[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4599758B2 - Surface acoustic wave resonator and ladder type surface acoustic wave filter - Google Patents

Surface acoustic wave resonator and ladder type surface acoustic wave filter Download PDF

Info

Publication number
JP4599758B2
JP4599758B2 JP2001154030A JP2001154030A JP4599758B2 JP 4599758 B2 JP4599758 B2 JP 4599758B2 JP 2001154030 A JP2001154030 A JP 2001154030A JP 2001154030 A JP2001154030 A JP 2001154030A JP 4599758 B2 JP4599758 B2 JP 4599758B2
Authority
JP
Japan
Prior art keywords
electrode
acoustic wave
surface acoustic
idt electrode
idt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001154030A
Other languages
Japanese (ja)
Other versions
JP2002353769A (en
Inventor
康秀 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2001154030A priority Critical patent/JP4599758B2/en
Publication of JP2002353769A publication Critical patent/JP2002353769A/en
Application granted granted Critical
Publication of JP4599758B2 publication Critical patent/JP4599758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は弾性表面波デバイスに関し、特に狭帯域ラダー型弾性表面波フィルタに用いられる弾性表面波共振子(以下、SAW共振子と称す)に関する。
【0002】
【従来の技術】
近年、弾性表面波フィルタ(以下、SAWフィルタと称す)は通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話機等に多く用いられている。SAWフィルタの1つにラダー型弾性表面波フィルタ(以下、ラダー型SAWフィルタと称す)があり、急峻な減衰特性、低損失等の特性を有するため、携帯電話用RFフィルタ等に広く用いられている。
例えば、欧州の1.8GHz携帯電話システム(DCS)には、送受とも帯域幅が75MHz(比帯域幅で4.3%)という広帯域RFフィルタが用いられている。一方、複数の航行衛星から電波を受信し、地上の位置情報を高精度に求めるGPS装置には、中心周波数が1.5GHz、帯域幅が2MHz(比帯域幅で0.12%)という狭帯域のSAWフィルタが要求されている。
【0003】
図5(a)はラダー型SAWフィルタの基本区間の構成を示す図であって、並列腕のSAW共振子Zpと直列腕のSAW共振子Zsとから構成され、それぞれの腕のリアクタンス曲線は同図(b)のように設定される。即ち、並列腕SAW共振子Zpの反共振周波数と、直列腕SAW共振子Zsの共振周波数とをほぼ一致するように設定すると、その周波数を中心周波数として、図5(b)のFに示すようにバンドパスフィルタが形成され、並列腕SAW共振子Zpの共振周波数と直列腕SAW共振子Zsの反共振周波数とに減衰極が形成され、低損失で減衰傾度の急峻なフィルタが得られる。さらに、減衰傾度の急峻なフィルタや、保証減衰量の大きなフィルタが必要な場合には、図5(c)に示すようにラダー型基本区間フィルタを縦続接続してフィルタを構成する。
【0004】
図5(b)から明らかなように、ラダー型SAWフィルタの帯域幅はSAW共振子の共振周波数fsと反共振周波数faとの差df=fa−fsに依存する。そして、共振周波数差dfはSAW共振子の容量比γ(モーショナルキャパシタンスC1に対する静電容量C0の比γ=C0/C1)により次式のように表される。
df=fs/(2γ)
従ってラダー型SAWフィルタの帯域幅はSAW共振子の容量比γによって決定されることになる。即ち、狭帯域のラダー型SAWフィルタを得るにはSAW共振子の容量比γを大きくすることが必要となる。
【0005】
図6(a)はラダー型SAWフィルタに用いられるSAW共振子の電極パターンの構成を示す図であって、圧電基板(図示しない)の主表面上に表面波の伝搬方向に沿ってIDT電極21と、その両側にグレーティング反射器(以下、反射器と称す)22a、22bとを配置して構成したものである。IDT電極21は互いに間挿し合う複数の電極指を有する一対のくし形電極からなり、それぞれのくし形電極から延在するリード電極を端子とする一端子対SAW共振子を形成している。
図6(b)は同図(a)に示したような電極パターンを用い、圧電基板に42°Y−X LiTaO3、IDT電極21の対数を85対、反射器22a、22bの本数をそれぞれ75本、IDT電極21の電極周期λを2μm、交差幅を40μm、アルミ電極膜厚を1800Åと設定したSAW共振子の共振特性を、周波数1.5GHzから2.5GHzにわたりスミス図表で示したものである。図から共振及び反共振周波数はそれぞれ1948.356MHz、2014.827MHzとなり、容量比γは14.4であることが分かる。
また、同図(c)は周波数1.75GHzから2.25GHzにわたりSAW共振子のスプリアスをリターンロスにて示したものである。図から明らかなように、従来の正規型SAW共振子の設計では2.51dB程度のスプリアスが生じている。なお、スミス図表及びリターンロスはいずれもSAW共振子に並列に50Ωを終端してシミュレーションにより求めたものである。
大きなスプリアスを有するSAW共振子を用いてラダー型SAWフィルタを構成する場合、例えば直列腕のSAW共振子に図6(c)のようなスプリアスがある場合には、図7のSPで示すようなスプリアスが通過帯域の高域側に生じ、減衰量を劣化させることになる。また、並列腕のSAW共振子にスプリアスがある場合には、通過帯域内の高周波側より減衰域にかけてスプリアスが生じてフィルタ特性を劣化させることになる。
【0006】
狭帯域のラダー型SAWフィルタを実現すべく、容量比γを大きくする改善が種々試みられている。例えば特開平8−65089、特開平9−167937に開示されている手法は、図8(a)に示すようにSAW共振子に並列に容量Cpを付加して容量比γを大きくする手法である。容量Cpを形成する手段として圧電基板に一対のくし形を形成して静電容量を構成する手段等がある。図8(a)に示すように構成したSAW共振子のスミス図表及びリターンロスをシミュレーションにより求めたものが図8(b)、(c)である。なお、諸定数の値は図6(a)に示した値を用いたが、SAW共振子に生じるスプリアスの大きさを比較するためには、それぞれのSAW共振子のインピーダンスを同一とする必要があり、図8(a)に示す正規型IDT電極21の対数を73対、反射器の本数をそれぞれ87本、容量Cpを0.22pFとした。スミス図表より共振及び反共振周波数はそれぞれ1948.383MHz、2005.240MHzと求まり、これより容量比γは16.9であることが分かる。図6で求めた14.4より大きくなっており、図8(c)よりスプリアスの大きさは2.39dB程度である。
【0007】
また、特開2000−49568には図9(a)に示すように、IDT電極内部で電極指の位相を180°ずらすように配置した部分Aを設けたIDT電極が提案されている。SAW共振子の正規型IDT電極23の対数Nを75.5対、反転電極の対数Kをそれぞれ5対、反射器25a、25bの本数Mをそれぞれ74本として、SAW共振子のインピーダンスを図6(a)のそれと合わせるように設定した。図9(b)はスミス図表、(c)はリターンロスである。このような電極パターンのIDT電極23を用いると、スミス図表より、共振及び反共振周波数はそれぞれ1948.252MHz、2005.775MHzとなり、容量比γは16.7であることが分かる。また、リターンロスから明らかなように、容量比γは16.7と大きくなるもののスプリアスが数多く発生し、しかも大きさが2.47dBと大きいことが分かった。
【0008】
図10(a)は特開2000−49568に開示されているIDT電極パターンの変形例であり、励振の位相が逆転している領域に励振の間引き重み付けを施している。即ち、図中上下のくし形電極をそれぞれ「+」、「−」とすれば、A部の電極指構成は「++−+」という構成になっている。SAW共振子のインピーダンスを図6(a)のそれと合わせるように、正規型IDT電極対数Nを68対、A部に示したIDT電極の組数Kを17組、反射器Mをそれぞれ58本と設定した。図10(b)はスミス図表、(c)はリターンロスを示している。スミス図表より、共振及び反共振周波数はそれぞれ1947.834MHz、2005.091MHzとなり、容量比γは16.8であることが分かる。容量比γは16.8と改善されるものの、スプリアスの大きさは3.69dBとむしろ大きくなっていることが判明した。
【0009】
図11(a)は特開平11−163664に開示されているIDT電極パターンの一例であり、一定の間隔を置いて電極指を間引いている。例えば、同図(a)のA部に示すように電極指7本につき1本の間引きを行っている。このようなIDT電極のSAW共振子の共振特性について、スミス図表及びリターンロスをシミュレーションにより求めたものが、図11(b)、(c)である。図6(a)のSAW共振子とインピーダンスを合わせるために間引き電極Kを図のA部の電極指列を1組として14組、正規型電極Nを1組、反射器Mをそれぞれ61本とした。スミス図表より、共振及び反共振周波数はそれぞれ1968.914MHz、2025.927MHzとなり、容量比γは17.0であることが分かる。
この場合も容量比γは17.0と改善されるもののスプリアスは2.55dBと大きいことが分かる。
【0010】
特開平8−23256にはIDT電極に間引き重み付けを施す際に、IDT電極の中央より両側に行く程、間引き電極指数を多くするIDT電極の構成が提案されている。図12(a)に示すSAW共振子の電極パターンは励振強度分布をα=2.1のカイザー関数(弾性波素子技術ハンドブック(柴山乾夫、オーム社)p211)に近似した間引き重み付けを施したものである。IDT電極の対数を108対、反射器の本数をそれぞれ52本として、この構成のSAW共振子の共振特性をシミュレーションにより求めたものが、図11(b)のスミス図表と、同図(c)に示すリターンロスの図である。スミス図表より、共振及び反共振周波数はそれぞれ1948.309MHz、2005.711MHzとなり、容量比γは16.8であることが分かる。スプリアスについても1.71dBと改善が見られるものの、依然として1.5dBを上まわる大きな値であることが分かった。
【0011】
【発明が解決しようとする課題】
しかしながら、上記に示したように従来の種々のSAW共振子の設計手法を用いてSAW共振子を構成すると、大きなスプリアスが発生することになる。そのため、このようなSAW共振子を用いて狭帯域のラダー型SAWフィルタを構成すると、スプリアスのためにフィルタ特性が劣化するという問題があった。
本発明は上記問題を解決するためになされたものであって、容量比を大きく改善すると共に、発生するスプリアスの大きさを抑圧したSAW共振子を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明に係る弾性表面波デバイスの発明は、圧電基板の主表面上に表面波の伝搬方向に沿って間引き重み付けしたIDT電極とその両側にグレーティング反射器を配置して構成する弾性表面波共振子において、前記IDT電極の内部に弾性表面波の励振の位相が逆相となる励振領域を含まないようにすると共に、IDT電極の間引きの重み付けが表面波の伝搬方向に対して左右で異なるようにしたことを特徴とする弾性表面波共振子である。
また、ある実施例では、圧電基板の主表面上に表面波の伝搬方向に沿って正規型IDT電極とその両側にグレーティング反射器を配置して構成する弾性表面波共振子において、前記正規型IDT電極の少なくとも一部の電極指を、奇数本ずつ交互に同電位に接続した電極指列で置換したことを特徴とする。
また、ある実施例では、圧電基板の主表面上に表面波の伝搬方向に沿って正規型IDT電極とその両側にグレーティング反射器を配置して構成する弾性表面波共振子において、一方のバスバーに接続した電極指を「+」、他方のバスバーに接続した電極指を「−」と表したとき、前記正規型IDT電極の少なくとも一部の電極指を、複数の間引いた電極指列「+++−−−」で置換したことを特徴とする。
また、ある実施例では、圧電基板の主表面上に表面波の伝搬方向に沿って正規型IDT電極とその両側にグレーティング反射器を配置して構成する弾性表面波共振子において、一方のバスバーに接続した電極指を「+」、他方のバスバーに接続した電極指を「−」と表したとき、前記正規型IDT電極の少なくとも一部の電極指を、複数の間引いた電極指列「+++++−−−−−」と、複数の間引いた電極指列「+++−−−」とで置換したことを特徴とする。
また、ある実施例では、圧電基板の主表面上に、表面波の伝搬方向に沿って間引き重み付けした一つのIDT電極と、その両側にグレーティング反射器と、を配置した弾性表面波共振子であって、前記IDT電極の内部に弾性表面波の励振の位相が逆相となる励振領域を含んでおらず、前記間引き重み付けが前記IDT電極の中心に対して前記表面波の伝搬方向について非対称となっており、前記IDT電極の一方のバスバーに接続した電極指を「+」、他方のバスバーに接続した電極指を「−」と表したとき、前記IDT電極の少なくとも一部の電極指が電極指列「+++−−−」の間引き電極であることを特徴とする。
さらに、前記IDT電極の少なくとも一部の電極指が電極指列「+++++−−−−−」の間引き電極であっても良い。
また、本発明は、前記の本発明による弾性表面波共振子、または前記のある実施例による弾性表面波共振子を用いて構成したことを特徴とするラダー型弾性表面波フィルタである。
【0013】
【発明の実施の形態】
以下本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1(a)は本発明に係るSAW共振子の構成を示す電極パターンであって、圧電基板(図示しない)の主表面上に表面波の伝搬方向に沿ってIDT電極1と、その両側に反射器2a、2bを配置して構成したものである。IDT電極1は互いに間挿し合う複数の電極指を有する一対のくし形電極からなり、それぞれのくし形電極から延在するリード電極を端子とする一端子対SAW共振子を形成している。
【0014】
本発明の特徴はIDT電極1の構成法にあり、A1、A2、A3、・・Ai、・・に示すようにIDT電極1に励振の間引き重み付けと共に、その重み付けの分布、即ち励振強度分布をIDT電極1の中央に対して対称ではなく、図中右方に向かってカイザー関数αに応じて施したところにある。例えば、図1(a)、(b)は図6(a)のSAW共振子のインピーダンスダンスに合わせるべく、α=1.9とし、IDT電極対数Nを105.5対、反射器の本数Mをそれぞれ54本と設定してシミュレーションしたときのスミス図表と、リターンロスを示す図である。同図(b)より共振、反共振周波数はそれぞれ1948.379MHz、2005.386MHzとなり、容量比γは16.8と改善されている。また、反共振周波数より高周波側に発生するスプリアスは同図(c)より1.46dBと1.5dBを下まわる値に改善されていることが分かる。
【0015】
図2(a)は本発明に係る第2の実施例であって、IDT電極3の構成法に特徴がある。即ち、図2(a)に示すように、一方のバスバーに接続した電極指を「+」、他方のバスバーに接続した電極指を「−」と表したとき、正規型IDT電極の少なくとも一部を、図中左方に示すように「+++−−−」という間引きした電極指列のIDT電極Aで置換したものである。図6(a)のSAW共振子とインピーダンスを合わせるために、IDT電極Aの組数Kを20組、正規型電極Nを65対、反射器Mをそれぞれ35本と設定したもののスミス図表、リターンロスを図2(b)、(c)に示す。スミス図表より共振、反共振周波数はそれぞれ1948.293MHz、2005.099MHzとなり、容量比γは16.8と大きくなり改善されていることが分かる。また、図2(c)より高周波側のスプリアスは1.30dBと従来のそれより改善されていることが判明した。
【0016】
図3(a)は本発明に係る第3の実施例であって、正規型IDT電極の中、図中左方部の電極を「+++++−−−−−」タイプのIDT電極A1と、「+++−−−」タイプのIDT電極A2とを複合させた励振間引きIDT電極で置換したものである。インピーダンスを合わせるべくIDT電極A1−A1−A2−A1−A2を1組としたものを3組、正規型IDT電極Nを67対、反射器Mをそれぞれ30本としたSAW共振子の共振特性を図3(b)にスミス図表で、(c)にはリターンロスで表している。スミス図表より共振、反共振周波数はそれぞれ1948.179MHz、2004.782MHzとなり、容量比γは17.0と改善されている。反共振周波数の高周波側に生じるスプリアスは1.04dBと大幅に抑圧されていることが分かる。
【0017】
図1から図3に示した本発明に係る実施例1乃至3の共通点は、間引き電極が同電位の電極指を3本以上の奇数本連続させた電極から構成されていることと、IDT電極内の間引き電極の配置がIDT電極の中央に対して非対称と成っていることと、励振が逆相となる領域が含まれないことである。ただ、図4のA部に示すようにIDT電極の最外側の部分で同電位の電極指が偶数本連続しても励振が逆相となる領域は形成されないので、IDT電極の最外側の部分については同電位の電極指が偶数本あるいは奇数本でもよい。
【0018】
【発明の効果】
本発明は、以上説明したように構成したので、請求項1に記載の発明は共振周波数の高周波側近傍に生ずるスプリアスを抑圧したSAW共振子が得られるとという優れた効果を表す。請求項2に記載の発明はスプリアスの大きさを抑圧したSAW共振子が得られるとという優れた効果を表す。請求項3及び4に記載の発明はスプリアスを抑圧したSAW共振子が実現できるという効果を表す。請求項5に記載の発明は通過域の近傍の減衰特性を改善したフィルタが実現できるという優れた効果を奏す。
【図面の簡単な説明】
【図1】(a)は本発明に係るSAW共振子の電極パターン示す図、(b)はスミス図表、(c)はリターンロスを示す図である。
【図2】 (a)は本発明に係る第2の実施例のSAW共振子の電極パターン示す図、(b)はスミス図表、(c)はリターンロスを示す図である。
【図3】(a)は本発明に係る第3の実施例のSAW共振子の電極パターン示す図、(b)はスミス図表、(c)はリターンロスを示す図である。
【図4】本発明に係るSAW共振子の電極パターン示す図である。
【図5】(a)はラダー型フィルタの基本区間を示す図、(b)は並列腕及び直列腕のリアクタンスカーブとフィルタ特性とを示す図、(c)は基本区間を縦続接続したラダー型フィルタである。
【図6】(a)は従来のSAW共振子の電極パターンを示す図、(b)はスミス図表、(c)はリターンロスを示す図である。
【図7】ラダー型SAWフィルタに生じるスプリアスを説明する図である。
【図8】IDT電極に容量を並列接続したSAW共振子の構成を示す図、(b)はスミス図表、(c)はリターンロスを示す図である。
【図9】(a)はIDT電極内部に電極指の位相を180°ずらすように配置したSAW共振子の電極パターンを示す図、(b)はスミス図表、(c)はリターンロスを示す図である。
【図10】(a)は励振の位相が逆転している領域に励振の間引き重み付けを施したSAW共振子の電極パターンを示す図、(b)はスミス図表、(c)はリターンロスを示す図である。
【図11】(a)は一定の間隔を置いて電極指を間引きしたSAW共振子の電極パターンを示す図、(b)はスミス図表、(c)はリターンロスを示す図である。
【図12】(a)はIDT電極の電極指にカイザー関数の間引き分布を施したSAW共振子の電極パターンを示す図、(b)はスミス図表、(c)はリターンロスを示す図である。
【符号の説明】
1、3、5・・IDT電極
2a、2b、4a、4b、6a、6b・・グレーティング反射器
A、A1、A2、A3、A4、A5、・・Ai・・間引き電極部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave resonator (hereinafter referred to as a SAW resonator) used in a narrow band ladder type surface acoustic wave filter.
[0002]
[Prior art]
In recent years, surface acoustic wave filters (hereinafter referred to as SAW filters) have been widely used in the communication field, and are widely used particularly in mobile phones and the like because they have excellent characteristics such as high performance, small size, and mass productivity. One type of SAW filter is a ladder type surface acoustic wave filter (hereinafter referred to as a ladder type SAW filter), which has characteristics such as steep attenuation characteristics and low loss, and is therefore widely used for RF filters for mobile phones. Yes.
For example, in the European 1.8 GHz cellular phone system (DCS), a broadband RF filter having a bandwidth of 75 MHz (specific bandwidth 4.3%) is used for both transmission and reception. On the other hand, a GPS device that receives radio waves from a plurality of navigation satellites and obtains position information on the ground with high accuracy has a narrow band with a center frequency of 1.5 GHz and a bandwidth of 2 MHz (specific bandwidth is 0.12%). SAW filters are required.
[0003]
FIG. 5A is a diagram showing a basic section configuration of a ladder-type SAW filter, which is composed of SAW resonators Zp of parallel arms and SAW resonators Zs of series arms, and the reactance curves of the respective arms are the same. It is set as shown in FIG. That is, when the anti-resonance frequency of the parallel arm SAW resonator Zp and the resonance frequency of the series arm SAW resonator Zs are set to substantially coincide with each other, as shown in F of FIG. A band-pass filter is formed, an attenuation pole is formed between the resonance frequency of the parallel arm SAW resonator Zp and the anti-resonance frequency of the series arm SAW resonator Zs, and a filter having a low loss and a steep attenuation gradient is obtained. Further, when a filter having a steep attenuation slope or a filter having a large guaranteed attenuation is required, a ladder type basic section filter is connected in cascade as shown in FIG.
[0004]
As apparent from FIG. 5B, the bandwidth of the ladder-type SAW filter depends on the difference df = fa−fs between the resonance frequency fs of the SAW resonator and the antiresonance frequency fa. The resonance frequency difference df is expressed by the following equation by the capacitance ratio γ of the SAW resonator (ratio γ = C0 / C1 of the capacitance C0 to the motional capacitance C1).
df = fs / (2γ)
Therefore, the bandwidth of the ladder type SAW filter is determined by the capacitance ratio γ of the SAW resonator. That is, in order to obtain a narrow band ladder-type SAW filter, it is necessary to increase the capacitance ratio γ of the SAW resonator.
[0005]
FIG. 6A is a diagram showing a configuration of an electrode pattern of a SAW resonator used in a ladder-type SAW filter. The IDT electrode 21 is formed on the main surface of a piezoelectric substrate (not shown) along the propagation direction of the surface wave. And grating reflectors (hereinafter referred to as reflectors) 22a and 22b are arranged on both sides thereof. The IDT electrode 21 is composed of a pair of comb electrodes having a plurality of electrode fingers interleaved with each other, and forms a one-terminal pair SAW resonator having a lead electrode extending from each comb electrode as a terminal.
FIG. 6 (b) uses an electrode pattern as shown in FIG. 6 (a). The piezoelectric substrate has 42 ° YX LiTaO 3 , the IDT electrode 21 has 85 pairs, and the reflectors 22a and 22b have numbers. Resonance characteristics of 75 SAW resonators with IDT electrode 21 having an electrode period λ of 2 μm, a crossing width of 40 μm, and an aluminum electrode film thickness of 1800 mm are shown in a Smith chart over a frequency range of 1.5 GHz to 2.5 GHz. It is. From the figure, it can be seen that the resonance and antiresonance frequencies are 1948.356 MHz and 2014.827 MHz, respectively, and the capacitance ratio γ is 14.4.
FIG. 3C shows the spurious of the SAW resonator with a return loss from a frequency of 1.75 GHz to 2.25 GHz. As is apparent from the figure, spurious of about 2.51 dB occurs in the design of the conventional regular SAW resonator. The Smith chart and the return loss are both obtained by simulation with 50Ω terminated in parallel with the SAW resonator.
When a ladder-type SAW filter is configured using a SAW resonator having a large spurious, for example, when a spurious as shown in FIG. 6C is present in a series arm SAW resonator, the SP shown in FIG. Spurious is generated on the high frequency side of the pass band, and the attenuation is deteriorated. Further, when the SAW resonator of the parallel arm has spurious, spurious is generated from the high frequency side in the pass band to the attenuation region, and the filter characteristics are deteriorated.
[0006]
Various attempts have been made to increase the capacitance ratio γ in order to realize a narrow-band ladder-type SAW filter. For example, the technique disclosed in JP-A-8-65089 and JP-A-9-167937 is a technique for increasing the capacitance ratio γ by adding a capacitor Cp in parallel to the SAW resonator as shown in FIG. . As a means for forming the capacitance Cp, there is a means for forming a capacitance by forming a pair of comb shapes on the piezoelectric substrate. FIGS. 8B and 8C show the Smith chart and return loss of the SAW resonator configured as shown in FIG. Although the values shown in FIG. 6A are used as the values of the constants, it is necessary to make the impedances of the SAW resonators the same in order to compare the spurious magnitudes generated in the SAW resonators. Yes, the number of pairs of regular IDT electrodes 21 shown in FIG. 8A is 73, the number of reflectors is 87, and the capacitance Cp is 0.22 pF. From the Smith chart, the resonance and antiresonance frequencies are found to be 1948.383 MHz and 2005.240 MHz, respectively, and it can be seen that the capacitance ratio γ is 16.9. It is larger than 14.4 obtained in FIG. 6, and the size of the spurious is about 2.39 dB from FIG.
[0007]
Japanese Patent Laid-Open No. 2000-49568 proposes an IDT electrode provided with a portion A arranged so that the phase of electrode fingers is shifted by 180 ° inside the IDT electrode, as shown in FIG. 9A. FIG. 6 shows the impedance of the SAW resonator with 75.5 pairs of normal IDT electrodes 23 of the SAW resonator, 5 pairs of pair K of inversion electrodes, 74 pieces of reflectors 25a and 25b, respectively. It was set to match that of (a). FIG. 9B is a Smith chart, and FIG. 9C is a return loss. When the IDT electrode 23 having such an electrode pattern is used, it can be seen from the Smith chart that the resonance and antiresonance frequencies are 1948.252 MHz and 2005.775 MHz, respectively, and the capacitance ratio γ is 16.7. Further, as apparent from the return loss, it was found that although the capacity ratio γ was as large as 16.7, many spurious components were generated and the size was as large as 2.47 dB.
[0008]
FIG. 10A shows a modified example of the IDT electrode pattern disclosed in Japanese Patent Laid-Open No. 2000-49568, in which excitation thinning weighting is applied to a region where the excitation phase is reversed. That is, if the upper and lower comb-shaped electrodes in the drawing are “+” and “−”, respectively, the electrode finger configuration of the A part is “++ − +”. In order to match the impedance of the SAW resonator with that of FIG. 6A, the number of normal IDT electrode pairs N is 68 pairs, the number of IDT electrode pairs K shown in part A is 17, and the number of reflectors M is 58. Set. FIG. 10B shows a Smith chart, and FIG. 10C shows a return loss. From the Smith chart, it can be seen that the resonance and anti-resonance frequencies are 1947.834 MHz and 2005.091 MHz, respectively, and the capacitance ratio γ is 16.8. Although the capacity ratio γ was improved to 16.8, it was found that the size of the spurious was rather increased to 3.69 dB.
[0009]
FIG. 11A is an example of an IDT electrode pattern disclosed in Japanese Patent Laid-Open No. 11-163664, and the electrode fingers are thinned out at regular intervals. For example, one thinning is performed for seven electrode fingers as shown in part A of FIG. FIG. 11B and FIG. 11C show the Smith chart and the return loss obtained by simulation for the resonance characteristics of the SAW resonator of the IDT electrode. In order to match the impedance with the SAW resonator of FIG. 6A, 14 sets of thinning electrodes K, one set of electrode fingers in part A in the figure, one set of normal type electrodes N, and 61 reflectors M, respectively did. From the Smith chart, it can be seen that the resonance and anti-resonance frequencies are 1968.914 MHz and 2025.927 MHz, respectively, and the capacitance ratio γ is 17.0.
In this case as well, the capacitance ratio γ is improved to 17.0, but the spurious is as large as 2.55 dB.
[0010]
Japanese Patent Laid-Open No. 8-23256 proposes a configuration of an IDT electrode that increases the thinning electrode index as it goes to both sides from the center of the IDT electrode when thinning the IDT electrode. The electrode pattern of the SAW resonator shown in FIG. 12A is subjected to thinning weighting that approximates the excitation intensity distribution to a Kaiser function with α = 2.1 (Acoustic wave device technology handbook (Yoshio Shibayama, Ohm) p211). Is. The resonance characteristics of the SAW resonator having this configuration with 108 pairs of IDT electrodes and 52 reflectors are obtained by simulation, and the Smith chart of FIG. 11B and FIG. It is a figure of the return loss shown in FIG. From the Smith chart, it can be seen that the resonance and antiresonance frequencies are 1948.309 MHz and 2005.711 MHz, respectively, and the capacitance ratio γ is 16.8. Although the spurious was improved to 1.71 dB, it was found that the spurious was still a large value exceeding 1.5 dB.
[0011]
[Problems to be solved by the invention]
However, when the SAW resonator is configured by using various conventional SAW resonator design methods as described above, a large spurious is generated. Therefore, when such a SAW resonator is used to form a narrow-band ladder-type SAW filter, there is a problem that the filter characteristics deteriorate due to spurious.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a SAW resonator that greatly improves the capacitance ratio and suppresses the magnitude of spurious generated.
[0012]
[Means for Solving the Problems]
Inventions of the surface acoustic wave device according to the present invention in order to achieve the above object, a grating reflectors disposed on both sides of the thinned weighted IDT electrode along the propagation direction of a surface wave on a main surface of a piezoelectric substrate In the surface acoustic wave resonator configured as described above, the IDT electrode does not include an excitation region in which the phase of the surface acoustic wave excitation is reversed, and the IDT electrode thinning weight is determined by the propagation direction of the surface wave. The surface acoustic wave resonator is characterized in that the left and right are different from each other.
In one embodiment , in the surface acoustic wave resonator in which the regular IDT electrode and the grating reflectors are arranged on both sides of the piezoelectric substrate along the propagation direction of the surface wave on the main surface of the piezoelectric substrate, at least a portion of the electrode fingers of the IDT electrode, characterized in that it is replaced by an odd present one by the electrode fingers columns connected to the same potential alternately.
In one embodiment, in a surface acoustic wave resonator formed by arranging a regular IDT electrode and a grating reflector on both sides of a main surface of a piezoelectric substrate along the propagation direction of a surface wave, one bus bar is provided. When the electrode finger connected to the electrode bar is represented by “+” and the electrode finger connected to the other bus bar is represented by “−”, at least a part of the electrode fingers of the normal type IDT electrode are thinned out by a plurality of thinned electrode finger rows “++++” --- it, characterized in that it was replaced with ".
In one embodiment, in a surface acoustic wave resonator formed by arranging a regular IDT electrode and a grating reflector on both sides of a main surface of a piezoelectric substrate along the propagation direction of a surface wave, one bus bar is provided. When the electrode finger connected to the electrode bus is represented by “+” and the electrode finger connected to the other bus bar is represented by “−”, at least a part of the electrode fingers of the normal type IDT electrode are thinned out by a plurality of electrode finger rows “++++++” ----- and "characterized in that substituted out with a plurality of thinned electrode fingers string" +++ --- ".
In one embodiment, the surface acoustic wave resonator includes a single IDT electrode thinned and weighted along the propagation direction of the surface wave on the main surface of the piezoelectric substrate, and a grating reflector on both sides thereof. Thus, the IDT electrode does not include an excitation region in which the phase of the surface acoustic wave excitation is reversed, and the thinning weight is asymmetric with respect to the propagation direction of the surface wave with respect to the center of the IDT electrode. When the electrode finger connected to one bus bar of the IDT electrode is represented as “+” and the electrode finger connected to the other bus bar is represented as “−”, at least a part of the electrode fingers of the IDT electrode are electrode fingers. It is a thinning electrode of the column “++++-”.
Furthermore, at least some of the electrode fingers of the IDT electrode may be thinned electrodes of an electrode finger row “++++++”.
Further, the present invention is a ladder-type surface acoustic wave filter characterized by using the surface acoustic wave resonator according to the present invention described above or the surface acoustic wave resonator according to an embodiment described above .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1A is an electrode pattern showing the configuration of a SAW resonator according to the present invention. The IDT electrode 1 is formed on the main surface of a piezoelectric substrate (not shown) along the propagation direction of the surface wave and on both sides thereof. The reflectors 2a and 2b are arranged. The IDT electrode 1 is composed of a pair of comb electrodes having a plurality of electrode fingers interleaved with each other, and forms a one-terminal pair SAW resonator having a lead electrode extending from each comb electrode as a terminal.
[0014]
A feature of the present invention resides in the construction method of the IDT electrode 1, and as shown in A 1, A 2, A 3,..., Ai,. It is not symmetrical with respect to the center of the IDT electrode 1 but is applied according to the Kaiser function α toward the right in the figure. For example, in FIGS. 1A and 1B, α = 1.9, the number N of IDT electrode pairs is 105.5 pairs, and the number of reflectors is M in order to match the impedance dance of the SAW resonator of FIG. It is a figure which shows a Smith chart when simulating by setting 54 each, and a return loss. From FIG. 5B, the resonance and antiresonance frequencies are 1948.379 MHz and 2005.386 MHz, respectively, and the capacity ratio γ is improved to 16.8. Further, it can be seen that spurious generated on the high frequency side from the anti-resonance frequency is improved to values lower than 1.46 dB and 1.5 dB from FIG.
[0015]
FIG. 2A shows a second embodiment according to the present invention, which is characterized by a configuration method of the IDT electrode 3. That is, as shown in FIG. 2 (a), when an electrode finger connected to one bus bar is represented as "+" and an electrode finger connected to the other bus bar is represented as "-", at least a part of the regular IDT electrode Is replaced with the IDT electrode A in the electrode finger array thinned out as “++++-” as shown on the left side of the figure. Smith chart of the number of sets of IDT electrodes A set to 20 sets, 65 pairs of normal type electrodes N, and 35 sets of reflectors M in order to match impedance with the SAW resonator of FIG. The loss is shown in FIGS. 2 (b) and 2 (c). From the Smith chart, it can be seen that the resonance and anti-resonance frequencies are 1948.293 MHz and 2005.099 MHz, respectively, and the capacitance ratio γ is 16.8, which is improved. Further, from FIG. 2 (c), it was found that the spurious on the high frequency side is 1.30 dB, which is improved from the conventional one.
[0016]
FIG. 3A is a third embodiment according to the present invention, and among the regular IDT electrodes, the left electrode in the figure is an IDT electrode A1 of the “++++ ----” type, and “ It is replaced with an excitation thinning-out IDT electrode combined with a “++++-” type IDT electrode A2. Resonance characteristics of SAW resonators with three sets of IDT electrodes A1-A1-A2-A1-A2 to match impedance, 67 pairs of regular IDT electrodes N, and 30 reflectors M each. FIG. 3B is a Smith chart, and FIG. 3C is a return loss. From the Smith chart, the resonance and antiresonance frequencies are 1948.179 MHz and 2004.782 MHz, respectively, and the capacity ratio γ is improved to 17.0. It can be seen that the spurious generated on the high frequency side of the anti-resonance frequency is greatly suppressed to 1.04 dB.
[0017]
The common points of Embodiments 1 to 3 according to the present invention shown in FIGS. 1 to 3 are that the thinning-out electrode is composed of an electrode in which three or more odd-numbered electrode fingers are continuously connected, and the IDT. The arrangement of the thinned electrodes in the electrode is asymmetric with respect to the center of the IDT electrode, and the region where the excitation is out of phase is not included. However, as shown in part A of FIG. 4, the outermost part of the IDT electrode is not formed in the outermost part of the IDT electrode, even if an even number of electrode fingers having the same potential continue. The number of electrode fingers with the same potential may be even or odd.
[0018]
【The invention's effect】
Since the present invention is configured as described above, the invention according to claim 1 exhibits an excellent effect that a SAW resonator that suppresses spurious generated in the vicinity of the high frequency side of the resonance frequency is obtained. The invention according to claim 2 exhibits an excellent effect that a SAW resonator in which the size of spurious is suppressed can be obtained. The inventions according to claims 3 and 4 show the effect that a SAW resonator with suppressed spurious can be realized. The invention according to claim 5 has an excellent effect that a filter with improved attenuation characteristics in the vicinity of the pass band can be realized.
[Brief description of the drawings]
1A is a diagram showing an electrode pattern of a SAW resonator according to the present invention, FIG. 1B is a Smith chart, and FIG. 1C is a diagram showing a return loss.
2A is a diagram showing electrode patterns of a SAW resonator according to a second embodiment of the present invention, FIG. 2B is a Smith chart, and FIG. 2C is a diagram showing return loss.
3A is a diagram showing an electrode pattern of a SAW resonator according to a third embodiment of the present invention, FIG. 3B is a Smith chart, and FIG. 3C is a diagram showing a return loss.
FIG. 4 is a diagram showing an electrode pattern of a SAW resonator according to the present invention.
5A is a diagram showing a basic section of a ladder filter, FIG. 5B is a diagram showing reactance curves and filter characteristics of parallel arms and series arms, and FIG. 5C is a ladder type in which the basic sections are connected in cascade. It is a filter.
6A is a diagram showing an electrode pattern of a conventional SAW resonator, FIG. 6B is a Smith chart, and FIG. 6C is a diagram showing a return loss.
FIG. 7 is a diagram illustrating spurious generated in a ladder-type SAW filter.
8A and 8B are diagrams showing the configuration of a SAW resonator in which a capacitor is connected in parallel to an IDT electrode, FIG. 8B is a Smith chart, and FIG. 8C is a diagram showing return loss.
9A is a diagram showing an electrode pattern of a SAW resonator arranged so that the phase of an electrode finger is shifted by 180 ° inside an IDT electrode, FIG. 9B is a Smith diagram, and FIG. 9C is a diagram showing a return loss. It is.
10A is a diagram showing an electrode pattern of a SAW resonator in which excitation thinning weighting is applied to a region where the excitation phase is reversed, FIG. 10B is a Smith chart, and FIG. 10C is a return loss. FIG.
11A is a diagram showing an electrode pattern of a SAW resonator in which electrode fingers are thinned out at regular intervals, FIG. 11B is a Smith chart, and FIG. 11C is a diagram showing return loss.
12A is a diagram showing an electrode pattern of a SAW resonator in which Kaiser function thinning distribution is applied to electrode fingers of an IDT electrode, FIG. 12B is a Smith chart, and FIG. 12C is a diagram showing return loss. .
[Explanation of symbols]
IDT electrodes 2a, 2b, 4a, 4b, 6a, 6b .. Grating reflector A, A1, A2, A3, A4, A5,... Ai.

Claims (2)

圧電基板の主表面上に、弾性表面波の伝搬方向に沿って間引き重み付けした一つのIDT電極と、その両側にグレーティング反射器と、を配置した弾性表面波共振子であって、
前記IDT電極の内部に弾性表面波の励振の位相が逆相となる励振領域を含んでおらず、
前記間引き重み付けが前記IDT電極の中心に対して前記弾性表面波の伝搬方向について非対称となっており、
前記IDT電極の一方のバスバーに接続した電極指を「+」、他方のバスバーに接続した電極指を「−」と表したとき、
前記IDT電極の少なくとも一部の電極指が電極指列「+++−−−」の間引き電極であり、
前記IDT電極の少なくとも一部の電極指が電極指列「+++++−−−−−」の間引き電極であることを特徴とする弾性表面波共振子。
A surface acoustic wave resonator in which one IDT electrode thinned and weighted along the propagation direction of a surface acoustic wave and a grating reflector on both sides thereof are arranged on the main surface of the piezoelectric substrate,
The IDT electrode does not include an excitation region in which the phase of the surface acoustic wave excitation is reversed,
The thinning weight is asymmetric with respect to the propagation direction of the surface acoustic wave with respect to the center of the IDT electrode,
When the electrode finger connected to one bus bar of the IDT electrode is represented as “+” and the electrode finger connected to the other bus bar is represented as “−”,
Ri withdrawal electrode der at least a portion of the electrode fingers electrode fingers columns of the IDT electrode "+++ ---"
At least a portion of the electrode fingers electrode fingers column "+++++ -----" surface acoustic wave resonator, wherein the thinning electrode der Rukoto of the IDT electrode.
請求項1の弾性表面波共振子を用いて構成したことを特徴とするラダー型弾性表面波フィルタ。  A ladder type surface acoustic wave filter comprising the surface acoustic wave resonator according to claim 1.
JP2001154030A 2001-05-23 2001-05-23 Surface acoustic wave resonator and ladder type surface acoustic wave filter Expired - Fee Related JP4599758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001154030A JP4599758B2 (en) 2001-05-23 2001-05-23 Surface acoustic wave resonator and ladder type surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001154030A JP4599758B2 (en) 2001-05-23 2001-05-23 Surface acoustic wave resonator and ladder type surface acoustic wave filter

Publications (2)

Publication Number Publication Date
JP2002353769A JP2002353769A (en) 2002-12-06
JP4599758B2 true JP4599758B2 (en) 2010-12-15

Family

ID=18998451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154030A Expired - Fee Related JP4599758B2 (en) 2001-05-23 2001-05-23 Surface acoustic wave resonator and ladder type surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP4599758B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039290B2 (en) 2005-08-25 2012-10-03 太陽誘電株式会社 Filter and antenna duplexer
FR3079101B1 (en) * 2018-03-16 2020-11-06 Frecnsys TRANSDUCER STRUCTURE FOR SOURCE SUPPRESSION IN SURFACE ACOUSTIC WAVE FILTER DEVICES
WO2019189634A1 (en) 2018-03-29 2019-10-03 株式会社村田製作所 Elastic wave resonator and multiplexer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138558A (en) * 1998-10-05 2000-05-16 Alcatel Surface acoustic wave transducer
JP2000315931A (en) * 1999-04-28 2000-11-14 Murata Mfg Co Ltd Saw resonator, composite saw filter and saw filter
JP2002111442A (en) * 2000-09-28 2002-04-12 Fujitsu Ltd Surface acoustic wave resonator and surface acoustic wave filter using the resonator
JP2002319842A (en) * 2001-04-20 2002-10-31 Fujitsu Ltd Surface acoustic wave resonator and surface acoustic wave filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823256A (en) * 1994-07-07 1996-01-23 Japan Radio Co Ltd Surface acoustic wave resonator
JPH10190394A (en) * 1996-12-25 1998-07-21 Murata Mfg Co Ltd Surface acoustic wave resonance filter
JPH11163664A (en) * 1997-11-28 1999-06-18 Kyocera Corp Acoustic wave filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138558A (en) * 1998-10-05 2000-05-16 Alcatel Surface acoustic wave transducer
JP2000315931A (en) * 1999-04-28 2000-11-14 Murata Mfg Co Ltd Saw resonator, composite saw filter and saw filter
JP2002111442A (en) * 2000-09-28 2002-04-12 Fujitsu Ltd Surface acoustic wave resonator and surface acoustic wave filter using the resonator
JP2002319842A (en) * 2001-04-20 2002-10-31 Fujitsu Ltd Surface acoustic wave resonator and surface acoustic wave filter

Also Published As

Publication number Publication date
JP2002353769A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
EP0897218B1 (en) Surface acoustic wave filter
US6522219B2 (en) Surface acoustic wave ladder filter with two series resonators having different apodization weighting
US6946931B2 (en) Surface acoustic wave resonator and surface acoustic wave filter
JP6573668B2 (en) Elastic wave device and communication device
US7728699B2 (en) Acoustic wave filter
EP1503498A1 (en) Surface acoustic wave device and communications apparatus
JP2002076838A (en) Surface acoustic wave filter
US20070236308A1 (en) Acoustic wave filter device and duplexer
EP1037385B1 (en) Surface acoustic wave filter, duplexer, and communications device
US11165409B2 (en) Acoustic wave device, filter, and composite filter device
EP1710910A2 (en) Surface acoustic wave filter
JP2003069385A (en) Surface acoustic wave filter
US8686809B2 (en) Ladder-type filter including a dielectric film having a side surface with a heightwise inclination
JP3389911B2 (en) Surface acoustic wave filter, duplexer and communication device
WO2005050837A1 (en) Elastic surface wave filter
JP6415398B2 (en) Surface acoustic wave device and filter
JP4599758B2 (en) Surface acoustic wave resonator and ladder type surface acoustic wave filter
JP3915322B2 (en) Surface acoustic wave filter
JP2002111443A (en) Coupled surface acoustic wave filter
JPH09214284A (en) Surface elastic wave device
JP2002064358A (en) Compound surface acoustic wave filter
JP2002111444A (en) Coupled surface acoustic wave filter
JP3780496B2 (en) Surface acoustic wave filter
JPH05129872A (en) Surface wave resonator, surface wave filter, branching filter and mobile radio equipment
JPH09238047A (en) Longitudinal coupling type surface acoustic wave resonator filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees