[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4505842B2 - Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus - Google Patents

Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus Download PDF

Info

Publication number
JP4505842B2
JP4505842B2 JP2006071106A JP2006071106A JP4505842B2 JP 4505842 B2 JP4505842 B2 JP 4505842B2 JP 2006071106 A JP2006071106 A JP 2006071106A JP 2006071106 A JP2006071106 A JP 2006071106A JP 4505842 B2 JP4505842 B2 JP 4505842B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
microheater
temperature
gas
sensor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006071106A
Other languages
Japanese (ja)
Other versions
JP2007248220A (en
Inventor
靖江 林
安治 大石
滋 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006071106A priority Critical patent/JP4505842B2/en
Publication of JP2007248220A publication Critical patent/JP2007248220A/en
Application granted granted Critical
Publication of JP4505842B2 publication Critical patent/JP4505842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、種類が既知であるがその成分比率の不明なガス、例えば天然ガスの熱伝導率を簡易に計測し得る熱伝導率測定方法とその装置、および熱伝導率測定装置を用いたガス成分比率測定装置に関する。   The present invention relates to a thermal conductivity measuring method and apparatus capable of easily measuring the thermal conductivity of a gas whose component ratio is unknown but whose component ratio is unknown, such as natural gas, and a gas using the thermal conductivity measuring apparatus. The present invention relates to a component ratio measuring apparatus.

ガスの熱伝導率を計測する手法として、一定温度に保ったガス(雰囲気ガス)中におかれたヒータを定温度で駆動し、その発熱量を計測することが知られている(例えば特許文献1を参照)。この手法は、ヒータの発熱量とその雰囲気ガスの熱伝導率とが比例することを利用したものである。また熱式の流量計において、その流量センサを熱絶縁体を介して支持することで、台座からの熱的影響を除去することも提唱されている(例えば特許文献2を参照)。
特許第3114137号公報 特開2002−296086号公報
As a method for measuring the thermal conductivity of a gas, it is known to drive a heater placed in a gas (atmospheric gas) kept at a constant temperature at a constant temperature and measure the amount of heat generated (for example, Patent Documents). 1). This method utilizes the fact that the heat value of the heater is proportional to the thermal conductivity of the ambient gas. It has also been proposed to remove the thermal influence from the pedestal by supporting the flow sensor through a thermal insulator in a thermal flow meter (see, for example, Patent Document 2).
Japanese Patent No. 3114137 JP 2002-296086 A

しかしながら上述した手法を採用してガスの熱伝導率を計測する場合、上記ガスを一定温度に保つための恒温槽を必要とする等、その構成が大掛かりとなることが否めない。また一般的にガスの熱伝導率は、その種類に応じた固有の温度変化特性を有するので、単純にヒータの発熱量を計測しても、その熱伝導率を正確に計測することができないと言う本質的な問題がある。特に天然ガスのように複数種類のガスが入り混じった混合ガスの場合、その熱伝導率を計測することが非常に困難であった。   However, when the thermal conductivity of the gas is measured by adopting the above-described method, it cannot be denied that the configuration becomes large, for example, a thermostatic bath for keeping the gas at a constant temperature is required. In general, the thermal conductivity of a gas has an inherent temperature change characteristic according to its type. Therefore, if the calorific value of a heater is simply measured, the thermal conductivity cannot be accurately measured. There is an essential problem to say. In particular, in the case of a mixed gas in which plural kinds of gases are mixed like natural gas, it is very difficult to measure the thermal conductivity.

ちなみに混合ガスをカラムと称される部材に通し、その分子量の違いに起因する流速の違いを利用してガス種の組成比率を分析し、その上で混合ガスの熱伝導率を計測することも行われている(例えば特開平11−14572号公報参照)。しかしながらこのような手法においては、カラムを用いた混合ガスの組成比率の分析に多大な時間が掛かる上、分析装置の全体構成が複雑で高価である等の問題もあった。   By the way, it is also possible to pass the mixed gas through a member called a column, analyze the composition ratio of the gas species using the difference in flow rate due to the difference in molecular weight, and then measure the thermal conductivity of the mixed gas. (See, for example, JP-A-11-14572). However, in such a method, it takes a lot of time to analyze the composition ratio of the mixed gas using the column, and there are also problems that the entire configuration of the analyzer is complicated and expensive.

本発明はこのような事情を考慮してなされたもので、その目的は、純粋ガスや混合ガスの熱伝導率を、その温度に拘わりなく簡易に計測することのできる熱伝導率測定方法および熱伝導率測定装置を提供することにある。
更には上記熱伝導率測定方法およびその装置を用いて種類が既知の混合ガス、例えば天然ガスの組成比率を求めて、その発熱量を評価することのできるガス成分比率測定装置を提供することを目的としている。
The present invention has been made in view of such circumstances, and its object is to provide a thermal conductivity measurement method and a thermal method capable of easily measuring the thermal conductivity of pure gas or mixed gas regardless of the temperature. It is to provide a conductivity measuring device.
Furthermore, it is intended to provide a gas component ratio measuring apparatus capable of obtaining the composition ratio of a known mixed gas, for example, natural gas, using the above-described thermal conductivity measuring method and apparatus, and evaluating the calorific value thereof. It is aimed.

上述した目的を達成するべく本発明に係る熱伝導率測定方法とその装置、および熱伝導率測定装置を用いたガス成分比率測定装置は、マイクロヒータから雰囲気ガスへの平均熱伝達率が、雰囲気ガスの熱伝導率と前記マイクロヒータ近傍の温度境界層の厚みとにより定まり、また上記温度境界層の厚みおよび前記マイクロヒータの実効的な放熱面積が、それぞれ前記雰囲気ガスの熱伝導率に依存することに着目している。特に前記温度境界層の厚みおよびマイクロヒータの実効的な放熱面積は、専ら、マイクロヒータを形成したセンサチップの周囲の局部的な領域における雰囲気ガスの熱伝導率に依存していることに着目している。   In order to achieve the above-described object, the thermal conductivity measurement method and apparatus according to the present invention, and the gas component ratio measurement apparatus using the thermal conductivity measurement apparatus, the average heat transfer coefficient from the microheater to the atmospheric gas is It is determined by the thermal conductivity of the gas and the thickness of the temperature boundary layer near the microheater, and the thickness of the temperature boundary layer and the effective heat dissipation area of the microheater depend on the thermal conductivity of the ambient gas, respectively. I pay attention to it. In particular, it is noted that the thickness of the temperature boundary layer and the effective heat dissipation area of the microheater depend exclusively on the thermal conductivity of the ambient gas in a local region around the sensor chip on which the microheater is formed. ing.

そこで本発明に係る熱伝導率測定方法は、センサチップに形成された肉薄領域、例えば肉薄ダイヤフラムやマイクロブリッジ上に設けられて雰囲気ガス中に位置付けられるマイクロヒータを用い、上記マイクロヒータに加えた電力とそのときのヒータ温度とから求められる前記マイクロヒータの放熱係数に従って前記雰囲気ガスの熱伝導率を求めるに際して、
熱絶縁体を介して前記センサチップを前記雰囲気ガス中に支持すると共に、前記センサチップに形成された、例えば周囲温度検出用の発熱抵抗素子である補助ヒータの抵抗値を一定化制御してセンサチップ全体の温度を一定化制御し、このときに一定条件で駆動される前記マイクロヒータの駆動電力から該マイクロヒータの放熱係数を求め、前記マイクロヒータの放熱係数から前記雰囲気ガスの熱伝導率を求めることを特徴としている。
Therefore, the thermal conductivity measurement method according to the present invention uses a microheater provided on a thin area formed on a sensor chip, for example, a thin diaphragm or a microbridge, and positioned in an atmospheric gas, and the electric power applied to the microheater. And determining the thermal conductivity of the ambient gas according to the heat dissipation coefficient of the micro heater determined from the heater temperature at that time,
The sensor chip is supported in the atmospheric gas via a thermal insulator, and the resistance value of an auxiliary heater formed on the sensor chip, for example, a heating resistance element for detecting ambient temperature, is controlled to be constant. The temperature of the entire chip is controlled to be constant, the heat dissipation coefficient of the microheater is obtained from the driving power of the microheater that is driven at a constant condition, and the thermal conductivity of the ambient gas is determined from the heat dissipation coefficient of the microheater. It is characterized by seeking.

ちなみに前記補助ヒータの抵抗値の一定化制御は、例えば前記補助ヒータを1つのブリッジ辺とする抵抗ブリッジ回路のブリッジ間電圧に応じて上記抵抗ブリッジ回路に加える駆動電圧をフィードバック制御することにより行われる。また前記マイクロヒータの駆動電力は、例えば同様に抵抗ブリッジ回路を用いて前記マイクロヒータの抵抗値(温度)を一定化制御したときの前記マイクロヒータへの印加電圧と前記抵抗ブリッジ回路の回路定数とから計算することによって求められる。   Incidentally, the control for stabilizing the resistance value of the auxiliary heater is performed, for example, by feedback control of the driving voltage applied to the resistance bridge circuit according to the voltage between the bridges of the resistance bridge circuit having the auxiliary heater as one bridge side. . The driving power of the microheater is, for example, a voltage applied to the microheater when the resistance value (temperature) of the microheater is controlled to be constant using a resistance bridge circuit, and a circuit constant of the resistance bridge circuit. It is calculated by calculating from

また上述したマイクロヒータの駆動電力からの前記雰囲気ガスの熱伝導率の検出については、例えば前記マイクロヒータの駆動電力から該マイクロヒータの放熱係数を求めると共に、前記熱絶縁体を介して支持した前記センサチップにおける補助ヒータの抵抗値を一定化制御したとき、これによって補助ヒータの温度が一定に保たれると共に、マイクロヒータを形成したセンサチップの温度が一定に保たれて、該センサチップ周囲における前記雰囲気ガスの熱伝導率と前述した如く求められる前記マイクロヒータの放熱係数とが、前記雰囲気ガスの温度に拘わることなく一元的な対応関係を示すことを利用して行われる。   In addition, for the detection of the thermal conductivity of the atmospheric gas from the driving power of the microheater described above, for example, the heat dissipation coefficient of the microheater is obtained from the driving power of the microheater and is supported via the thermal insulator. When the resistance value of the auxiliary heater in the sensor chip is controlled to be constant, this keeps the temperature of the auxiliary heater constant, and also keeps the temperature of the sensor chip forming the micro heater constant. This is performed by utilizing a unified correspondence between the thermal conductivity of the atmospheric gas and the heat dissipation coefficient of the microheater obtained as described above, regardless of the temperature of the atmospheric gas.

また本発明に係る熱伝導率測定装置は、
<a> 補助ヒータを備えたセンサチップと、
<b> このセンサチップに、例えば肉薄ダイヤフラムやマイクロブリッジ等として形成された肉薄領域上に設けられたマイクロヒータと、
<c> 前記センサチップを基台から熱絶縁して雰囲気ガス中に支持する熱絶縁体と、
<d> 前記補助ヒータの抵抗値を一定化制御するヒータ駆動回路と、
<e> 前記マイクロヒータを一定条件で発熱させた際の該マイクロヒータの駆動電力Phを求める電力検出手段と、
<f> 検出された駆動電力に従って前記マイクロヒータからの放熱係数Cを求める放熱係数演算手段と、
<g> 前記補助ヒータの抵抗値を一定化制御したときの、前記センサチップの近傍における前記雰囲気ガスの熱伝導率λと前記マイクロヒータの放熱係数Cとの一元的な対応関係に基づいて、前記放熱係数演算手段にて求められた放熱係数から前記雰囲気ガスの熱伝導率を求める熱伝導率演算手段と
を備えて構成される。
The thermal conductivity measuring device according to the present invention is
<a> a sensor chip with an auxiliary heater;
<b> In this sensor chip, for example, a micro heater provided on a thin region formed as a thin diaphragm, a micro bridge, or the like;
<c> a thermal insulator that thermally insulates the sensor chip from a base and supports the sensor chip in an atmospheric gas;
<d> a heater drive circuit for controlling the resistance value of the auxiliary heater to be constant;
<e> Power detection means for obtaining a driving power Ph of the microheater when the microheater is heated under a certain condition;
<f> A heat dissipation coefficient calculating means for obtaining a heat dissipation coefficient C from the microheater according to the detected drive power;
<g> Based on a unified correspondence between the thermal conductivity λ of the ambient gas in the vicinity of the sensor chip and the heat dissipation coefficient C of the microheater when the resistance value of the auxiliary heater is controlled to be constant, Thermal conductivity calculation means for determining the thermal conductivity of the ambient gas from the heat dissipation coefficient determined by the heat dissipation coefficient calculation means.

具体的には前記ヒータ駆動回路は、例えば前記補助ヒータを1つのブリッジ辺として構成された抵抗ブリッジ回路と、この抵抗ブリッジ回路のブリッジ電圧に応じて上記抵抗ブリッジ回路に加える駆動電圧をフィードバック制御する電圧制御回路とを備えたものとして実現される。また前記熱伝導率演算手段は、雰囲気ガスの組成に応じて予め求められた前記マイクロヒータの放熱係数Cと特定温度Tにおける前記雰囲気ガスの熱伝導率λとの対応関係を記述したテーブルを参照して、雰囲気ガスの熱伝導率を求めるものとして実現される。   Specifically, the heater drive circuit feedback-controls a resistance bridge circuit configured with, for example, the auxiliary heater as one bridge side, and a drive voltage applied to the resistance bridge circuit according to a bridge voltage of the resistance bridge circuit. And a voltage control circuit. Further, the thermal conductivity calculation means refers to a table describing a correspondence relationship between the heat dissipation coefficient C of the microheater determined in advance according to the composition of the atmospheric gas and the thermal conductivity λ of the atmospheric gas at a specific temperature T. Thus, it is realized as a method for obtaining the thermal conductivity of the atmospheric gas.

また本発明に係るガス成分比率測定装置は、上述した熱伝導率測定装置を用いて実現されるものであって、
<h> 前記熱伝導率測定装置を用い、一定化制御するマイクロヒータの抵抗値を変化させて、互いに異なるヒータ温度での雰囲気ガスの熱伝導率をそれぞれ求める制御手段と、
<i> 上記各ヒータ温度での熱伝導率の連立方程式から前記雰囲気ガスの組成比率を解析する解析手段と
を備えて構成される。
The gas component ratio measuring device according to the present invention is realized by using the above-described thermal conductivity measuring device,
<h> Using the thermal conductivity measurement device, changing the resistance value of the microheater to be controlled to be constant, respectively, control means for respectively obtaining the thermal conductivity of the atmospheric gas at different heater temperatures;
<i> An analysis means for analyzing the composition ratio of the atmospheric gas from simultaneous equations of thermal conductivity at each heater temperature.

更に前記解析手段により求められた前記雰囲気ガスの組成比率から、該雰囲気ガスの発熱量を求める機能を備えることも望ましい。   Furthermore, it is desirable to provide a function for obtaining the calorific value of the atmospheric gas from the composition ratio of the atmospheric gas obtained by the analyzing means.

上記構成の熱伝導率測定方法および熱伝導率測定装置によれば、熱絶縁体を介してセンサチップを雰囲気ガス中に支持すると共に、センサチップに設けられた補助ヒータの抵抗値を一定化制御しているので、センサチップ全体の温度を、ひいてはセンサチップの周囲近傍における雰囲気ガスの温度を一定に保つことが可能となる。つまりセンサチップの近傍の局部的な領域であって、マイクロヒータの周囲における前記雰囲気ガスの温度が上記センサチップの温度となるようにしている。   According to the thermal conductivity measuring method and the thermal conductivity measuring apparatus having the above configuration, the sensor chip is supported in the atmospheric gas via the thermal insulator, and the resistance value of the auxiliary heater provided in the sensor chip is controlled to be constant. Therefore, it is possible to keep the temperature of the entire sensor chip and thus the temperature of the ambient gas in the vicinity of the sensor chip constant. That is, it is a local region in the vicinity of the sensor chip, and the temperature of the ambient gas around the microheater becomes the temperature of the sensor chip.

この結果、雰囲気ガスの温度に拘わらず、マイクロヒータの周囲における前記雰囲気ガスの温度を特定温度、具体的にはセンサチップの温度に一定化し、この状態で前記マイクロヒータの駆動電力から求められる該マイクロヒータの放熱係数Cから、前記雰囲気ガスの熱伝達率を簡易に、しかも精度良く求めることが可能となる。つまり雰囲気ガスの温度に拘わらず、その熱伝導率λを簡易に計測することが可能となる。   As a result, regardless of the temperature of the atmospheric gas, the temperature of the atmospheric gas around the microheater is made constant at a specific temperature, specifically the temperature of the sensor chip, and in this state, the temperature obtained from the driving power of the microheater is obtained. From the heat dissipation coefficient C of the microheater, the heat transfer coefficient of the atmospheric gas can be obtained easily and accurately. That is, the thermal conductivity λ can be easily measured regardless of the temperature of the atmospheric gas.

また上述した熱伝導率測定装置を用いて実現されるガス成分比率測定装置によれば、例えばガス密度と発熱量との関係から上記各ガスが有する発熱量を混合ガスの総量とその組成比率に応じてそれぞれ求めることができるので、混合ガスの発熱量を算出することが可能となる。具体的には単位体積当たりの混合ガスが有する発熱量(エネルギ量)を、上述した如く求められる成分比率から簡易に、しかも正確に計算することが可能となる。更にはその組成比率と各ガスの種類とから、雰囲気ガスの発熱量を簡易に計算することも可能となる。   Further, according to the gas component ratio measuring apparatus realized by using the above-described thermal conductivity measuring apparatus, the calorific value of each gas is changed from the relationship between the gas density and the calorific value, for example, to the total amount of the mixed gas and its composition ratio. Accordingly, it is possible to calculate the calorific value of the mixed gas. Specifically, the calorific value (energy amount) of the mixed gas per unit volume can be calculated easily and accurately from the component ratio obtained as described above. Furthermore, the calorific value of the atmospheric gas can be easily calculated from the composition ratio and the type of each gas.

以下、図面を参照して本発明に係る熱伝導率測定方法および熱伝導率測定装置、並びにガス成分比率測定装置について説明する。
本発明は、例えば図1にその概略構成を示すように、シリコン等のセンサチップ1上に形成されたマイクロヒータ3を用い、基本的には上記マイクロヒータ3の発熱量から雰囲気ガス(純粋ガスまたは混合ガス)の熱伝導率を測定するものである。このセンサチップ1は、例えば厚み0.5mmで縦横の寸法がそれぞれ1.5mm程度のシリコン製のものからなり、その基体1aの上面の略中央部にMEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いて舟形凹状のキャビティ(凹部)1bを形成すると共に、このキャビティ1bを架橋して薄膜ダイヤフラム(薄膜部)1cを形成した構造を有する。またこの薄膜ダイヤフラム1cには、その中央領域を除いて多数の透孔1dが設けられており、これらの透孔1dを介して上記薄膜ダイヤフラム1cの両面が外気に開放されている。
Hereinafter, a thermal conductivity measurement method, a thermal conductivity measurement device, and a gas component ratio measurement device according to the present invention will be described with reference to the drawings.
The present invention uses a microheater 3 formed on a sensor chip 1 such as silicon as shown schematically in FIG. 1, for example. Basically, an atmospheric gas (pure gas) is generated from the calorific value of the microheater 3. Alternatively, the thermal conductivity of the mixed gas) is measured. The sensor chip 1 is made of, for example, silicon having a thickness of 0.5 mm and vertical and horizontal dimensions of about 1.5 mm, respectively, and a MEMS (micro electro mechanical system) technology is provided at a substantially central portion of the upper surface of the substrate 1a. Is used to form a boat-shaped concave cavity (recess) 1b, and the cavity 1b is bridged to form a thin film diaphragm (thin film portion) 1c. The thin film diaphragm 1c is provided with a large number of through holes 1d except for the central region thereof, and both surfaces of the thin film diaphragm 1c are open to the outside air through the through holes 1d.

このような薄膜ダイヤフラム1c上に白金等からなる微小な発熱抵抗体であるマイクロヒータ(Rh)3が形成され、更にこのマイクロヒータ(Rh)3を挟んで流体の通流方向Fに一対の温度センサRu,Rdが形成されている。またセンサチップ1におけるキャビティ1bの周辺の基台部1a上には、上記マイクロヒータ3と同様な発熱抵抗体である周囲温度センサ2が設けられている。   A micro heater (Rh) 3 which is a minute heating resistor made of platinum or the like is formed on such a thin film diaphragm 1c, and a pair of temperatures in a fluid flow direction F with the micro heater (Rh) 3 interposed therebetween. Sensors Ru and Rd are formed. An ambient temperature sensor 2 that is a heating resistor similar to the micro heater 3 is provided on the base portion 1 a around the cavity 1 b in the sensor chip 1.

このような構造のセンサチップ1は、図2にその概略的な断面構造を示すように、マイクロヒータ(Rh)3および一対の温度センサRu,Rdを薄膜のダイヤフラム1c上に形成することで実質的に空中に浮かした状態で支持し、ダイヤフラム1cの両面(表裏面)に沿って通流する雰囲気ガスに接するようになっている。そして本装置においては、上述した感熱抵抗体からなる上記周囲温度センサ2をセンサチップ1の全体を一定温度に加熱する補助ヒータとして用いることを特徴としている。   The sensor chip 1 having such a structure is substantially formed by forming a microheater (Rh) 3 and a pair of temperature sensors Ru and Rd on a thin film diaphragm 1c as shown in a schematic sectional structure in FIG. In particular, it is supported in a state of floating in the air and comes into contact with the atmospheric gas flowing along both surfaces (front and back surfaces) of the diaphragm 1c. And in this apparatus, the said ambient temperature sensor 2 which consists of a thermal resistor mentioned above is used as an auxiliary heater which heats the whole sensor chip 1 to a fixed temperature.

ところで白金等の発熱抵抗体(感熱抵抗体)からなるマイクロヒータ3や温度センサ(補助ヒータ)2は、温度によってその抵抗値が変化する性質を有する。例えば20℃なる標準温度Tstdでのマイクロヒータ3の抵抗値がRstdである場合、1次の抵抗温度係数をα、2次の抵抗温度係数をβとしたとき、温度Thでの上記マイクロヒータ3の抵抗値Rhは
Rh=Rstd・[1+α(Th−Tstd)+β(Th−Tstd)
として与えられる。従ってマイクロヒータ3の抵抗値Rhが判れば、逆にこの抵抗値Rhからマイクロヒータ3の発熱温度(ヒータ温度)Thを求めることが可能となる。このことは温度センサ(補助ヒータ)2でも同様である。
By the way, the micro heater 3 and the temperature sensor (auxiliary heater) 2 made of a heating resistor (thermal resistor) such as platinum have a property that the resistance value thereof changes depending on the temperature. For example, when the resistance value of the microheater 3 at the standard temperature Tstd of 20 ° C. is Rstd, the microheater 3 at the temperature Th when the primary resistance temperature coefficient is α and the secondary resistance temperature coefficient is β. Resistance value Rh is Rh = Rstd · [1 + α (Th−Tstd) + β (Th−Tstd) 2 ]
As given. Therefore, if the resistance value Rh of the microheater 3 is known, the heat generation temperature (heater temperature) Th of the microheater 3 can be obtained from the resistance value Rh. The same applies to the temperature sensor (auxiliary heater) 2.

またマイクロヒータ3の温度Thは、マイクロヒータ3の発熱と、該マイクロヒータ3から雰囲気ガスへの放熱とが釣り合ったところ、つまり雰囲気ガスとの間で熱的に平衡状態となったときに安定する。そしてこの平衡状態でのマイクロヒータ3の駆動電力Phは、マイクロヒータ3から雰囲気ガスへの放熱係数をCとしたとき、そのヒータ温度Thと周囲温度Toとの間で
C・(Th−To)=Ph
なる関係を有する。換言すれば上式を満たす条件が成立したとき、マイクロヒータ3と雰囲気ガスとが熱的に平衡状態となって安定する。従ってこの熱的平衡状態の条件から、マイクロヒータ3から雰囲気ガスへの放熱係数Cを
C=Ph÷(Th−To)
として求めることが可能となる。
The temperature Th of the microheater 3 is stable when the heat generated by the microheater 3 and the heat radiation from the microheater 3 to the atmosphere gas are balanced, that is, when the temperature is in a thermal equilibrium state with the atmosphere gas. To do. The driving power Ph of the microheater 3 in this equilibrium state is C · (Th−To) between the heater temperature Th and the ambient temperature To, where C is the heat dissipation coefficient from the microheater 3 to the atmospheric gas. = Ph
Have the relationship In other words, when the condition satisfying the above equation is satisfied, the microheater 3 and the atmospheric gas are thermally balanced and stabilized. Therefore, from this thermal equilibrium condition, the heat dissipation coefficient C from the micro heater 3 to the atmospheric gas is C = Ph ÷ (Th−To)
Can be obtained as

一方、マイクロヒータ3の駆動電力Phは、マイクロヒータ3の両端間に印加される電圧Vhと、そのときにマイクロヒータ3に流れる電流Ihとから
Ph=Vh・Ih
として求めることができる。またそのときのマイクロヒータ3の抵抗値Rhは、
Rh=Vh÷Ih=Ph÷Ih
として求めることができる。
On the other hand, the driving power Ph of the microheater 3 is obtained from the voltage Vh applied across the microheater 3 and the current Ih flowing through the microheater 3 at that time, Ph = Vh · Ih
Can be obtained as The resistance value Rh of the microheater 3 at that time is
Rh = Vh ÷ Ih = Ph ÷ Ih 2
Can be obtained as

故に、マイクロヒータ3の駆動電力Phを求めれば、この駆動電力Phとマイクロヒータ3に流れる電流Ihとに従って該マイクロヒータ3の抵抗値Rhを求め、更には前述したように上記抵抗値Rhに従ってマイクロヒータ3の温度Thを求めることが可能となる。尚、周囲温度Toについては、前述したセンサチップ1の周辺部に設けた温度センサ2により計測可能であるが、本装置において後述するように温度センサ(補助ヒータ)2の発熱温度(周囲温度)To自体を一定化制御するものとなっている。そしてこれらのマイクロヒータ3の駆動電力Ph、マイクロヒータ3のヒータ温度Th、その周囲温度Toをそれぞれ求めることで、前述したように
C=Ph÷(Th−To)
としてマイクロヒータ3から雰囲気ガスへの放熱係数Cを算出することが可能となる。
Therefore, when the driving power Ph of the microheater 3 is obtained, the resistance value Rh of the microheater 3 is obtained according to the driving power Ph and the current Ih flowing through the microheater 3, and further, as described above, the resistance value Rh is reduced according to the resistance value Rh. The temperature Th of the heater 3 can be obtained. The ambient temperature To can be measured by the temperature sensor 2 provided in the peripheral portion of the sensor chip 1 described above. However, as will be described later in the present apparatus, the heat generation temperature (ambient temperature) of the temperature sensor (auxiliary heater) 2. To itself is controlled to be constant. The driving power Ph of the microheater 3, the heater temperature Th of the microheater 3, and the ambient temperature To are obtained, respectively, so that C = Ph ÷ (Th−To) as described above.
It is possible to calculate the heat dissipation coefficient C from the microheater 3 to the atmospheric gas.

一方、上述した放熱係数Cは、マイクロヒータ3から雰囲気ガスへの平均熱伝達係数をhとし、マイクロヒータ3の放熱面積をSとしたとき、一般的には
C=2・h・S
として表すことができる。尚、上記平均熱伝達係数hは、一般的には雰囲気ガスの自然対流の状況やマイクロヒータ3の表面状態によって変化する。また上記係数[2]は、図3にその概念を模式的に示すようにマイクロヒータ3から雰囲気ガスへの熱伝達が、マイクロヒータ3の表裏の2面でそれぞれ行われることを考慮したものである。
On the other hand, the heat dissipation coefficient C described above is generally C = 2 · h · S, where h is the average heat transfer coefficient from the microheater 3 to the atmospheric gas and S is the heat dissipation area of the microheater 3.
Can be expressed as The average heat transfer coefficient h generally changes depending on the natural convection state of the atmospheric gas and the surface state of the microheater 3. The coefficient [2] takes into consideration that heat transfer from the microheater 3 to the atmospheric gas is performed on the two front and back surfaces of the microheater 3 as schematically shown in FIG. is there.

またマイクロヒータ3の素子面積(発熱面積)が微小であり、このマイクロヒータ3の発熱によって生じる温度変化の範囲が微小であってスポット的な温度変位しか生じることがなく、また雰囲気ガスの自然対流もないものとすると、マイクロヒータ3の周囲の温度分布は、専ら図3に示すようにマイクロヒータ3から離れるに従って次第に低くなる。特にマイクロヒータ3に接する部位での温度はヒータ温度Thまで高められ、マイクロヒータ3から離れるに従ってその温度は次第に周囲温度Toまで低下する。   Further, the element area (heat generation area) of the microheater 3 is minute, the range of temperature change caused by the heat generation of the microheater 3 is minute, and only spot-like temperature displacement occurs, and natural convection of atmospheric gas If not, the temperature distribution around the microheater 3 gradually decreases as the distance from the microheater 3 increases as shown in FIG. In particular, the temperature at the portion in contact with the microheater 3 is increased to the heater temperature Th, and the temperature gradually decreases to the ambient temperature To as the distance from the microheater 3 increases.

このような温度分布をなす雰囲気ガスの温度が、上記ヒータ温度Thから周囲温度Toまで低下するまでの領域を温度境界層と定義し、その厚みをdとすると、前述した平均熱伝達係数hは、雰囲気ガスの熱伝導率λに比例し、且つ温度境界層の厚みdに反比例すると考えられる。即ち、平均熱伝達係数hは
h=λ÷d
として決定される。
A region where the temperature of the atmospheric gas having such a temperature distribution is reduced from the heater temperature Th to the ambient temperature To is defined as a temperature boundary layer, and the thickness is d, the above-mentioned average heat transfer coefficient h is It is considered that it is proportional to the thermal conductivity λ of the atmospheric gas and inversely proportional to the thickness d of the temperature boundary layer. That is, the average heat transfer coefficient h is h = λ ÷ d
As determined.

ちなみに雰囲気ガスの熱伝導率λは、一般的に温度が高くなるに従って大きくなる傾向にあり、温度Tにおける雰囲気ガスの熱伝導率λ(T)
λ(T)=λo(1+γ・T)
として与えられる。但し、上記λoは、基準温度(例えば0℃)における雰囲気ガスの熱伝導率であり、γは1次の温度係数である。
Incidentally, the thermal conductivity λ of the atmospheric gas generally tends to increase as the temperature increases, and the thermal conductivity λ (T) of the atmospheric gas at the temperature T is λ (T) = λo (1 + γ · T)
As given. Where λo is the thermal conductivity of the atmospheric gas at a reference temperature (for example, 0 ° C.), and γ is a first-order temperature coefficient.

また前記温度境界層の厚みdは雰囲気ガスの熱伝導率λによって変化し、熱伝導率λが大きくなる程熱伝達が早いので、その厚みdが薄くなる。逆に雰囲気ガスの熱伝導率λが小さい場合には、熱伝達が遅い分、その温度変化の勾配が緩やかとなって温度境界層の厚みdが厚くなる。つまり境界層の厚みdは雰囲気ガスの熱伝導率λによって変化し、また雰囲気ガスの熱伝導率λは温度によって変化する。従って温度Tにおける上記温度境界層の厚みd(T)
(T)=f[λ(T)
として、温度Tにより変化する雰囲気ガスの熱伝導率λ(T)をパラメータαとする関数f[α]を用いて表すことができる。
Further, the thickness d of the temperature boundary layer varies depending on the thermal conductivity λ of the atmospheric gas, and the heat transfer is faster as the thermal conductivity λ increases, so that the thickness d becomes thinner. On the contrary, when the thermal conductivity λ of the atmospheric gas is small, the temperature change gradient becomes gentle and the thickness d of the temperature boundary layer becomes thick because heat transfer is slow. That is, the thickness d of the boundary layer varies depending on the thermal conductivity λ of the atmospheric gas, and the thermal conductivity λ of the atmospheric gas varies depending on the temperature. Therefore, the thickness d (T) of the temperature boundary layer at the temperature T is d (T) = f [λ (T) ].
Can be expressed using a function f [α] with the parameter α as the thermal conductivity λ (T) of the atmospheric gas that varies with the temperature T.

またマイクロヒータ3の放熱面積Sは、一般的には前述した発熱抵抗体(ヒータ)1dを形成したダイヤフラム1cの全体の面積を指すことが多く、マイクロヒータ3の近傍における雰囲気ガスの温度分布はダイヤフラム1c上での温度分布に依存して変化する。しかし雰囲気ガスの熱伝導率λが大きい場合には、その温度分布がシャープな形状となるので、その実効的なマイクロヒータ3の放熱面積Sは雰囲気ガスの熱伝導率λに応じて小さくなるので、ダイヤフラム1cの面積Soよりも小さい面積として捉えることができる。特にマイクロヒータ3自体が微小であることと相俟って、マイクロヒータ3の放熱面積Sはスポット状であり、実質的に点熱源をなしていると看做すことができる。従ってその実効的な放熱面積Sを
(T)=g[λ(T)
として、温度Tにより変化する雰囲気ガスの熱伝導率λ(T)をパラメータαとする関数g[α]として示すことが可能となる。
The heat radiation area S of the microheater 3 generally refers to the entire area of the diaphragm 1c on which the heating resistor (heater) 1d described above is formed, and the temperature distribution of the atmospheric gas in the vicinity of the microheater 3 is It varies depending on the temperature distribution on the diaphragm 1c. However, when the thermal conductivity λ of the atmospheric gas is large, the temperature distribution becomes a sharp shape. Therefore, the effective heat radiation area S of the microheater 3 is reduced according to the thermal conductivity λ of the atmospheric gas. , And can be regarded as an area smaller than the area So of the diaphragm 1c. In particular, in combination with the micro heater 3 itself being minute, it can be considered that the heat radiation area S of the micro heater 3 is spot-like and substantially forms a point heat source. Therefore, the effective heat radiation area S is defined as S (T) = g [λ (T) ]
As a function g [α] having the parameter α as the thermal conductivity λ (T) of the atmospheric gas that changes according to the temperature T.

以上の考察からマイクロヒータ3の放熱係数Cと雰囲気ガスの熱伝導率λ(T)との関係をまとめると、前述した各式から
C=2・h・S
=2・(λ(T)÷d(T))・S(T)
=2・(λ(T)÷f[λ(T)])・g[λ(T)
なる関係を導くことができる。しかし上式に示される関係から、マイクロヒータ3の放熱係数Cは、温度Tによって変化する雰囲気ガスの熱伝導率λ(T)、つまり雰囲気ガスの温度特性の影響をかなり受けることが判る。
From the above considerations, the relationship between the heat dissipation coefficient C of the microheater 3 and the thermal conductivity λ (T) of the atmospheric gas is summarized as follows:
= 2 ・ (λ (T) ÷ d (T) ) ・ S (T)
= 2 · (λ (T) ÷ f [λ (T) ]) · g [λ (T) ]
Can lead to a relationship. However, from the relationship shown in the above equation, it can be seen that the heat dissipation coefficient C of the microheater 3 is considerably affected by the thermal conductivity λ (T) of the ambient gas that varies with the temperature T, that is, the temperature characteristics of the ambient gas.

ちなみに図4はその成分が既知であるプロパンガスと空気との混合比率を変えた複数種の雰囲気ガスについて、その温度を0℃,20℃,40℃と変化させたときのマイクロヒータ3の放熱係数Cと上記雰囲気ガスの熱伝導率λとの関係を調べたものである。この図4に示されるように、マイクロヒータ3の放熱係数Cと上記各雰囲気ガスの熱伝導率λとの間には、或る程度の相関傾向があるものの、混合比率と温度によってその対応関係がかなり乱れることが判る。特に温度の影響を受けて放熱係数Cと熱伝導率λとの対応関係が変化することが否めない。従ってマイクロヒータ3の放熱係数Cから雰囲気ガスの熱伝導率λを求める場合には、例えば何らかの温度補正が必要となることになる。   Incidentally, FIG. 4 shows the heat radiation of the microheater 3 when the temperature is changed to 0 ° C., 20 ° C., and 40 ° C. with respect to a plurality of types of atmospheric gases having different mixing ratios of propane gas and air whose components are known. The relationship between the coefficient C and the thermal conductivity λ of the atmospheric gas is examined. As shown in FIG. 4, although there is a certain degree of correlation between the heat dissipation coefficient C of the microheater 3 and the thermal conductivity λ of each ambient gas, the corresponding relationship depends on the mixing ratio and temperature. Can be seen to be quite disturbed. In particular, it cannot be denied that the correspondence between the heat dissipation coefficient C and the thermal conductivity λ changes under the influence of temperature. Accordingly, when obtaining the thermal conductivity λ of the atmospheric gas from the heat dissipation coefficient C of the microheater 3, for example, some temperature correction is required.

ところでマイクロヒータ3を形成したセンサチップ1をその周囲から熱絶縁して支持した場合、センサチップ1からの放熱が雰囲気ガスに対してだけ生じるようにすることができる。そしてこの条件下で前述した温度センサ(補助センサ)2の発熱温度を一定化制御すれば、温度センサ(補助ヒータ)2から発せられた熱は雰囲気ガスへの熱伝達を除いて専らセンサチップ1だけに伝わることになる。そしてシリコンからなるセンサチップ1は、その熱伝導率が高いので温度センサ(補助ヒータ)2の発熱により全体的に均一に加熱され、雰囲気ガスとの間で熱平衡状態となって安定化する。従って温度センサ2の発熱に伴って上記センサチップ1の温度は一定化され、該温度センサ(補助ヒータ)2の発熱温度(センサチップ1の温度)Tで安定化する。   By the way, when the sensor chip 1 on which the microheater 3 is formed is supported by being thermally insulated from the surroundings, the heat radiation from the sensor chip 1 can be generated only to the atmospheric gas. If the heat generation temperature of the temperature sensor (auxiliary sensor) 2 is controlled to be constant under this condition, the heat generated from the temperature sensor (auxiliary heater) 2 is exclusively the sensor chip 1 except for heat transfer to the atmospheric gas. Will be transmitted to only. Since the sensor chip 1 made of silicon has a high thermal conductivity, the sensor chip 1 is heated uniformly by the heat generated by the temperature sensor (auxiliary heater) 2 and is stabilized in a thermal equilibrium state with the atmospheric gas. Accordingly, the temperature of the sensor chip 1 is made constant as the temperature sensor 2 generates heat, and is stabilized at the temperature T (temperature of the sensor chip 1) T of the temperature sensor (auxiliary heater) 2.

一方、センサチップ1の周囲近傍の雰囲気ガスは、センサチップ1全体からの放熱を受けて加熱され、センサチップ1との間で熱的に平衡状態となった状態で安定する。従ってセンサチップ1の周囲近傍における雰囲気ガスは、該雰囲気ガスの温度に拘わりなくセンサチップ1の温度に依存して部分的に安定化する。換言すればセンサチップ1の周囲近傍においては、雰囲気ガスはその温度に拘わりなく上記センサチップ1の温度(温度センサ2の発熱温度)Tに安定化する。そしてこの温度が安定化したセンサチップ1の周囲近傍における雰囲気ガスが前述したようにマイクロヒータ3からの放熱を受けて温度境界層を形成することになる。   On the other hand, the ambient gas in the vicinity of the periphery of the sensor chip 1 is heated by receiving heat from the entire sensor chip 1 and is stabilized in a state of being in thermal equilibrium with the sensor chip 1. Therefore, the atmospheric gas in the vicinity of the periphery of the sensor chip 1 is partially stabilized depending on the temperature of the sensor chip 1 regardless of the temperature of the atmospheric gas. In other words, in the vicinity of the periphery of the sensor chip 1, the atmospheric gas is stabilized at the temperature T of the sensor chip 1 (the heat generation temperature of the temperature sensor 2) T regardless of the temperature. Then, the ambient gas in the vicinity of the sensor chip 1 where the temperature is stabilized receives heat from the microheater 3 as described above to form a temperature boundary layer.

従ってそのときの温度境界層の厚みdは、一定化された温度Tcnstにおける雰囲気ガスの熱伝導率をλとしたとき、
d=f[λ]
として一意に決定される。またマイクロヒータ3の実効的な放熱面積Sも
S=g[λ]
として、一定化された温度Tcnstにおける雰囲気ガスの熱伝導率λに依存して一意に決定される。故に、マイクロヒータ3の放熱係数Cと上記一定温度Tcnstにおける雰囲気ガスの熱伝導率λとの関係は
C=2・(λ÷f[λ])・g[λ]
となり、これらは雰囲気ガスの温度特性に依存することなく1対1に対応付けられることになる。
Therefore, the thickness d of the temperature boundary layer at that time is expressed as follows when the thermal conductivity of the atmospheric gas at the constant temperature Tcnst is λ:
d = f [λ]
Is uniquely determined. The effective heat dissipation area S of the micro heater 3 is also S = g [λ].
Is uniquely determined depending on the thermal conductivity λ of the atmospheric gas at the constant temperature Tcnst. Therefore, the relationship between the heat dissipation coefficient C of the microheater 3 and the thermal conductivity λ of the ambient gas at the constant temperature Tcnst is C = 2 · (λ ÷ f [λ]) · g [λ]
Thus, these are associated one-to-one without depending on the temperature characteristics of the atmospheric gas.

本発明はこのような考察に基づき、マイクロヒータ3を形成したセンサチップ1を熱絶縁して雰囲気ガス中に支持し、この状態で温度センサ(補助ヒータ)2の抵抗値Rrを一定化してその発熱温度を一定化して前記センサチップ1の全体を一定の温度に保ち、これによってセンサチップ1の周囲近傍における雰囲気ガスの温度を一定化した測定環境を形成するものとなっている。そしてこの測定環境において上記マイクロヒータ3を、例えば抵抗値一定制御により一定条件で駆動したときの該マイクロヒータ3の駆動電力Phから求められる放熱係数Cに従い、上述した放熱係数Cと熱伝導率λoとの比例関係から以下に示すように上記一定温度Tcnstにおける雰囲気ガスの熱伝導率λを求めることを特徴としている。   In the present invention, based on such consideration, the sensor chip 1 on which the micro heater 3 is formed is thermally insulated and supported in the atmospheric gas, and in this state, the resistance value Rr of the temperature sensor (auxiliary heater) 2 is made constant to The heat generation temperature is made constant to keep the entire sensor chip 1 at a constant temperature, thereby forming a measurement environment in which the temperature of the ambient gas in the vicinity of the sensor chip 1 is made constant. In the measurement environment, the heat dissipation coefficient C and the thermal conductivity λo described above are obtained in accordance with the heat dissipation coefficient C obtained from the driving power Ph of the microheater 3 when the microheater 3 is driven under constant conditions by, for example, constant resistance value control. As described below, the thermal conductivity λ of the atmospheric gas at the constant temperature Tcnst is obtained as shown below.

図5は本発明の実施形態を示す概念図で、図中2は前述した図1に示したようにセンサチップ1上に形成されたマイクロヒータを示している。特にセンサチップ1は、構造的には図1に示すように、例えばガラス製またはセラミック製等の熱絶縁性の台座(熱絶縁体)4を介して雰囲気ガス中に支持されている。この台座4は、例えばセンサチップ1の四隅をそれぞれ支持する4つの脚部を有して該センサチップ1を空中に浮かす、いわゆる逆テーブル型のものからなる。   FIG. 5 is a conceptual diagram showing an embodiment of the present invention. In FIG. 5, reference numeral 2 denotes a microheater formed on the sensor chip 1 as shown in FIG. In particular, as shown in FIG. 1, the sensor chip 1 is structurally supported in an atmospheric gas via a thermally insulating base (thermal insulator) 4 made of, for example, glass or ceramic. The pedestal 4 is, for example, a so-called reverse table type that has four leg portions that respectively support the four corners of the sensor chip 1 and floats the sensor chip 1 in the air.

ちなみに熱絶縁性の台座(熱絶縁体)4としては、本出願人が先に提唱した、例えば特許第3740026号公報、特許第3740027号公報、特開2002−29688号公報、特開2002−318148号公報、特開2002−318149号公報等にそれぞれ記載されている技術を適宜採用したものであれば、この発明において望む断熱効果が得られる。またセンサチップ1を保持する台座4としては、好ましくは熱伝導率が10W/(m・K)以下の部材が望ましい。このような部材としては、例えば多孔性部材などがある。熱伝導率が10W/(m・K)以上となると、センサチップ1全体を第1の温度に一定化制御するために必要となる電流が大きくなるので、容量の大きい電源を準備することが必要となり実用的ではない。従ってセンサチップ1を保持する台座4としては、上述したように熱伝導率が10W/(m・K)以下の部材が望ましい。   Incidentally, as the thermally insulating pedestal (thermal insulator) 4, for example, Japanese Patent No. 3740026, Japanese Patent No. 3740027, Japanese Patent Laid-Open No. 2002-29688, and Japanese Patent Laid-Open No. 2002-318148 previously proposed by the present applicant. As long as the techniques described in Japanese Patent Laid-Open No. 2002-318149 and the like are appropriately employed, the desired heat insulation effect can be obtained in the present invention. The base 4 for holding the sensor chip 1 is preferably a member having a thermal conductivity of 10 W / (m · K) or less. Examples of such a member include a porous member. When the thermal conductivity is 10 W / (m · K) or more, the current required for constant control of the entire sensor chip 1 to the first temperature increases, so it is necessary to prepare a power supply with a large capacity. It is not practical. Therefore, as the pedestal 4 for holding the sensor chip 1, a member having a thermal conductivity of 10 W / (m · K) or less is desirable as described above.

また図中30,20は上記マイクロヒータ3および温度センサ(補助ヒータ)2をそれぞれ発熱駆動するヒータ駆動電源を示している。これらのヒータ駆動電源30,20は、例えば図6に示すように、その温度制御対象である前記マイクロヒータ3または温度センサ(補助ヒータ)2を1つのブリッジ辺として構成された抵抗ブリッジ回路3aと、この抵抗ブリッジ回路3aのブリッジ電圧V2に応じて上記抵抗ブリッジ回路3aに加える駆動電圧V1をフィードバック制御する電圧制御回路3bとを備えたものとして構成される。   In the figure, reference numerals 30 and 20 denote heater driving power sources for driving the micro heater 3 and the temperature sensor (auxiliary heater) 2 to generate heat. For example, as shown in FIG. 6, the heater driving power sources 30 and 20 include a resistance bridge circuit 3a configured with the micro heater 3 or the temperature sensor (auxiliary heater) 2 that is a temperature control target as one bridge side. And a voltage control circuit 3b that feedback-controls the drive voltage V1 applied to the resistance bridge circuit 3a in accordance with the bridge voltage V2 of the resistance bridge circuit 3a.

即ち、このヒータ駆動電源30,20は、抵抗値が既知の固定抵抗R1,R2,R3と抵抗値がRhのマイクロヒータ3または抵抗値がRrの補助ヒータ2とを用いた抵抗ブリッジ回路3aのブリッジ電圧V2a,V2bを差動増幅器(電圧制御回路)3bに入力し、マイクロヒータ3側のブリッジ電圧V2aが常に固定抵抗R2,R3側のブリッジ電圧V2bとなるように、そのブリッジ駆動電圧V1をフィードバック制御することで、前記マイクロヒータ3の抵抗値Rhまたは補助ヒータ2の抵抗値Rrを一定化するように構成される。   That is, the heater drive power supplies 30 and 20 are configured of a resistance bridge circuit 3a using fixed resistors R1, R2, and R3 having known resistance values and a micro heater 3 having a resistance value Rh or an auxiliary heater 2 having a resistance value Rr. The bridge voltages V2a and V2b are input to the differential amplifier (voltage control circuit) 3b, and the bridge drive voltage V1 is set so that the bridge voltage V2a on the microheater 3 side always becomes the bridge voltage V2b on the fixed resistors R2 and R3 side. By performing feedback control, the resistance value Rh of the micro heater 3 or the resistance value Rr of the auxiliary heater 2 is made constant.

このとき、マイクロヒータ3に流れる電流Ihは、
Ih=(V1−V2a)÷R1
となる。またマイクロヒータ3側のブリッジ電圧V2aは
V2a=V2b=V1・R3/(R2+R3)
として与えられる。そしてこのときにマイクロヒータ3に加えられる電力Phは
Ph=Ih・V2a
として求めることができ、またヒータ抵抗Rhは前述したように
Rh=Vh÷Ih
となる。
At this time, the current Ih flowing through the microheater 3 is
Ih = (V1-V2a) / R1
It becomes. The bridge voltage V2a on the micro heater 3 side is V2a = V2b = V1 / R3 / (R2 + R3)
As given. At this time, the electric power Ph applied to the micro heater 3 is Ph = Ih · V2a.
The heater resistance Rh can be calculated as follows: Rh = Vh ÷ Ih
It becomes.

さて本発明に係る熱伝導率測定方法および装置は、図5に示すように、基本的にはヒータ駆動電源20によりセンサチップ1を一定温度Toに加熱した条件下において、前記ヒータ駆動電源30により発熱駆動されるマイクロヒータ3の駆動電力Phを求める電力検出手段5a、マイクロヒータ3の通電電流Ihを電流検出手段5b、およびヒータ駆動電力Phとヒータ電流Ihとに従ってヒータ温度Thを求めるヒータ温度検出手段5cを備える。更に熱伝導率測定装置は、上記ヒータ温度Thと前述した温度センサ2にて求められるセンサチップ温度Toをセンサチップ1の周囲近傍における雰囲気ガスの温度(周囲温度)として求める周囲温度検出手段5dを備える。   As shown in FIG. 5, the method and apparatus for measuring thermal conductivity according to the present invention basically uses the heater driving power source 30 under the condition that the sensor chip 1 is heated to a constant temperature To by the heater driving power source 20. Electric power detection means 5a for determining the driving power Ph of the microheater 3 driven to generate heat, current detection means 5b for the energization current Ih of the microheater 3, and heater temperature detection for determining the heater temperature Th according to the heater driving power Ph and the heater current Ih Means 5c are provided. Further, the thermal conductivity measuring device includes an ambient temperature detecting means 5d for obtaining the heater temperature Th and the sensor chip temperature To obtained by the temperature sensor 2 as the ambient gas temperature (ambient temperature) in the vicinity of the sensor chip 1. Prepare.

そして熱伝導率測定方法および装置は、放熱係数算出手段6にて前記ヒータ温度Thと周囲温度To、および前記マイクロヒータ3の駆動電力Phに従って前記マイクロヒータ3の放熱係数Cを
C=Ph÷(Th−To)
として求めており、更に熱伝導率算出手段7においては、上記放熱係数算出手段6にて求められた放熱係数Cに従ってテーブル8を参照して、上記放熱係数Cに相当する温度Toでの前記雰囲気ガスの熱伝導率λoを求めるものとなっている。
In the heat conductivity measuring method and apparatus, the heat dissipation coefficient calculation means 6 sets the heat dissipation coefficient C of the microheater 3 according to the heater temperature Th and the ambient temperature To and the driving power Ph of the microheater 3 as follows: C = Ph ÷ ( Th-To)
Further, in the thermal conductivity calculation means 7, the atmosphere at the temperature To corresponding to the heat dissipation coefficient C is referred to by referring to the table 8 according to the heat dissipation coefficient C determined by the heat dissipation coefficient calculation means 6. The thermal conductivity λo of the gas is obtained.

かくしてこのように構成された熱伝導率測定方法および装置によれば、雰囲気ガスの温度に拘わらず、センサチップ1の周囲近傍における雰囲気ガスの温度を部分的にセンサチップ1の温度に一定化することができる。そしてその温度を周囲温度センサ(補助ヒータ)2の駆動条件から求められるセンサチップ温度(周囲温度)Toとして検出することができる。またマイクロヒータ3の発熱温度(ヒータ温度)Thについては、前述したようにマイクロヒータ3の駆動電力Phとその通電電流Ihとから検出することができる。従って前述したテーブル8に、予めその成分が既知なる雰囲気ガスの温度Toにおける熱伝導率λoと、マイクロヒータ3の放熱係数Cとの対応関係を登録しておけば、前述した如くマイクロヒータ3の駆動電力Phからその放熱係数Cを求め、上記テーブル8を参照することで雰囲気ガスの熱伝導率を簡易に求めることが可能となる。   Thus, according to the thermal conductivity measuring method and apparatus configured in this way, the temperature of the ambient gas in the vicinity of the sensor chip 1 is partially made constant at the temperature of the sensor chip 1 regardless of the temperature of the ambient gas. be able to. The temperature can be detected as a sensor chip temperature (ambient temperature) To obtained from the driving conditions of the ambient temperature sensor (auxiliary heater) 2. Further, the heat generation temperature (heater temperature) Th of the microheater 3 can be detected from the driving power Ph of the microheater 3 and its energization current Ih as described above. Therefore, if the correspondence relationship between the thermal conductivity λo at the temperature To of the atmospheric gas whose component is known and the heat radiation coefficient C of the microheater 3 is registered in the table 8 in advance, the microheater 3 is heated as described above. By obtaining the heat dissipation coefficient C from the drive power Ph and referring to the table 8, the thermal conductivity of the atmospheric gas can be easily obtained.

特に本発明に係る熱伝導率測定方法および装置によれば、センサチップ1を熱絶縁体3を介して雰囲気ガス中に支持し、センサチップ1に設けられた補助ヒータ(周囲温度センサ)2の温度を一定化制御し、この条件下でマイクロヒータ3の抵抗値(ヒータ温度)を一定化制御してその駆動電力Pを求めるだけで良いので、簡易にして効果的に雰囲気ガスの温度特性に拘わることなく、一定温度Toにおける上記雰囲気ガスの熱伝導率λoを高精度に計測することが可能となる。   In particular, according to the thermal conductivity measuring method and apparatus according to the present invention, the sensor chip 1 is supported in the atmospheric gas via the thermal insulator 3 and the auxiliary heater (ambient temperature sensor) 2 provided on the sensor chip 1 is supported. Since the temperature is controlled to be constant and the resistance value (heater temperature) of the micro heater 3 is controlled to be constant and the driving power P is obtained only under this condition, the temperature characteristics of the atmospheric gas can be simply and effectively obtained. Without being concerned, it becomes possible to measure the thermal conductivity λo of the atmospheric gas at a constant temperature To with high accuracy.

図7(a)は雰囲気ガスとして混合比率を異ならせたプロパンガスと空気との複数種の混合ガスを用い、その温度を変化させながら前述したようにして計測される放熱係数Cと熱伝導率λとの関係を調べたものである。この図7(a)に示されるように本発明に係る熱伝導率測定方法および装置によれば、雰囲気ガスの温度の違いに拘わらず、プロパンガスと空気との混合比率の違いに応じて、つまり雰囲気ガスの成分比率に放熱係数Cと熱伝導率λとの関係が1対1に対応付けられる。従ってその対応関係を予め調べてテーブル8に登録しておけば、マイクロヒータ3の放熱係数Cを求めることで、混合ガス(雰囲気ガス)の熱伝導率λを求めることができる。   FIG. 7 (a) uses a plurality of mixed gases of propane gas and air having different mixing ratios as the atmospheric gas, and the heat dissipation coefficient C and the thermal conductivity measured as described above while changing the temperature. The relationship with λ was investigated. As shown in FIG. 7 (a), according to the thermal conductivity measurement method and apparatus according to the present invention, regardless of the difference in the temperature of the atmospheric gas, depending on the difference in the mixing ratio of propane gas and air, That is, the relationship between the heat radiation coefficient C and the thermal conductivity λ is associated with the component ratio of the atmospheric gas on a one-to-one basis. Therefore, if the correspondence relationship is examined in advance and registered in the table 8, the heat conductivity λ of the mixed gas (atmosphere gas) can be obtained by obtaining the heat dissipation coefficient C of the microheater 3.

また図7(b)は、上述した混合ガスにおけるプロパンガスと空気との混合比率から求められるプロパンガスの濃度とマイクロヒータ3の放熱係数Cとの関係を示したものである。ちなみに上記混合ガスの熱伝導率λmixは、プロパンガスの熱伝導率をλpg、空気の熱伝導率をλairとしたとき、その混合比率が[x:y]であるとして
λmix=x・λpg+y・λair
x+y=1
とした表すことができる。従って前述した如くマイクロヒータ3の放熱係数Cを求めることで、その成分が既知なる混合ガスの成分比率を、具体的には上記混合ガスの場合にはそのプロパンガス濃度を図7(b)に示す放熱係数Cとの対応関係から容易に求めることが可能となる。
FIG. 7B shows the relationship between the concentration of propane gas determined from the mixing ratio of propane gas and air in the above-described mixed gas and the heat dissipation coefficient C of the microheater 3. Incidentally, the thermal conductivity λmix of the mixed gas is λmix = x · λpg + y · λair, assuming that the mixing ratio is [x: y], where propane is the thermal conductivity and λair is the thermal conductivity of propane gas.
x + y = 1
Can be expressed as Accordingly, by obtaining the heat dissipation coefficient C of the microheater 3 as described above, the component ratio of the mixed gas whose component is known, specifically, the propane gas concentration in the case of the above mixed gas is shown in FIG. It can be easily obtained from the correspondence with the heat dissipation coefficient C shown.

また上述したようにして混合ガスを形成する複数のガスの組成比率を求めれば、例えばガス密度と発熱量との関係から上記各ガスが有する発熱量を混合ガスの総量とその組成比率に応じてそれぞれ求めることができるので、混合ガスの発熱量を算出することが可能となる。具体的には単位体積当たりの混合ガスが有する発熱量(エネルギ量)を、上述した如く求められる成分比率から簡易に、しかも正確に計算することが可能となる。   Further, if the composition ratio of a plurality of gases forming the mixed gas is obtained as described above, for example, the calorific value of each gas is determined according to the total amount of the mixed gas and the composition ratio from the relationship between the gas density and the calorific value. Since each can be obtained, the calorific value of the mixed gas can be calculated. Specifically, the calorific value (energy amount) of the mixed gas per unit volume can be calculated easily and accurately from the component ratio obtained as described above.

このようにして混合ガスの成分比率を求め、更にはその発熱量を求めるガス成分比率測定装置は、温度Tでの混合ガスの熱伝導率λ(T)と、この混合ガスを形成していると思われる複数のガスについての上記温度Tでの熱伝導率λ(T)とを対応付けて登録したテーブル8を準備しておけば良い。そしてテーブル8を参照して求められる各温度Tでの熱伝導率λ(T)をメモリ9に書き込む。 In this way, the gas component ratio measuring device that determines the component ratio of the mixed gas and further calculates the heat generation amount forms the mixed gas with the thermal conductivity λ (T) of the mixed gas at the temperature T. What is necessary is just to prepare the table 8 which matched and registered thermal conductivity ( lambda ) (T) in the said temperature T about several gas considered. Then, the thermal conductivity λ (T) at each temperature T obtained by referring to the table 8 is written in the memory 9.

そして成分比率演算手段10においては、上記メモリ9に記憶した混合ガスおよび各ガスの熱伝導率λ(T)から前述した連立方程式を立て、この連立方程式を解析して各ガスの成分比率を求めるようにする。そして更に発熱量計算手段11においては、算出された成分比率に従って前記混合ガスの総発熱量を計算するようにすれば良い。尚、この総発熱量の計算については、発熱量テーブル12に予め登録した、ガスの種類に応じたガス密度と発熱量との関係を参照することによって行うようにすれば良い。 In the component ratio calculation means 10, the above-described simultaneous equations are established from the mixed gas stored in the memory 9 and the thermal conductivity λ (T) of each gas, and the simultaneous equations are analyzed to obtain the component ratio of each gas. Like that. Further, the calorific value calculation means 11 may calculate the total calorific value of the mixed gas in accordance with the calculated component ratio. The calculation of the total calorific value may be performed by referring to the relationship between the gas density and the calorific value corresponding to the type of gas registered in advance in the calorific value table 12.

以上説明したように本発明によれば、前述したようにセンサチップ1をその外部環境から熱的に遮断し、センサチップ1自体を一定の温度に制御した条件下でマイクロヒータの放熱係数Cを求めるだけで、純粋ガスや混合ガスの熱伝導率λ(T)を高精度に、しかも簡易に求めることができる。しかも従来のように恒温槽を設ける等の大掛かりな設備を用いなくても、簡易に測定対象とする雰囲気ガスの熱伝導率λ(T)を求めることができる。 As described above, according to the present invention, as described above, the heat dissipation coefficient C of the microheater is set under the condition that the sensor chip 1 is thermally cut off from its external environment and the sensor chip 1 itself is controlled at a constant temperature. Only by obtaining, the thermal conductivity λ (T) of pure gas or mixed gas can be obtained with high accuracy and in a simple manner. In addition, the thermal conductivity λ (T) of the atmospheric gas to be measured can be easily obtained without using a large-scale facility such as providing a constant temperature bath as in the prior art.

尚、本発明は上述した実施形態に限定されるものではない。例えば熱伝達量測定装置における前述した各演算機能については、マイクロコンピュータにおけるソフトウェアにより実現することも可能である。またマイクロヒータの構造も特に限定されるものではなく、既存の熱式流量センサに設けられたヒータ素子をそのまま流用することも可能である。また補助ヒータ2やマイクロヒータ3の発熱駆動手段についても上述した抵抗ブリッジ回路3aと、そのブリッジ電圧をフィードバック制御する作動増幅器3bを用いた例に限定されないことは言うまでもない。またセンサチップ1としては、基体部1aの上面中央部に設けたキャビティ(凹部)1bの上を跨いで橋状のマイクロブリッジ(薄膜部)を設け、このマイクロブリッジ上に第2のヒータ3等を形成したものであっても良い。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   In addition, this invention is not limited to embodiment mentioned above. For example, each calculation function described above in the heat transfer amount measuring device can be realized by software in a microcomputer. Further, the structure of the microheater is not particularly limited, and the heater element provided in the existing thermal flow sensor can be used as it is. Needless to say, the heat generating driving means of the auxiliary heater 2 and the micro heater 3 is not limited to the example using the above-described resistance bridge circuit 3a and the operational amplifier 3b that feedback-controls the bridge voltage. Further, as the sensor chip 1, a bridge-like microbridge (thin film portion) is provided across the cavity (concave portion) 1b provided at the center of the upper surface of the base portion 1a, and the second heater 3 and the like are provided on the microbridge. May be formed. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明で用いられるマイクロヒータを備えたセンサチップの概略的な素子構造を示す図。The figure which shows the rough element structure of the sensor chip provided with the micro heater used by this invention. センサチップの概略的な断面構造を示す図。The figure which shows schematic sectional structure of a sensor chip. マイクロヒータを発熱駆動したときのマイクロヒータ近傍における雰囲気ガスの温度分布を模式的に示す図。The figure which shows typically the temperature distribution of the atmospheric gas in the micro heater vicinity when the micro heater is driven to generate heat. 組成比率の異なる混合ガスの温度によって変化する放熱係数Cと雰囲気ガスの熱伝導率λ(T)との関係を示す図。The figure which shows the relationship between the thermal radiation coefficient C which changes with the temperature of the mixed gas from which a composition ratio differs, and thermal conductivity ( lambda ) (T) of atmospheric gas. 本発明の一実施形態に係る熱伝導率測定方法および装置の要部概略構成図。The principal part schematic block diagram of the heat conductivity measuring method and apparatus which concern on one Embodiment of this invention. 補助ヒータおよびマイクロヒータの抵抗値を一定化するヒータ駆動回路の構成例を示す図。The figure which shows the structural example of the heater drive circuit which makes the resistance value of an auxiliary heater and a micro heater constant. 本発明に係る熱伝導率測定方法および装置によって計測される温度Toにおける放熱係数Cと雰囲気ガスの熱伝導率λ(T)との関係、および放熱係数Cとプロパンガス濃度との関係を示す図。The figure which shows the relationship between the heat dissipation coefficient C in the temperature To measured by the thermal conductivity measuring method and apparatus which concerns on this invention, and thermal conductivity ( lambda ) (T) of atmospheric gas, and the relationship between the heat dissipation coefficient C and a propane gas density | concentration. . 本発明に係るガス成分比率測定装置の概略構成を示す図。The figure which shows schematic structure of the gas component ratio measuring apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 センサチップ
2 補助ヒータ(周囲温度センサ)
3 マイクロヒータ
4 熱絶縁体
5a 駆動電力検出手段
5b ヒータ電流検出手段
5c ヒータ温度検出手段
5e 周囲温度検出手段
6 放熱係数算出手段
7 熱伝導率算出手段
8 テーブル(C-λo特性)
9 メモリ
10 成分比率演算手段
11 発熱量計算手段
12 発熱量テーブル
20,30 ヒータ駆動電源
1 Sensor chip 2 Auxiliary heater (ambient temperature sensor)
3 Microheater 4 Thermal insulator 5a Drive power detection means 5b Heater current detection means 5c Heater temperature detection means 5e Ambient temperature detection means 6 Heat dissipation coefficient calculation means 7 Thermal conductivity calculation means 8 Table (C-λo characteristics)
DESCRIPTION OF SYMBOLS 9 Memory 10 Component ratio calculation means 11 Heat generation amount calculation means 12 Heat generation amount table 20,30 Heater drive power supply

Claims (9)

センサチップに形成された肉薄領域上に設けられて雰囲気ガス中に位置付けられるマイクロヒータを用い、上記マイクロヒータに加えた電力とそのときの温度とから求められる前記マイクロヒータの放熱係数に従って前記雰囲気ガスの熱伝導率を求める熱伝導率測定方法であって、
熱絶縁体を介して前記センサチップを前記雰囲気ガス中に支持すると共に、前記センサチップに設けられた補助ヒータの抵抗値を一定化制御して前記センサチップの温度を一定に保ち、このときの前記マイクロヒータの駆動電力から該マイクロヒータの放熱係数を求め、このマイクロヒータの放熱係数から前記前記雰囲気ガスの熱伝導率を求めることを特徴とする熱伝導率測定方法。
Using the microheater provided on the thin area formed in the sensor chip and positioned in the atmosphere gas, the atmosphere gas is determined according to the heat dissipation coefficient of the microheater determined from the electric power applied to the microheater and the temperature at that time. A thermal conductivity measurement method for obtaining the thermal conductivity of
The sensor chip is supported in the atmospheric gas via a thermal insulator, and the resistance value of the auxiliary heater provided in the sensor chip is controlled to be constant to keep the temperature of the sensor chip constant. A heat conductivity measurement method characterized in that a heat dissipation coefficient of the microheater is obtained from driving power of the microheater, and a heat conductivity of the ambient gas is obtained from the heat dissipation coefficient of the microheater .
前記補助ヒータの抵抗値の一定化制御は、前記補助ヒータを1つのブリッジ辺とする抵抗ブリッジ回路のブリッジ間電圧に応じて上記抵抗ブリッジ回路に加える駆動電圧をフィードバック制御して行われるものである請求項1に記載の熱伝導率測定方法。   The control for stabilizing the resistance value of the auxiliary heater is performed by feedback control of the drive voltage applied to the resistance bridge circuit in accordance with the voltage between the bridges of the resistance bridge circuit having the auxiliary heater as one bridge side. The thermal conductivity measuring method according to claim 1. 前記マイクロヒータの駆動電力は、前記マイクロヒータを1つのブリッジ辺とする抵抗ブリッジ回路を用いて前記マイクロヒータの抵抗値を一定化制御したときの前記マイクロヒータへの印加電圧と上記抵抗ブリッジ回路の回路定数とから計算されるものである請求項1に記載の熱伝導率測定方法。   The driving power of the microheater includes the voltage applied to the microheater when the resistance value of the microheater is controlled to be constant using a resistance bridge circuit having the microheater as one bridge side, and the resistance bridge circuit The thermal conductivity measuring method according to claim 1, wherein the thermal conductivity is calculated from a circuit constant. 前記マイクロヒータの放熱係数からの前記雰囲気ガスの熱伝導率の検出は、
前記熱絶縁体を介して支持した前記補助ヒータの抵抗値を一定化制御したとき、前記雰囲気ガスの温度に拘わることなく前記マイクロヒータの放熱係数と前記センサチップ近傍における前記雰囲気ガスの熱伝導率とが一元的な対応関係を示すことを利用して行われるものである請求項1に記載の熱伝導率測定方法。
Detection of the thermal conductivity of the ambient gas from the heat dissipation coefficient of the microheater
When the resistance value of the auxiliary heater supported via the thermal insulator is controlled to be constant, the heat dissipation coefficient of the microheater and the heat conduction of the ambient gas in the vicinity of the sensor chip are independent of the temperature of the ambient gas. The thermal conductivity measurement method according to claim 1, wherein the thermal conductivity measurement is performed by utilizing a unitary correspondence relationship with a rate.
補助ヒータを備えたセンサチップと、
このセンサチップに形成された肉薄領域上に設けられたマイクロヒータと、
前記センサチップを該センサチップを支持する基台から熱絶縁して雰囲気ガス中に位置付ける熱絶縁体と、
前記補助ヒータの抵抗値を一定化制御して前記センサチップ全体を加熱するヒータ駆動回路と、
前記マイクロヒータを一定条件で発熱させた際の該マイクロヒータの駆動電力を求める電力検出手段と、
検出された駆動電力に従って前記マイクロヒータからの放熱係数を求める放熱係数演算手段と、
前記補助ヒータの抵抗値を一定化制御したときの、前記センサチップに近傍における前記雰囲気ガスの熱伝導率と前記マイクロヒータの放熱係数との一元的な対応関係に基づいて、前記放熱係数演算手段にて求められた放熱係数から前記雰囲気ガスの熱伝導率を求める熱伝導率演算手段と
を具備したことを特徴とする熱伝導率測定装置。
A sensor chip with an auxiliary heater;
A micro heater provided on a thin region formed in the sensor chip;
A thermal insulator that thermally insulates the sensor chip from a base that supports the sensor chip and positions the sensor chip in an atmospheric gas;
A heater driving circuit for heating the entire sensor chip by controlling the resistance value of the auxiliary heater to be constant;
Power detection means for determining the driving power of the microheater when the microheater is heated under a certain condition;
A heat dissipation coefficient calculating means for obtaining a heat dissipation coefficient from the microheater according to the detected drive power;
Based on a unified correspondence between the thermal conductivity of the ambient gas in the vicinity of the sensor chip and the heat dissipation coefficient of the microheater when the resistance value of the auxiliary heater is controlled to be constant, the heat dissipation coefficient calculating means A thermal conductivity measuring device comprising thermal conductivity calculating means for obtaining the thermal conductivity of the atmospheric gas from the heat dissipation coefficient obtained in (1).
前記ヒータ駆動回路は、前記補助ヒータを1つのブリッジ辺として構成された抵抗ブリッジ回路と、この抵抗ブリッジ回路のブリッジ電圧に応じて上記抵抗ブリッジ回路に加える駆動電圧をフィードバック制御する電圧制御回路とを備えたものである請求項5に記載の熱伝導率測定装置。   The heater drive circuit includes a resistance bridge circuit configured with the auxiliary heater as one bridge side, and a voltage control circuit that feedback-controls a drive voltage applied to the resistance bridge circuit according to a bridge voltage of the resistance bridge circuit. The thermal conductivity measuring device according to claim 5, which is provided. 前記熱伝導率演算手段は、雰囲気ガスの組成に応じて予め求められた、前記マイクロヒータの放熱係数と特定の温度における前記雰囲気ガスの熱伝導率との対応関係を記述したテーブルを参照して、雰囲気ガスの熱伝導率を求めるものである請求項5に記載の熱伝導率測定装置。   The thermal conductivity calculation means refers to a table describing a correspondence relationship between the heat dissipation coefficient of the microheater and the thermal conductivity of the atmospheric gas at a specific temperature, which is obtained in advance according to the composition of the atmospheric gas. The thermal conductivity measuring device according to claim 5, wherein the thermal conductivity of the atmospheric gas is obtained. 請求項5〜7のいずれかに記載の熱伝導率測定装置を用い、一定化制御するマイクロヒータの抵抗値を変化させて、互いに異なるヒータ温度での雰囲気ガスの熱伝導率をそれぞれ求める制御手段と、
上記各ヒータ温度での熱伝導率の連立方程式から前記雰囲気ガスの組成比率を解析する解析手段と
を具備したことを特徴とするガス成分比率測定装置。
Control means for obtaining the thermal conductivity of the atmospheric gas at different heater temperatures by changing the resistance value of the microheater controlled to be constant using the thermal conductivity measuring device according to any one of claims 5 to 7. When,
An apparatus for measuring a gas component ratio, comprising: analysis means for analyzing the composition ratio of the atmospheric gas from the simultaneous equations of thermal conductivity at each heater temperature.
請求項8に記載のガス成分比率測定装置において、
更に前記解析手段により求められた前記雰囲気ガスの組成比率から、該雰囲気ガスの発熱量を求める機能を備えたことを特徴とするガス成分比率測定装置。
In the gas component ratio measuring apparatus according to claim 8,
Furthermore, the gas component ratio measuring apparatus is provided with a function of obtaining a calorific value of the atmospheric gas from the composition ratio of the atmospheric gas obtained by the analyzing means.
JP2006071106A 2006-03-15 2006-03-15 Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus Expired - Fee Related JP4505842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071106A JP4505842B2 (en) 2006-03-15 2006-03-15 Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006071106A JP4505842B2 (en) 2006-03-15 2006-03-15 Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus

Publications (2)

Publication Number Publication Date
JP2007248220A JP2007248220A (en) 2007-09-27
JP4505842B2 true JP4505842B2 (en) 2010-07-21

Family

ID=38592700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071106A Expired - Fee Related JP4505842B2 (en) 2006-03-15 2006-03-15 Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus

Country Status (1)

Country Link
JP (1) JP4505842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU215318U1 (en) * 2022-10-18 2022-12-08 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Thermal gas flow sensor of calorimetric type

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110185789A1 (en) * 2008-10-01 2011-08-04 Yamatake Corporation Calorific value calculation formula generating system, calorific value calculation formula generating method, calorific value calculating system, and calorific value calculating method
JP5266089B2 (en) * 2009-02-20 2013-08-21 アズビル株式会社 Fluid measuring device
JP5344958B2 (en) * 2009-03-12 2013-11-20 アズビル株式会社 Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
JP5165627B2 (en) * 2009-03-30 2013-03-21 アズビル株式会社 Physical property value measuring system and physical property value measuring method
JP5275876B2 (en) * 2009-03-31 2013-08-28 アズビル株式会社 Heater and gas property measurement system
JP5389501B2 (en) * 2009-03-31 2014-01-15 アズビル株式会社 Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
JP5389502B2 (en) * 2009-03-31 2014-01-15 アズビル株式会社 Gas property value measurement system, gas property value measurement method, calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
JP2010236983A (en) * 2009-03-31 2010-10-21 Yamatake Corp Sensor assembly, and instrument for measuring physical property value of fluid
JP5192431B2 (en) * 2009-03-31 2013-05-08 アズビル株式会社 Gas property measurement system
JP5055349B2 (en) * 2009-12-28 2012-10-24 日立オートモティブシステムズ株式会社 Thermal gas sensor
JP5420456B2 (en) * 2010-03-17 2014-02-19 アズビル株式会社 Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value measurement system, and calorific value measurement method
JP5421832B2 (en) * 2010-03-25 2014-02-19 アズビル株式会社 Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value measurement system, and calorific value measurement method
JP5335727B2 (en) * 2010-03-29 2013-11-06 アズビル株式会社 Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value measurement system, and calorific value measurement method
JP5335728B2 (en) * 2010-03-29 2013-11-06 アズビル株式会社 Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value measurement system, and calorific value measurement method
JP5759780B2 (en) 2011-05-09 2015-08-05 アズビル株式会社 Calorific value measuring system and calorific value measuring method
JP5781968B2 (en) 2012-03-27 2015-09-24 アズビル株式会社 Calorific value measuring system and calorific value measuring method
WO2013153251A1 (en) 2012-04-11 2013-10-17 Stiftelsen Arcada Method and apparatus for measuring heat flow through constructions
JP2015031577A (en) * 2013-08-01 2015-02-16 アズビル株式会社 Heat value measuring system and heat value measuring method
JP2014160082A (en) * 2014-04-08 2014-09-04 Azbil Corp Calorie component concentration measuring system and flow measurement system
JP5690003B2 (en) * 2014-04-08 2015-03-25 アズビル株式会社 Specific heat capacity measurement system and flow rate measurement system
CN118914282A (en) * 2016-02-22 2024-11-08 世美特株式会社 Gas sensor, gas detection device, gas detection method and electric equipment
CN111157573B (en) * 2020-01-14 2022-08-05 深圳大学 Measuring device and measuring method for film thermal conductivity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201327A (en) * 1995-01-24 1996-08-09 Yamatake Honeywell Co Ltd Heat conductivity meter
JPH11174010A (en) * 1997-12-12 1999-07-02 Yamatake Corp Gas analyzer
JP3114137B2 (en) * 1994-03-11 2000-12-04 株式会社山武 Thermal conductivity gas concentration analyzer
JP2001337058A (en) * 2000-05-26 2001-12-07 Shimadzu Corp Thermal conductivity detector
JP2002296086A (en) * 2001-03-29 2002-10-09 Yamatake Corp Flow sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114137B2 (en) * 1994-03-11 2000-12-04 株式会社山武 Thermal conductivity gas concentration analyzer
JPH08201327A (en) * 1995-01-24 1996-08-09 Yamatake Honeywell Co Ltd Heat conductivity meter
JPH11174010A (en) * 1997-12-12 1999-07-02 Yamatake Corp Gas analyzer
JP2001337058A (en) * 2000-05-26 2001-12-07 Shimadzu Corp Thermal conductivity detector
JP2002296086A (en) * 2001-03-29 2002-10-09 Yamatake Corp Flow sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU215318U1 (en) * 2022-10-18 2022-12-08 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Thermal gas flow sensor of calorimetric type

Also Published As

Publication number Publication date
JP2007248220A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4505842B2 (en) Thermal conductivity measuring method and apparatus, and gas component ratio measuring apparatus
EP1837645B1 (en) Thermal conductivity sensor
JP3175887B2 (en) measuring device
WO2007036983A1 (en) Thermal conductivity measuring method and device, and gas component ratio measuring device
JP4709499B2 (en) Thermal mass flow meter
EP3610250B1 (en) Sensor for determining the thermal capacity of natural gases
BRPI0817851B1 (en) GAS SENSOR AND METHOD OF DETECTION OF ONE OR MORE GASES
JPH08201327A (en) Heat conductivity meter
JP4859107B2 (en) Thermal flow meter
US11467110B2 (en) Method for operating a sensor device
JP5389501B2 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
JP2008267948A (en) Apparatus and method for gas detection
JPH07151572A (en) Measuring device and measuring method
JP4258667B2 (en) Thermophysical property measuring method and apparatus
JP2010236983A (en) Sensor assembly, and instrument for measuring physical property value of fluid
JP5165627B2 (en) Physical property value measuring system and physical property value measuring method
JPS61240135A (en) Vacuum gauge
AU4871200A (en) Liquid level sensor
JP2001165739A (en) Operation method for measurement device
CN113518914B (en) Concentration measuring device
JPH0712771A (en) Gas detector
JP2016217812A (en) Thermal mass flow controller and inclination error improvement method thereof
JP2001242114A (en) Compensation element for gas detector for fuel cell, thermal conductivity type gas detector and gas upply apparatus for fuel cell
JP7456404B2 (en) Thermal sensors and measurement methods using thermal sensors
JP4868604B2 (en) Thermal conductivity measuring device, gas component ratio measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4505842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees