(2)前記コンジュゲートパッドと抗体固定化部を有するメンブレン(抗体固定化メンブレン)とが、並びに
(3)前記抗体固定化メンブレンと吸収パッドとが
相互に毛細管現象が生じるように直列連結していることがより好ましい。
Next, a method for using the immunochromatographic test strip of the present invention will be described.
An immunochromatographic test strip suitably used in the method of the present invention is:
(1) A sample addition member (sample pad) and a member (conjugate pad) impregnated with the labeled silica particles,
(2) The conjugate pad and a membrane having an antibody immobilization part (antibody immobilization membrane), and (3) the antibody immobilization membrane and the absorption pad are connected in series so that a capillary phenomenon occurs between them. More preferably.
図1a及びbを参照して、本発明の方法に用いられるイムノクロマト法用テストストリップの好ましい1つの実施態様について説明する。
図1aは本発明の方法に好適に用いられるイムノクロマト法用テストストリップの平面図を示し、図1bは、aで示されたイムノクロマト法用テストストリップの平面図の縦断面図を示す図である。このイムノクロマト法用テストストリップ1は、試料添加用部材(サンプルパッド)2、標識シリカナノ粒子含浸部材(コンジュゲートパッド)3、抗体固定化メンブレン4、吸収パッド5からなることが好ましい。上記各構成部材は粘着剤付きバッキングシート6により裏打ちされていることがより好ましい。前記メンブレン4における抗体固定化部としては、検体の有無を判定、すなわち陽性陰性を判定するための捕捉用抗体が固定化されたテストライン41、および標識シリカ粒子により標識された全ての検体を捕捉する抗体が固定化されたコントロールライン42を含むことが好ましい。
A preferred embodiment of the immunochromatographic test strip used in the method of the present invention will be described with reference to FIGS. 1a and b.
FIG. 1a is a plan view of an immunochromatographic test strip suitably used in the method of the present invention, and FIG. 1b is a longitudinal sectional view of the plan view of the immunochromatographic test strip indicated by a. Immunochromatographic test strip 1 of this, the sample receiving member (sample pad) 2, labeled silica nanoparticles impregnated member (conjugate pad) 3, antibody immobilized membrane 4 is preferably made of absorbent pad 5. The constituent members are more preferably backed by a backing sheet 6 with an adhesive . Antibodies immobilized portion before Symbol membrane 4, determine the presence or absence of the analyte, i.e. the test line 41 capture antibody is immobilized for determining the positive-negative, and all the samples have been labeled with a labeling silica particles It is preferable to include a control line 42 on which the antibody to be captured is immobilized.
次に、上記各部材について説明する。
1)試料添加用部材(サンプルパッド)2
サンプルパッド2は検体を含むサンプルを滴下する構成部材である。
2)標識シリカナノ粒子含浸部材(コンジュゲートパッド)3
コンジュゲートパッド3は標識シリカナノ粒子が含浸された構成部材であり、サンプルパッド2から毛細管現象により移動してきた試料液体に含まれる検体が抗原抗体反応等の分子認識反応で、前記標識シリカ粒子によって捕捉され、標識される部分である。
コンジュゲートパッド3における単位面積(cm2)当たりの前記標識シリカナノ粒子の含有量は特に制限ないが50μg〜2mgが好ましい。含浸方法としては、前記標識シリカ粒子の分散液を塗布、滴下ないしは噴霧後、乾燥する方法等が挙げられる。
3)抗体固定化メンブレン4
メンブレン4は前記シリカナノ粒子により標識された検体が毛細管現象によって移動する構成部材であり、固定化抗体―検体―標識シリカナノ粒子からなるサンドイッチ型免疫複合体形成反応が行われる抗体固定化部(判定部)を有する。
前記メンブレンにおける前記抗体固定化部(判定部)の形状としては局所的に捕捉用抗体が固定化されている限り特に制限はなく、ライン状、円状、帯状等が挙げられるが、ライン状であることが好ましく、幅0.5〜1.5mmのライン状であることがより好ましい。
固定化抗体―検体―標識シリカナノ粒子からなるサンドイッチ型免疫複合体形成反応により抗体固定化部(判定部)に、前記シリカ粒子により標識された検体が捕捉され、形成された前記複合体中の前記シリカナノ粒子に由来する発色又は蛍光の程度により検体の有無を判定、すなわち陽性陰性を判定することができる。すなわち、前記抗体固定化部(判定部)に標識シリカ粒子が濃縮され、着色シグナルとして目視的に、又は検出機器を用いて検出、判定できる。
前記サンドイッチ型免疫複合体形成反応を充分に完了させるため、あるいは液体試料中の着色物質による測定への影響や検体と結合していない標識シリカナノ粒子による測定への影響を回避するため、メンブレンにおける判定部は、前記コンジュゲートパッドとの連結端及び前記吸収パッドとの連結端からある程度離れた位置(例えば、前記メンブレンの中程など)に設けておくことが好ましい。
Next, each member will be described.
1) Sample addition member (sample pad) 2
The sample pad 2 is a constituent member that drops a sample containing a specimen.
2) Labeled silica nanoparticle impregnated member (conjugate pad) 3
The conjugate pad 3 is a component impregnated with labeled silica nanoparticles, and the specimen contained in the sample liquid that has moved from the sample pad 2 by capillary action is captured by the labeled silica particles in a molecular recognition reaction such as an antigen-antibody reaction. The part to be labeled.
The content of the labeled silica nanoparticles per unit area (cm 2 ) in the conjugate pad 3 is not particularly limited, but is preferably 50 μg to 2 mg. Examples of the impregnation method include a method in which the dispersion of the labeled silica particles is applied, dropped or sprayed, and then dried.
3) Antibody-immobilized membrane 4
The membrane 4 is a structural member in which the specimen labeled with the silica nanoparticles moves by capillary action, and an antibody immobilization section (determination section) in which a sandwich type immune complex forming reaction composed of immobilized antibody-specimen-labeled silica nanoparticles is performed. ).
The shape of the antibody immobilization part (determination part) in the membrane is not particularly limited as long as the capture antibody is locally immobilized, and includes a line shape, a circular shape, a belt shape, etc. It is preferable that there is a line shape having a width of 0.5 to 1.5 mm.
The specimen labeled with the silica particles is captured in the antibody immobilization part (determination part) by the sandwich-type immune complex formation reaction composed of the immobilized antibody-analyte-labeled silica nanoparticles, and the complex in the formed complex The presence or absence of the specimen can be determined by the degree of color development or fluorescence derived from the silica nanoparticles, that is, positive / negative can be determined. That is, the labeled silica particles are concentrated in the antibody immobilization section (determination section), and can be detected and determined visually as a colored signal or using a detection device.
In order to sufficiently complete the sandwich-type immune complex formation reaction, or to avoid the influence on the measurement by the colored substance in the liquid sample or the measurement by the labeled silica nanoparticles not bound to the specimen, the determination on the membrane It is preferable that the portion is provided at a position (for example, the middle of the membrane) at some distance from the connection end with the conjugate pad and the connection end with the absorption pad.
前記抗体固定化部(判定部)における抗体固定化量は特に制限ないが、形状がライン状の場合、単位長さ(cm)当たりの0.5μg〜5μgが好ましい。固定化方法としては、抗体溶液を塗布、滴下ないしは噴霧後、乾燥して物理吸着により固定化する方法等が挙げられる。
前述の抗体固定化後に、非特異的吸着による測定への影響を防止するために前記メンブレン全体をいわゆるブロッキング処理を施しておくことが好ましい。例えば、アルブミン、カゼイン、ポリビニルアルコール等のブロッキング剤を含有する緩衝液中に適当な時間浸漬した後乾燥する方法等が挙げられる。市販の前記ブロッキング剤としては、例えば、スキムミルク(DIFCO社製)、4%ブロックエース(明治乳業社製)などが挙げられる。
4)吸収パッド5
吸収パッド5は、毛細管現象でメンブレンを移動してきた試料液体および標識シリカ粒子を吸収し、常に一定の流れを生じさせるための構成部材である。
The amount of antibody immobilization in the antibody immobilization part (determination part) is not particularly limited, but when the shape is a line, it is preferably 0.5 μg to 5 μg per unit length (cm). Examples of the immobilization method include a method in which an antibody solution is applied, dropped or sprayed and then dried and immobilized by physical adsorption.
After the above-described antibody immobilization, the whole membrane is preferably subjected to a so-called blocking treatment in order to prevent the influence of nonspecific adsorption on the measurement. For example, a method of immersing in a buffer solution containing a blocking agent such as albumin, casein, polyvinyl alcohol or the like for an appropriate period of time and then drying may be mentioned. Examples of the commercially available blocking agent include skim milk (manufactured by DIFCO), 4% block ace (manufactured by Meiji Dairies), and the like.
4) Absorption pad 5
The absorption pad 5 is a constituent member that absorbs the sample liquid and the labeled silica particles that have moved through the membrane by capillary action and always generates a constant flow.
これら各構成部材の材料としては特に制限は無く、イムノクロマト法用テストストリップに用いられる部材が使用できるが、サンプルパッドおよびコンジュゲートパッドとしてはGlass Fiber Conjugate Pad(商品名、MILLIPORE社製)等のガラスファイバーのパッドが好ましく、メンブレンとしてはHi−Flow Plus120メンブレン(商品名、MILLIPORE社製)等のニトロセルロースメンブレンが好ましく、吸収パッドとしてはCellulose Fiber Sample Pad(商品名、MILLIPORE社製)等のセルロースメンブレンが好ましい。
前記粘着剤付きバッキングシートとしては、AR9020(商品名、Adhesives Research社製)等が挙げられる。
前記テストストリップの作製法としては、試料添加用部材(サンプルパッド)、標識シリカ粒子含浸部材(コンジュゲートパッド)、抗体固定化メンブレン、吸収パッドの並び順に、各部材間で毛管現象を生じさせ易くするために、それら各部材の両端を隣接する部材と1〜5mm程度重ね合わせて(好ましくはバッキングシート上に)貼付することで作製することができる。
There are no particular restrictions on the material of each of these constituent members, and members used for immunochromatographic test strips can be used. As sample pads and conjugate pads, glass such as Glass Fiber Conjugate Pad (trade name, manufactured by MILLIPORE) is used. A fiber pad is preferable, a nitrocellulose membrane such as Hi-Flow Plus 120 membrane (trade name, manufactured by MILLIPORE) is preferable as the membrane, and a cellulose membrane such as Cellulose Fiber Sample Pad (trade name, manufactured by MILLIPORE) is preferable as the absorbent pad. Is preferred.
Examples of the backing sheet with an adhesive include AR9020 (trade name, manufactured by Adhesives Research).
The test strip can be prepared by subjecting a sample addition member (sample pad), a labeled silica particle impregnated member (conjugate pad), an antibody-immobilized membrane, and an absorbent pad in the order of capillary action between the members. In order to do this, it can be produced by pasting both ends of each of these members with an adjacent member by about 1 to 5 mm (preferably on a backing sheet).
発色の程度の判定は、目視以外に例えば、プレテスターRM−405、プレテスターRM−505(いずれも商品名、和光純薬工業社製)等の尿試験紙用のテスター、例えばデンシトメーター等を用いて行ってもよいことはいうまでもない。
前記テストストリップは、手技の習熟していない一般需要者でも操作し易くし、かつPOCTの観点から、テストストリップの検出ラインを目視にて観察する観察窓のプラスチック材料等でハウジング(ケーシング)されていることが好ましい。例えば、特開2000−356638等に記載されているハウジング等が挙げられる。
In addition to visual observation, the degree of color development is determined by, for example, a tester for urine test paper such as Pretester RM-405 and Pretester RM-505 (both trade names, manufactured by Wako Pure Chemical Industries, Ltd.), such as a densitometer, etc. Needless to say, it may also be performed using.
The test strip is easy to operate even for general consumers who are not skilled in the technique, and from the viewpoint of POCT, the test strip is housed (casing) with a plastic material for an observation window for visually observing the detection line of the test strip. Preferably it is. For example, the housing etc. which are described in Unexamined-Japanese-Patent No. 2000-356638 etc. are mentioned.
本発明の製造方法によれば、イムノクロマト法試薬としての前記標識シリカナノ粒子は、異なる種類の前記標識物質を含有させることにより様々な色相、蛍光波長等を付与することができる。そのようにして得られた2種類以上の標識シリカナノ粒子を用いることによって、例えば、前記テストストリップにおいて、2種類以上の検体を1回の操作で同時に検出、定量、判定又は診断することが可能である。
このとき、前記2種類以上の標識シリカナノ粒子は、それぞれ、異なる検体に対して分子認識する表面修飾物質で修飾されていることが必要である。
具体例としては、A型インフルエンザウイルス核タンパク質を認識するマウス抗A型インフルエンザウイルス核タンパク質モノクローナル抗体で表面修飾された赤色色素(例えば、ローダミン)含有シリカナノ粒子と、
B型インフルエンザウイルス核タンパク質を認識するマウス抗B型インフルエンザウイルス核タンパク質モノクローナル抗体で表面修飾された青色色素(例えば、DYQ−660(商品名、Dyomics社製))含有シリカナノ粒子とからなるイムノクロマト法試薬、及びそれを用いてなるテストストリップ等が挙げられる。
According to the production method of the present invention, the labeled silica nanoparticles as an immunochromatography reagent can be provided with various hues, fluorescence wavelengths, and the like by containing different types of the labeling substances. By using two or more kinds of labeled silica nanoparticles thus obtained, for example, in the test strip, it is possible to simultaneously detect, quantify, determine or diagnose two or more kinds of specimens in one operation. is there.
At this time, each of the two or more types of labeled silica nanoparticles needs to be modified with a surface-modifying substance that recognizes molecules for different analytes.
Specific examples include silica nanoparticles containing red dye (eg, rhodamine) surface-modified with a mouse anti-influenza A virus nucleoprotein monoclonal antibody that recognizes influenza A virus nucleoprotein,
Immunochromatographic reagent comprising blue nanoparticles (for example, DYQ-660 (trade name, manufactured by Dynamics))-containing silica nanoparticles surface-modified with a mouse anti-influenza B virus nucleoprotein monoclonal antibody that recognizes influenza B virus nucleoprotein , And test strips using the same.
前述の2種類以上の標識シリカナノ粒子からなるイムノクロマト法試薬及びそれを用いてなる前記テストストリップにおいて、同一の抗体固定化部における発色の色相の違いまたは蛍光波長の違いによって2種類以上の検体を同時に検出、定量、判定又は診断することができる。前記同一の抗体固定化部は、ライン状であることが好ましい。
従来のナノ粒子(例えば、金ナノ粒子)は単色しか発色できなかったり、単波長の蛍光しか発光できないことが多く、色相、発光波長が非常に限定されていた。そのため、イムノクロマト法に使用する場合、2種類以上の検体の検出、判定等を行うのが実質的には困難であり、別種の抗体を固定した抗体固定化部(判定部)をメンブレン上の離別した箇所に設けることが必要であった。近接した箇所に複数の抗体固定化部を設けると、単色発色のため又は限られた発光波長のため、いずれの検体に基づく発色ないしは発光シグナルか混同を生じることが多かった。
これに対し、前記標識シリカナノ粒子は、異なる種類の前記標識物質を含有させることにより様々な色相、蛍光波長等を付与することができるので、本発明のテストストリップにおいては、同一の抗体固定化部に複数種の抗体を固定して、複数種の検体を同時に検出、定量、判定又は診断することができる。
具体的には、例えば、検体A及びBを測定する場合、検体Aを認識する抗体またはそのフラグメントで表面修飾された青色色素(例えば、DYQ−660(商品名、Dyomics社製))含有シリカナノ粒子と、検体Bに対する抗体またはそのフラグメントで表面修飾された黄色色素(例えば、フルオレセイン)含有シリカナノ粒子とを用いて、同一の抗体固定化部に検体A及びBに対する抗体を混在させて固定化したテストストリップとする。そのテストストリップのサンプルパッドに検体A、Bを含有しえる未知の試料液体を滴下し、前記抗体固定化部を観察することによって検体の存否を判定することができる。上記の具体例では、反応ラインの色相が青であれば物質Aが大半であり、逆に黄色であれば物質Bが大半であることを示し、AとBがほぼ同量であれば緑の反応ラインが出現することになる。このように、物質AとBの存在比によって、出現する反応ラインの色相が変化することを利用して、その色相を、目視又は検出機器により検出ないし定量することにより検体のお互いの存在比を測定することができる。
発色の程度が特定の色調より薄ければ陰性、濃ければ陽性としておけば、検体の半定量も可能である。また、発色の程度の判定は、例えば、プレテスターRM−405、プレテスターRM−505(いずれも商品名、和光純薬工業社製)等の尿試験紙用のテスター、例えばデンシトメーター等を用いて行ってよいことはいうまでもない。
ここで、「半定量」とは、定量分析を実施する場合には必ず定性分析が先行していなくてはならないが、定性分析を実施する場合にこれをやや定量的に行なって、量的概念をも付け加えて行う場合をいう。
In the above-described immunochromatographic reagent comprising two or more types of labeled silica nanoparticles and the test strip using the same, two or more types of specimens can be simultaneously used depending on the difference in hue or fluorescence wavelength in the same antibody immobilization part. Detection, quantification, determination or diagnosis can be made. The same antibody immobilization part is preferably linear.
Conventional nanoparticles (for example, gold nanoparticles) can often develop only a single color or emit only single-wavelength fluorescence, and the hue and emission wavelength are very limited. Therefore, when used for immunochromatography, it is practically difficult to detect and judge two or more types of specimens, and the antibody immobilization part (judgment part) to which another kind of antibody is immobilized is separated on the membrane. It was necessary to install in the place. When a plurality of antibody immobilization parts are provided in close proximity, color development or luminescence signal based on any specimen often occurs due to monochromatic color development or limited emission wavelength.
On the other hand, since the labeled silica nanoparticles can impart various hues, fluorescence wavelengths, and the like by containing different types of the labeling substances, in the test strip of the present invention, the same antibody immobilization part A plurality of types of antibodies can be immobilized on the same, and a plurality of types of specimens can be simultaneously detected, quantified, determined or diagnosed.
Specifically, for example, when measuring samples A and B, silica nanoparticles containing blue dye (for example, DYQ-660 (trade name, manufactured by Dynamics)) surface-modified with an antibody that recognizes sample A or a fragment thereof. And a yellow pigment (for example, fluorescein) -containing silica nanoparticles surface-modified with an antibody against specimen B or a fragment thereof, and a test in which antibodies against specimens A and B are mixed and immobilized in the same antibody immobilization part A strip. The presence or absence of the specimen can be determined by dropping an unknown specimen liquid containing specimens A and B onto the sample pad of the test strip and observing the antibody immobilization section. In the above specific example, when the hue of the reaction line is blue, the substance A is the majority, and conversely, when it is yellow, the substance B is the majority. A reaction line will appear. In this way, by utilizing the fact that the hue of the appearing reaction line changes depending on the abundance ratio of substances A and B, the abundance ratio of the specimens can be determined by detecting or quantifying the hue visually or with a detection device. Can be measured.
If the degree of color development is lighter than a specific color tone, it is negative, and if it is dark, it is possible to semi-quantify the sample. In addition, the determination of the degree of color development is performed using, for example, a tester for urine test paper such as Pretester RM-405 and Pretester RM-505 (both trade names, manufactured by Wako Pure Chemical Industries, Ltd.) such as a densitometer. Needless to say, it may be used.
Here, “semi-quantitative” means that quantitative analysis must be preceded by qualitative analysis, but when quantitative analysis is performed, this is done somewhat quantitatively, This is the case where the process is also performed.
次に、イムノクロマト法用蛍光検出システムについて説明する。
イムノクロマト法用蛍光検出システムは、本発明の製造方法により得られる前記標識物質として蛍光物質を含有してなるシリカナノ粒子をイムノクロマト法試薬として用いた場合、具体的には前述のようなテストストリップに用いた場合に使用することができる。
すなわち、本発明の蛍光検出システムは、少なくとも下記(1)及び(2)の構成からなる。
(1)サンプルパッド、蛍光物質を含有してなるシリカナノ粒子を含浸した部材(コンジュゲートパッド)、抗体固定化メンブレン及び吸収パッドからなるテストストリップ、及び
(2)励起光源。
前記テストストリップはバッキングシートにより裏打ちされていることが好ましい。
本発明の蛍光検出システムにおいて、前記シリカナノ粒子の部分が発する蛍光を目視等によって検出する観点から、前記励起光源が、波長200nm〜400nmの励起光を発することが好ましい。前記励起光源としては、水銀ランプ、ハロゲンランプ又はキセノンランプが挙げられる。
また、この蛍光検出システムは、前記励起光源から特定の波長の光のみを透過するためのフィルタを備えていることがより好ましく、さらに、蛍光のみを目視等で検出する観点から、前記励起光を除去し蛍光のみを透過するフィルタを備えていることがさらに好ましい。上記の蛍光検出システムは、前記蛍光を受光する光電子倍増管又はCCD検出器を備えることが特に好ましく、これにより目視では確認できない強度ないしは波長の蛍光も検出でき、さらにはその蛍光強度を測定できることから検体の定量もでき、高感度検出及び定量が可能となる。
It will now be described fluorescence detection system for Lee Munokuromato method.
Fluorescence detection systems for Lee Munokuromato method, the silica particles comprising a fluorescent substance as the labeling substance obtained by the production method of the present invention when used as immunochromatographic reagent, in particular to the test strip as described above Can be used when used.
That is, the fluorescence detection system of the present invention comprises at least the following configurations (1) and (2).
(1) A sample pad, a member (conjugate pad) impregnated with silica nanoparticles containing a fluorescent substance, a test strip comprising an antibody-immobilized membrane and an absorption pad, and (2) an excitation light source.
The test strip is preferably lined with a backing sheet.
In the fluorescence detection system of the present invention, it is preferable that the excitation light source emits excitation light having a wavelength of 200 nm to 400 nm from the viewpoint of visually detecting fluorescence emitted from the silica nanoparticle portion. Examples of the excitation light source include a mercury lamp, a halogen lamp, and a xenon lamp.
The fluorescent detection system of this, it is more preferable that a filter for transmitting only light of a specific wavelength from the excitation light source, further, from the viewpoint of detecting the fluorescence only visually, etc., the excitation light More preferably, a filter that removes the light and transmits only the fluorescence is provided. The above fluorescence detection system, it is particularly preferred comprises a photomultiplier tube or CCD detector for receiving the fluorescence, thereby can detect the fluorescence intensity or wavelength that can not be visually confirmed, since it further can measure its fluorescence intensity Samples can also be quantified, enabling highly sensitive detection and quantification.
以下、本発明を実施例に基づいてさらに詳細に説明する。本発明はこれらの実施例に何ら限定されるものではない。
参考例1(本発明に用いる標識シリカナノ粒子の調製)
5−(及び−6)−カルボキシテトラメチルローダミン・スクシンイミジルエステル(商品名、emp Biotech GmbH社製)2.9mgを1mlのジメチルホルムアミド(DMF)に溶解した。ここに1.3μlのAPSを加え、室温(23℃)で1時間反応を行った。
得られた反応液400μlにエタノール128ml、TEOS400μl、蒸留水28.8ml、28質量%アンモニア水400μlを加え、室温で24時間反応を行った。
反応液を18000×gの重力加速度で30分間遠心分離を行い、上清を除去した。沈殿したシリカ粒子に蒸留水を4ml加え、粒子を分散させ、再度18000×gの重力加速度で30分間遠心分離を行った。本洗浄操作をさらに2回繰り返し、標識シリカナノ粒子分散液に含まれる未反応のTEOSやアンモニア等を除去し、平均粒径104nmのシリカナノ粒子100.8mgを得た。収率約94%。
図2は、得られた標識シリカナノ粒子のSEM写真像を示す図である。図中、白く見える球形状物質が、得られた標識シリカナノ粒子である。
Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to these examples.
Reference Example 1 (Preparation of labeled silica nanoparticles used in the present invention)
2.9 mg of 5- (and -6) -carboxytetramethylrhodamine succinimidyl ester (trade name, manufactured by emp Biotech GmbH) was dissolved in 1 ml of dimethylformamide (DMF). 1.3 μl of APS was added thereto and reacted at room temperature (23 ° C.) for 1 hour.
Ethanol (128 ml), TEOS (400 μl), distilled water (28.8 ml) and 28% by mass ammonia water (400 μl) were added to the obtained reaction solution (400 μl), and the reaction was performed at room temperature for 24 hours.
The reaction solution was centrifuged for 30 minutes at a gravitational acceleration of 18000 × g, and the supernatant was removed. 4 ml of distilled water was added to the precipitated silica particles to disperse the particles, and the mixture was again centrifuged for 30 minutes at a gravitational acceleration of 18000 × g. This washing operation was further repeated twice to remove unreacted TEOS, ammonia and the like contained in the labeled silica nanoparticle dispersion, thereby obtaining 100.8 mg of silica nanoparticles having an average particle diameter of 104 nm. Yield about 94%.
FIG. 2 is a view showing an SEM photograph image of the obtained labeled silica nanoparticles. In the figure, spherical-shaped substances that appear white are the obtained labeled silica nanoparticles.
実施例1(hCGの検出)
遠心管に50mMKH2PO4(pH6.5)を1mLと前記ローダミン含有シリカナノ粒子分散液(10mg/mL)9mLを加えて軽く撹拌した。遠心管に抗hCG抗体(Anti−hCG clone codes/5008, Medix Biochemica社製)1mL(60μg/mL)を撹拌しながら加え、室温で1時間静置し、抗hCG抗体を前記シリカナノ粒子に吸着させた。これに1%PEG(ポリエチレングリコール、分子量20000、和光純薬工業社製)を0.55mL加え軽く撹拌し、更に10%BSAを1.1mL加え軽く撹拌した。
混合液を12000×gで15分間遠心分離し、上清を1mL程度残して取り除き、残した上清に沈殿を分散させた。この分散液に保存用バッファー(20mM Tris−HCl(pH 8.2), 0.05% PEG20,000, 150mM NaCl, 1%BSA, 0.1%NaN3)を20mL加え、再度遠心分離し、上清を1mL程度残して取り除き、残した上清に沈殿を分散させた。この分散液に蒸留水1mLおよび塗布バッファー(20mM Tris−HCl(pH8.2), 0.05%PEG(分子量20,000), 150mM NaCl, 1%BSA, 0.1%NaN3)を2mL加え、軽く撹拌した。
得られた抗体を吸着させてなるシリカナノ粒子分散液をGlass Fiber Conjugate Pad(GFCP、MILLIPORE社製)(8×150mm)1枚あたり、上記分散液0.8mLを均等に塗布した。デシケーター内で室温下、一夜減圧乾燥し、参考例1で得られたシリカナノ粒子を含有してなるコンジュゲートパッドを作製した。
Example 1 (Detection of hCG)
1 mL of 50 mM KH 2 PO 4 (pH 6.5) and 9 mL of the rhodamine-containing silica nanoparticle dispersion (10 mg / mL) were added to the centrifuge tube and stirred gently. Add 1 mL (60 μg / mL) of anti-hCG antibody (Anti-hCG clone codes / 5008, manufactured by Medix Biochemical) to the centrifuge tube while stirring, and allow to stand at room temperature for 1 hour to adsorb the anti-hCG antibody to the silica nanoparticles. It was. To this, 0.55 mL of 1% PEG (polyethylene glycol, molecular weight 20000, manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred gently, and further 1.1 mL of 10% BSA was added and stirred gently.
The mixed solution was centrifuged at 12,000 × g for 15 minutes, and the supernatant was removed leaving about 1 mL, and the precipitate was dispersed in the remaining supernatant. To this dispersion, 20 mL of a storage buffer (20 mM Tris-HCl (pH 8.2), 0.05% PEG20,000, 150 mM NaCl, 1% BSA, 0.1% NaN 3 ) was added and centrifuged again. About 1 mL of the supernatant was left and removed, and the precipitate was dispersed in the remaining supernatant. Add 1 mL of distilled water and 2 mL of coating buffer (20 mM Tris-HCl (pH 8.2), 0.05% PEG (molecular weight 20,000), 150 mM NaCl, 1% BSA, 0.1% NaN 3 ) to this dispersion. , Lightly stirred.
The silica nanoparticle dispersion obtained by adsorbing the obtained antibody was uniformly applied to 0.8 mL of the above dispersion per Glass Fiber Conjugate Pad (GFCP, manufactured by MILLIPORE) (8 × 150 mm). A conjugate pad containing the silica nanoparticles obtained in Reference Example 1 was prepared by drying under reduced pressure overnight at room temperature in a desiccator.
抗体固定化メンブレンの作製については、メンブレン(丈25mm、商品名Hi−Flow Plus120 メンブレン、MILLIPORE社製)の中央付近(端から約12mm)に幅約1mmのテストラインとして抗hCG抗体(alpha subunit of FSH(LH), clone code/6601、Medix Biochemica社製)が1mg/mL含まれる溶液((50mMKH2PO4,pH7.0)+5%スクロース)を0.75μL/cmの塗布量で塗布した。
続いて、幅約1mmのコントロールラインとして抗IgG抗体(Anti Mouse IgG、Dako社製)が1mg/mL含まれる溶液((50mMKH2PO4,pH7.0)シュガー・フリー)を0.75μL/cmの塗布量で塗布し、50℃で30分乾燥させた。
次に、ブロッキング処理として前記メンブレン全体をブロッキングバッファー中に室温で30分浸した。
メンブレン洗浄/安定バッファーに移し室温で30分以上静置した。メンブレンを引き上げ、ペーパータオル上に置いて室温で一夜乾燥させて、抗体固定化メンブレンを作製した。
前記得られたメンブレン、前記得られたコンジュゲートパッド、サンプルパッド(Glass Fiber Conjugate Pad(GFCP)、MILLIPORE社製)、吸収パッド(Cellulose Fiber Sample Pad(CFSP)(MILLIPORE社製)をバッキングシート(商品名AR9020,Adhesives Research社製)上で組み立て、5mm幅、長さ60mmのストリップ状に切断し、図1a及びbに示した構成のテストストリップを得た。図1a及びbについては前述の通りである。
なお、各構成部材は、図1a及びbに示しているように各々その両端を隣接する部材と2mm程度重ね合わせて貼付した(以下、同様である。)。
50IU/LのリコンビナントhCG(ロート製薬社製)を前記ストリップのサンプルパッド部分に100μL滴下し、一分間放置したところ、抗hCG抗体(alpha subunit of FSH(LH), clone code/6601、Medix Biochemica社製)を塗布したライン(テストライン)および、抗IgG抗体を塗布したライン(コントロールライン)に赤色の発色が確認できた。
For the preparation of the antibody-immobilized membrane, an anti-hCG antibody (alpha subunit of of the test line having a width of about 1 mm is located near the center (about 12 mm from the end) of the membrane (length 25 mm, trade name Hi-Flow Plus 120 membrane, manufactured by MILLIPORE). A solution ((50 mM KH 2 PO 4 , pH 7.0) + 5% sucrose) containing 1 mg / mL of FSH (LH), clone code / 6601, manufactured by Medix Biochemica was applied at a coating amount of 0.75 μL / cm.
Subsequently, as a control line having a width of about 1 mm, a solution ((50 mM KH 2 PO 4 , pH 7.0) sugar free) containing 1 mg / mL of anti-IgG antibody (Anti Mouse IgG, manufactured by Dako) was added at 0.75 μL / cm. The coating amount was applied and dried at 50 ° C. for 30 minutes.
Next, the entire membrane was immersed in a blocking buffer for 30 minutes at room temperature as a blocking treatment.
The membrane was transferred to a membrane washing / stable buffer and allowed to stand at room temperature for 30 minutes or more. The membrane was pulled up, placed on a paper towel and dried overnight at room temperature to prepare an antibody-immobilized membrane.
Backing sheet (product) of the obtained membrane, the obtained conjugate pad, the sample pad (Glass Fiber Conjugate Pad (GFCP), manufactured by MILLIPORE), and the absorbent pad (Cellulose Fiber Sample Pad (CFSP) (made by MILLIPORE)) No. AR9020 (manufactured by Adhesives Research)) and cut into strips having a width of 5 mm and a length of 60 mm to obtain test strips having the structure shown in FIGS. is there.
In addition, as shown to FIG. 1 a and b, each component was affixed and bonded about 2 mm with the member which adjoined each other (it is the same hereafter).
When 100 μL of 50 IU / L of recombinant hCG (manufactured by Rohto Pharmaceutical Co., Ltd.) was dropped on the sample pad portion of the strip and allowed to stand for 1 minute, anti-hCG antibody (alpha subunit of FSH (LH), clone code / 6601, Medix Biochemica) The color of red was confirmed on the line coated with the product (test line) and the line coated with the anti-IgG antibody (control line).
実施例2(同一ラインで複数の生体分子を検出)
参考例1の方法でローダミン含有シリカナノ粒子を調製した(平均粒径101nm、収率90%)。またDYQ−660−NHS−Ester(Dyomics社製)を用いて、参考例1と同様の方法でDYQ−660含有シリカナノ粒子を調製した。続いて、実施例1と同様の方法で、ローダミン含有シリカナノ粒子にはマウス抗A型インフルエンザウイルス核タンパク質モノクローナル抗体を吸着により表面修飾し、DYQ−660含有シリカナノ粒子にはマウス抗B型インフルエンザウイルス核タンパク質モノクローナル抗体で吸着により表面修飾した。
コンジュゲートパッド(Glass Fiber Conjugate Pad(GFCP)、8×150mm、MILLIPORE社製)にマウス抗A型インフルエンザウイルス核タンパク質モノクローナル抗体で吸着により表面修飾されたローダミン含有シリカナノ粒子分散液0.8mLを均等に塗布し、これをデシケーターに入れて一晩減圧乾燥した。続いて、同じコンジュゲートパッドにマウス抗B型インフルエンザウイルス核タンパク質モノクローナル抗体で吸着により表面修飾されたDYQ−660含有シリカナノ粒子分散液0.8mLを均等に塗布し、これをデシケーターに入れて一晩減圧乾燥した。これにより、ローダミンを含有したシリカナノ粒子及びDYQ−660を含有したシリカナノ粒子を含浸してなるコンジュゲートパッドを作製した。
続いて、抗体固定化メンブレンの作製については、メンブレン(丈25mm、商品名Hi−Flow Plus120 membrane、MILLIPORE社製)の中央付近(端から約12mm)に幅約1mmのテストラインとしてマウス抗A型インフルエンザウイルス核タンパク質モノクローナル抗体とマウス抗B型インフルエンザウイルス核タンパク質モノクローナル抗体がそれぞれ1mg/mL含まれる溶液を0.75μL/cmの塗布量で塗布し、50℃で30分乾燥させた。さらに、コントロールラインとして、抗マウス抗体ウサギポリクローナル抗体(1mg/mL)を0.75μL/cmの塗布量で塗布し50℃で30分乾燥させた。
前記得られたメンブレン、前記得られたコンジュゲートパッド、サンプルパッド(Glass Fiber Conjugate Pad(GFCP)、MILLIPORE社製)、吸収パッド(Cellulose Fiber Sample Pad(CFSP)(MILLIPORE社製)をバッキングシート(商品名AR9020,Adhesives Research社製)上で組み立て、5mm幅、長さ60mmのストリップ状に切断し、図1a及びbに示した構成のテストストリップを得た。図1a及びbについては前述の通りである。
前記テストストリップを2本用意し、一方のテストストリップにはA型インフルエンザウイルスを5×102FFU/mL含む液を滴下し、一分間静置した。もう一方のテストストリップにはB型インフルエンザウイルスを5×102FFU/mL含む液を滴下し、一分間静置した。A型インフルエンザウイルスを含む液を滴下したテストストリップはラインが赤に発色し、B型インフルエンザウイルスを含む液を滴下したテストストリップはサンプルラインが青に発色した。
Example 2 (Detecting a plurality of biomolecules on the same line)
Rhodamine-containing silica nanoparticles were prepared by the method of Reference Example 1 (average particle size 101 nm, yield 90%). Further, DYQ-660-containing silica nanoparticles were prepared in the same manner as in Reference Example 1 using DYQ-660-NHS-Ester (manufactured by Dyomics). Subsequently, the rhodamine-containing silica nanoparticles were surface-modified by adsorption with a mouse anti-type A influenza virus nucleoprotein monoclonal antibody in the same manner as in Example 1, and the DYQ-660-containing silica nanoparticles were modified with mouse anti-type B influenza virus nuclei. The surface was modified by adsorption with a protein monoclonal antibody.
Equally apply 0.8 ml of rhodamine-containing silica nanoparticle dispersion surface-modified by adsorption with mouse anti-influenza A virus nucleoprotein monoclonal antibody on a conjugate pad (Glass Fiber Conjugate Pad (GFCP), 8 × 150 mm, manufactured by MILLIPORE) This was applied, put in a desiccator, and dried under reduced pressure overnight. Subsequently, 0.8 mL of DYQ-660-containing silica nanoparticle dispersion surface-modified by adsorption with a mouse anti-influenza B virus nucleoprotein monoclonal antibody was evenly applied to the same conjugate pad, and this was placed in a desiccator overnight. Dry under reduced pressure. Thereby, a conjugate pad formed by impregnating silica nanoparticles containing rhodamine and silica nanoparticles containing DYQ-660 was prepared.
Subsequently, for the production of the antibody-immobilized membrane, the mouse anti-A type was used as a test line having a width of about 1 mm around the center (about 12 mm from the end) of the membrane (length 25 mm, trade name Hi-Flow Plus 120 membrane, manufactured by MILLIPORE). A solution containing 1 mg / mL each of influenza virus nucleoprotein monoclonal antibody and mouse anti-type B influenza virus nucleoprotein monoclonal antibody was applied at a coating amount of 0.75 μL / cm and dried at 50 ° C. for 30 minutes. Furthermore, as a control line, an anti-mouse antibody rabbit polyclonal antibody (1 mg / mL) was applied at a coating amount of 0.75 μL / cm and dried at 50 ° C. for 30 minutes.
Backing sheet (product) of the obtained membrane, the obtained conjugate pad, the sample pad (Glass Fiber Conjugate Pad (GFCP), manufactured by MILLIPORE), and the absorbent pad (Cellulose Fiber Sample Pad (CFSP) (made by MILLIPORE)) No. AR9020 (manufactured by Adhesives Research)) and cut into strips having a width of 5 mm and a length of 60 mm to obtain test strips having the structure shown in FIGS. is there.
Two test strips were prepared, and one test strip was dropped with a solution containing 5 × 10 2 FFU / mL of influenza A virus and allowed to stand for 1 minute. On the other test strip, a liquid containing 5 × 10 2 FFU / mL of influenza B virus was dropped and allowed to stand for 1 minute. The test strip to which the liquid containing influenza A virus was dripped developed a red line, and the test strip to which the liquid containing influenza B was dropped was colored blue.
実施例3(蛍光高感度検出)
参考例1と同様の方法でフルオレセインを含有したシリカ粒子を調製し(平均粒径93nm、収率88%)、実施例1と同様の方法で抗hCG抗体(Anti−hCG clone codes/5008, Medix Biochemica社製)を用いて吸着により表面修飾した。実施例1と同様に、前記抗hCG抗体で吸着により表面修飾したフルオレセイン含有シリカナノ粒子0.8mlをGlass Fiber Conjugate Pad(GFCP、8×150mm、MILLIPORE社製)に塗布し、これをデシケーターに入れて一晩減圧乾燥させた。これにより、フルオレセインを含有したシリカナノ粒子を含有してなるコンジュゲートパッドを作製した。
実施例1と同様に、テストラインとして抗hCG抗体(alpha subunit of FSH(LH), clone code/6601、Medix Biochemica社製)、コントロールラインとして抗IgG抗体(Anti Mouse IgG、Dako社製)が塗布されたメンブレン(Hi−Flow Plus120 membrane、MILLIPORE社製)、コンジュゲートパッド、吸収パッド(CFSP、MILLIPORE社製)、サンプルパッド(GFCP、MILLIPORE社製)をバッキングシート(商品名AR9020,Adhesives Research社製)上で組み立て、5mm幅、長さ60mmのストリップ状に切断し、図1a及びbに示した構成のテストストリップを得た。図1a及びbについては前述の通りである。
前記テストストリップのサンプルパッドに0.5IU/LのリコンビナントhCG(ロート製薬社製)を100μL滴下して、一分間静置した。
励起光源側のフィルタとしてFF01−482(商品名、Semrock社製)、検出器側のフィルタとしてFF01−536(商品名、Semrock社製)を用い、前記テストストリップを水銀ランプ(103W)で照射し、検出器としてCCD検出器(C2741−35A(商品名、浜松ホトニクス社製))を用いて画像化を行った。その結果テストラインおよびコントロールラインの蛍光発色を確認した。
上記実施例3の結果から実施例1の目視による検出の検体(コンビナントhCG)量の100分の1の量でも検出され、蛍光による高感度検出が可能であることがわかる。
Example 3 (Fluorescence sensitive detection)
Silica particles containing fluorescein were prepared by the same method as in Reference Example 1 (average particle size 93 nm, yield 88%), and anti-hCG antibody (Anti-hCG clone codes / 5008, Medix) by the same method as in Example 1. The surface was modified by adsorption using Biochemica. In the same manner as in Example 1, 0.8 ml of fluorescein-containing silica nanoparticles surface-modified by adsorption with the anti-hCG antibody was applied to Glass Fiber Conjugate Pad (GFCP, 8 × 150 mm, manufactured by MILLIPORE), and this was put in a desiccator. It was dried under reduced pressure overnight. As a result, a conjugate pad containing silica nanoparticles containing fluorescein was produced.
As in Example 1, anti-hCG antibody (alpha subunit of FSH (LH), clone code / 6601, manufactured by Medix Biochemica) was applied as a test line, and anti-IgG antibody (Anti Mouse IgG, manufactured by Dako) was applied as a control line. Backing sheet (trade name AR9020, manufactured by Adhesives Research) manufactured membrane (Hi-Flow Plus 120 membrane, manufactured by MILLIPORE), conjugate pad, absorbent pad (CFSP, manufactured by MILLIPORE), sample pad (GFCP, manufactured by MILLIPORE) 1) Assemble above and cut into strips with a width of 5 mm and a length of 60 mm to obtain test strips having the structure shown in FIGS. 1a and b. 1a and b are as described above.
100 μL of 0.5 IU / L recombinant hCG (manufactured by Rohto Pharmaceutical Co., Ltd.) was dropped on the test strip sample pad and allowed to stand for 1 minute.
FF01-482 (trade name, manufactured by Semrock) is used as a filter on the excitation light source side, and FF01-536 (trade name, manufactured by Semrock) is used as a filter on the detector side, and the test strip is irradiated with a mercury lamp (103W). Then, imaging was performed using a CCD detector (C2741-35A (trade name, manufactured by Hamamatsu Photonics)) as a detector. As a result, the fluorescence development of the test line and the control line was confirmed.
From the results of Example 3 above, it can be seen that even 1 / 100th the amount of the sample (combinant hCG) visually detected in Example 1 is detected, and high sensitivity detection by fluorescence is possible.
1 テストストリップ
2 サンプルパッド
3 コンジュゲートパッド
4 抗体固定化メンブレン
5 吸収パッド
6 バッキングシート
1 Test strip 2 Sample pad 3 Conjugate pad 4 Antibody-immobilized membrane 5 Absorbent pad 6 Backing sheet
Claims (5)
前記シリカナノ粒子を含有する液を、ガラスファイバーパッドに粒子重量が単位面積(cm2)当たり50μg〜2mgとなるように含浸させ、続いて室温で減圧乾燥する工程を有することを特徴とするイムノクロマト法用コンジュゲートパッドの製造方法。
A step of obtaining a labeling reagent silica nanoparticle for immunochromatography by the production method according to any one of claims 1 to 3 , and
An immunochromatography method comprising a step of impregnating a liquid containing silica nanoparticles into a glass fiber pad so that the particle weight is 50 μg to 2 mg per unit area (cm 2 ), followed by drying under reduced pressure at room temperature. Of producing a conjugate pad for use in a medical device
A conjugate pad for immunochromatography produced by the method according to claim 4, a membrane having an antibody immobilization part coated with an antibody solution, dripped or sprayed, dried and immobilized by physical adsorption , an absorption pad , There using immunochromatographic test strip formed by serially connected in this order, the conjugate pad for the immunochromatographic this happens, dropping a liquid containing the analyte, the labeled reagent silica nanoparticles for the immunochromatographic containing said analyte The immunochromatography method which is redispersed in a liquid and causes a binding reaction between the immunochromatographic labeling reagent silica nanoparticles and the specimen, and does not cause a binding reaction between the immunochromatographic labeling reagent silica nanoparticles and the specimen and the specimen. Labeling reagent silica nanoparticles for membrane movement by capillary action And wherein the method uses a test strip for the immunochromatographic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009040039A JP4514824B2 (en) | 2009-02-23 | 2009-02-23 | Method for producing labeled silica nanoparticles for immunochromatographic reagent, method for producing conjugate pad for immunochromatographic method, and method for using test strip for immunochromatographic method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009040039A JP4514824B2 (en) | 2009-02-23 | 2009-02-23 | Method for producing labeled silica nanoparticles for immunochromatographic reagent, method for producing conjugate pad for immunochromatographic method, and method for using test strip for immunochromatographic method using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007153366A Division JP4360652B2 (en) | 2007-06-08 | 2007-06-08 | Labeled silica nanoparticles for immunochromatography reagent, immunochromatography reagent, test strip for immunochromatography using the same, and fluorescence detection system for immunochromatography |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009115822A JP2009115822A (en) | 2009-05-28 |
JP2009115822A5 JP2009115822A5 (en) | 2009-12-24 |
JP4514824B2 true JP4514824B2 (en) | 2010-07-28 |
Family
ID=40783078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009040039A Active JP4514824B2 (en) | 2009-02-23 | 2009-02-23 | Method for producing labeled silica nanoparticles for immunochromatographic reagent, method for producing conjugate pad for immunochromatographic method, and method for using test strip for immunochromatographic method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4514824B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007248A1 (en) | 2012-07-06 | 2014-01-09 | 凸版印刷株式会社 | Detection system for test substance |
WO2022232610A3 (en) * | 2021-04-29 | 2022-12-08 | Seer, Inc. | Peptide decorated nanoparticles for enrichment of specific protein subsets |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5192752B2 (en) * | 2007-08-15 | 2013-05-08 | 古河電気工業株式会社 | Method for producing silica nanoparticles using reverse micelle dispersion, silica nanoparticles obtained by the method, and labeling reagent using the same |
JP5367490B2 (en) * | 2009-07-29 | 2013-12-11 | 古河電気工業株式会社 | Test strip for immunochromatography |
JP5503382B2 (en) * | 2010-04-05 | 2014-05-28 | 古河電気工業株式会社 | Composite particles for immunochromatography |
JP5416039B2 (en) * | 2010-06-03 | 2014-02-12 | 古河電気工業株式会社 | Labeling reagent silica nanoparticles |
JP5583092B2 (en) * | 2011-09-01 | 2014-09-03 | 古河電気工業株式会社 | Immunochromatographic test kit and detection method using the same |
EP2833144B1 (en) * | 2012-03-28 | 2017-11-08 | Konica Minolta, Inc. | Method for detection biological substance |
JP6248030B2 (en) | 2012-04-06 | 2017-12-13 | コニカミノルタ株式会社 | Analyte detection or quantification method, analyte detection or quantification kit, and lateral flow chromatographic test strip for analyte detection or quantification |
CN102662050B (en) * | 2012-05-24 | 2014-02-19 | 东北师范大学 | Immunoassay method based on infrared absorption property of silicon dioxide nanoparticle |
CN104471398B (en) | 2012-11-28 | 2016-10-26 | 古河电气工业株式会社 | The detection device used in immunochromatographic method, the method |
US20140242720A1 (en) * | 2013-02-27 | 2014-08-28 | Furukawa Electric Co., Ltd. | Kit for immuno-chromatography, reagent for immuno-chromatography, and method of detecting using them |
CN105699347B (en) * | 2016-01-28 | 2018-08-17 | 福州大学 | A kind of method that fluorescence immune chromatography readout instrument range is adjusted |
CN106706931A (en) * | 2016-12-15 | 2017-05-24 | 威海纽普生物技术有限公司 | Progesterone measurement kit and preparation method |
CN106771264A (en) * | 2016-12-15 | 2017-05-31 | 威海纽普生物技术有限公司 | Thyrotropin assay kit and preparation method |
CN106596980A (en) * | 2016-12-15 | 2017-04-26 | 威海纽普生物技术有限公司 | Beta-human chorionic gonadotropin determination kit and preparation method thereof |
CN106645730A (en) * | 2016-12-15 | 2017-05-10 | 威海纽普生物技术有限公司 | Kit for determining lipoprotein-associated phospholipase A2 and manufacturing method |
CN106771128A (en) * | 2016-12-15 | 2017-05-31 | 威海纽普生物技术有限公司 | Parathyroid hormone determines kit and preparation method |
CN106706926A (en) * | 2016-12-16 | 2017-05-24 | 威海纽普生物技术有限公司 | Serum amyloid A testing kit and manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002303629A (en) * | 2001-04-06 | 2002-10-18 | Matsushita Electric Ind Co Ltd | Immune chromatography device and method for determining substance to be tested using the same |
JP2005214670A (en) * | 2004-01-27 | 2005-08-11 | Denka Seiken Co Ltd | Simple detection method, detection device, detection kit and its manufacturing method |
JP2006194785A (en) * | 2005-01-14 | 2006-07-27 | Obihiro Univ Of Agriculture & Veterinary Medicine | Diagnostic kit for equine babesia infection |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006070582A1 (en) * | 2004-12-09 | 2006-07-06 | Techno Network Shikoku. Co., Ltd. | Method of preparing silica sphere containing labeled molecule |
JP5012507B2 (en) * | 2005-07-14 | 2012-08-29 | パナソニック株式会社 | Analysis apparatus and analysis method |
-
2009
- 2009-02-23 JP JP2009040039A patent/JP4514824B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002303629A (en) * | 2001-04-06 | 2002-10-18 | Matsushita Electric Ind Co Ltd | Immune chromatography device and method for determining substance to be tested using the same |
JP2005214670A (en) * | 2004-01-27 | 2005-08-11 | Denka Seiken Co Ltd | Simple detection method, detection device, detection kit and its manufacturing method |
JP2006194785A (en) * | 2005-01-14 | 2006-07-27 | Obihiro Univ Of Agriculture & Veterinary Medicine | Diagnostic kit for equine babesia infection |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007248A1 (en) | 2012-07-06 | 2014-01-09 | 凸版印刷株式会社 | Detection system for test substance |
US9632077B2 (en) | 2012-07-06 | 2017-04-25 | Toppan Printing Co., Ltd. | Detection system of test substance |
WO2022232610A3 (en) * | 2021-04-29 | 2022-12-08 | Seer, Inc. | Peptide decorated nanoparticles for enrichment of specific protein subsets |
Also Published As
Publication number | Publication date |
---|---|
JP2009115822A (en) | 2009-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4514824B2 (en) | Method for producing labeled silica nanoparticles for immunochromatographic reagent, method for producing conjugate pad for immunochromatographic method, and method for using test strip for immunochromatographic method using the same | |
JP4360652B2 (en) | Labeled silica nanoparticles for immunochromatography reagent, immunochromatography reagent, test strip for immunochromatography using the same, and fluorescence detection system for immunochromatography | |
JP5100541B2 (en) | Immunochromatographic conjugate pad containing fluorescent particles and colored particles as labeled particles, immunochromatographic test strip using the same, and inspection method | |
JP6379149B2 (en) | Sensitive immunoassay using coated nanoparticles | |
US10036750B2 (en) | Immunochromatography, and detection device and reagent for the same | |
JP5503382B2 (en) | Composite particles for immunochromatography | |
JP5583092B2 (en) | Immunochromatographic test kit and detection method using the same | |
US9726605B2 (en) | Fluorescence immuno-chromatography, kit and test strip for the same | |
JP5367490B2 (en) | Test strip for immunochromatography | |
JP6734053B2 (en) | Immunochromatographic test strip, developing solution used therein, and immunochromatography using the same | |
JP6523020B2 (en) | Method for detecting or quantifying biomolecules, and labeled reagent particle for detecting or quantifying biomolecules | |
JP5416039B2 (en) | Labeling reagent silica nanoparticles | |
JP5006459B1 (en) | Composite particles for labeling | |
JP6162370B2 (en) | Immunochromatographic specimen | |
JP6605792B2 (en) | Composite labeled particles, target substance detection method using the same, colloidal liquid and labeling reagent, and composite labeled particle manufacturing method | |
JP5480222B2 (en) | Fluorescence immunochromatography method, kit and test strip used therefor | |
JP2017166911A (en) | Detection or quantification method for biomolecule and test kit for detection or quantification of biomolecule | |
JP2017150867A (en) | Test kit for biomolecule detection, biomolecule detection method using this and labeling reagent for biomolecule detection to be used for these | |
JP6523021B2 (en) | Method for detecting or quantifying biomolecules by competitive method, and device for detecting or quantifying biomolecules | |
JP2017181050A (en) | Test kit for biomolecule detection, biomolecule detection method using the same, and labeling reagent particle for biomolecule detection used therein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091104 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091104 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100115 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100115 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100317 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100413 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100511 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4514824 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140521 Year of fee payment: 4 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |