JP4506965B2 - R-T-M-B rare earth permanent magnet and method for producing the same - Google Patents
R-T-M-B rare earth permanent magnet and method for producing the same Download PDFInfo
- Publication number
- JP4506965B2 JP4506965B2 JP2004353619A JP2004353619A JP4506965B2 JP 4506965 B2 JP4506965 B2 JP 4506965B2 JP 2004353619 A JP2004353619 A JP 2004353619A JP 2004353619 A JP2004353619 A JP 2004353619A JP 4506965 B2 JP4506965 B2 JP 4506965B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- mass
- rare earth
- sodium
- potassium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、耐腐食性と低発塵性及び環境適合性を有するR−T−M−B系希土類永久磁石とその製造方法に関する。 The present invention relates to an RTMB rare earth permanent magnet having corrosion resistance, low dust generation and environmental compatibility, and a method for producing the same.
希土類系焼結磁石は、優れた磁気特性と経済性のため多くの分野で多用されてきているが、近年において環境に優しい技術を実現する目的で、エネルギーの効率化を図る手段として、光ピックアップ駆動用や省エネルギーモーターなどの需要が増大している。しかし、Ndをはじめ希土類金属材料は、一般に湿気の多い空気中では極めて短時間のうちに容易に酸化してしまうため、それに伴って生じる磁気特性の劣化や磁石材料の脱落により引き起こされる汚染が欠点として存在する。 Rare earth-based sintered magnets have been widely used in many fields because of their excellent magnetic properties and economy, but in recent years, optical pickups have been used as a means of improving energy efficiency in order to realize environmentally friendly technologies. Demand for driving and energy-saving motors is increasing. However, since rare earth metal materials such as Nd are generally easily oxidized in a very short period of time in humid air, the disadvantages are the magnetic property degradation and contamination caused by dropping of the magnet material. Exists as.
このため、一般的な使用にあっては、該磁石の表面に保護被膜として、特開昭60−54406号公報(特許文献1)にあるような金属被膜、特開平9−63833号公報(特許文献2)にあるような無機質被膜、特開平9−180922号公報(特許文献3)にあるような有機質被膜、特開平7−74043号公報(特許文献4)にあるように磁石表面をイオンプレーティングを用いたアルミなどの金属蒸着膜等により乾式被覆する方法が提唱されている。 Therefore, in general use, as a protective film on the surface of the magnet, a metal film as disclosed in JP-A-60-54406 (Patent Document 1), JP-A-9-63833 (Patent) Inorganic coatings as described in Document 2), organic coatings as described in JP-A-9-180922 (Patent Document 3), and magnet surfaces are ion-plated as disclosed in JP-A-7-74043 (Patent Document 4). A method of dry-coating with a metal vapor deposition film such as aluminum using a tinting has been proposed.
この中で、より高度な低発塵性と耐食性を求める場合は、上記のうち金属皮膜が一般的に処方されるが、これら皮膜に生じる磁石素地まで到達する微細孔が発塵原因や腐蝕原因のひとつになっていることから、金属被膜にショットブラストなど物理的衝激を与えたり、クロム酸化物皮膜でトップコートするなどして、これら微細孔を封止する試みが行われている。 Among these, when more advanced low dust generation and corrosion resistance are required, metal coatings are generally prescribed among the above, but the fine holes that reach the magnet base generated in these coatings are the cause of dust generation and corrosion. Therefore, attempts have been made to seal these micropores by giving a physical impulse such as shot blasting to the metal film or top-coating with a chromium oxide film.
また、角部の面取りが行われていない形状や、割れやカケが生じやすい形状の磁石にあっては、バレルと呼ばれる太鼓状の容器に磁石を投入してメッキするバレルメッキ法を用いると磁石に欠損が生じるため、ラックと呼ばれるフレームに取りつけてラックごとメッキ槽に浸漬し、メッキするラックメッキ法が採られているが、このラックメッキ法においても、磁石がラックに挟まれている部分(以下、接点という)にメッキが施されない現象が生じるため、接点跡が先の微細孔と同様に発塵原因や腐蝕原因となるため、クロム酸化物皮膜でトップコートしたり、接点跡をエポキシ樹脂で保護したり、メッキ途中で接点位置を変えたりして封止する試みが行われている。 For magnets that are not chamfered at the corners or that are prone to cracking or chipping, use a barrel plating method in which a magnet is placed in a drum-shaped container called a barrel and plated. In this rack plating method, the portion where the magnet is sandwiched between the racks (the rack is attached to a frame called a rack, dipped in the plating tank together with the rack, and plated). (Hereinafter referred to as contact), the phenomenon of not being plated occurs, and the contact mark causes dust generation and corrosion as well as the previous fine hole. Therefore, it can be top-coated with a chromium oxide film or the contact mark can be epoxy resin. Attempts have been made to seal with protection by changing the contact position during plating.
しかしながら、さきの物理的衝撃による封止は、例えば円筒形磁石における円筒内側の皮膜など外部からの衝撃を与えにくい形状では微細孔が塞がらないし、磁石の寸法が数ミリ以下の小物磁石や薄物磁石の場合などは磁石の固定が難しいこともあって衝撃が伝わりにくいため、微細孔が封止されなかったり、また磁石の機械的な強度不足から磁石自体が欠けたり割れてしまうなどの不具合が生じている。 However, the sealing by the physical impact mentioned above does not block the micro holes in the shape of a cylindrical magnet that is hard to receive external impact, such as a coating on the inside of the cylinder, and small magnets or thin magnets with a magnet size of several millimeters or less In such cases, it is difficult to fix the magnet and the impact is difficult to be transmitted. Therefore, the fine holes are not sealed, and the magnet itself is broken or cracked due to insufficient mechanical strength of the magnet. ing.
クロム酸化物被膜によるトップコートは、クロム酸化物が有する化学的性質から、被膜を生成させる処理液と共に処理時に生じる廃棄物全てに厳密な管理が必要となるなど、扱いが難しく、更に、電気電子部品基板製造における鉛フリーハンダ化に代表されるような近年の環境への意識の高まりからクロム酸化物の使用についても削減や廃止が求められるなど、早急に代替技術が求められている。 The top coat with chromium oxide coating is difficult to handle because of the chemical properties of chromium oxide, and it is difficult to handle all waste generated during processing together with the treatment liquid that forms the coating. Due to the recent increase in environmental awareness as represented by lead-free soldering in the production of component boards, there is an urgent need for alternative technologies, such as the need to reduce or eliminate the use of chromium oxide.
接点跡のエポキシ樹脂による封止は、封止部分が盛り上がるため寸法精度が悪くなったり、繁雑な封止作業が別途必要になるなど、生産上の不具合を抱えている。
メッキ途中で接点位置を変える方法では、接点跡にメッキが上手く析出せず、接点跡を充分に埋められない場合があり、後処理としてクロム酸化物によるトップコートが必要になるなど充分な対策にならない場合がある。
In the method of changing the contact position in the middle of plating, plating does not deposit well on the contact mark and the contact mark may not be sufficiently filled, and it is sufficient measures such as requiring a top coat with chromium oxide as a post treatment. It may not be possible.
本発明は上記事情に鑑みなされたもので、優れた耐腐食性、低発塵性、環境適合性、接着性を有するR−T−M−B系希土類永久磁石及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides an RTMB rare earth permanent magnet having excellent corrosion resistance, low dust generation, environmental compatibility, and adhesiveness, and a method for producing the same. With the goal.
本発明者は、上記目的を達成するため鋭意検討を行った結果、素地上に金属メッキ被膜を有するR−T−M−B系希土類永久磁石において、金属メッキ被膜に存在する素地まで貫通する微細孔の底部(磁石素地部)及びその近傍(金属皮膜部)に、磁石素地よりも電気化学的に同等もしくは貴な金属を含む燐化合物を析出させるか堆積した磁石、及び、これら磁石を得るために、素地上に金属メッキ被膜を有するR−T−M−B系希土類永久磁石を磁石素地に対して電気化学的に同等もしくは貴な金属を含んだ特定の酸及び/又は塩基の水溶液に浸漬する製造方法が有効であることを見出し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventor has found that in an R-T-MB-based rare earth permanent magnet having a metal plating film on the substrate, the fineness penetrating to the substrate existing in the metal plating film. In order to obtain a magnet in which a phosphorus compound containing a metal that is electrochemically equivalent or noble than the magnet base is deposited or deposited on the bottom part (magnet base part) and the vicinity (metal coating part) of the hole, and these magnets are obtained. In addition, an RTMB-B rare earth permanent magnet having a metal plating film on the substrate is immersed in an aqueous solution of a specific acid and / or base that contains an electrochemically equivalent or noble metal to the magnet substrate. As a result, the present inventors have found that the manufacturing method to be effective is effective.
即ち、本発明は、R−T−M−B(RはY及びScを包含する希土類元素のうち少なくとも一種、TはFe又はFe及びCo、MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であって、これらの含有量はそれぞれ5質量%≦R≦40質量%、50質量%≦T≦90質量%、0質量%≦M≦8質量%、0.2質量%≦B≦8質量%である。)で表される希土類焼結磁石の表面に、Fe、Co、Ni、Sn、Cuから選ばれる少なくとも一種からなる金属皮膜をメッキ法を用いて一層又は多層に形成した後、該磁石をFe、Co、Ni、Sn、Cuから選ばれる少なくとも一種の金属と、燐酸二水素ナトリウム、燐酸二水素カリウム、燐酸水素二ナトリウム、燐酸水素二カリウムから選ばれる少なくとも一種の化合物と、硫酸、硝酸、酢酸、蓚酸、クエン酸、ピロ燐酸、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、硝酸カリウム、酢酸ナトリウム、酢酸カリウム、蓚酸カリウム、蓚酸ナトリウム、クエン酸ナトリウム、クエン酸カリウム、ピロ燐酸ナトリウム、ピロ燐酸カリウムから選ばれる少なくとも一種の化合物を含む水溶液に浸漬して、希土類焼結磁石の表面に形成された金属皮膜の上記磁石表面に達する微細孔底部に対応する磁石表面上にFe、Co、Ni、Sn、Cuから選ばれる少なくとも一種の金属とその金属を含む燐化合物を堆積させることを特徴とするR−T−M−B系希土類永久磁石の製造方法を提供する。また、本発明は、該方法によって得られ、希土類焼結磁石の表面に形成された金属皮膜の上記磁石表面に達する微細孔底部に対応する磁石表面上に、Fe、Co、Ni、Sn、Cuから選ばれる少なくとも一種の金属とその金属を含む燐化合物が堆積されてなるR−T−M−B系希土類永久磁石を提供する。 That is, the present invention is based on R-T-M-B (R is at least one of rare earth elements including Y and Sc, T is Fe or Fe and Co, M is Ti, Nb, Al, V, Mn, Sn. , Ca, Mg, Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, Ta, and the content of each is 5% by mass ≦ R ≦ 40 mass%, 50 mass% ≦ T ≦ 90 mass%, 0 mass% ≦ M ≦ 8 mass%, 0.2 mass% ≦ B ≦ 8 mass%)) Further, after forming a metal film made of at least one selected from Fe, Co, Ni, Sn, and Cu in a single layer or multiple layers using a plating method, the magnet is at least selected from Fe, Co, Ni, Sn, and Cu. A metal, sodium dihydrogen phosphate, dihydrogen phosphate Um, sodium phosphate dibasic, and at least one compound selected from dipotassium hydrogen phosphate, sulfuric acid, nitric acid, acetic acid, oxalic acid, citric acid, peak b phosphate, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, sodium acetate, potassium, potassium oxalate, sodium oxalate, sodium citrate, potassium citrate, sodium pin b phosphate, was immersed in an aqueous solution containing at least one compound selected from potassium pyrophosphate, metal formed on the surface of the rare earth sintered magnet R- characterized in that at least one metal selected from Fe, Co, Ni, Sn, Cu and a phosphorus compound containing the metal are deposited on the surface of the magnet corresponding to the bottom of the fine hole reaching the magnet surface of the film. A method for producing a TMB-based rare earth permanent magnet is provided. The present invention also provides Fe, Co, Ni, Sn, Cu on the magnet surface corresponding to the bottom of the fine hole reaching the magnet surface of the metal film formed by the method and formed on the surface of the rare earth sintered magnet. An R-T-MB-based rare earth permanent magnet in which at least one kind of metal selected from the above and a phosphorus compound containing the metal is deposited is provided.
本発明によるR−T−M−B系希土類永久磁石及びその製造方法は、希土類永久磁石に高い耐腐食性、低発塵性、環境適合性、良好な接着性を付与し、応用範囲を更に広げるものとして有用なものである。 The R-T-M-B rare earth permanent magnet and the manufacturing method thereof according to the present invention impart high corrosion resistance, low dust generation, environmental compatibility, and good adhesion to the rare earth permanent magnet, further expanding the application range. It is useful as a spreader.
本発明において用いるR−T−M−Bで表される希土類系焼結永久磁石において、RはY及びScを含む希土類元素であり、具体的にはY、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちから選ばれる少なくとも一種の希土類元素が挙げられ、特にNdを含むものが好適に用いられる。その含有量は5質量%以上40質量%以下で、好ましくは10質量%以上35質量%以下である。TはFe又はFe及びCoであり、その含有量は50質量%以上90質量%以下で、好ましくは55質量%以上80質量%以下である。MはTi、Nb、Al、V、Mn、Sn、Ca、Mg、Pb、Sb、Zn、Si、Zr、Cr、Ni、Cu、Ga、Mo、W、Taから選ばれる少なくとも一種の元素であり、含有量は8質量%以下で、好ましくは5質量%以下である。Bは0.2質量%以上8質量%以下、好ましくは0.5質量%以上5質量%以下含有される。その他、現時点で工業的に不可避不純物元素とされるC、N、O、H、P、S等も含まれる。 In the rare earth sintered permanent magnet represented by RTMB used in the present invention, R is a rare earth element including Y and Sc, specifically, Y, Sc, La, Ce, Pr, Nd. , Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. At least one rare earth element selected from the group consisting of Nd is preferably used. The content is 5% by mass or more and 40% by mass or less, preferably 10% by mass or more and 35% by mass or less. T is Fe or Fe and Co, and the content thereof is 50% by mass or more and 90% by mass or less, and preferably 55% by mass or more and 80% by mass or less. M is at least one element selected from Ti, Nb, Al, V, Mn, Sn, Ca, Mg, Pb, Sb, Zn, Si, Zr, Cr, Ni, Cu, Ga, Mo, W, and Ta. The content is 8% by mass or less, preferably 5% by mass or less. B is contained in an amount of 0.2 to 8% by mass, preferably 0.5 to 5% by mass. In addition, C, N, O, H, P, S, etc., which are industrially inevitable impurity elements at present, are also included.
この磁石は、原材料から合金を作製した後、これを粉砕して粉末を得、この粉末を求める形状に成型し、焼結するという一般的に公知な製造方法を用いて作製する。例えば次の方法が挙げられる。希土類酸化物やフッ化物から精製した純希土類金属、希土類合金、純鉄、フェロボロン、各添加物元素の純金属、合金等を原材料とし、これらを耐熱性酸化物でできた坩堝に充填し、真空又は不活性気体、例えばAr雰囲気中で高周波を用いて加熱溶解した後、鋳型に流し込んで冷却するか、回転する冷却ロール上に注いで急冷し、原料合金を作製する。
この原料合金にはR2Fe14B相(RはY及びScを含む希土類元素のうち少なくとも一種(前述)、以下同じ)の他にα−Fe相、Rリッチ相、Bリッチ相等が残る場合があり、必要に応じて真空もしくは不活性気体雰囲気にて700〜1,200℃の温度で溶体化処理を行う。
The magnet is manufactured using a generally known manufacturing method in which an alloy is prepared from raw materials, and then pulverized to obtain a powder, which is molded into a desired shape and sintered. For example, the following method is mentioned. Pure crucible metals refined from rare earth oxides and fluorides, rare earth alloys, pure iron, ferroboron, pure metals and alloys of each additive element are used as raw materials, and these are filled in crucibles made of heat-resistant oxides and vacuumed Alternatively, after heating and dissolving in an inert gas, for example, Ar atmosphere using high frequency, it is poured into a mold and cooled, or poured onto a rotating cooling roll and rapidly cooled to produce a raw material alloy.
In this raw material alloy, in addition to the R 2 Fe 14 B phase (R is at least one kind of rare earth elements including Y and Sc (the above), the same shall apply hereinafter), α-Fe phase, R rich phase, B rich phase, etc. remain. If necessary, solution treatment is performed at a temperature of 700 to 1,200 ° C. in a vacuum or an inert gas atmosphere.
原料合金はジョークラッシャー、ブラウンミル、ジェットミル等の機器を用いたり、大まかに粉砕した粒に水素ガスを吸蔵放出させたりして目的とする粒径、例えばレーザー回折式の粒度分布測定器で測定した場合で、平均粒径20μm以下に粉砕する。
次いで、得られた粉末を磁場中でのプレス成型によって所望の形状に成型し、続いて真空もしくは不活性気体雰囲気で900〜1,200℃の温度で焼結する。
必要に応じて焼結後の磁石を、任意の形状に切断切削加工を行ったり、熱処理を行ってもよい。
The raw material alloy is measured by using a device such as a jaw crusher, brown mill, jet mill, etc., or by occluding and releasing hydrogen gas into roughly crushed grains, for example, using a laser diffraction particle size distribution analyzer. In this case, the average particle size is pulverized to 20 μm or less.
Next, the obtained powder is molded into a desired shape by press molding in a magnetic field, and subsequently sintered at a temperature of 900 to 1,200 ° C. in a vacuum or an inert gas atmosphere.
If necessary, the sintered magnet may be cut into an arbitrary shape or heat-treated.
焼結して得られた磁石は、製造過程で表面に付着した油脂を塩基性水溶液などによって除去した後、酸性水溶液などによって表面に存在する酸化物などの不動態層を取り除き、例えばワット浴を用いた電気Niメッキ、ピロ燐酸浴を用いた電気Cuメッキ、その他の無電解メッキなど公知の方法を用いて表面を金属皮膜で被覆する。なお、メッキはラック法でもバレル法でもよい。 The magnet obtained by sintering removes the oil and fat adhering to the surface during the manufacturing process with a basic aqueous solution, and then removes the passive layer such as oxide existing on the surface with an acidic aqueous solution. The surface is coated with a metal film using a known method such as electric Ni plating used, electric Cu plating using a pyrophosphoric acid bath, or other electroless plating. The plating may be performed by a rack method or a barrel method.
被覆はFe、Co、Ni、Sn、Cuのうちの一種あるいはこれらの合金を1層施してもよいし、皮膜の機能を高めるため複数層施してもよい。なお、本発明において、耐食性及び低発塵性を得るための被覆層厚みは1〜40μm程度、好ましくは3μm以上25μm以下で施す必要がある。1μm未満では、被覆の処理技術にもよるが、素地を十分に被覆できない場合が多く、皮膜としての機能を発揮できない。また、40μmを超えると、金属皮膜に存在する素地まで達する微細孔が大きく減少し、本発明を実施する意義が薄れると共に、同体積に占める磁石体積が減少してしまうことにより、特に小物薄物磁石や高特性磁石においては最終的に得られる磁気特性が低下し、使用上の問題が発生してしまう。 The coating may be a single layer of Fe, Co, Ni, Sn, Cu or an alloy thereof, or a plurality of layers to improve the function of the coating. In the present invention, the coating layer thickness for obtaining the corrosion resistance and the low dust generation property should be about 1 to 40 μm, preferably 3 μm or more and 25 μm or less. If it is less than 1 μm, although depending on the coating processing technique, the substrate cannot be sufficiently covered in many cases, and the function as a film cannot be exhibited. In addition, if it exceeds 40 μm, the number of micropores reaching the substrate existing in the metal film is greatly reduced, and the significance of carrying out the present invention is diminished, and the volume of the magnet occupying the same volume is reduced. In the case of high-performance magnets, the finally obtained magnetic properties are deteriorated, causing problems in use.
本発明においては、このようにして得られた金属で被覆された磁石を、Fe、Co、Ni、Sn、Cuから選ばれる少なくとも一種の金属と、燐酸二水素ナトリウム、燐酸二水素カリウム、燐酸水素二ナトリウム、燐酸水素二カリウムから選ばれる少なくとも一種と、硫酸、硝酸、酢酸、蓚酸、クエン酸、ピロ燐酸、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、硝酸カリウム、酢酸ナトリウム、酢酸カリウム、蓚酸ナトリウム、蓚酸カリウム、クエン酸ナトリウム、クエン酸カリウム、ピロ燐酸ナトリウム、ピロ燐酸カリウムから選ばれる少なくとも一種とを含む水溶液(処理液)に任意の温度と時間で浸漬する。
In the present invention, the magnet coated with the metal thus obtained is made of at least one metal selected from Fe, Co, Ni, Sn, Cu, sodium dihydrogen phosphate, potassium dihydrogen phosphate, hydrogen phosphate. disodium, and at least one selected from dipotassium hydrogen phosphate, sulfuric acid, nitric acid, acetic acid, oxalic acid, citric acid, peak b phosphate, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, sodium acetate, potassium acetate, sodium oxalate, oxalate potassium, sodium citrate, potassium citrate, sodium pin b phosphate, immersed at any temperature and time in an aqueous solution (treatment liquid) containing at least one selected from potassium pyrophosphate.
処理液に含む金属とその他成分の濃度は、処理する温度と時間に合わせて決めればよく、本発明が発現される条件のひとつである処理液のpHを一つの指標とするとき、処理温度でのpHが0.3以上6.5以下もしくは8.0以上12.5以下となるように調製すればよい。なお、pH調整は成分の濃度を増減することで行ってもよいし、水酸化カリウム、水酸化ナトリウム等を用いてもよい。 The concentration of the metal and other components contained in the treatment liquid may be determined in accordance with the treatment temperature and time. When the pH of the treatment liquid, which is one of the conditions under which the present invention is expressed, is an index, the treatment temperature The pH of the solution may be adjusted to 0.3 to 6.5 or 8.0 to 12.5. In addition, pH adjustment may be performed by increasing / decreasing the density | concentration of a component, and potassium hydroxide, sodium hydroxide, etc. may be used.
この場合、温度及び時間は、15〜60℃の間で求める効果が得られる時間を選択すればよいが、生産性を考慮すると、25〜40℃の間で1〜5分であることが好ましい。
また、この際に微細孔への処理液の浸透を十分なものとするため、処理液に高級脂肪酸の塩などを用いた界面活性剤を配合してもよい。
In this case, the temperature and time may be selected as long as the effect to be obtained between 15 and 60 ° C. is obtained, but considering productivity, it is preferably between 1 and 5 minutes between 25 and 40 ° C. .
At this time, a surfactant using a salt of a higher fatty acid or the like may be added to the treatment liquid in order to ensure sufficient penetration of the treatment liquid into the micropores.
このようにして調製した処理液が微細孔にしみ込むと、磁石素地と金属皮膜と処理液の間で局部電池が構成されることが発端となって、電気化学的に卑となる磁石素地の一部分が優先的に比較的速やかに溶解する。磁石素地の溶解が始まると、電気化学的に貴な部分に処理液中の金属が析出する。 When the treatment liquid prepared in this way soaks into the micropores, a local battery is formed between the magnet base, the metal film, and the treatment liquid, and a part of the magnet base that becomes electrochemically base is started. Preferentially dissolves relatively quickly. When the melting of the magnet substrate starts, the metal in the treatment liquid deposits on the electrochemically noble part.
この電気化学的に貴となる部分は、金属皮膜と磁石素地が接しているところでは金属皮膜上になるが、それ以外は外部から強制的に電圧をかけている場合と異なり、溶解が生じている部分近傍の溶解していない部分となるため、そこに処理液中の金属が析出する。 なお、処理液中の磁石素地よりも電気化学的に貴な金属が磁石素地上に順次析出することで、処理液に対しても保護膜の役割を果たすため、従来、微細孔のある金属被膜を有したR−T−M−B系希土類永久磁石を酸又は塩基の水溶液に浸漬した際に微細孔部において生じていた磁石素地の優先的侵食に伴う顕著な腐蝕劣化を最小にすることができる。 This electrochemically noble part is on the metal film where the metal film is in contact with the magnet substrate, but other than that when the voltage is forcibly applied from the outside, dissolution occurs. Since it becomes the part which is not melt | dissolving near the part which exists, the metal in a process liquid deposits there. In addition, since a metal that is electrochemically more noble than the magnet substrate in the treatment liquid is deposited on the magnet substrate in sequence, it plays a role of a protective film against the treatment solution. To minimize remarkable corrosion deterioration due to preferential erosion of the magnet substrate that has occurred in the fine pores when an R-T-M-B rare earth permanent magnet having a magnetic field is immersed in an aqueous solution of acid or base it can.
更にこの時、燐酸二水素ナトリウム、燐酸二水素カリウム、燐酸水素二ナトリウム、燐酸水素二カリウムの少なくとも一種と処理液中の金属との反応によって燐化合物が生成され、微細孔中に堆積し、微細孔が封止される。
処理後は、イオン交換水や純水を用いてすすいでから乾燥する。
Further, at this time, a phosphorous compound is generated by the reaction of at least one of sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate with the metal in the treatment liquid, and is deposited in the fine pores. The hole is sealed.
After the treatment, rinse with ion exchange water or pure water and then dry.
なお、本発明で述べる微細孔とは、磁石を被覆している金属の表面に観察される開口部において、その大きさを開口部と同等の面積を有する真円の直径で表した場合で1mm以下のものや、ラックメッキ法によって生じた金属被膜に存在するラックの接点跡をいう。 The micropore described in the present invention is an opening observed on the surface of the metal covering the magnet, and the size is expressed as a diameter of a perfect circle having an area equivalent to the opening. This refers to the following or the traces of the rack contacts present on the metal coating produced by the rack plating method.
以上の方法により、素地上にFe、Co、Ni、Sn、Cuから選ばれる少なくとも一種からなる金属皮膜を有したR−T−M−B系希土類永久磁石において、素地上に形成されている金属被膜に存在する素地まで達する微細孔をFe、Co、Ni、Sn、Cuから選ばれる少なくとも一種からなる金属とそれら金属を含む燐化合物で封止した希土類永久磁石を得ることができる。 By the above method, the metal formed on the substrate in the RTMB-based rare earth permanent magnet having a metal film made of at least one selected from Fe, Co, Ni, Sn, and Cu on the substrate. It is possible to obtain a rare earth permanent magnet in which fine holes reaching the substrate existing in the coating are sealed with a metal composed of at least one selected from Fe, Co, Ni, Sn and Cu and a phosphorus compound containing these metals.
以下、本発明の実施例及び比較例を具体的に説明するが、本発明はこれらに制限されるものではない。 Examples of the present invention and comparative examples will be specifically described below, but the present invention is not limited thereto.
[実施例1〜4、比較例1〜4]
Ar雰囲気下、所用の原材料から高周波加熱溶解により、Nd32質量%、Co7質量%、Fe59.8質量%、B1.2質量%の原料合金を作製し、ジョウクラッシャーにて粗粉砕した後、窒素雰囲気下、ジェットミルを用いて微粉砕し、平均粒径3.5μmの微粉末を得た。続いて得られた粉末を金型に充填した後、10kOeの磁界を印加しつつ1.0ton/cm2の圧力を加えて成型し、真空中1,100℃で2時間焼結し、550℃で1時間の加熱処理を行った。得られた磁石を10×20×2mmと5×5×2mmの2種類の形状に加工した後、各々、市販の塩基性脱脂水溶液を用いて油脂を取り除き、硝酸水溶液を用いて不動態層を除去した後に、ワット浴を用いてバレルメッキ法による電気Niメッキを施し、皮膜厚み6μmのNi皮膜で被覆して、評価用磁石とした。得られた磁石を以下の各実施例で示す処理液に25℃で2分間浸漬し、イオン交換水ですすいだ後、80℃の強制循環式乾燥機で10分間乾燥した。
実施例1:Fe0.005mol/L、ピロ燐酸0.01mol/L、燐酸二水素ナト
リウム0.1mol/L
実施例2:Ni0.01mol/L、ピロ燐酸0.02mol/L、ピロ燐酸カリウム
0.05mol/L、燐酸二水素ナトリウム0.1mol/L
比較例1:未処理
比較例2:市販クロメート処理剤
[Examples 1-4, Comparative Examples 1-4]
A raw material alloy of Nd 32% by mass, Co 7% by mass, Fe 59.8% by mass, and B1.2% by mass was produced from the required raw materials under an Ar atmosphere by high-frequency heating and melting, coarsely pulverized with a jaw crusher, and then a nitrogen atmosphere Then, it was pulverized using a jet mill to obtain a fine powder having an average particle size of 3.5 μm. Subsequently, the obtained powder was filled in a mold, molded by applying a pressure of 1.0 ton / cm 2 while applying a magnetic field of 10 kOe, sintered in vacuum at 1,100 ° C. for 2 hours, and 550 ° C. Then, heat treatment was performed for 1 hour. After the obtained magnet was processed into two types of 10 × 20 × 2 mm and 5 × 5 × 2 mm, the fats and oils were removed using a commercially available basic degreasing aqueous solution, and the passive layer was formed using a nitric acid aqueous solution. After the removal, electric Ni plating was performed by a barrel plating method using a Watt bath, and a Ni film having a film thickness of 6 μm was coated to obtain a magnet for evaluation. The obtained magnet was immersed in a treatment solution shown in each of the following examples at 25 ° C. for 2 minutes, rinsed with ion-exchanged water, and then dried in a forced circulation dryer at 80 ° C. for 10 minutes.
Example 1: Fe 0.005 mol / L, pyrophosphoric acid 0.01 mol / L, dihydrogen phosphate sodium
Lilium 0.1 mol / L
Example 2: Ni 0.01 mol / L, pyrophosphoric acid 0.02 mol / L, potassium pyrophosphate
0.05 mol / L, sodium dihydrogen phosphate 0.1 mol / L
Comparative Example 1: Untreated Comparative Example 2: Commercial Chromate Treatment Agent
上記と同様に作製した磁石を、市販の塩基性脱脂水溶液を用いて油脂を取り除き、硝酸水溶液を用いて不動態層を除去した後にワット浴を用いてラックメッキ法による電気Niメッキを施し、皮膜厚み6μmのNi皮膜で被覆して、評価用磁石とした。得られた磁石を以下の各実施例で示す処理液に25℃で2分間浸漬し、イオン交換水ですすいだ後、80℃の強制循環式乾燥機で10分間乾燥した。
実施例3:Fe0.005mol/L、クエン酸0.1mol/L、燐酸水素二ナトリ
ウム0.1mol/L
実施例4:Ni0.01mol/L、ピロ燐酸0.05mol/L、燐酸二水素ナトリ
ウム0.1mol/L
比較例3:未処理
比較例4:市販クロメート処理剤
The magnet produced in the same manner as above was used to remove oils and fats using a commercially available basic degreasing aqueous solution, and after removing the passive layer using an aqueous nitric acid solution, electroplating Ni was carried out using a watt bath and rack plating. An evaluation magnet was prepared by coating with a 6 μm thick Ni film. The obtained magnet was immersed in a treatment solution shown in each of the following examples at 25 ° C. for 2 minutes, rinsed with ion-exchanged water, and then dried in a forced circulation dryer at 80 ° C. for 10 minutes.
Example 3: Fe 0.005 mol / L, citric acid 0.1 mol / L, dihydrogen hydrogen phosphate
Um 0.1 mol / L
Example 4: Ni 0.01 mol / L, pyrophosphoric acid 0.05 mol / L, dihydrogen phosphate sodium
Um 0.1 mol / L
Comparative Example 3: Untreated Comparative Example 4: Commercial Chromate Treatment Agent
以上で得られた試料のうち、寸法が10×20×2mmのものについて、120℃、2気圧で48時間と72時間と96時間のプレッシャークッカー試験(PCT)した結果と5質量%塩化ナトリウム水溶液に35℃で48時間と72時間と96時間浸漬した後、水洗、乾燥し、直ちに実体顕微鏡を用いて2.5〜20倍で錆の発生やメッキ被膜のフクレやハガレの程度を観察した結果と、寸法が5×5×2mmのものについて、VSMで測定したパーミアンス1における磁束密度及び保磁力の各値の120℃×24時間前後での変化を百分率で示した磁気特性劣化の程度と、処理後1ヶ月経過した磁石をアクリル系及びエポキシ系接着で鉄板に接着し磁石を線速10mm/minで圧縮剪断した時の剪断接着強度など、各々について評価した結果を表1に示す。 Of the samples obtained above, those having a size of 10 × 20 × 2 mm were subjected to a pressure cooker test (PCT) at 120 ° C. and 2 atm for 48 hours, 72 hours and 96 hours, and a 5 mass% sodium chloride aqueous solution. After immersing at 35 ° C. for 48 hours, 72 hours and 96 hours, washing with water, drying, and immediately observing the occurrence of rust, plating film swelling and peeling at 2.5 to 20 times using a stereomicroscope And for the dimension of 5 × 5 × 2 mm, the degree of magnetic property deterioration showing the change in magnetic flux density and coercivity in Permeance 1 measured by VSM as a percentage around 120 ° C. × 24 hours, The results were evaluated for each, such as the shear adhesive strength when a magnet that had passed one month after treatment was bonded to an iron plate with acrylic and epoxy adhesives and the magnet was compression sheared at a linear speed of 10 mm / min. The results are shown in Table 1.
[実施例5〜8、比較例5〜8]
Ar雰囲気下、所用の原材料から高周波加熱溶解により、Nd32質量%、Co7質量%、Fe59.8質量%、B1.2質量%の原料合金を作製し、ジョウクラッシャーにて粗粉砕した後、窒素雰囲気下、ジェットミルを用いて微粉砕し、平均粒径3.5μmの微粉末を得た。続いて得られた粉末を金型に充填した後、10kOeの磁界を印加しつつ1.0ton/cm2の圧力を加えて成型し、真空中1,100℃で2時間焼結し、550℃で1時間の加熱処理を行い、磁石を得た。得られた磁石を10×20×2mmと5×5×2mmの2種類の形状に加工した後、各々、市販の塩基性脱脂水溶液を用いて油脂を取り除き、硝酸水溶液を用いて不動態層を除去した。次いでピロ燐酸浴を用いてバレルメッキ法による電気Cuメッキを施した後に、ワット浴を用いてバレルメッキ法による電気Niメッキを施し、各々3μm、合計で6μmのCu/Ni2層皮膜で被覆して評価用磁石とした。得られた磁石を以下の各実施例で示す処理液に25℃で2分間浸漬し、イオン交換水ですすいだ後、80℃の強制循環式乾燥機で10分間乾燥した。
実施例5:Fe0.005mol/L、酢酸0.1mol/L、燐酸二水素ナトリ
ウム0.1mol/L
実施例6:Ni0.01mol/L、ピロ燐酸0.01mol/L、ピロ燐酸カリ
ウム0.05mol/L、燐酸二水素カリウム0.1mol/L
比較例5:未処理
比較例6:市販クロメート処理剤
[Examples 5-8, Comparative Examples 5-8]
A raw material alloy of Nd 32% by mass, Co 7% by mass, Fe 59.8% by mass, and B1.2% by mass was produced from the required raw materials under an Ar atmosphere by high-frequency heating and melting, coarsely pulverized with a jaw crusher, and then a nitrogen atmosphere Then, it was pulverized using a jet mill to obtain a fine powder having an average particle size of 3.5 μm. Subsequently, the obtained powder was filled in a mold, molded by applying a pressure of 1.0 ton / cm 2 while applying a magnetic field of 10 kOe, sintered in vacuum at 1,100 ° C. for 2 hours, and 550 ° C. Then, a heat treatment was performed for 1 hour to obtain a magnet. After the obtained magnet was processed into two types of 10 × 20 × 2 mm and 5 × 5 × 2 mm, the fats and oils were removed using a commercially available basic degreasing aqueous solution, and the passive layer was formed using a nitric acid aqueous solution. Removed. Next, after applying Cu electroplating by barrel plating using a pyrophosphoric acid bath, applying Ni plating by barrel plating using Watt bath, and coating each with 3 μm, a total of 6 μm Cu / Ni two-layer coating An evaluation magnet was obtained. The obtained magnet was immersed in a treatment solution shown in each of the following examples at 25 ° C. for 2 minutes, rinsed with ion-exchanged water, and then dried in a forced circulation dryer at 80 ° C. for 10 minutes.
Example 5: Fe 0.005 mol / L, acetic acid 0.1 mol / L, sodium dihydrogen phosphate
Um 0.1 mol / L
Example 6: Ni 0.01 mol / L, pyrophosphoric acid 0.01 mol / L, pyrophosphoric acid potassium
0.05 mol / L, potassium dihydrogen phosphate 0.1 mol / L
Comparative Example 5: Untreated Comparative Example 6: Commercial Chromate Treatment Agent
上記と同様に作製した磁石を、市販の塩基性脱脂水溶液を用いて油脂を取り除き、硝酸水溶液を用いて不動態層を除去した後にピロ燐酸浴を用いてラックメッキ法による電気Cuメッキを施した後、ワット浴を用いてラックメッキ法による電気Niメッキを施し、各々3μm、合計で6μmのCu/Ni2層皮膜で被覆して評価用磁石とした。得られた磁石を以下の各実施例で示す処理液に25℃で2分間浸漬し、イオン交換水ですすいだ後、80℃の強制循環式乾燥機で10分間乾燥した。
実施例7:Ni0.01mol/L、酢酸0.02mol/L、燐酸二水素ナトリ
ウム0.1mol/L
実施例8:Cu0.01mol/L、ピロ燐酸0.01mol/L、ピロ燐酸カリ
ウム0.05mol/L
比較例7:未処理
比較例8:市販クロメート処理剤
The magnet produced in the same manner as described above was subjected to electric Cu plating by a rack plating method using a pyrophosphoric acid bath after removing fats and oils using a commercially available basic degreasing aqueous solution and removing a passive layer using an aqueous nitric acid solution. Thereafter, electric Ni plating by a rack plating method was performed using a Watt bath, and each was coated with a Cu / Ni bilayer coating of 3 μm, for a total of 6 μm, to obtain an evaluation magnet. The obtained magnet was immersed in a treatment solution shown in each of the following examples at 25 ° C. for 2 minutes, rinsed with ion-exchanged water, and then dried in a forced circulation dryer at 80 ° C. for 10 minutes.
Example 7: Ni 0.01 mol / L, acetic acid 0.02 mol / L, dihydrogen phosphate sodium
Um 0.1 mol / L
Example 8: Cu 0.01 mol / L, pyrophosphoric acid 0.01 mol / L, pyrophosphoric acid potassium
0.05 mol / L
Comparative Example 7: Untreated Comparative Example 8: Commercial Chromate Treatment Agent
以上で得られた試料のうち、寸法が10×20×2mmのものについて、120℃、2気圧で48時間と72時間と96時間のプレッシャークッカー試験(PCT)した結果と、5質量%塩化ナトリウム水溶液に35℃で48時間と72時間と96時間浸漬した後、水洗、乾燥し、直ちに実体顕微鏡を用いて2.5〜20倍で錆の発生やメッキ被膜のフクレやハガレの程度を観察した結果と、寸法が5×5×2mmのものについて、VSMで測定したパーミアンス1における磁束密度及び保磁力の各値の120℃×24時間前後での変化を百分率で示した磁気特性劣化の程度と、処理後1ヶ月経過した磁石をアクリル系及びエポキシ系接着剤で鉄板に接着し、磁石を線速10mm/minで圧縮剪断した時の剪断接着強度など、各々について評価した結果を表2に示す。 Among the samples obtained above, those having dimensions of 10 × 20 × 2 mm were subjected to a pressure cooker test (PCT) at 120 ° C. and 2 atm for 48 hours, 72 hours and 96 hours, and 5% by mass sodium chloride. After immersing in an aqueous solution at 35 ° C. for 48 hours, 72 hours, and 96 hours, washed with water, dried, and immediately observed the occurrence of rust, plating film swelling and peeling at a magnification of 2.5 to 20 times using a stereomicroscope. The result and the degree of magnetic property deterioration that shows the change in percentage of each value of magnetic flux density and coercive force in Permeance 1 measured by VSM at around 120 ° C. × 24 hours as a percentage for a size of 5 × 5 × 2 mm 1 month after the treatment, the magnet was bonded to an iron plate with an acrylic and epoxy adhesive, and the shear adhesive strength when the magnet was compression-sheared at a linear speed of 10 mm / min was evaluated for each. The results are shown in Table 2.
本発明の実施例では、PCT、塩水浸漬試験ともに96時間で変化が見られた。これは従来のクロメート処理(比較例2,4,6,8)と同等の耐食性であり、比較例1,3,5,7よりよい結果が得られた。
磁気特性は、本発明の処理による劣化は見られず、剪断接着強度は、比較例と同等かそれ以上の接着強度が得られた。
In the examples of the present invention, changes were observed in 96 hours in both the PCT and salt water immersion tests. This is the same corrosion resistance as the conventional chromate treatment (Comparative Examples 2, 4, 6, 8), and better results were obtained than Comparative Examples 1, 3, 5, and 7.
The magnetic properties were not deteriorated by the treatment of the present invention, and the shear adhesive strength was equal to or higher than that of the comparative example.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004353619A JP4506965B2 (en) | 2004-12-07 | 2004-12-07 | R-T-M-B rare earth permanent magnet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004353619A JP4506965B2 (en) | 2004-12-07 | 2004-12-07 | R-T-M-B rare earth permanent magnet and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2006165218A JP2006165218A (en) | 2006-06-22 |
JP2006165218A5 JP2006165218A5 (en) | 2006-12-21 |
JP4506965B2 true JP4506965B2 (en) | 2010-07-21 |
Family
ID=36666893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004353619A Active JP4506965B2 (en) | 2004-12-07 | 2004-12-07 | R-T-M-B rare earth permanent magnet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4506965B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101589445B (en) * | 2007-05-30 | 2012-10-24 | 信越化学工业株式会社 | Process for producing highly anticorrosive rare earth permanent magnet and method of using the same |
CN102214510B (en) * | 2011-05-23 | 2012-10-03 | 浙江科达磁电有限公司 | Ferronickel soft magnetic material and manufacturing method thereof |
WO2014118971A1 (en) * | 2013-02-01 | 2014-08-07 | 株式会社日立製作所 | Rare earth magnet and method for producing same |
CN106521474A (en) * | 2016-10-14 | 2017-03-22 | 江苏森威精锻有限公司 | Surface passivation treatment method of hollow shaft |
JP6813457B2 (en) | 2017-08-30 | 2021-01-13 | 株式会社東芝 | Permanent magnets, rotary electric machines, and vehicles |
CN109576557A (en) * | 2018-10-08 | 2019-04-05 | 柳州凯通新材料科技有限公司 | A kind of high energy product high-speed brushless motor core material and preparation method thereof |
CN112080737A (en) * | 2020-08-17 | 2020-12-15 | 尹波 | Surface treatment method for communication radiator and product thereof |
CN112658252B (en) * | 2020-11-17 | 2022-02-11 | 南昌大学 | AlFeNiMoNbCr alloy applied to high-temperature chlorine corrosion environment and preparation method thereof |
CN113684480A (en) * | 2021-08-17 | 2021-11-23 | 杭州象限科技有限公司 | Process for regulating and controlling chemical nickel stability in neodymium iron boron electroplating |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002158105A (en) * | 2000-11-16 | 2002-05-31 | Tdk Corp | Magnet and its manufacturing method |
JP2002212750A (en) * | 2000-11-20 | 2002-07-31 | Hitachi Metals Ltd | Film deposition method for r-t-b based magnet |
JP2004327966A (en) * | 2003-04-07 | 2004-11-18 | Neomax Co Ltd | Iron phosphate based film-coated r-t-b based magnet and its formation treatment method |
-
2004
- 2004-12-07 JP JP2004353619A patent/JP4506965B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002158105A (en) * | 2000-11-16 | 2002-05-31 | Tdk Corp | Magnet and its manufacturing method |
JP2002212750A (en) * | 2000-11-20 | 2002-07-31 | Hitachi Metals Ltd | Film deposition method for r-t-b based magnet |
JP2004327966A (en) * | 2003-04-07 | 2004-11-18 | Neomax Co Ltd | Iron phosphate based film-coated r-t-b based magnet and its formation treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP2006165218A (en) | 2006-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5837139B2 (en) | Method for preparing R-Fe-B sintered magnet | |
CN108039259A (en) | A kind of infiltration has the neodymium iron boron magnetic body of heavy rare earth and the method in neodymium iron boron magnetic body surface penetration heavy rare earth | |
KR102240453B1 (en) | Manufacturing method of rare earth permanent magnet material | |
CN104851582B (en) | The preparation of rare-earth permanent magnet | |
EP1467385A1 (en) | Rare earth element sintered magnet and method for producing rare earth element sintered magnet | |
CN107937879A (en) | A kind of method of neodymium iron boron magnetic body and neodymium iron boron magnetic body overlay coating | |
JP4506965B2 (en) | R-T-M-B rare earth permanent magnet and method for producing the same | |
US6281774B1 (en) | Corrosion-resistant permanent magnet and method for producing the same | |
JPH03173106A (en) | Rare earth permanent magnet with corrosion resistant film and manufacture thereof | |
JP4506964B2 (en) | R-T-M-B rare earth permanent magnet and method for producing the same | |
CN111101173A (en) | Multilayer nickel plating and dehydrogenation process for neodymium iron boron permanent magnet material | |
JPS63217601A (en) | Corrosion-resistant permanent magnet and manufacture thereof | |
JP2004039917A (en) | Permanent magnet and manufacturing method therefor | |
JPH0247815A (en) | Manufacture of r-fe-b permanent magnet | |
JP3796567B2 (en) | R-Fe-B permanent magnet and manufacturing method thereof | |
JPH04288804A (en) | Permanent magnet and manufacture thereof | |
JP3142172B2 (en) | R-TM-B permanent magnet with improved adhesion and method for producing the same | |
JP3935092B2 (en) | R-TM-B permanent magnet | |
JPH0945567A (en) | Rare earth-iron-boron permanent magnet manufacturing method | |
JP4760811B2 (en) | Rare earth magnet and manufacturing method thereof | |
JP3337558B2 (en) | Corrosion resistant magnetic alloy | |
JP3650141B2 (en) | permanent magnet | |
JP4225063B2 (en) | High corrosion resistance permanent magnet and method of manufacturing the same | |
JP4600627B2 (en) | Rare earth permanent magnet manufacturing method | |
JPS62120004A (en) | Permanent magnet with excellent corrosion resistance and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061106 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100407 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100420 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4506965 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160514 Year of fee payment: 6 |