JP4513701B2 - Steel plate for rapid heating and quenching and its manufacturing method - Google Patents
Steel plate for rapid heating and quenching and its manufacturing method Download PDFInfo
- Publication number
- JP4513701B2 JP4513701B2 JP2005268598A JP2005268598A JP4513701B2 JP 4513701 B2 JP4513701 B2 JP 4513701B2 JP 2005268598 A JP2005268598 A JP 2005268598A JP 2005268598 A JP2005268598 A JP 2005268598A JP 4513701 B2 JP4513701 B2 JP 4513701B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- quenching
- phase
- steel
- rapid heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 75
- 239000010959 steel Substances 0.000 title claims description 75
- 238000010791 quenching Methods 0.000 title claims description 74
- 230000000171 quenching effect Effects 0.000 title claims description 73
- 238000010438 heat treatment Methods 0.000 title claims description 52
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000137 annealing Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 16
- 229910000859 α-Fe Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 8
- 238000005096 rolling process Methods 0.000 claims description 8
- 229910001567 cementite Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910001562 pearlite Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910000734 martensite Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910001563 bainite Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 24
- 229910001566 austenite Inorganic materials 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 238000002791 soaking Methods 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 230000009466 transformation Effects 0.000 description 5
- 238000009749 continuous casting Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000002436 steel type Substances 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004093 laser heating Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- -1 C: 0.1% Substances 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、プレス加工等により様々な形状に成形した後、焼入れを施して利用される鋼板とその製造方法、特にプレス成形性並びに急速加熱焼き入れ性に優れた鋼板とその製造方法に関する。 TECHNICAL FIELD The present invention relates to a steel plate that is used after being formed into various shapes by press working or the like and then quenched and used, and more particularly to a steel plate that is excellent in press formability and rapid heat quenchability and a method for manufacturing the same.
自動車の衝突事故の際の、車体破壊のデータが公開され、それが車の売れ行きを支配するなど、搭乗者の安全確保に対するニーズは年々高まってきており、法的規制も厳しくなる傾向にある。自動車の車体は,いわゆるクラッシャブル・ボディー構造が採用され、衝突に際し一部が適度に変形して衝撃を吸収する一方、車室は高強度の構造とし車内の搭乗者を守るように設計される。すなわち、車体には高強度が要求される部位がある。そのような部位には、必要部分に板厚の厚い成形品を用いたり、補強材を取り付けたり、あるいは高強度鋼板を用いて成形したりしている。 The need for ensuring passenger safety is increasing year by year, such as the release of data on car body destruction in the event of a car crash, which controls the sales of cars. Legal regulations tend to be stricter. The car body has a so-called crushable body structure that is partially deformed and absorbs shocks in the event of a collision, while the passenger compartment is designed to have a high-strength structure to protect passengers in the car. . In other words, the vehicle body has a part that requires high strength. In such a part, a molded product having a large plate thickness is used for a necessary part, a reinforcing material is attached, or a high strength steel plate is formed.
しかし、板厚を厚くすることは重量増加につながり、燃費改善ないしは省エネルギーの要求とは相反する。補強にはリブ材のスポット溶接や衝撃吸収用の部品を組み込むが、これも車体重量を増すことになる。また、高強度鋼板は、プレス成形性が劣るため複雑なプレス加工が困難であり、その上、加工による残留応力は強度が高くなるほど増加し、遅れ破壊の危険が増してくるので、その適用ないしは鋼板強度増大には限界がある。 However, increasing the thickness leads to an increase in weight, which contradicts the demand for improved fuel consumption or energy saving. For reinforcement, parts for spot welding of rib material and shock absorption are incorporated, but this also increases the weight of the vehicle body. In addition, high-strength steel sheets are difficult to press complexly due to poor press formability, and the residual stress due to processing increases as the strength increases, increasing the risk of delayed fracture. There is a limit to increasing the strength of steel sheets.
この車体構造の補強に対し、強化が必要な車体の特定部所に適用する鋼板成形部品の板厚を増したり、高強度鋼板を使用したりせず、その所望部分を局所的に高周波加熱して焼入れ処理し、強度を向上させる方法の発明が特許文献1や特許文献2に開示されている。プレス成形後、焼入れし強化するのであれば、高強度鋼板を成形する場合のような、複雑な形状の成形困難とか成形後の大きな残留応力の問題は排除できる。しかしながら、上記公報には高周波焼入れの方法は示されているが、適用する鋼板の種類については具体的な記載がない。
For reinforcement of this body structure, the thickness of the steel sheet molded part applied to a specific part of the vehicle body that needs to be strengthened is not increased, or high strength steel sheet is not used, and the desired part is locally heated at high frequency. Patent Document 1 and
焼入れ用の鋼板には、焼入れ前のプレス成形性が良いことや、焼入れ性が高く、焼入れ後に十分に高強度化することはもちろんのこと、低温、短時間の熱処理により高強度化することが要求される。これは、生産性の向上のみならず、スケール形成の抑制や、めっき鋼板を使用する場合にはめっき被膜の損傷を防止するためである。高周波加熱やレーザー加熱を用いた急速加熱焼入れを行う場合には、炭化物の残存や変態点の上昇が生じるため、加熱温度を低下させることは困難である。 Hardened steel sheets have good press formability before quenching, high quenchability, and high strength after quenching as well as high strength by low-temperature, short-time heat treatment. Required. This is because not only the improvement of productivity but also the suppression of scale formation and the prevention of damage to the plating film when using a plated steel sheet. In the case of performing rapid heating and quenching using high-frequency heating or laser heating, it is difficult to lower the heating temperature because carbides remain and the transformation point increases.
特許文献3や特許文献4には炭化物の球状化率を上げ、平均炭化物粒径を小さくすることにより、焼入れ性及び局部延性を向上させる技術が開示されている。炭化物粒径が小さいので、低温、短時間加熱で高強度化するものと思われる。しかしこれらの技術では長時間、複数回の焼鈍が必要になるので、生産性が著しく劣化する。
また特許文献5にはMnを多量に添加した上、鉄炭化物の平均粒径を小さくすることにより、焼入れ性の安定化を図る技術が開示されている。この方法ではMnによる鋼の焼入れ性は向上し、低温加熱でも高強度化する。しかし鉄炭化物が安定化してしまうため、焼入れ処理時に長時間の加熱をする必要が生じる。
本発明は上記の従来技術の問題点を解決するためになされたものであり、その課題は焼入れ前のプレス成形性並びに急速加熱焼入れ性に優れた鋼板、具体的には低温焼入れ性、すなわち加熱温度が低くても焼入れ後にマルテンサイトから成る組織が得られ、高強度化する性質に優れた鋼板とその製造方法を提供することである。 The present invention has been made to solve the above-mentioned problems of the prior art, and the problem is that the steel sheet is excellent in press formability before quenching and rapid heat quenchability, specifically low temperature quenchability, that is, heating. An object of the present invention is to provide a steel sheet having a martensite structure after quenching even at a low temperature and having excellent properties for increasing strength, and a method for producing the steel sheet.
本発明者らは上記課題の解決に向けて、焼入れ前の鋼板のミクロ組織と焼入れ処理における鋼板の加熱温度と焼入れ後の鋼板の硬さの関係を明確にするために、以下のような実験を行った。なお、本明細書において、鋼成分の含有量はすべて質量%で表示する。 In order to solve the above-mentioned problems, the present inventors conducted the following experiments in order to clarify the relationship between the microstructure of the steel plate before quenching and the heating temperature of the steel plate in the quenching treatment and the hardness of the steel plate after quenching. Went. In addition, in this specification, all content of a steel component is displayed by the mass%.
供試鋼は、質量%で、C:0.10%、Si:0.04%、Mn:1.0%、P:0.011%、S:0.007%、sol. Al:0.021%、N:0.002%、残部Feおよび不純物からなる化学組成を有するものであった。 The test steel was, in mass%, C: 0.10%, Si: 0.04%, Mn: 1.0%, P: 0.011%, S: 0.007%, sol. It had a chemical composition consisting of Al: 0.021%, N: 0.002%, the balance Fe and impurities.
このような化学組成を有する鋼板を、1240℃に加熱した後、850℃以上の温度範囲で熱間圧延し、550℃で巻き取り、得られた熱延鋼板を酸洗し、45〜90%の冷圧率で冷間圧延した。得られた鋼板を連続焼鈍シミュレーターで、加熱温度650℃から900℃まで加熱し60秒間保持した後、60℃/sで450℃まで冷却し、240s保持した後、室温まで冷却した。 A steel plate having such a chemical composition is heated to 1240 ° C., then hot-rolled at a temperature range of 850 ° C. or more, wound up at 550 ° C., and the resulting hot-rolled steel plate is pickled and 45 to 90%. Was cold rolled at a cold pressure ratio of. The obtained steel sheet was heated from 650 ° C. to 900 ° C. with a continuous annealing simulator and held for 60 seconds, then cooled to 450 ° C. at 60 ° C./s, held for 240 s, and then cooled to room temperature.
得られた焼鈍板のミクロ組織観察及び急速加熱試験を行った。急速加熱試験は、焼鈍板を通電加熱装置で、加熱速度100℃/sで650〜950℃の温度まで加熱し、目標温度に達した直後に水焼入れを行い、焼入れ後の硬さ測定及びミクロ組織観察を行った。 The obtained annealed plate was subjected to microstructure observation and rapid heating test. In the rapid heating test, the annealed plate was heated to a temperature of 650 to 950 ° C. at a heating rate of 100 ° C./s with an electric heating device, and immediately after reaching the target temperature, water quenching was performed. Tissue observation was performed.
ミクロ組織観察は圧延方向に沿う断面によって行った。ナイタールで腐食した後、倍率500倍で3視野顕微鏡撮影を行い、画像処理によりバンド状組織の面積率を測定した。ここで圧延方向に平均フェライト粒径の2倍以上にわたり、バンド状に連結した第二相をバンド状組織とみなした。 The microstructure was observed by a cross section along the rolling direction. After corroding with nital, a three-field microscope image was taken at a magnification of 500 times, and the area ratio of the band-like tissue was measured by image processing. Here, the second phase connected in a band shape over the average ferrite grain size in the rolling direction was regarded as a band-like structure.
鋼板の低温焼入れ性は、最高硬さを得るための加熱温度で評価し、Ae3点+30℃以下の加熱温度で最高硬さが得られた場合を良好とした。なおAe3点は下記式から求められる。 The low-temperature hardenability of the steel sheet was evaluated at the heating temperature for obtaining the highest hardness, and the case where the highest hardness was obtained at a heating temperature of Ae3 point + 30 ° C. or less was considered good. In addition, Ae3 point is calculated | required from a following formula.
ここに、Ae3点はA3点の平衡点であって、平衡状態においては当該温度よりも高温であればオーステナイト単相となる温度であり、その後急速冷却することで全面マルテンサイトとなり最高硬さが得られる。しかしながら、実際には、オーステナイト単相となる温度は加熱速度によって平衡点よりも高温側にシフトし、特に急速加熱焼入れの場合にはその傾向が顕著となるため、最高硬さを得るにはAe3点よりも相当高温に加熱する必要が生じる。したがって、最高硬さを得ることが可能な最低加熱温度がAe3点に近いほど急速焼入れ性に優れ好ましいということになる。 Here, A e3 point is a point of equilibrium of the three points A, at equilibrium is the temperature at which the austenite single phase if high temperatures than the temperature, maximum hardness becomes entirely martensite by subsequent rapid cooling Is obtained. However, in practice, the temperature at which the single phase becomes austenite shifts to a higher temperature side than the equilibrium point depending on the heating rate, and this tendency becomes particularly remarkable in the case of rapid heating and quenching. It is necessary to heat to a temperature considerably higher than e3 point. Therefore, it is preferable that the minimum heating temperature at which the maximum hardness can be obtained is closer to the Ae3 point, which is excellent in rapid hardenability.
Ae3(℃)=910-203[C%]1/2+45[Si%]-30[Mn%]-20[Cu%]-15[Ni%]-11[Cr%]+32[Mo%]+104[V%]+400[Ti%]+460[Al%]+13[W%]+120[As%]-700[P%]
これらの予備試験の結果、次の(A)ないし(D)のような結果を得て、本発明を完成させた。
A e3 (° C) = 910-203 [C%] 1/2 +45 [Si%]-30 [Mn%]-20 [Cu%]-15 [Ni%]-11 [Cr%] + 32 [Mo %] + 104 [V%] + 400 [Ti%] + 460 [Al%] + 13 [W%] + 120 [As%]-700 [P%]
As a result of these preliminary tests, the following results (A) to (D) were obtained to complete the present invention.
(A)図1、2は焼入れ後の硬さと鋼板の加熱温度の関係を示すグラフである。焼入れ後の硬さは、鋼板の加熱温度に伴い上昇し、臨界温度(Tc)でC含有量に応じた最高焼入れ硬さが得られる。 (A) FIGS. 1 and 2 are graphs showing the relationship between the hardness after quenching and the heating temperature of the steel sheet. The hardness after quenching increases with the heating temperature of the steel sheet, and the maximum quenching hardness according to the C content is obtained at the critical temperature (Tc).
(B)図3はTcとバンド状組織の面積率の関係を示すグラフである。Tcは焼入れ前の鋼板のミクロ組織によって変化し、バンド状組織の面積率(VB)が小さい程Tcは低下し、VBを6.0%以下にすれば、TcはAe3点+30℃以下になる。
なおVBは、平均フェライト粒径の2倍以上にわたり、圧延方向にバンド状に連結した第二相が組織全体に占める面積率、と定義した。
(B) FIG. 3 is a graph showing the relationship between Tc and the area ratio of the band-like tissue. Tc varies depending on the microstructure of the steel sheet before quenching, and the smaller the area ratio (V B ) of the band-like structure, the lower Tc. If V B is made 6.0% or less, Tc becomes Ae3 point + 30 ° C. It becomes the following.
V B was defined as the area ratio of the second phase connected in a band shape in the rolling direction over the entire ferrite structure over twice the average ferrite grain size.
(C)図4は冷圧率(CR)、均熱温度(TA)とVBの関係を示すグラフである。図中、「×」はVB >6.0%の場合を、「○」はVB ≦6.0%の場合を示す。VBはCRとTAと相関関係を有し、VBを小さくするためには、Ac1点以上であり、かつ冷圧率に応じた下記式(1)に示す温度範囲内で焼鈍する必要がある。この原因は明らかではないが、以下の理由のためと考えられる。 (C) Figure 4 is a graph showing the relationship between V B and cold rolling reduction ratio (CR), the soaking temperature (TA). In the figure, “x” indicates a case where V B > 6.0%, and “◯” indicates a case where V B ≦ 6.0%. V B has a correlation with CR and TA, and in order to reduce V B , it is necessary to perform annealing within the temperature range indicated by the following formula (1) that is equal to or higher than Ac 1 point and corresponding to the cold pressure ratio. There is. The reason for this is not clear, but may be due to the following reasons.
Ac1<(TA)<Ac1+(Ac3−Ac1)(CR−10)/100 ・・・(1)
1.焼鈍中にオーステナイト化した部分には冷却後、第二相が生成する。
2.オーステナイトの核生成サイトはCRが高いほど多くなる。
3.TAが高くなるとオーステナイトがバンド状に連結する。
A c1 <(TA) <A c1 + (A c3 −A c1 ) (CR−10) / 100 (1)
1. The second phase is formed after cooling in the austenitic part during annealing.
2. The higher the CR, the more austenite nucleation sites.
3. As TA increases, austenite is linked in a band shape.
(D)したがって冷圧率を高め、低温で焼鈍することによって、バンド状第二相の生成が抑制され、焼入れ処理における鋼板の加熱温度を低下させることができる。
本発明は以上の知見に基づき、完成させた。本発明の要旨は次のとおりである。
(D) Therefore, by increasing the cold pressure rate and annealing at a low temperature, the generation of the band-like second phase is suppressed, and the heating temperature of the steel sheet in the quenching process can be lowered.
The present invention has been completed based on the above findings. The gist of the present invention is as follows.
(1)質量%で、C:0.06%以上0.25%以下、Si:0.3%以下、Mn:0.5%以上1.5%以下、P:0.03%以下、S:0.02%以下、sol. Al:0.1%以下およびN:0.005%以下を含有し、残部Feおよび不純物からなる化学組成を有し、主相であるフェライト相と27面積%以下の第二相とからなる組織を有するとともに、前記第二相はパーライト、ベイナイト、マルテンサイトおよびセメンタイトの一種または二種以上からなり、平均フェライト粒径の2倍以上にわたり、圧延方向にバンド状に連結した前記第二相が組織全体に占める面積率が6.0%以下であることを特徴とする急速加熱焼入れ用連続焼鈍鋼板。 (1) By mass%, C: 0.06% to 0.25%, Si: 0.3% or less, Mn: 0.5% to 1.5%, P: 0.03% or less, S : 0.02% or less, sol. A structure containing Al: 0.1% or less and N: 0.005% or less, having a chemical composition comprising the balance Fe and impurities, and comprising a ferrite phase as a main phase and a second phase of 27 area% or less And the second phase is composed of one or more of pearlite, bainite, martensite and cementite, and the second phase connected in a band shape in the rolling direction over two times the average ferrite grain size. A continuously annealed steel sheet for rapid heating and quenching, characterized in that the area ratio in the whole is 6.0% or less.
(2)前記化学組成が、質量%で、さらに、B:0.003%以下およびTi:0.03%以下からなる群から選ばれる一種または二種を含有することを特徴とする上記(1)に記載の急速加熱焼入れ用連続焼鈍鋼板。 (2) The above-mentioned chemical composition (1), wherein the chemical composition further comprises one or two selected from the group consisting of B: 0.003% or less and Ti: 0.03% or less in terms of mass%. ) Continuously annealed steel sheet for rapid heating and quenching.
(3)前記化学組成が、質量%で、さらに、Cr:1.0%以下、Mo:1.0%以下、W:1.0%以下およびNi:1.0%以下からなる群から選ばれる一種または二種以上を含有することを特徴とする上記(1)または(2)に記載の急速加熱焼入れ用連続焼鈍鋼板。 (3) The chemical composition is selected from the group consisting of% by mass, Cr: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, and Ni: 1.0% or less. The continuous annealing steel plate for rapid heating and quenching according to the above (1) or (2), characterized by containing one or more of the above.
(4)上記(1)〜(3)の何れかに記載の化学組成を有する鋼塊または鋼片を熱間圧延し、冷圧率(CR)55%以上で冷間圧延し、下記式(1)を満足する均熱温度(TA)で焼鈍することによって、フェライト相を主相とし第二相を含む組織を有し、第二相から成るバンド状組織の面積率を6.0%以下とすることを特徴とする、急速加熱焼入れ用連続焼鈍鋼板の製造方法。 (4) A steel ingot or steel slab having the chemical composition according to any one of the above (1) to (3) is hot-rolled and cold-rolled at a cold pressure ratio (CR) of 55% or more. By annealing at a soaking temperature (TA) satisfying 1), the ferrite phase is the main phase and the second phase is included, and the area ratio of the band-like structure consisting of the second phase is 6.0% or less. A method for producing a continuously annealed steel sheet for rapid heating and quenching, characterized in that:
Ac1<(TA)<Ac1+(Ac3−Ac1)(CR−10)/100 ・・・(1) A c1 <(TA) <A c1 + (A c3 −A c1 ) (CR−10) / 100 (1)
本発明によれば、プレス成形性に優れ、かつ急速加熱焼入れ時の加熱温度がAe3+30℃以下であっても、焼入れ最高硬さが得られる鋼板およびその製造方法が提供される。 According to the present invention, there are provided a steel plate having excellent press formability and capable of obtaining the maximum hardness of quenching even when the heating temperature at the time of rapid heating and quenching is A e3 + 30 ° C. or less, and a method for producing the same.
本発明のミクロ組織、鋼成分の化学組成、及び製造条件の限定理由について詳述する。
(1)鋼のミクロ組織
本発明に係る鋼板は、フェライト相を主相とし、第二相を含む組織を有し、組織全体に占めるバンド状組織の面積率を6.0%以下とする。これはバンド状組織の形成を抑制することにより、急速加熱、焼入れによって最高硬さを得るのに必要な加熱温度を、Ae3+30℃以下にできるからである。
The microstructure of the present invention, the chemical composition of the steel components, and the reasons for limiting the production conditions are described in detail.
(1) Steel microstructure The steel sheet according to the present invention has a ferrite phase as a main phase and a structure including a second phase, and the area ratio of the band-like structure in the entire structure is 6.0% or less. This is because by suppressing the formation of a band-like structure, the heating temperature required to obtain the maximum hardness by rapid heating and quenching can be reduced to A e3 + 30 ° C. or lower.
第二相としては、パーライト、ベイナイト、マルテンサイト、セメンタイト等を挙げることができるが、焼入れ前の成形性を向上させるために、パーライトまたはセメンタイトであることが望ましい。なお、ここに「主相」とは、体積率が最大である相のことであり、また第二相は、例えばパーライトとセメンタイトの様に二種以上の相または組織を含んでいても良い。また焼入れ前のプレス成形性を向上させるために、第二相全体の面積率を10%以下とすることが好ましい。 Examples of the second phase include pearlite, bainite, martensite, cementite, and the like. In order to improve the formability before quenching, pearlite or cementite is desirable. Here, the “main phase” is a phase having the maximum volume fraction, and the second phase may contain two or more phases or structures such as pearlite and cementite. In order to improve the press formability before quenching, the area ratio of the entire second phase is preferably 10% or less.
(2)鋼の化学組成
C:Cは、焼入れ後の鋼の強度を決定する重要な元素であり、C含有量が低すぎると焼入れ後に十分な強度が得られない。一方、C含有量が高すぎると、焼入れ後の靱性や耐遅れ破壊性が劣化するばかりか、焼入れ前の延性が低下しプレス成形性が損なわれる。したがって、Cの含有量を0.06%以上0.25%以下と定める。好ましい含有量は0.09%超え、0.12%未満である。
(2) Chemical composition of steel C: C is an important element that determines the strength of steel after quenching. If the C content is too low, sufficient strength cannot be obtained after quenching. On the other hand, if the C content is too high, not only the toughness and delayed fracture resistance after quenching deteriorate, but also the ductility before quenching decreases and the press formability is impaired. Therefore, the C content is determined to be 0.06% or more and 0.25% or less. A preferable content is more than 0.09% and less than 0.12%.
Si:Siは、不純物として含有されるが、鋼の焼入れ性を高める作用を有するので、当該作用による効果を目的として含有させることができる。ただし、過剰に含有させると化成処理性やめっき性を劣化させるため、Si含有量は0.3%以下とする。好ましくは0.1%以下である。上記作用による効果を確実に得るには、Si含有量を0.01%以上含有させることが好ましい。 Si: Si is contained as an impurity, but has an effect of enhancing the hardenability of the steel, and therefore can be contained for the purpose of the effect of the effect. However, the Si content is set to 0.3% or less because excessive conversion causes deterioration of chemical conversion properties and plating properties. Preferably it is 0.1% or less. In order to surely obtain the effect by the above action, the Si content is preferably 0.01% or more.
Mn: Mnは、鋼の焼入れ性を確保するために重要な元素であるので0.5%以上含有させる。一方、過剰に含有させると焼入れ前のプレス成形性を劣化させるうえに、炭化物が安定化して焼入れ処理時の加熱時に溶け残りやすくなり、低温焼入れ性が損なわれる場合がある。したがって、Mnの含有量を0.5%以上1.5%以下とする。好ましくは、1.0%以上1.3%以下である。 Mn: Since Mn is an important element for securing the hardenability of steel, 0.5% or more is contained. On the other hand, if it is contained excessively, the press formability before quenching is deteriorated, and the carbide is stabilized and tends to remain undissolved during heating during the quenching treatment, and the low temperature quenchability may be impaired. Therefore, the Mn content is set to 0.5% or more and 1.5% or less. Preferably, it is 1.0% or more and 1.3% or less.
P:Pは不可避不純物であり、焼入れ前の成形性および焼入れ後の靱性を劣化させる。したがって、含有量は少ないほど好ましく、P含有量を0.03%以下とした。好ましくは0.015%以下である。 P: P is an inevitable impurity and deteriorates the formability before quenching and the toughness after quenching. Therefore, the smaller the content, the better. The P content is set to 0.03% or less. Preferably it is 0.015% or less.
S:Sも不可避不純物であり、焼入れ前の成形性および焼入れ後の靱性を劣化させる。したがって、含有量は少ないほど好ましく、S含有量を0.02%以下とした。好ましくは0.01%以下である。 S: S is also an inevitable impurity, and deteriorates the formability before quenching and the toughness after quenching. Therefore, the smaller the content, the better. The S content is set to 0.02% or less. Preferably it is 0.01% or less.
Al:Alは、不純物として含有されるが、製鋼工程で脱酸を目的として添加することもできる。しかし含有量が多すぎると製造コストの上昇を招く。したがってAl含有量を0.1%以下と定めた。好ましくは0.03%以下である。なお、上記脱酸の効果を確実に得るには、Al含有量を0.005%以上とすることが好ましい。 Al: Al is contained as an impurity, but can also be added for the purpose of deoxidation in the steelmaking process. However, if the content is too large, the production cost increases. Therefore, the Al content is determined to be 0.1% or less. Preferably it is 0.03% or less. In addition, in order to acquire the said deoxidation effect reliably, it is preferable that Al content shall be 0.005% or more.
N:Nは不可避不純物であり、N含有量の増加は焼入れ前の成形性を劣化させる。そのためN含有量を0.01%以下と定めた。好ましくは0.005%以下である。
本発明においては上記元素に加えてさらに次の元素を含有させても良い。
N: N is an unavoidable impurity, and an increase in the N content deteriorates the formability before quenching. Therefore, the N content is set to 0.01% or less. Preferably it is 0.005% or less.
In the present invention, the following elements may be further contained in addition to the above elements.
B:Bは焼入れ性を向上させる作用を有するので、当該作用による効果を目的として含有させることができる。しかし、過剰に含有させると焼入れ前の成形性を劣化させる場合があるので、Bの含有量を0.003%以下とすることが好ましい。前記効果はB含有量によらずほぼ一定であるが、前記効果をより確実に得るには0.0003%以上含有させることが好ましい。 B: Since B has the effect | action which improves hardenability, it can be contained for the purpose of the effect by the said effect | action. However, since an excessive content may deteriorate the formability before quenching, the B content is preferably 0.003% or less. The effect is almost constant regardless of the B content, but 0.0003% or more is preferable for obtaining the effect more reliably.
Ti:Tiは焼入れ性を向上させる作用を有するとともに、鋼中の固溶Nを析出固定して成形性を向上させる作用を有するので、当該作用による効果を目的として含有させることができる。しかし、過剰に含有させるとTiCの析出量が増し、焼入れ後の強度が低下する場合があるので、Ti含有量を0.03%以下とすることが好ましい。前記効果を確実に得るには0.003%以上含有させることが好ましい。また、TiはBNの析出を抑制する作用を有し、その結果Bによる焼入れ性を高める効果を奏するので、TiとBとを共に含有させることが好ましい。 Ti: Ti has the effect of improving the hardenability and has the effect of improving the formability by precipitating and fixing solid solution N in the steel, so that it can be contained for the purpose of the effect of the action. However, if excessively contained, the amount of TiC precipitated increases and the strength after quenching may decrease, so the Ti content is preferably 0.03% or less. In order to reliably obtain the above effects, it is preferable to contain 0.003% or more. Moreover, since Ti has the effect | action which suppresses precipitation of BN and, as a result, there exists an effect which improves the hardenability by B, it is preferable to contain Ti and B together.
Cr、Mo、W、Ni
Cr、Mo、W、Niは焼入れ性を向上させる作用を有するので、当該作用による効果を目的として含有させることができる。しかし、過剰に含有させると焼入れ前の成形性を劣化させる場合がある。したがって、各元素の含有量を1.0%以下とすることが好ましい。より好ましくは0.60%以下である。前記効果を確実に得るには何れかの元素の含有量を0.02%以上とすることが好ましく、0.06%以上とすることがさらに好ましい。
Cr, Mo, W, Ni
Since Cr, Mo, W, and Ni have the effect | action which improves hardenability, they can be contained for the purpose of the effect by the said effect | action. However, when it contains excessively, the moldability before quenching may be deteriorated. Therefore, the content of each element is preferably 1.0% or less. More preferably, it is 0.60% or less. In order to surely obtain the above effect, the content of any element is preferably 0.02% or more, and more preferably 0.06% or more.
(3)製造条件
前記化学組成を有する鋼は、常法により溶製後、連続鋳造により鋼塊、或いは、鋳造後に分塊圧延して鋼片とする。生産性の観点からは連続鋳造法を用いることが好ましい。
(3) Manufacturing conditions The steel having the above chemical composition is melted by a conventional method and then rolled into a steel ingot by continuous casting or into pieces after the casting. From the viewpoint of productivity, it is preferable to use a continuous casting method.
連続鋳造の場合には、鋳造速度が2.0m/min以上では、Mnの中心偏析あるいはV字状偏析が生じやすくなるが、これらの偏析はバンド状組織の形成基点となるため抑制するのがよく、鋳造速度を2.0m/min未満とすることが好ましい。一方、鋳造速度が1.2m/min未満では、鋳片表面部の清浄度が劣化し、さらに生産性も低下するので、鋳造速度を1.2m/min以上とするのが好ましい。 In the case of continuous casting, when the casting speed is 2.0 m / min or more, center segregation or V-shaped segregation of Mn is likely to occur. However, since these segregations become the formation base points of the band-like structure, they should be suppressed. The casting speed is preferably less than 2.0 m / min. On the other hand, when the casting speed is less than 1.2 m / min, the cleanliness of the slab surface portion deteriorates and the productivity also decreases. Therefore, the casting speed is preferably set to 1.2 m / min or more.
連続鋳造等によって製造された鋼塊また鋼片は、常法にて熱間圧延する。熱間圧延条件は特に限定しないが、熱間圧延工程において炭化物を均一に生成させた方が有利である。そこでバンド状組織の形成を抑制するために、1000〜1300℃として圧延を開始し、仕上げ圧延を850℃以上で行うことが好ましい。また巻取温度は、冷延、焼鈍後の成形性を向上させるためには高い方が望ましいが、高すぎるとスケール生成により歩留まりが低下するので、500℃以上600℃以下で巻き取るのが好ましい。 A steel ingot or steel slab produced by continuous casting or the like is hot-rolled by a conventional method. The hot rolling conditions are not particularly limited, but it is advantageous to uniformly generate carbides in the hot rolling process. Therefore, in order to suppress the formation of a band-like structure, it is preferable to start rolling at 1000 to 1300 ° C. and perform finish rolling at 850 ° C. or higher. The coiling temperature is preferably higher in order to improve the formability after cold rolling and annealing, but if it is too high, the yield decreases due to scale formation. .
冷間圧延は、前記熱間圧延により得られた熱延鋼板を酸洗等により脱スケールした後、常法に従って行われる。再結晶焼鈍により良好なプレス成形性を得るために、冷圧率は55%以上とする。 Cold rolling is performed according to a conventional method after descaling the hot-rolled steel sheet obtained by the hot rolling by pickling or the like. In order to obtain good press formability by recrystallization annealing, the cold pressure ratio is 55% or more.
冷間圧延された鋼板は、必要に応じて常法に従って脱脂などの処理が施され、再結晶焼鈍される。この時の均熱温度(TA)は下記式(1)を満足させることとする。これはバンド状組織の形成を防止し、鋼板の低温焼入れ性を向上させるためである。CRは冷圧率(単位:%)である。例えば、650℃〜900℃の温度領域に5s以上保持する。 The cold-rolled steel sheet is subjected to a treatment such as degreasing according to a conventional method as necessary, and is recrystallized and annealed. The soaking temperature (TA) at this time satisfies the following formula (1). This is for preventing the formation of a band-like structure and improving the low-temperature hardenability of the steel sheet. CR is a cold pressure rate (unit:%). For example, it is held for 5 s or more in the temperature range of 650 ° C. to 900 ° C.
Ac1<(TA)<Ac1+(Ac3−Ac1)(CR−10)/100 ・・・(1)
均熱温度以外は特に規定しないが、生産性を向上させるためには、連続焼鈍ラインで焼鈍し、均熱時間は2分未満とすることが好ましく、また焼鈍後の冷却時にバンド状組織が生成することを防ぐために、均熱後650℃から450℃までの平均冷却速度を60℃/s以上とすることが好ましい。
A c1 <(TA) <A c1 + (A c3 −A c1 ) (CR−10) / 100 (1)
Although there are no particular restrictions other than the soaking temperature, in order to improve productivity, it is preferable that annealing is performed in a continuous annealing line, and the soaking time is preferably less than 2 minutes, and a band-like structure is formed during cooling after annealing. In order to prevent this, the average cooling rate from 650 ° C. to 450 ° C. after soaking is preferably 60 ° C./s or more.
本発明の方法に従って製造される鋼板は、これを母材として電気めっきを施したり、塗装鋼板にして用いることもできる。また、冷間圧延後の鋼板を、溶融めっき装置に装備されている加熱炉で焼鈍し、溶融めっきして、めっき鋼板にしてもかまわない。 The steel plate produced according to the method of the present invention can be electroplated or used as a coated steel plate as a base material. Further, the steel sheet after cold rolling may be annealed in a heating furnace equipped in a hot dipping apparatus, hot dipped, and made into a plated steel sheet.
このようにして得られた本発明にかかる鋼板は、必要によりさらに小片に分割され、プレス成形などにより所定の形状が付与されてから、急速加熱焼入れが行われ、さらに必要により焼鈍処理を経て、最終製品とする。このときの「急速加熱焼入れ」は、具体的には、高周波焼入れ、レーザ加熱焼入れ、通電加熱焼入れなどを指し示すが、一般には高周波焼入れの条件での焼入れ処理を示す。 The steel plate according to the present invention thus obtained is further divided into small pieces as necessary, and given a predetermined shape by press molding or the like, then subjected to rapid heating and quenching, and further through an annealing treatment if necessary, Final product. The “rapid heating quenching” at this time specifically indicates induction quenching, laser heating quenching, electric heating quenching, and the like, but generally indicates quenching treatment under conditions of induction quenching.
そのような急速加熱焼入れを行う車体部位としては、高強度化を図ることで車体軽量化を図ることができる部位であればいずれであってもよく、例えば、ピラー、ドアビーム、ルーフやバンパのレインフォースなどがある。このときの焼入れは、成形前の鋼板に局部焼入れの形態で行ってもよく、組立て前の部品に全体または局部焼入れの形態で行ってもよく、あるいは組立て後に局部焼入れの形態で行ってもよい。 The vehicle body part that performs such rapid heating and quenching may be any part that can reduce the weight of the vehicle body by increasing the strength, for example, the rain of a pillar, a door beam, a roof, or a bumper. There are forces. The quenching at this time may be performed in the form of local quenching on the steel sheet before forming, may be performed in the form of whole or local quenching on the parts before assembly, or may be performed in the form of local quenching after assembly. .
本発明によれば、急速加熱焼入れ性、つまり低温焼入れが可能となり、実用上の利益は大きい。そのような効果を実現する機構について明らかでないが、次のように推測される。 According to the present invention, rapid heating hardenability, that is, low-temperature quenching is possible, and there is a great practical advantage. Although the mechanism for realizing such an effect is not clear, it is presumed as follows.
焼入れ可能な加熱温度は、加熱中のオーステナイト変態完了温度によって決定される。オーステナイト変態は、加熱温度がA1点に達した段階で炭化物からオーステナイト核が生成し、加熱温度の上昇に伴ってオーステナイトが成長することによって完了する。バンド状組織の形成は、オーステナイト核生成サイトが偏在していることを意味するため、バンド状組織の面積率が高い程、オーステナイト変態完了が遅延する。従って、本発明の様にバンド状組織の形成を抑制すれば、加熱中のオーステナイト核生成が均一分散して生じ、オーステナイト変態が速やかに完了するため、焼入れ可能温度も低温化すると考えられる。 The heating temperature at which quenching is possible is determined by the austenite transformation completion temperature during heating. Austenite transformation is completed by heating temperature austenite nuclei produced from carbides at the stage of reaching the point A, austenite grows with increasing heating temperature. The formation of the band-like structure means that austenite nucleation sites are unevenly distributed, and the higher the area ratio of the band-like structure, the more the completion of the austenite transformation is delayed. Therefore, if the formation of a band-like structure is suppressed as in the present invention, austenite nucleation during heating is caused to be uniformly dispersed and the austenite transformation is completed quickly, so that the quenchable temperature is also lowered.
本発明の実施例について以下に説明する。
(実施例1)
実験用真空溶解炉を用い、表1に示す組成の鋼を溶製した。鋼組成としては、C:0.1%、Mn:1.0%、Si:0.04%、P:0.012%、S:0.005%、Al:0.02%、N:0.002%を目標基準組成とし、成分量の影響を見るため、C、Mn、B、Ti、Cr、Mo、W、およびNiのそれぞれについて、他の成分を一定として変化させた。
Examples of the present invention will be described below.
Example 1
Steels having the compositions shown in Table 1 were melted using a laboratory vacuum melting furnace. As steel composition, C: 0.1%, Mn: 1.0%, Si: 0.04%, P: 0.012%, S: 0.005%, Al: 0.02%, N: 0 In order to see the effect of the component amount with 0.002% as the target reference composition, the other components were changed to be constant for each of C, Mn, B, Ti, Cr, Mo, W, and Ni.
これらの鋳塊を鍛造して20mm厚の熱間圧延用スラブとし、1200℃に均熱後、熱間圧延をおこなって4mm厚に仕上げ、強制空冷あるいは水スプレーによるホットストリップミルを想定した冷却条件にて600℃まで冷却し、直ちに得られた鋼板をそれぞれこの温度に保定した炉に投入して、巻取り後のコイルを想定した条件にて冷却した。これらの熱延鋼板を、表面の脱スケール後に冷間圧延を行って1mm厚に仕上げ、連続焼鈍シミュレーターによって焼鈍温度750℃にて連続焼鈍を模擬した焼鈍を行った。 These ingots are forged into slabs for hot rolling with a thickness of 20 mm, soaked at 1200 ° C., then hot rolled to a thickness of 4 mm, and cooling conditions assuming a hot strip mill by forced air cooling or water spray The steel plate obtained immediately was put into a furnace maintained at this temperature and cooled under the conditions assuming the coil after winding. These hot-rolled steel sheets were cold-rolled after surface descaling and finished to a thickness of 1 mm, and were annealed by simulating continuous annealing at an annealing temperature of 750 ° C. using a continuous annealing simulator.
各鋼板から、厚さ1mm、幅100mm、長さ490mmの試験片を採取し、出力200kW、周波数10kHzの高周波焼入れ装置により、加熱温度950℃、2秒間保持後水冷の条件にて焼入れ処理をおこなった。その後、JIS5号引張試験片に成形し、引張試験に供した。 A test piece having a thickness of 1 mm, a width of 100 mm, and a length of 490 mm was taken from each steel plate, and subjected to a quenching process under a water cooling condition after holding at a heating temperature of 950 ° C. for 2 seconds with an induction hardening apparatus having an output of 200 kW and a frequency of 10 kHz. It was. Then, it shape | molded to the JIS5 tension test piece and used for the tension test.
本発明において、「プレス成形性」は引張強さをもって評価し、それが500MPa以下である場合に、「プレス成形性に優れている」とした。また、「急速加熱焼入れ性」は、急速加熱焼入れ試験において最高硬さを得ることができる最低加熱温度でもって評価し、それがAe3+30℃以下である場合に、「急速加熱焼入れ性に優れている」とした。 In the present invention, “press formability” is evaluated by tensile strength, and when it is 500 MPa or less, “excellent press formability” is defined. In addition, “rapid heat quenchability” is evaluated at the lowest heating temperature at which the highest hardness can be obtained in the rapid heat quench test, and when it is A e3 + 30 ° C. or less, “ "
焼入れ前後の引張試験結果を表2にそれぞれ示す。 Table 2 shows the tensile test results before and after quenching.
鋼種No.1〜4の結果から、C含有量が少ないと焼入れ後に十分な強度が得られず、多すぎると靱性が劣化するが、本発明の範囲内とすれば、加工前に十分な成形性を有し、焼入れ後の強度と靱性を満足することがわかる。 Steel type no. From the results of 1-4, if the C content is low, sufficient strength cannot be obtained after quenching, and if it is too high, the toughness deteriorates. However, if within the scope of the present invention, sufficient formability is obtained before processing. It can be seen that the strength and toughness after quenching are satisfied.
鋼種No.5〜8の結果から、Mn含有量の増加とともに、焼入れ前の素材の状態では伸びが低下し加工性が悪くなるが、本発明範囲内とすれば、加工前の伸びは十分大きく、焼入れ後の強度も大きいことがわかる。 Steel type no. From the results of 5 to 8, as the Mn content is increased, the elongation is lowered and the workability is deteriorated in the state of the material before quenching, but if it is within the range of the present invention, the elongation before the processing is sufficiently large, after quenching. It can be seen that the strength of is also high.
鋼種No.9〜14の結果からB、Ti、Cr、Mo、W、Niを添加しても、焼入れ前強度及び焼入れ後強度、靱性に悪影響を与えないことが分かる。
(実施例2)
表1の鋼種No.2または3の組成を持つ鋼を、鋳造速度1.5m/minで連続鋳造してスラブとした後、850℃以上の温度範囲で熱間圧延を行い、冷却して600℃で巻き取り、熱延板を得た。得られた熱延板を板厚2〜12mmまで研削し冷延して、圧下率が異なる板厚1.2mmの鋼板を作成した。
Steel type no. From the results of 9 to 14, it can be seen that the addition of B, Ti, Cr, Mo, W, and Ni does not adversely affect the strength before quenching, the strength after quenching, and the toughness.
(Example 2)
Steel type No. in Table 1 A steel having a composition of 2 or 3 is continuously cast at a casting speed of 1.5 m / min to form a slab, then hot-rolled in a temperature range of 850 ° C. or higher, cooled and wound at 600 ° C. A rolled sheet was obtained. The obtained hot-rolled sheet was ground to a thickness of 2 to 12 mm and cold-rolled to prepare a steel sheet having a thickness of 1.2 mm with different rolling reduction.
作成した鋼板を連続焼鈍シミュレーターによって、表3の条件で焼鈍し、室温まで冷却した後、断面ミクロ組織写真を撮影し、画像解析ソフトを用いてバンド状炭化物の面積率VBを測定した。VBを測定した鋼板を、種々の温度まで急速加熱、急冷した後、断面硬さ測定を行った。バンド状炭化物率VBと冷圧率、均熱温度の関係を表3に示す。 The prepared steel sheet was annealed with a continuous annealing simulator under the conditions shown in Table 3, cooled to room temperature, a cross-sectional microstructure photograph was taken, and the area ratio V B of the band-like carbide was measured using image analysis software. The steel sheet was measured V B, rapid heating to various temperatures, after quenching, was cross-sectional hardness measurement. Band-like carbides ratio V B and the cold rolling reduction ratio, the relationship between the soaking temperature shown in Table 3.
本発明の範囲内で製造された鋼板(試番5、6、9、10、11、13、14、15、21、25、26、29、30)は、バンド状炭化物の面積率(パーライト率、VB)が6.0%以下であった。
The steel plates manufactured within the scope of the present invention (
これらの鋼板を、種々の温度まで急速加熱、急冷し、焼入れ後の硬さ測定を行った。VBと各加熱温度での焼入れ後の硬さを表4に示す。VBが6.0%以下の鋼板はAe3+30℃の加熱で最高硬さが得られるが、6.0%以上の鋼板は、Ae3+30℃の加熱では最高硬さに到達しなかった。 These steel sheets were rapidly heated and rapidly cooled to various temperatures, and the hardness after quenching was measured. Table 4 shows the hardness after quenching at V B and each heating temperature. Steel plates with V B of 6.0% or less can obtain the maximum hardness by heating at A e3 + 30 ° C, but steel plates with 6.0% or more did not reach the maximum hardness by heating at A e3 + 30 ° C. .
Claims (4)
Ac1<(TA)<Ac1+(Ac3−Ac1)(CR−10)/100 ・・・(1) A steel ingot or steel slab having the chemical composition according to any one of claims 1 to 3 is hot-rolled and cold-rolled at a cold pressure ratio (CR) of 55% or more to satisfy the following formula (1). By annealing at a thermal temperature (TA), it has a structure including a ferrite phase as a main phase and a second phase, and the area ratio of the band-shaped structure composed of the second phase is 6.0% or less. The manufacturing method of the continuous annealing steel plate for rapid heating quenching.
A c1 <(TA) <A c1 + (A c3 −A c1 ) (CR−10) / 100 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005268598A JP4513701B2 (en) | 2005-09-15 | 2005-09-15 | Steel plate for rapid heating and quenching and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005268598A JP4513701B2 (en) | 2005-09-15 | 2005-09-15 | Steel plate for rapid heating and quenching and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007077466A JP2007077466A (en) | 2007-03-29 |
JP4513701B2 true JP4513701B2 (en) | 2010-07-28 |
Family
ID=37938067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005268598A Active JP4513701B2 (en) | 2005-09-15 | 2005-09-15 | Steel plate for rapid heating and quenching and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4513701B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140139057A (en) | 2012-03-30 | 2014-12-04 | 가부시키가이샤 고베 세이코쇼 | Hot-dip galvanized steel sheet for stamping having excellent cold workability, die hardenability, and surface quality, and producing method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10259448A (en) * | 1997-03-21 | 1998-09-29 | Kobe Steel Ltd | High strength steel sheet excellent in static absorbed energy and impact resistance and its production |
JPH11256268A (en) * | 1998-03-12 | 1999-09-21 | Nisshin Steel Co Ltd | Steel sheet excellent in local ductility and heat threatability |
JP2000017385A (en) * | 1998-06-29 | 2000-01-18 | Nippon Steel Corp | Dual-phase-type high strength cold rolled steel sheet excellent in dynamic deformability, and its production |
JP2000248338A (en) * | 1998-12-28 | 2000-09-12 | Kobe Steel Ltd | Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof |
JP2000256733A (en) * | 1999-03-10 | 2000-09-19 | Fuji Electronics Industry Co Ltd | Induction hardening device |
JP2002053931A (en) * | 2000-05-31 | 2002-02-19 | Kawasaki Steel Corp | Cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method |
JP2003213369A (en) * | 2002-01-11 | 2003-07-30 | Nippon Steel Corp | High-strength steel sheet, high-strength galvanized steel sheet and high-strength galvannealed steel sheet having excellent stretch-flanging property and impact resistance, and production method therefor |
JP2004323944A (en) * | 2003-04-25 | 2004-11-18 | Sumitomo Metal Ind Ltd | Hot dip galvanized steel sheet for quenching, its production method, and its use |
-
2005
- 2005-09-15 JP JP2005268598A patent/JP4513701B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10259448A (en) * | 1997-03-21 | 1998-09-29 | Kobe Steel Ltd | High strength steel sheet excellent in static absorbed energy and impact resistance and its production |
JPH11256268A (en) * | 1998-03-12 | 1999-09-21 | Nisshin Steel Co Ltd | Steel sheet excellent in local ductility and heat threatability |
JP2000017385A (en) * | 1998-06-29 | 2000-01-18 | Nippon Steel Corp | Dual-phase-type high strength cold rolled steel sheet excellent in dynamic deformability, and its production |
JP2000248338A (en) * | 1998-12-28 | 2000-09-12 | Kobe Steel Ltd | Steel sheet for induction hardening excellent in toughness in hardened part, induction hardening strengthened member and production thereof |
JP2000256733A (en) * | 1999-03-10 | 2000-09-19 | Fuji Electronics Industry Co Ltd | Induction hardening device |
JP2002053931A (en) * | 2000-05-31 | 2002-02-19 | Kawasaki Steel Corp | Cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method |
JP2003213369A (en) * | 2002-01-11 | 2003-07-30 | Nippon Steel Corp | High-strength steel sheet, high-strength galvanized steel sheet and high-strength galvannealed steel sheet having excellent stretch-flanging property and impact resistance, and production method therefor |
JP2004323944A (en) * | 2003-04-25 | 2004-11-18 | Sumitomo Metal Ind Ltd | Hot dip galvanized steel sheet for quenching, its production method, and its use |
Also Published As
Publication number | Publication date |
---|---|
JP2007077466A (en) | 2007-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2581465B1 (en) | Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article | |
EP2589677B1 (en) | High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same | |
EP2589678B1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
JP5780086B2 (en) | High strength steel plate and manufacturing method thereof | |
JP5339005B1 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP6700398B2 (en) | High yield ratio type high strength cold rolled steel sheet and method for producing the same | |
JP3858146B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet | |
JP4559969B2 (en) | Hot-rolled steel sheet for processing and manufacturing method thereof | |
JP5906324B2 (en) | Collision energy absorbing member for automobile and manufacturing method thereof | |
WO2001092593A1 (en) | Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same | |
JP2006104532A (en) | High strength thin steel sheet having excellent elongation and hole expansibility and method for producing the same | |
KR20160023930A (en) | Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member | |
JP6610113B2 (en) | High-strength galvannealed steel sheet, hot-rolled steel sheet for the steel sheet, and methods for producing them | |
JP7111252B2 (en) | Coated steel member, coated steel plate and manufacturing method thereof | |
JP2004010991A (en) | Method of producing ultrahigh strength cold rolled steel sheet having excellent spot weldability | |
EP3901293B1 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method therefor | |
JP4211520B2 (en) | High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same | |
JP5141235B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof | |
JP4062961B2 (en) | High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same | |
JP2003253385A (en) | Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor | |
JP4265152B2 (en) | High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same | |
JP4265153B2 (en) | High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same | |
JP7502466B2 (en) | Ultra-high tensile cold-rolled steel sheet with excellent spot weldability and formability, ultra-high tensile plated steel sheet, and manufacturing method thereof | |
JPH0657375A (en) | Ultrahigh tensile strength cold-rolled steel sheet and its production | |
JP2007077510A (en) | High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100503 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4513701 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140521 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |