[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4510506B2 - Method for producing polyimide metal laminate - Google Patents

Method for producing polyimide metal laminate Download PDF

Info

Publication number
JP4510506B2
JP4510506B2 JP2004132563A JP2004132563A JP4510506B2 JP 4510506 B2 JP4510506 B2 JP 4510506B2 JP 2004132563 A JP2004132563 A JP 2004132563A JP 2004132563 A JP2004132563 A JP 2004132563A JP 4510506 B2 JP4510506 B2 JP 4510506B2
Authority
JP
Japan
Prior art keywords
layer
polyimide
thermoplastic polyimide
thermoplastic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004132563A
Other languages
Japanese (ja)
Other versions
JP2005313407A (en
Inventor
将生 川口
英二 大坪
巨樹 中澤
健二 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004132563A priority Critical patent/JP4510506B2/en
Publication of JP2005313407A publication Critical patent/JP2005313407A/en
Application granted granted Critical
Publication of JP4510506B2 publication Critical patent/JP4510506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、フレキシブル配線基板などに広く使用されるポリイミド金属積層板に関するものである。   The present invention relates to a polyimide metal laminate widely used for flexible wiring boards and the like.

近年、電子機器の小型携帯化により、フレキシブル配線基板の薄型、高密度配線化が進行している。さらに、部品実装において鉛フリー半田の使用割合が増加し、部品実装時、リペアー時等における温度が従来の温度より高温となり、高耐熱性が要求されている。フレキシブル配線基板の薄型化、高密度配線、高耐熱性の要求に伴い、回路基板材料としてのポリイミド金属積層板においても薄型化、高寸法安定性、高耐熱性の要求が増している。   In recent years, as electronic devices have become smaller and more portable, flexible wiring boards have become thinner and denser. Furthermore, the proportion of lead-free solder used in component mounting has increased, and the temperature during component mounting and repair has become higher than the conventional temperature, and high heat resistance is required. With the demands for thinning of flexible wiring boards, high density wiring, and high heat resistance, demands for thinning, high dimensional stability, and high heat resistance are increasing in polyimide metal laminates as circuit board materials.

回路基板材料としてのポリイミド金属積層板としては、特許文献1(特許第2746555号)、特許文献2(特開2001-270037号公報)で開示されているような、銅箔とポリイミドを積層したフレキシブル回路基板が知られている。このポリイミド金属積層板はキャスティングやラミネート方式により金属箔上にポリイミドを積層して得られるものであり、金属箔層とポリイミド層間の密着性を高める為に、金属箔層とポリイミド層間に熱可塑性ポリイミドを使用することが一般的である。   As a polyimide metal laminate as a circuit board material, as disclosed in Patent Document 1 (Patent No. 2746555) and Patent Document 2 (Japanese Patent Laid-Open No. 2001-270037), a flexible film in which copper foil and polyimide are laminated is used. Circuit boards are known. This polyimide metal laminate is obtained by laminating polyimide on a metal foil by casting or laminating method. In order to improve the adhesion between the metal foil layer and the polyimide layer, a thermoplastic polyimide between the metal foil layer and the polyimide layer is obtained. Is generally used.

ポリイミド金属積層板のポリイミド層薄型化における問題点として、熱可塑性ポリイミド樹脂は、非熱可塑性ポリイミド樹脂と比較し線膨張係数が大きく、耐熱性に劣るものであり、ポリイミド金属積層板のポリイミド層を薄型化すると、ポリイミド層全体の厚さにおける熱可塑性ポリイミド層の厚さ比率が高くなり、寸法安定性、耐熱性が低下することである。また、熱可塑性ポリイミド樹脂の厚さ比率を低くすると、ラミネート積層におけるポリイミド層間界面、もしくは金属箔層とポリイミド層間界面における密着性が低下する問題も生じていた。さらに、金属箔に接する熱可塑性ポリイミド層同士の厚さ比率が異なる場合、反りが大きくなる等の問題が発生し、ポリイミド金属積層板のポリイミド層薄型化は困難であった。
特許第2746555号 特開2001-270037号公報
As a problem in thinning the polyimide layer of the polyimide metal laminate, the thermoplastic polyimide resin has a larger coefficient of linear expansion than the non-thermoplastic polyimide resin and is inferior in heat resistance. When the thickness is reduced, the thickness ratio of the thermoplastic polyimide layer to the entire thickness of the polyimide layer is increased, and the dimensional stability and heat resistance are lowered. Further, when the thickness ratio of the thermoplastic polyimide resin is lowered, there is a problem that the adhesion at the polyimide interlayer interface in the laminate or the interface between the metal foil layer and the polyimide interlayer is lowered. Furthermore, when the thickness ratios of the thermoplastic polyimide layers in contact with the metal foil are different, problems such as an increase in warpage occur, and it is difficult to make the polyimide metal laminate thin.
Patent No. 2746555 JP 2001-270037 A

本発明の目的は、熱可塑性ポリイミドを用いたポリイミド金属積層板において、ラミネート積層における、ポリイミド層間界面もしくは金属層とポリイミド層間界面のピール強度、寸法安定性、耐熱性、反り、ボイド等の性能を低下させる事無く、ポリイミド金属積層板のポリイミド層を薄型化する為の製造方法、およびこの製造方法によって得られるポリイミド金属積層板を提供するものである。   The object of the present invention is to provide performances such as peel strength, dimensional stability, heat resistance, warpage, voids, etc. in a polyimide laminate between polyimide layers or between a polyimide layer and a metal layer and a polyimide layer, in a polyimide laminate using thermoplastic polyimide. The present invention provides a manufacturing method for thinning a polyimide layer of a polyimide metal laminate without reducing it, and a polyimide metal laminate obtained by this production method.

本発明者らは検討の結果、金属箔(a)層、熱可塑性ポリイミド(A)層、非熱可塑性ポリイミド(B)層、熱可塑性ポリイミド(C)層、金属箔(b)層の順に構成してなるポリイミド金属積層板のポリイミド層の薄型化を可能とする新規な製造方法を見出し、本発明を完成した。   As a result of investigations, the present inventors configured a metal foil (a) layer, a thermoplastic polyimide (A) layer, a non-thermoplastic polyimide (B) layer, a thermoplastic polyimide (C) layer, and a metal foil (b) layer in this order. The present inventors completed the present invention by discovering a novel manufacturing method that enables the polyimide layer of the resulting polyimide metal laminate to be thinned.

即ち、本発明は、金属箔(a)層、熱可塑性ポリイミド(A)層、非熱可塑性ポリイミド(B)層、熱可塑性ポリイミド(C)層、金属箔(b)層の順に構成してなるポリイミド金属積層板の製造方法において、金属箔層(a)上に順じ熱可塑性ポリイミド(A)層、非熱可塑性ポリイミド(B)層を形成した後、熱可塑性ポリイミド(C)層を非熱可塑性ポリイミド(B)層および/または金属箔(b)層上に形成し、B層−C層またはC層−C層、C層−金属箔(b)層を加熱圧着して貼り合わせることを特徴とするポリイミド金属積層板の製造方法、および該製造方法により得られたポリイミド金属積層板に関するものである。ここで、C層−C層を加熱圧着して貼り合わせる場合、非熱可塑性ポリイミド(B)層上に形成するC層と、金属箔(b)層上に形成するC層の熱可塑性ポリイミド樹脂組成が異なる構成のものも本発明に含まれるものである。   That is, the present invention comprises a metal foil (a) layer, a thermoplastic polyimide (A) layer, a non-thermoplastic polyimide (B) layer, a thermoplastic polyimide (C) layer, and a metal foil (b) layer in this order. In the method for producing a polyimide metal laminate, after forming a thermoplastic polyimide (A) layer and a non-thermoplastic polyimide (B) layer on the metal foil layer (a) in sequence, the thermoplastic polyimide (C) layer is non-heated. It is formed on the plastic polyimide (B) layer and / or the metal foil (b) layer, and the B layer-C layer or the C layer-C layer and the C layer-metal foil (b) layer are bonded by thermocompression bonding. It is related with the manufacturing method of the polyimide metal laminated board characterized, and the polyimide metal laminated board obtained by this manufacturing method. Here, when the C layer and the C layer are bonded together by thermocompression bonding, the C layer formed on the non-thermoplastic polyimide (B) layer and the C layer thermoplastic polyimide resin formed on the metal foil (b) layer Structures having different compositions are also included in the present invention.

本発明により、ポリイミド金属積層板のピール強度、寸法安定性、耐熱性、反り、ボイド等の性能を低下させる事無く、ポリイミド金属積層板のポリイミド層総厚を25μm以下に薄型化することが可能となった。   According to the present invention, the total polyimide layer thickness of the polyimide metal laminate can be reduced to 25 μm or less without deteriorating the peel strength, dimensional stability, heat resistance, warpage, voids, etc. of the polyimide metal laminate. It became.

以下、本発明を詳細に説明する。
本発明により製造されるポリイミド金属積層板は、金属箔(a)層、熱可塑性ポリイミド(A)層、非熱可塑性ポリイミド(B)層、熱可塑性ポリイミド(C)層、金属箔(b)層の順に構成してなるものであり、熱可塑性ポリイミド(A)、非熱可塑性ポリイミド(B)、熱可塑性ポリイミド(C)及び/又はそれらの前駆体及び/又はそれらを含むワニスを金属箔(a)層上にA、Bの順に塗布・乾燥・キュアして積層した後、CをB層および/または金属箔(b)層上に形成し、B層−C層またはC層−C層、C層−金属箔(b)層の間を加熱圧着して貼り合わせることを特徴として製造されるものである。ここで、C層−C層を加熱圧着して貼り合わせる場合、非熱可塑性ポリイミド(B)層上に形成するC層と、金属箔(b)層上に形成するC層の熱可塑性ポリイミド樹脂組成が異なる構成のものも本発明に含まれるものである。
Hereinafter, the present invention will be described in detail.
The polyimide metal laminate produced by the present invention comprises a metal foil (a) layer, a thermoplastic polyimide (A) layer, a non-thermoplastic polyimide (B) layer, a thermoplastic polyimide (C) layer, and a metal foil (b) layer. In this order, a thermoplastic polyimide (A), a non-thermoplastic polyimide (B), a thermoplastic polyimide (C) and / or a precursor thereof and / or a varnish containing them is used as a metal foil (a ) After coating, drying and curing in the order of A and B on the layer, C is formed on the B layer and / or the metal foil (b) layer, and B layer-C layer or C layer-C layer, It is manufactured by bonding between the C layer and the metal foil (b) layer by thermocompression bonding. Here, when the C layer and the C layer are bonded together by thermocompression bonding, the C layer formed on the non-thermoplastic polyimide (B) layer and the C layer thermoplastic polyimide resin formed on the metal foil (b) layer Structures having different compositions are also included in the present invention.

本発明で使用する金属としては、銅、ニッケル、コバルト、クロム、亜鉛、アルミニウム及びステンレス鋼、並びにそれらの合金からなる群から選ばれた少なくとも一種の金属であり、より好ましくは、銅及び銅合金、ステンレス鋼及びその合金、ニッケル及びニッケル合金(42合金も含む)、アルミニウム及びアルミニウム合金等が挙げられる。さらに好ましくは銅及び銅合金である。また、金属の厚みは、テープ状に利用できる厚みであれば制限はないが、1〜150μmが好ましく、より好ましくは1〜30μmのものが利用できる。尚、本発明のポリイミド金属積層板の金属層(a)と金属層(b)の種類は、同じであっても異なっていても問題ない。好ましくは、どちらも銅の場合である。   The metal used in the present invention is at least one metal selected from the group consisting of copper, nickel, cobalt, chromium, zinc, aluminum and stainless steel, and alloys thereof, more preferably copper and copper alloys. , Stainless steel and its alloys, nickel and nickel alloys (including 42 alloys), aluminum and aluminum alloys, and the like. More preferred are copper and copper alloys. The thickness of the metal is not limited as long as it can be used in a tape shape, but is preferably 1 to 150 μm, more preferably 1 to 30 μm. In addition, there is no problem even if the types of the metal layer (a) and the metal layer (b) of the polyimide metal laminate of the present invention are the same or different. Preferably, both are copper cases.

ポリイミド金属積層板におけるポリイミド層の総厚み(熱可塑性ポリイミド(A)層、非熱可塑性ポリイミド(B)層、熱可塑性ポリイミド(C)層の合計の厚み)が、25μm以下であることが好ましく、より好ましくは3μm以上20μm以下、更に好ましくは5μm以上15μm以下である。   The total thickness of the polyimide layer in the polyimide metal laminate (total thickness of the thermoplastic polyimide (A) layer, non-thermoplastic polyimide (B) layer, thermoplastic polyimide (C) layer) is preferably 25 μm or less, More preferably, they are 3 micrometers or more and 20 micrometers or less, More preferably, they are 5 micrometers or more and 15 micrometers or less.

ポリイミド層の各ポリイミド層の厚みは、好ましくはA層が0.1〜5μmであり、より好ましくは0.2〜4μm、さらに好ましくは0.3〜3.5μm、より更に好ましくは0.4〜3μm程度である。B層は1〜24.8μm程度が好ましい。また、加熱圧着面のピール強度を低下させない為に、C層については、0.1〜5μm程度が好ましく、更に好ましくは0.2〜4μm、さらに好ましくは0.3〜3.5μm、より更に好ましくは0.4〜3μm程度である。なお、これらの厚みはあくまでも目安であり、特に限定されない。   The thickness of each polyimide layer of the polyimide layer is preferably 0.1 to 5 μm for the A layer, more preferably 0.2 to 4 μm, still more preferably 0.3 to 3.5 μm, and still more preferably 0.4. About 3 μm. The B layer is preferably about 1 to 24.8 μm. Moreover, in order not to lower the peel strength of the thermocompression bonding surface, the C layer is preferably about 0.1 to 5 μm, more preferably 0.2 to 4 μm, still more preferably 0.3 to 3.5 μm, and still more. Preferably, it is about 0.4 to 3 μm. Note that these thicknesses are only a guide and are not particularly limited.

また、ポリイミド層総厚における非熱可塑性ポリイミド(B)の厚さ比率が高い程、寸法安定性は良好となり、さらにA層とC層の厚さ比率が等しいほど、反りが小さく良好となり好ましい。従って、それぞれの層の厚さ比率は、A層:B層:C層=1:1.5:0.3〜1:248:3の範囲が可能であり、好ましくは1:1.5:0.5〜1:248:2、さらに好ましくは1:1.5:0.7〜1:248:1.3、より好ましくは1:1.5:0.8〜1:248:1.2である。   Further, the higher the thickness ratio of the non-thermoplastic polyimide (B) in the total polyimide layer thickness, the better the dimensional stability, and the more equal the thickness ratio of the A layer and the C layer, the better the warp and the better. Accordingly, the thickness ratio of each layer can be in the range of A layer: B layer: C layer = 1: 1.5: 0.3 to 1: 248: 3, preferably 1: 1.5: 0.5-1: 248: 2, more preferably 1: 1.5: 0.7-1: 248: 1.3, more preferably 1: 1.5: 0.8-1: 248: 1. 2.

本発明において、熱可塑性ポリイミド(A)としては、金属箔(a)層との密着性および耐熱性を良好にする為に、ガラス転移点温度(Tg)が140℃から300℃程度のものが好ましく、より好ましくは180℃から280℃程度である。   In the present invention, the thermoplastic polyimide (A) has a glass transition temperature (Tg) of about 140 ° C. to 300 ° C. in order to improve the adhesion and heat resistance with the metal foil (a) layer. Preferably, it is about 180 to 280 ° C.

また、非熱可塑性ポリイミド(B)においては、Tgが300℃以上であることが好ましい。さらに線膨張係数は20×10−6/K以下が好ましく、さらに好ましくは5×10−6/K以上18×10−6/K以下、より好ましくは10×10−6/K以上16×10−6/K以下である。線膨張係数を上記範囲にする事により、寸法安定性、反りを良好にする事が可能である。 Moreover, in non-thermoplastic polyimide (B), it is preferable that Tg is 300 degreeC or more. Further, the linear expansion coefficient is preferably 20 × 10 −6 / K or less, more preferably 5 × 10 −6 / K or more and 18 × 10 −6 / K or less, more preferably 10 × 10 −6 / K or more and 16 × 10. -6 / K or less. By setting the linear expansion coefficient in the above range, dimensional stability and warpage can be improved.

本発明において、熱可塑性ポリイミド(C)はガラス転移点温度(Tg)が、好ましくは180℃程度以下、より好ましくは160℃程度以下であり、この方が加熱圧着後の密着が良好となり好ましい。C層−C層を加熱圧着する場合には、金属箔(b)に形成されたC層と非熱可塑性ポリイミド層(B)上に形成されたC層は、異なる組成のものでも問題なく、その場合、少なくとも一方のC層のTgが180℃程度以下であれば、もう一方のC層のTgが140℃から300℃程度でも加熱圧着が良好となり好ましい。   In the present invention, the thermoplastic polyimide (C) has a glass transition temperature (Tg) of preferably about 180 ° C. or lower, more preferably about 160 ° C. or lower. This is preferable because adhesion after thermocompression bonding is good. When the C layer-C layer is thermocompression bonded, the C layer formed on the metal foil (b) and the C layer formed on the non-thermoplastic polyimide layer (B) may have different compositions, In that case, if the Tg of at least one C layer is about 180 ° C. or less, even if the Tg of the other C layer is about 140 ° C. to 300 ° C., the thermocompression bonding is good, which is preferable.

尚、Tgおよび線膨張係数の測定はTMA(Thermomechanical Analysys)等、従来用いられている装置が使用可能であり、具体的には幅4mm、長さ20mmの単層ポリイミドフィルムをマックサイエンス株式会社製TMA−4000にセットし、25℃から500℃まで昇温させTgおよび線膨張係数の測定を行なうことで求めることができる。   For the measurement of Tg and linear expansion coefficient, a conventionally used apparatus such as TMA (Thermomechanical Analysys) can be used. Specifically, a single-layer polyimide film having a width of 4 mm and a length of 20 mm is manufactured by Mac Science Corporation. It can be determined by setting to TMA-4000, raising the temperature from 25 ° C. to 500 ° C., and measuring the Tg and linear expansion coefficient.

本発明の製造方法において、熱可塑性ポリイミド(A)、非熱可塑性ポリイミド(B)、熱可塑性ポリイミド(C)及び/又はそれらの前駆体を含むワニスを金属箔上やポリイミド層上に塗布する方法としては、特に限定されず、ダイコーター、コンマコーター、ロールコーター、グラビアコーター、カーテンコーター、スプレーコーター等の公知の方法が採用できる。   In the production method of the present invention, a method of applying a varnish containing a thermoplastic polyimide (A), a non-thermoplastic polyimide (B), a thermoplastic polyimide (C) and / or a precursor thereof onto a metal foil or a polyimide layer. The method is not particularly limited, and known methods such as a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, and a spray coater can be employed.

B層−C層またはC層−C層、C層−金属箔(b)層を加熱圧着する方法については、熱可塑性ポリイミド(C)のガラス転移点温度以上に保ちながら加圧することが可能な加熱プレス法及び/又は加熱ラミネート法が代表例として挙げられる。ラミネート方法としては、特に制限は無いが、ロールとロール間に挟み込み、張り合わせを行なう方法が好ましい。C層および/又はB層の表面はプラズマ処理、コロナ放電処理等を施してもよい。   About the method of thermocompression-bonding B layer-C layer or C layer-C layer, C layer-metal foil (b) layer, it is possible to apply pressure while maintaining the glass transition point temperature or higher of thermoplastic polyimide (C). A heat press method and / or a heat laminating method are given as typical examples. Although there is no restriction | limiting in particular as a laminating method, The method of pinching and sticking between a roll and a roll is preferable. The surface of the C layer and / or the B layer may be subjected to plasma treatment, corona discharge treatment, or the like.

ラミネート後、もしくは、ラミネートを行いながら、この金属張積層板を更に150〜500℃に加熱保持することより、B層−C層またはC層−C層、C層−金属箔(b)層のラミネート面の密着力が優れたポリイミド金属積層板を得ることができる。加熱装置として、通常の加熱炉、オートクレーブ等が利用できる。加熱雰囲気として、空気、イナートガス(窒素、アルゴン)等が利用できる。加熱方法としては、連続的に加熱する方法、またはポリイミド金属積層板をコアに巻いた状態で加熱炉に放置する方法のどちらの方法も好ましい。加熱方式としては、伝導加熱方式、輻射加熱方式、及び、これらの併用方式等が好ましい。加熱時間は、0.05〜5000分の時間範囲が好ましい。   After laminating or while laminating, this metal-clad laminate is further heated and held at 150 to 500 ° C., so that B layer-C layer or C layer-C layer, C layer-metal foil (b) layer A polyimide metal laminate having excellent adhesion on the laminate surface can be obtained. As a heating device, a normal heating furnace, an autoclave, or the like can be used. As a heating atmosphere, air, inert gas (nitrogen, argon), or the like can be used. As the heating method, either a method of continuously heating or a method of leaving the polyimide metal laminate sheet in a heating furnace while being wound around a core is preferable. As the heating method, a conductive heating method, a radiant heating method, a combination method thereof, and the like are preferable. The heating time is preferably in the time range of 0.05 to 5000 minutes.

各ポリイミド層の具体的なポリイミドとしては、熱可塑性ポリイミド(A)のTgが、好ましくは前述の140℃から300℃程度であり、熱可塑性ポリイミド(C)のTgが、好ましくは前述の180℃程度以下、C層−C層を加熱圧着する場合には、一方のCのTgが、好ましくは180℃程度以下であるものであれば特に限定されず、非熱可塑性ポリイミド(B)は、前述のように好ましくはTgが300℃以上、更にこの好ましくは線膨張係数が20×10−6/K以下であれば特に限定されない。 As a specific polyimide for each polyimide layer, the Tg of the thermoplastic polyimide (A) is preferably about 140 to 300 ° C., and the Tg of the thermoplastic polyimide (C) is preferably 180 ° C. In the case where the C layer-C layer is thermocompression bonded, the Tg of one C is preferably not limited as long as it is preferably about 180 ° C. or less, and the non-thermoplastic polyimide (B) Preferably, the Tg is not particularly limited as long as Tg is 300 ° C. or higher, and more preferably, the linear expansion coefficient is 20 × 10 −6 / K or lower.

使用可能なA、B、Cの例として、原料のジアミンが、1,3−ビス(3−アミノフェノキシ)ベンゼン(以下、APBと略す)、4,4’−ビス(3−アミノフェノキシ)ビフェニル(以下、m−BPと略す)及び、3,3’−ジアミノベンゾフェノン(以下、DABPと略す)、o-フェニレンジアミン、p-フェニレンジアミン、m-フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテルから選ばれた少なくとも一種のジアミンを含むことが好ましいが、これらのジアミンに限られたものではない。   Examples of usable A, B, and C include 1,3-bis (3-aminophenoxy) benzene (hereinafter abbreviated as APB) and 4,4′-bis (3-aminophenoxy) biphenyl as raw material diamines. (Hereinafter abbreviated as m-BP), 3,3′-diaminobenzophenone (hereinafter abbreviated as DABP), o-phenylenediamine, p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 3 It is preferable to contain at least one diamine selected from 4,4'-diaminodiphenyl ether and 3,3'-diaminodiphenyl ether, but it is not limited to these diamines.

原料の酸二無水物としても特に限定はなく、公知の酸二無水物が使用可能であるが、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAと略す)、ピロメリット酸二無水物(以下、PMDAと略記する)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)から選ばれた少なくとも一種の酸二無水物を含むことが好ましいが、これらの酸二無水物に限られたものではない。 さらにCにおいては、Tgを低くする為に原料のジアミンに一般式(2)で示されるジアミンや、   The raw acid dianhydride is not particularly limited, and a known acid dianhydride can be used, but 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (hereinafter abbreviated as BTDA). , Containing at least one acid dianhydride selected from pyromellitic dianhydride (hereinafter abbreviated as PMDA) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) However, it is not limited to these acid dianhydrides. Furthermore, in C, in order to lower Tg, the diamine represented by the general formula (2) is used as a raw material diamine,

Figure 0004510506
Figure 0004510506

(式中、nは1〜3の整数を表す。)
一般式(3)で示されるジアミノシロキサン化合物から選ばれた少なくとも一種のジアミンが含まれることも好ましい。
(In the formula, n represents an integer of 1 to 3.)
It is also preferable that at least one diamine selected from diaminosiloxane compounds represented by the general formula (3) is included.

Figure 0004510506
Figure 0004510506

(式中、R1、Rは二価の炭素数1〜4の脂肪族基または芳香族基を、R〜Rは一価の脂肪族基または芳香族基を、mは1〜20の整数を表わす。)
さらに、酸二無水物には耐熱性を向上させるためにも、一般式(4)で示されるテトラカルボン酸二無水物から選ばれた少なくとも一種の酸二無水物が含まれることが好ましい。
(Wherein R 1 and R 2 are a divalent aliphatic group or aromatic group having 1 to 4 carbon atoms, R 3 to R 6 are a monovalent aliphatic group or aromatic group, and m is 1 to 1) Represents an integer of 20.)
Furthermore, the acid dianhydride preferably contains at least one acid dianhydride selected from tetracarboxylic dianhydrides represented by the general formula (4) in order to improve heat resistance.

Figure 0004510506
Figure 0004510506

Figure 0004510506
Figure 0004510506

ジアミン成分とテトラカルボン酸二無水物の反応モル比は、通常、0.75〜1.25の範囲で可能であるが、好ましくはジアミン成分を1とするとテトラカルボン酸二無水物は0.8〜1.0の範囲である。   The reaction molar ratio of the diamine component and the tetracarboxylic dianhydride is usually in the range of 0.75 to 1.25. Preferably, when the diamine component is 1, the tetracarboxylic dianhydride is 0.8. It is in the range of -1.0.

さらに、ポリイミドの前駆体であるポリアミック酸を含むワニス、または、ポリイミドを含むワニスを2種類以上混合したワニスを、塗布・乾燥・キュアしてなる各ポリイミドA、B、Cであっても可能である。 本発明においては、さらにポリイミド層の少なくとも一層が、下記一般式(1)   Furthermore, each polyimide A, B, and C formed by applying, drying and curing a varnish containing polyamic acid, which is a polyimide precursor, or a varnish obtained by mixing two or more kinds of varnish containing polyimide is also possible. is there. In the present invention, at least one of the polyimide layers is further represented by the following general formula (1).

Figure 0004510506
Figure 0004510506

(式中、mは0以上の整数を示し、Xはそれぞれ独立に同一であっても異なっていてもよく、O、SO、S、CO、CH2、C(CH3)、C(CF3)または直結を示す。また、R1は、同一または相異なり、水素原子、ハロゲン原子、炭化水素基を表し、それぞれベンゼン環の置換位置は相互に独立である。)で表されるビスマレイミド化合物を配合してなる樹脂組成物であることが好ましく、上記化合物を配合して製造される熱可塑性ポリイミドおよび非熱可塑性ポリイミドも本発明のポリイミド層に含まれるものである。上記化合物を配合させることで、Tgを低くすることが可能となり、特にC層において加熱圧着後の密着性が良好なものとなる。さらに、加熱圧着後の加熱保持条件によってTgを高くし、耐熱性、耐発泡性等を向上させることが可能である。 (In the formula, m represents an integer of 0 or more, and Xs may be the same or different independently, and O, SO 2 , S, CO, CH 2 , C (CH 3 ) 2 , C ( CF 3 ) 2 or a direct bond, and R 1 is the same or different and represents a hydrogen atom, a halogen atom, or a hydrocarbon group, and the benzene ring substitution positions are independent of each other. It is preferable that it is a resin composition which mix | blends a maleimide compound, The thermoplastic polyimide and non-thermoplastic polyimide which are manufactured by mix | blending the said compound are also contained in the polyimide layer of this invention. By blending the above compound, it becomes possible to lower Tg, and particularly the adhesiveness after thermocompression bonding in the C layer becomes good. Furthermore, Tg can be increased depending on the heating and holding conditions after thermocompression bonding, and heat resistance, foam resistance, etc. can be improved.

尚、一般式(1)中、mは0以上の整数を示し、好ましくは0〜6、より好ましくは0〜4である。また、Xはそれぞれ独立に同一であっても異なっていてもよく、O、SO、S、CO、CH2、C(CH3)、C(CF3または直結を示し、好ましくはO、C(CH3)、直結である。R1は、同一または相異なり、水素原子、ハロゲン原子、炭化水素基を表し、それぞれベンゼン環の置換位置は相互に独立である。好ましくは、ベンゼン環の置換位置はオルソ位、またはメタ位で結合した化合物である。 In the general formula (1), m represents an integer of 0 or more, preferably 0 to 6, and more preferably 0 to 4. X may independently be the same or different and each represents X, O, SO 2 , S, CO, CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 or direct connection, O and C (CH 3 ) 2 are directly connected. R1 is the same or different and represents a hydrogen atom, a halogen atom, or a hydrocarbon group, and the substitution positions on the benzene ring are independent of each other. Preferably, the benzene ring is substituted at the ortho-position or meta-position.

尚、本発明において、上記ビスマレイミド化合物を用いた場合、ポリイミドへの配合割合は、特に制限はないが、ポリイミドの前駆体であるポリアミド酸の総重量に対して、好ましくは0.1〜70重量%であり、より好ましくは、0.1〜50重量%である。ビスマレイミド化合物の配合量が上記範囲内である方が、耐熱性の向上に効果があり、金属箔との接着強度が良好である。 ビスマレイミド化合物のポリアミド酸への配合方法としては、(イ)ポリアミド酸溶液にビスマレイミド化合物を添加する方法、(ロ)ポリアミド酸の重合の際、例えば、ジアミン化合物またはテトラカルボン酸二無水物装入時に、あるいは、重合の途中に添加する方法、(ハ)ポリアミド酸の粉体とビスマレイミド化合物とを固体同士で混合する方法等が挙げられるが、これらに限定されるものではない。   In the present invention, when the bismaleimide compound is used, the blending ratio to the polyimide is not particularly limited, but is preferably 0.1 to 70 with respect to the total weight of the polyamic acid which is a polyimide precursor. % By weight, more preferably 0.1 to 50% by weight. When the blending amount of the bismaleimide compound is within the above range, the heat resistance is improved and the adhesive strength with the metal foil is good. The blending method of the bismaleimide compound into the polyamic acid includes (a) a method of adding the bismaleimide compound to the polyamic acid solution, and (b) during polymerization of the polyamic acid, for example, a diamine compound or tetracarboxylic dianhydride. Examples thereof include, but are not limited to, a method of adding at the time of polymerization or in the middle of polymerization, and (c) a method of mixing a polyamic acid powder and a bismaleimide compound with solids.

また、ポリアミド酸を予め脱水イミド化しポリイミド溶液とした後、ビスマレイミド化合物を配合しても良い。   Further, after the polyamic acid is dehydrated and imidized into a polyimide solution in advance, a bismaleimide compound may be blended.

本発明により、ラミネート積層におけるポリイミド層間界面もしくは金属層とポリイミド層間界面のピール強度、寸法安定性、耐熱性、反り、ボイド等の性能を低下させる事無く、ポリイミド金属積層板のポリイミド層を薄型化することが可能となる。   The present invention makes it possible to thin the polyimide layer of the polyimide metal laminate without degrading the peel strength, dimensional stability, heat resistance, warpage, voids, etc. between the polyimide layer interface or the metal layer and the polyimide layer interface in the laminate lamination. It becomes possible to do.

以下、本発明を実施例によりさらに詳細に説明する。
なお、実施例に示したポリイミドのガラス転移点温度(Tg)および線膨張係数、さらにポリイミド金属積層板のピール強度、ボイド、反り、寸法安定性(DS)、半田耐熱性については下記の方法により測定した。測定した各値について、ポリイミドのTgおよび線膨張係数は表1、ポリイミド金属積層板の各値は、表2、表3、表4に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
In addition, about the glass transition point temperature (Tg) and linear expansion coefficient of the polyimide shown in the Examples, and the peel strength, void, warpage, dimensional stability (DS), and solder heat resistance of the polyimide metal laminated plate, the following methods are used. It was measured. For each measured value, the Tg and linear expansion coefficient of polyimide are shown in Table 1, and the values of the polyimide metal laminate are shown in Table 2, Table 3, and Table 4.

(1)ポリイミドのTgおよび線膨張係数
幅4mm、長さ20mmの単層ポリイミドフィルムをマックサイエンス株式会社製TMA−4000にセットし、25℃から500℃まで昇温させTgおよび線膨張係数の測定を行なった。ここで、線膨張係数は、100℃以上、150℃以下(Tg以下)の温度範囲における平均線膨張係数を線膨張係数とした。
尚、単層ポリイミドフィルムについては、ワニスをガラス板に最終厚さが5〜50μmになるようにアプリケーターにより塗布し、110℃から240℃まで9℃/分にて昇温、乾燥、キュアイミド化後、冷却し、温水中で剥離してポリイミドフィルムを得た。
(1) Tg and linear expansion coefficient of polyimide A single layer polyimide film having a width of 4 mm and a length of 20 mm is set on TMA-4000 manufactured by Mac Science Co., Ltd., and the temperature is raised from 25 ° C. to 500 ° C., and measurement of Tg and linear expansion coefficient is performed. Was done. Here, the linear expansion coefficient was defined as an average linear expansion coefficient in a temperature range of 100 ° C. or higher and 150 ° C. or lower (Tg or lower).
For single-layer polyimide films, varnish is applied to a glass plate with an applicator so that the final thickness is 5 to 50 μm, heated from 110 ° C. to 240 ° C. at 9 ° C./min, dried, and cured imidized. The polyimide film was obtained by cooling and peeling in warm water.

(2)ピール強度(kN/m)
得られたポリイミド金属積層板を、JIS C−6471(JIS C−6481)に準じ90°ピール測定を行った。
(2) Peel strength (kN / m)
The obtained polyimide metal laminate was subjected to 90 ° peel measurement in accordance with JIS C-6471 (JIS C-6481).

(3)ボイド
ポリイミド金属積層板のC層側の金属箔をエッチング除去した後、露出したポリイミド面より、光学顕微鏡にて、ポリイミド層の表面から内部を、500〜2500倍にて観測をして、ボイドの発生状況を確認した。
(3) Void After etching and removing the metal foil on the C layer side of the polyimide metal laminate, the inside of the polyimide layer was observed from 500 to 2500 times with an optical microscope from the exposed polyimide surface. The occurrence of voids was confirmed.

(4)反り(mm)
ポリイミド金属積層板の両面の金属箔をエッチング除去したポリイミド層のフィルムを、50mm角の正方形サンプルとして切り出し、曲線状に反ったサンプルの凸側を定盤などの平面上に接するように置き、定盤面を基準として正方形サンプルの四隅の変形量を測定し、変形量の平均値を反りの値とした。この場合、A層側に凸状となるように変形した場合を負の値とし、反対側の変形を正の値とした。
(4) Warpage (mm)
A polyimide layer film obtained by etching away the metal foils on both sides of the polyimide metal laminate is cut out as a square sample of 50 mm square, and the convex side of the curved sample is placed on a flat surface such as a surface plate. The deformation amount of the four corners of the square sample was measured with reference to the board surface, and the average value of the deformation amount was taken as the value of warpage. In this case, the case of deformation so as to be convex toward the A layer side was a negative value, and the deformation on the opposite side was a positive value.

(5)寸法安定性(DS)
ポリイミド金属積層板を300mm×300mm角のサンプルとして切り出し、両面の金属箔をエッチング除去する前と後のサンプル長さを測定して、縦と横のサンプル寸法変化率を得た。
(5) Dimensional stability (DS)
The polyimide metal laminate was cut out as a sample of 300 mm × 300 mm square, and the sample length before and after the metal foil on both sides was removed by etching was measured to obtain vertical and horizontal sample size change rates.

(6)半田耐熱性
ポリイミド金属積層板を20mm角の正方形サンプルとして切り出し、30℃/85%RHの雰囲気下にて48時間放置した後、200℃から400℃の各温度に調整した半田槽に1分間浸漬させ、膨れ等、不具合が発生した温度の最低温度を測定した。
(6) Solder heat resistance A polyimide metal laminate is cut out as a 20 mm square sample, left in an atmosphere of 30 ° C./85% RH for 48 hours, and then placed in a solder bath adjusted to each temperature of 200 ° C. to 400 ° C. It was immersed for 1 minute, and the lowest temperature at which trouble such as swelling occurred was measured.

また、実施例に用いた溶剤、酸二無水物、ジアミンの略称は以下の通りである。
DMAc:N,N−ジメチルアセトアミド
DABP:3,3’−ジアミノベンゾフェノン
APB:1,3−ビス(3−アミノフェノキシ)ベンゼン
APPB:1,3−ビス(3−(3−アミノフェノキシ)フェノキシ)ベンゼン
pPD:p−フェニレンジアミン
ODA:4,4’−ジアミノジフェニルエーテル
m−BP:4,4’−ビス(3−アミノフェノキシ)ビフェニル
BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物
BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
APB−BMI:1,3−ビス(3−マレイドフェノキシ)ベンゼン
Abbreviations for the solvents, acid dianhydrides, and diamines used in the examples are as follows.
DMAc: N, N-dimethylacetamide DABP: 3,3′-diaminobenzophenone APB: 1,3-bis (3-aminophenoxy) benzene APPB: 1,3-bis (3- (3-aminophenoxy) phenoxy) benzene pPD: p-phenylenediamine ODA: 4,4′-diaminodiphenyl ether m-BP: 4,4′-bis (3-aminophenoxy) biphenyl BTDA: 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride Product BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PMDA: pyromellitic dianhydride APB-BMI: 1,3-bis (3-maleidophenoxy) benzene

合成例1
<熱可塑性ポリイミド(A)樹脂の前駆体の合成(A1ワニス)>
撹拌機及び窒素導入管を備えた容器に、溶媒としてDMAc325.8gを加え、これにDABP23.2gを加え、溶解するまで室温にて撹拌を行った。その後、ジアミン成分に対して、酸無水物が0.975の比率となるように、BTDA34.3gを加え、60℃において撹拌を行い、ポリアミック酸の含有率が15重量%であるポリアミック酸溶液を得た。
Synthesis example 1
<Synthesis of precursor of thermoplastic polyimide (A) resin (A1 varnish)>
To a container equipped with a stirrer and a nitrogen introducing tube, 325.8 g of DMAc was added as a solvent, 23.2 g of DABP was added thereto, and the mixture was stirred at room temperature until dissolved. Thereafter, 34.3 g of BTDA is added to the diamine component so that the acid anhydride has a ratio of 0.975, and the mixture is stirred at 60 ° C. to obtain a polyamic acid solution having a polyamic acid content of 15% by weight. Obtained.

合成例3、4、5、6、7、8
ジアミン、酸無水物の種類・比率、ポリアミック酸の含有率を、表1に示す様に変えた事以外は合成例1と同様にB2、B3、C1、C2ワニスを表1に示す通りに得た。C3については、C1ワニスの固形分におけるAPB−BMI比率が15%となるように、APB−BMIを加え溶解するまで室温にて撹拌を行い、C3ワニスを表1に示す通りに得た。
Synthesis Examples 3, 4, 5, 6, 7, 8
As shown in Table 1, B2, B3, C1, and C2 varnishes were obtained in the same manner as in Synthesis Example 1 except that the types and ratios of diamine, acid anhydride, and polyamic acid content were changed as shown in Table 1. It was. About C3, it stirred at room temperature until APB-BMI ratio added and melt | dissolved so that the APB-BMI ratio in solid content of C1 varnish might be 15%, and obtained C3 varnish as shown in Table 1.

合成例2
<非熱可塑性ポリイミド樹脂の前駆体の合成(B1ワニス)>
合成例3および合成例4において合成した、B2ワニスおよびB3ワニスを、7:93の比率にて、撹拌機及び窒素導入管を備えた容器で混合して得られるワニスの固形分におけるAPB−BMI比率が5%となるようにAPB−BMIを加え溶解するまで室温にて撹拌を行いB1ワニス(表1)を得た。
Synthesis example 2
<Synthesis of Precursor of Non-thermoplastic Polyimide Resin (B1 Varnish)>
APB-BMI in the solid content of the varnish obtained by mixing the B2 varnish and the B3 varnish synthesized in Synthesis Example 3 and Synthesis Example 4 in a container equipped with a stirrer and a nitrogen introduction tube at a ratio of 7:93 APB-BMI was added so that the ratio was 5%, and the mixture was stirred at room temperature until dissolved to obtain B1 varnish (Table 1).

Figure 0004510506
Figure 0004510506

実施例-1
市販の圧延銅箔(日鉱マテリアル(株)製、商品名:BHY−22BT 厚み18μm)のポリイミド積層面に合成例1のA1ワニスをロールコーターにより乾燥後の厚さが2.5μmになるように塗布後、150℃で0.5分乾燥して熱可塑性ポリイミド(A)層を形成し、このA層表面に合成例2のB1ワニスをダイコーターにより乾燥後の厚さが8μmになるように塗布後、135℃で1分乾燥して非熱可塑性ポリイミド(B)層を形成した。さらに、このB層表面に、合成例5のC1ワニスをロールコーターにより乾燥後の厚さが0.5μmになるように塗布後、110℃で0.5分乾燥して熱可塑性ポリイミド(C)層を形成した。その後、窒素雰囲気下にて、110℃から380℃まで9℃/分にて昇温、乾燥、キュア、イミド化し、圧延銅箔上にポリイミド(A、B、C)層が形成されたポリイミド金属積層板αを作成した。
Example-1
A1 varnish of Synthesis Example 1 is dried on a polyimide laminated surface of a commercially available rolled copper foil (manufactured by Nikko Material Co., Ltd., trade name: BHY-22BT thickness 18 μm) with a roll coater so that the thickness after drying becomes 2.5 μm. After coating, it is dried at 150 ° C. for 0.5 minutes to form a thermoplastic polyimide (A) layer, and the B1 varnish of Synthesis Example 2 is dried on the surface of this A layer by a die coater so that the thickness after drying becomes 8 μm. After coating, the coating was dried at 135 ° C. for 1 minute to form a non-thermoplastic polyimide (B) layer. Further, the C1 varnish of Synthesis Example 5 was applied to the surface of this B layer with a roll coater so that the thickness after drying was 0.5 μm, and then dried at 110 ° C. for 0.5 minutes to be thermoplastic polyimide (C) A layer was formed. Thereafter, the temperature was increased from 110 ° C. to 380 ° C. at 9 ° C./min, dried, cured and imidized in a nitrogen atmosphere, and a polyimide metal having a polyimide (A, B, C) layer formed on the rolled copper foil. A laminate α was prepared.

次に、該圧延銅箔のポリイミド積層面に合成例7のC3ワニスをロールコーターにより乾燥後の厚さが2μmになるように塗布後、窒素雰囲気下にて、110℃から240℃まで9℃/分にて昇温、乾燥、キュアイミド化し、圧延銅箔上にポリイミド(C)層が形成されたポリイミド金属積層板βを作成した。   Next, after applying the C3 varnish of Synthesis Example 7 on the polyimide laminated surface of the rolled copper foil with a roll coater so that the thickness after drying becomes 2 μm, it is 9 ° C. from 110 ° C. to 240 ° C. in a nitrogen atmosphere. A polyimide metal laminate β having a polyimide (C) layer formed on a rolled copper foil was prepared by heating, drying, and curing imidization at / min.

その後、ポリイミド金属積層板αのC層と、ポリイミド金属積層板βのC層とを、ロールラミネーターにより、260℃で圧力1.5MPaの条件で加熱圧着し張り合わせ、その後、バッチ式のオートクレーブにて温度300℃、4時間窒素雰囲気下でアニールを行い、表2に示すポリイミド金属積層板を得た。
得られたポリイミド金属積層板について、ピール強度(kN/m)、ボイド、反り、寸法安定性、半田耐熱性を測定・確認した。結果を以下に示す。
Thereafter, the C layer of the polyimide metal laminate plate α and the C layer of the polyimide metal laminate plate β are bonded by thermocompression bonding at 260 ° C. under a pressure of 1.5 MPa with a roll laminator, and then in a batch type autoclave. Annealing was performed in a nitrogen atmosphere at a temperature of 300 ° C. for 4 hours to obtain a polyimide metal laminate shown in Table 2.
About the obtained polyimide metal laminated plate, peel strength (kN / m), void, warpage, dimensional stability, and solder heat resistance were measured and confirmed. The results are shown below.

ピール強度 TPI-A側:0.92kN/m
ピール強度 TPI-C側:1.02kN/m
ボイド:無し
反り:−0.5mm
寸法安定性(DS):−0.010%
半田耐熱性:320℃膨れ発生
であった(表2)。
Peel strength TPI-A side: 0.92 kN / m
Peel strength TPI-C side: 1.02 kN / m
Void: None Warpage: -0.5mm
Dimensional stability (DS): -0.010%
Solder heat resistance: occurrence of swelling at 320 ° C. (Table 2).

実施例―2、3、4、5、6、7
A,B,C層を形成するワニスおよび層厚(層厚比率)を表2および表3に示す様に変えた以外は実施例―1と同様に、実施例2、3、4、5、6、7を行い、得られたフレキシブル金属積層板の評価について表2、表3に示す。
Examples-2, 3, 4, 5, 6, 7
In the same manner as in Example 1, except that the varnish for forming the A, B, and C layers and the layer thickness (layer thickness ratio) were changed as shown in Tables 2 and 3, Examples 2, 3, 4, 5, Tables 2 and 3 show the evaluations of the flexible metal laminates obtained in Steps 6 and 7.

比較例−1
支持体であるステンレス鋼板表面に合成例2のB1ワニスをダイコーターにより乾燥後の厚さが8μmになるように塗布後、135℃で1分乾燥して非熱可塑性ポリイミド(B)層を形成し、さらに窒素雰囲気下にて、110℃から380℃まで9℃/分にて昇温、乾燥、キュア、イミド化後、非熱可塑性ポリイミド(B)層を支持体であるステンレス鋼板から剥離して、非熱可塑性ポリイミド(B)層フィルムを得た。得られたフィルムの片面に、合成例1のA1ワニスをロールコーターにより乾燥後の厚さが2.5μmになるように塗布後、150℃で0.5分乾燥して熱可塑性ポリイミド(A)層を形成し、反対のフィルム面に、合成例5のC1ワニスをロールコーターにより乾燥後の厚さが2.5μmになるように塗布後、150℃で0.5分乾燥して熱可塑性ポリイミド(C)層を形成した。その後、窒素雰囲気下にて、110℃から250℃まで9℃/分にて昇温、乾燥、キュア、イミド化して、ポリイミド(A、B、C)層が形成されたポリイミド積層体を作成した。
Comparative Example-1
After applying the B1 varnish of Synthesis Example 2 to the surface of the stainless steel plate as a support with a die coater so that the thickness after drying is 8 μm, it is dried at 135 ° C. for 1 minute to form a non-thermoplastic polyimide (B) layer. Furthermore, after heating, drying, curing and imidization from 110 ° C. to 380 ° C. at 9 ° C./min in a nitrogen atmosphere, the non-thermoplastic polyimide (B) layer is peeled off from the stainless steel plate as the support. Thus, a non-thermoplastic polyimide (B) layer film was obtained. On one side of the obtained film, the A1 varnish of Synthesis Example 1 was applied by a roll coater so that the thickness after drying was 2.5 μm, and then dried at 150 ° C. for 0.5 minutes to be thermoplastic polyimide (A) A layer was formed, and on the opposite film surface, the C1 varnish of Synthesis Example 5 was applied with a roll coater so that the thickness after drying was 2.5 μm, and then dried at 150 ° C. for 0.5 minutes to be a thermoplastic polyimide. (C) A layer was formed. Thereafter, the temperature was increased from 110 ° C. to 250 ° C. at 9 ° C./min, dried, cured, and imidized in a nitrogen atmosphere to prepare a polyimide laminate in which polyimide (A, B, C) layers were formed. .

次に該ポリイミド積層体の両面に、市販の圧延銅箔(日鉱マテリアル(株)製、商品名:BHY−22BT 厚み18μm)を、ロールラミネーターにより、260℃で圧力1.5MPaの条件で加熱圧着し張り合わせ、その後、バッチ式のオートクレーブにて温度300℃、4時間窒素雰囲気下でアニールを行い、表4に示すポリイミド金属積層板を得た。得られたポリイミド金属積層板について、ピール強度(kN/m)、ボイド、反り、寸法安定性、半田耐熱性を測定・確認した。結果を以下に示す。   Next, a commercially available rolled copper foil (manufactured by Nikko Materials Co., Ltd., trade name: BHY-22BT thickness 18 μm) is thermocompression-bonded on both sides of the polyimide laminate by a roll laminator at 260 ° C. under a pressure of 1.5 MPa. After that, annealing was performed in a batch type autoclave at a temperature of 300 ° C. for 4 hours in a nitrogen atmosphere, and polyimide metal laminates shown in Table 4 were obtained. About the obtained polyimide metal laminated plate, peel strength (kN / m), void, warpage, dimensional stability, and solder heat resistance were measured and confirmed. The results are shown below.

ピール強度 TPI-A側:0.20kN/m
ピール強度 TPI-C側:0.20kN/m
ボイド:有り
反り:-8mm
寸法安定性(DS):−0.060%
半田耐熱性:230℃膨れ発生
であった(表4)。各値が実施例より悪くなった原因は、非熱可塑性ポリイミド(B)層フィルムおよびポリイミド積層体の搬送性が悪く、安定的に作成する事が不可能であった為であると考えられる。
Peel strength TPI-A side: 0.20 kN / m
Peel strength TPI-C side: 0.20kN / m
Void: Yes Warpage: -8mm
Dimensional stability (DS): -0.060%
Solder heat resistance: 230 ° C. swelling occurred (Table 4). It is thought that the reason why each value was worse than in the examples was that the non-thermoplastic polyimide (B) layer film and the polyimide laminate were poorly transportable and could not be stably produced.

Figure 0004510506
Figure 0004510506

Figure 0004510506
Figure 0004510506

Figure 0004510506
Figure 0004510506

ポリイミド層間もしくは金属層とポリイミド層間のピール強度、寸法安定性、耐熱性、反り、ボイド等の性能を低下させること無く、25μm以下のポリイミド層を有するポリイミド金属積層板が得られ、フレキシブル配線基板などに広く適用される。
A polyimide metal laminate having a polyimide layer of 25 μm or less can be obtained without deteriorating the peel strength, dimensional stability, heat resistance, warpage, voids, etc. between polyimide layers or metal layers and polyimide layers, flexible wiring boards, etc. Widely applied to.

Claims (7)

金属箔(a)層、熱可塑性ポリイミド(A)層、非熱可塑性ポリイミド(B)層、熱可塑性ポリイミド(C)層、金属箔(b)層の順に構成してなるポリイミド金属積層板の製造方法において、
金属箔層(a)上に順次、熱可塑性ポリイミド(A)層、非熱可塑性ポリイミド(B)層を塗布形成する工程と;
属箔(b)層上に、熱可塑性ポリイミド(c1)層を塗布形成し、かつ前記非熱可塑性ポリイミド(B)層上に、熱可塑性ポリイミド(c2)層を塗布形成する工程と;
可塑性ポリイミド(c1)層と熱可塑性ポリイミド(c2)層とを加熱圧着して貼り合わせて熱可塑性ポリイミド(C)層を形成する工程と、を備え、
可塑性ポリイミド(c1)層および熱可塑性ポリイミド(c2)層の少なくとも一方が、180℃以下のガラス転移温度を有し、かつ前記熱可塑性ポリイミド(c1)層と前記熱可塑性ポリイミド(c2)層とは異なる組成である、ポリイミド金属積層板の製造方法。
Manufacture of a polyimide metal laminate comprising a metal foil (a) layer, a thermoplastic polyimide (A) layer, a non-thermoplastic polyimide (B) layer, a thermoplastic polyimide (C) layer, and a metal foil (b) layer in this order. In the method
Coating and forming a thermoplastic polyimide (A) layer and a non-thermoplastic polyimide (B) layer sequentially on the metal foil layer (a);
Gold Shokuhaku (b) layer, a thermoplastic polyimide (c1) layer is formed by coating, and the a non-thermoplastic polyimide (B) layer, a step of applying forming a thermoplastic polyimide (c2) layer;
A step of thermocompression bonding the thermoplastic polyimide (c1) layer and the thermoplastic polyimide (c2) layer to form a thermoplastic polyimide (C) layer,
At least one of the thermoplastic polyimide (c1) layer and a thermoplastic polyimide (c2) layer have a glass transition temperature of 180 ° C. or less, and the thermoplastic polyimide (c1) layer and the thermoplastic polyimide (c2) layer and Is a method for producing a polyimide metal laminate having a different composition .
ポリイミド層の総厚み(熱可塑性ポリイミド(A)層、非熱可塑性ポリイミド(B)層、熱可塑性ポリイミド(C)層の合計の厚み)が、25μm以下である請求項1記載のポリイミド金属積層板の製造方法。   2. The polyimide metal laminate according to claim 1, wherein the total thickness of the polyimide layer (the total thickness of the thermoplastic polyimide (A) layer, the non-thermoplastic polyimide (B) layer, and the thermoplastic polyimide (C) layer) is 25 μm or less. Manufacturing method. 熱可塑性ポリイミド(A)層の厚さが0.1〜5μm、非熱可塑性ポリイミド(B)層の厚さが1〜24.8μm、熱可塑性ポリイミド(C)層の厚さが0.1〜5μmであり、且つ
それぞれの層厚さの比率が、熱可塑性ポリイミド(A)層:非熱可塑性ポリイミド(B)層:熱可塑性ポリイミド(C)層=1:1.5:0.3〜1:248:3の範囲である、
請求項1又は2に記載のポリイミド金属積層板の製造方法。
The thickness of the thermoplastic polyimide (A) layer is 0.1 to 5 μm, the thickness of the non-thermoplastic polyimide (B) layer is 1 to 24.8 μm, and the thickness of the thermoplastic polyimide (C) layer is 0.1 to 5 μm. 5 μm, and the ratio of the respective layer thicknesses is thermoplastic polyimide (A) layer: non-thermoplastic polyimide (B) layer: thermoplastic polyimide (C) layer = 1: 1.5: 0.3-1 : 248: 3 range,
The manufacturing method of the polyimide metal laminated sheet of Claim 1 or 2.
非熱可塑性ポリイミド(B)の線膨張係数が、20×10−6/K以下である請求項1〜3のいずれかに記載のポリイミド金属積層板の製造方法。 4. The method for producing a polyimide metal laminate according to claim 1, wherein the non-thermoplastic polyimide (B) has a linear expansion coefficient of 20 × 10 −6 / K or less. ポリイミド層の少なくとも一層が、下記一般式(1)で表されるビスマレイミド化合物を配合したものである、請求項1〜4のいずれかに記載のポリイミド金属積層板の製造方法。
Figure 0004510506
(式中、mは0以上の整数を示し、Xはそれぞれ独立に同一であっても異なっていてもよく、O、SO、S、CO、CH、C(CH、C(CFまたは直結を示す。また、R1は、同一または相異なり、水素原子、ハロゲン原子、炭化水素基を表し、それぞれベンゼン環の置換位置は相互に独立である。)
The manufacturing method of the polyimide metal laminated board in any one of Claims 1-4 in which at least one layer of a polyimide layer mix | blends the bismaleimide compound represented by following General formula (1).
Figure 0004510506
(In the formula, m represents an integer of 0 or more, and Xs may be the same or different from each other, and O, SO 2 , S, CO, CH 2 , C (CH 3 ) 2 , C ( CF 3 ) 2 or a direct bond, and R 1 are the same or different and each represents a hydrogen atom, a halogen atom, or a hydrocarbon group, and the benzene ring substitution positions are independent of each other.
熱可塑性ポリイミド(C)の原料である、ジアミン成分は一般式(2)で表される芳香族ジアミン化合物および/又は一般式(3)で表わされるジアミノシロキサン化合物から選ばれた少なくとも一種のジアミン化合物を含むものであり、
原料となる酸二無水物成分は一般式(4)で表わされるテトラカルボン酸二無水物から選ばれた少なくとも一種の酸二無水物を含むものである、請求項1〜5のいずれかに記載のポリイミド金属積層板の製造方法。
Figure 0004510506
(式中、nは1〜3の整数を表す。)
Figure 0004510506

(式中、R、Rは二価の炭素数1〜4の脂肪族基または芳香族基を、R〜Rは一価の脂肪族基または芳香族基を、mは1〜20の整数を表わす。)
Figure 0004510506
Figure 0004510506
The raw material of the thermoplastic polyimide (C), the diamine component is at least one diamine compound selected from an aromatic diamine compound represented by the general formula (2) and / or a diaminosiloxane compound represented by the general formula (3) Including
The polyimide according to any one of claims 1 to 5, wherein the raw acid dianhydride component comprises at least one acid dianhydride selected from tetracarboxylic dianhydrides represented by the general formula (4). A method for producing a metal laminate.
Figure 0004510506
(In the formula, n represents an integer of 1 to 3.)
Figure 0004510506

(Wherein R 1 and R 2 are a divalent aliphatic group or aromatic group having 1 to 4 carbon atoms, R 3 to R 6 are a monovalent aliphatic group or aromatic group, and m is 1 to 1) Represents an integer of 20.)
Figure 0004510506
Figure 0004510506
前記熱可塑性ポリイミド(c1)層と前記熱可塑性ポリイミド(c2)層のうち、一方のガラス転移温度が180℃以下であり、かつ他の一方のガラス転移温度が140〜300℃である、請求項1に記載のポリイミド金属積層板の製造方法 The glass transition temperature of one of the thermoplastic polyimide (c1) layer and the thermoplastic polyimide (c2) layer is 180 ° C or lower, and the other glass transition temperature is 140 to 300 ° C. 2. A method for producing a polyimide metal laminate according to 1 .
JP2004132563A 2004-04-28 2004-04-28 Method for producing polyimide metal laminate Expired - Fee Related JP4510506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132563A JP4510506B2 (en) 2004-04-28 2004-04-28 Method for producing polyimide metal laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132563A JP4510506B2 (en) 2004-04-28 2004-04-28 Method for producing polyimide metal laminate

Publications (2)

Publication Number Publication Date
JP2005313407A JP2005313407A (en) 2005-11-10
JP4510506B2 true JP4510506B2 (en) 2010-07-28

Family

ID=35441340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132563A Expired - Fee Related JP4510506B2 (en) 2004-04-28 2004-04-28 Method for producing polyimide metal laminate

Country Status (1)

Country Link
JP (1) JP4510506B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923678B2 (en) * 2006-03-31 2012-04-25 日立化成工業株式会社 Flexible substrate with metal foil and flexible printed wiring board
TWI276533B (en) 2006-04-13 2007-03-21 Thinflex Corp Method of fabricating a polyimide-metal laminate
JP2011037157A (en) * 2009-08-12 2011-02-24 Asahi Kasei E-Materials Corp Metal foil polyimide laminate
CN102529223B (en) * 2010-12-30 2014-12-10 比亚迪股份有限公司 Polyimide metal overprinting body and preparation method thereof, and dual-sided metal overprinting body
JP2012203583A (en) * 2011-03-24 2012-10-22 Toshiba Corp Information processing apparatus and program
KR101966958B1 (en) * 2018-09-07 2019-04-09 (주)아이피아이테크 Polyimide film for semiconductor packaging
KR102240905B1 (en) * 2019-03-29 2021-04-16 (주)이녹스첨단소재 flexible copper clad layer capable of use chip on film and flexible printed circuit board in common

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627190A (en) * 1985-07-03 1987-01-14 ニツカン工業株式会社 Substrate for flexible wiring and manufacture thereof
JPH02168694A (en) * 1988-12-22 1990-06-28 Mitsui Toatsu Chem Inc Flexible laminate and manufacture thereof
JPH051224A (en) * 1991-06-26 1993-01-08 Hitachi Chem Co Ltd Thermosetting resin composition and adhesive film
JP2746555B2 (en) * 1995-11-13 1998-05-06 新日鐵化学株式会社 Flexible printed circuit board
JP2001270039A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate and manufacturing method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627190A (en) * 1985-07-03 1987-01-14 ニツカン工業株式会社 Substrate for flexible wiring and manufacture thereof
JPH02168694A (en) * 1988-12-22 1990-06-28 Mitsui Toatsu Chem Inc Flexible laminate and manufacture thereof
JPH051224A (en) * 1991-06-26 1993-01-08 Hitachi Chem Co Ltd Thermosetting resin composition and adhesive film
JP2746555B2 (en) * 1995-11-13 1998-05-06 新日鐵化学株式会社 Flexible printed circuit board
JP2001270039A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate and manufacturing method for the same

Also Published As

Publication number Publication date
JP2005313407A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP6345207B2 (en) Metal-clad laminate, method for producing the same, and method for producing a flexible circuit board using the same
JP5251508B2 (en) Heat-resistant film metal foil laminate and method for producing the same
JP5524475B2 (en) Two-layer double-sided flexible metal laminate and its manufacturing method
EP0474054A2 (en) Flexible multi-layer polyimide film laminates and preparation thereof
WO2005063860A1 (en) Polyimide film
WO2001028767A1 (en) Laminate and process for producing the same
JPH08230103A (en) Metal foil-laminated polyimide film
JP4504602B2 (en) Polyimide copper clad laminate and method for producing the same
JP5733778B2 (en) Polyimide resin for primer layer and laminate using the same
JPH08230101A (en) Metal foil-laminated polyimide film
JP4510506B2 (en) Method for producing polyimide metal laminate
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
TWI408202B (en) Followed by sheet and copper foil laminated board
JP4473833B2 (en) Polyimide metal laminate and manufacturing method thereof
JP4763964B2 (en) Method for producing polyimide metal laminate
JP6774285B2 (en) Metal-clad laminate
JP2008149549A (en) Method for producing metal laminate
JP2007098791A (en) Flexible one side copper-clad polyimide laminated plate
JP6603032B2 (en) Copper-clad laminate and circuit board
US20040096679A1 (en) Metal laminate
JP5055244B2 (en) Polyimide metal laminate
JP6776087B2 (en) Manufacturing method of metal-clad laminate and manufacturing method of circuit board
JP4369721B2 (en) Method for producing metal laminate
JP4409898B2 (en) Polyimide metal laminate
JP4785340B2 (en) Polyimide metal laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees