[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4598409B2 - 表示装置及び投射表示装置 - Google Patents

表示装置及び投射表示装置 Download PDF

Info

Publication number
JP4598409B2
JP4598409B2 JP2004033440A JP2004033440A JP4598409B2 JP 4598409 B2 JP4598409 B2 JP 4598409B2 JP 2004033440 A JP2004033440 A JP 2004033440A JP 2004033440 A JP2004033440 A JP 2004033440A JP 4598409 B2 JP4598409 B2 JP 4598409B2
Authority
JP
Japan
Prior art keywords
spatial light
pixel
light modulator
light
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004033440A
Other languages
English (en)
Other versions
JP2005227334A (ja
Inventor
一也 宮垣
敬信 逢坂
和弘 藤田
淳 高浦
康之 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004033440A priority Critical patent/JP4598409B2/ja
Publication of JP2005227334A publication Critical patent/JP2005227334A/ja
Application granted granted Critical
Publication of JP4598409B2 publication Critical patent/JP4598409B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Description

本発明は、ヘッドマウントディスプレイやプロジェクタなどに応用される表示装置及び投射表示装置に係り、特に、画素ずらし機能を有する表示装置及び投射表示装置に関する
ヘッドマウントディスプレイやプロジェクタなどに応用される表示装置や投射表示装置の多くは、画像形成手段として液晶ライトバルブと呼ばれる液晶空間光変調素子を用いている。液晶ライトバルブは微細な画素を多数配列させた一種の画像表示素子で、プロジェクタでは上記液晶ライトバルブにより画像を形成し、これを投射レンズによりスクリーンに投射するものである。液晶ライトバルブが備える画素の形状は正方形あるいは矩形をしており、サイズは1辺が10数μmから数十μmである。この画素サイズが投影画像の精細度を決定しており、画素が微細であればあるほど、より高精細な投影画像を得ることができる。しかし、画素の微細化すなわち小サイズ化には、液晶ライトバルブの製造プロセス上の問題がある。また、大画面化に対応するには画素数を増大させる必要がある。
液晶空間光変調素子である液晶ライトバルブは、透過型ライトバルブと反射型ライトバルブに大別される。透過型ライトバルブでは、画素を微細化したとしても、画素制御用薄膜トランジスタ(TFT)等の画像形成に寄与しない部分の微細化が困難であり、画素を微細化しても、上記画像形成に寄与しない部分の面積が画素の面積に対して相対的に大きくなり、開口率が低下する難点がある。これに対して、反射型ライトバルブ(多くはシリコン基板上に形成されるので、LCoS(Liquid Crystal on Silicon)と呼ばれている)では、画素電極(反射電極)の下に配線部を形成することが可能であるため、開口率あるいは反射率を向上させることができる。
しかしながら、強誘電性液晶を用いて表面安定化構造とした場合や、ネマチック液晶を用いて垂直配向モードにした場合は、液晶層がスイッチングするためには1μm程度の液晶層が必要であり、10μm程度の画素サイズを実現することはできる。しかし、コントラスト、階調性及び均一性などで評価される画像品質を保持したまま、それより小さい5〜7μm以下の画素を実現することは非常に困難である。また、液晶ライトバルブ自体のサイズを増大させて、画素数を増大する方法もあるが、これは液晶ライトバルブのコストが指数的に増大すると同時に、光学系の大きさも増大し、より一層高コストの表示装置となる。
近年、プロジェクタや画像表示装置等に応用される表示装置(投射表示装置)では、大画面化や高解像度化が増々要求されているが、液晶ライトバルブ等の画像形成手段の画素数を増大する方法では、上記のように製造コストの増大や装置の大型化の問題がある。
そこで、複数のライトバルブからの投射画素をスクリーン上で適宜位置をずらして表示することによって高解像度の投射表示装置を実現することが提案されている。また、光軸のシフトや偏向を行う素子(例えば、ウォブリング素子)を使って投射画素位置を高速に移動させ、見かけ上、ライトバルブの画素数以上の投射画素数にする表示装置が提案されている。例えば、下記の特許文献1には、液晶ライトバルブからの出射光を投射するときに、光軸をシフトさせる素子を設けることにより、時分割で画素を増加させ、高解像度を実現する画像表示装置が提案されている。この画像表示装置では、偏光方向を旋回できる光学素子と、複屈折効果を有する透明素子とを、光軸シフト方向を直交させて2組用いることにより、縦2倍、横2倍で合計4倍に画像を高解像度化している。また、下記の特許文献2には、光軸をシフトすることにより、画素を実質的にΔ(デルタ)配列することが可能な装置が提案されている。
なお、光軸のシフトや偏向を行うウォブリング素子としては、例えば、下記の特許文献3に記載の光学素子等がある。また、この特許文献3には、マイクロレンズアレイを用いて空間光変調素子(ライトバルブ)の画素を見かけ上小さくし、ウォブリング素子等の画素ずらし機能によって、複数のサブフレーム画像をスクリーン上で所定位置ずらして表示する表示装置が記載されている。この従来技術において、マイクロレンズアレイで画素を見かけ上小さくするのは、画素ずらし機能によってサブフレーム画像間で画素の重なりを抑えるためであり、高精細な画像を得ることを目的としている。
前述の画素ずらしを行う投射表示装置のように、複数個のライトバルブを用いて投射位置で画素をずらして高解像化を図る場合でも、ウォブリング素子等を使って画素をずらして高解像度化を図る場合でも、隣接投射画素同士の重なりが生じる。このため、1ラインを表示させるような投射画像であれば、画像のにじみが発生するという問題がある。
そこで、この問題を解消するには、画像形成手段であるライトバルブの近傍に縮小光学系を配置して、投射画素のサイズを隣接画素に重ならない程度に縮小する必要がある。この場合、ライトバルブの全画素を各々縮小させる光学系を通すため、例えば、マイクロレンズアレイ等の正の屈折パワーを有する光学素子を用いて一旦画素を小さくし、この画素縮小された画像を投射レンズでスクリーンに拡大投影する光学系が考えられる。ここで、実質的にライトバルブの画素を小さく、すなわち開口率を小さくする構造は例えば特許文献4に開示されており、これは、反射型ライトバルブにマイクロレンズを付加した反射型表示装置である。この従来技術の目的は、反射型ライトバルブの各画素に対応してマイクロレンズを付加し、反射型ライトバルブの画素間の液晶の配向不良による表示品質への悪影響を抑えることである。
しかし、本発明者らがモンテカルロ法によるノンシーケンシャル光線追跡シミュレーションを行った結果、マイクロレンズアレイ等の正の屈折パワーを有する光学素子の焦点面付近に投射レンズのバックフォーカスを合わせると、投射画素はランプ光源の配光分布を反映したプロファイルとなってしまい、良好な投射画像が得られないことが分かった。
また、マイクロレンズを付加した反射型表示装置からスクリーンまでの間に画素ずらし素子を配置したとしても、隣接画素の重なりは必ずしも低減されない。
さらに、マイクロレンズアレイを用いて画素を見かけ上小さくする場合、特に、反射型空間光変調器と偏光ビームスプリッタとの間にマイクロレンズアレイが配置される構成では、マイクロレンズアレイでの屈折時に偏光面が回転するために、マイクロレンズアレイのないプロジェクション方式に比べてコントラスト比が低下するという問題がある。すなわち、マイクロレンズアレイで光を屈折するときに、光の入射面と偏光の振動面が平行(もしくは直交)とならない光線が必ず存在する。この場合、入射光が直線偏光であっても屈折面でp偏光成分とs偏光成分がある。p偏光とs偏光のそれぞれの透過率は異なるために屈折後の偏光面は回転される。このため、マイクロレンズアレイを通過した光は偏光状態が揃わなくなる。したがって、このような光が空間光変調器に入射されると、暗状態の場合の変調光(本来、投写レンズまで到達しない光)が光漏れを起こし表示面まで到達し、表示画像のコントラスト比を低下させていた。
特開平4−113308号公報 特開平9−230329号公報 特許第3239969号公報 特開平11−258585号公報
本発明は上記事情に鑑みなされたものであり、空間光変調器と、空間光変調器の画素配列に応じた配列の光学素子と、画素ずらし手段を用いる表示装置または投射表示装置において、画像を形成する空間光変調器の整数倍の画素数を表示でき、かつ、表示隣接画素間の重なりを低減することができる構成の表示装置または投射表示装置を提供することを目的とし、さらには、コントラスト比の高い画像表示を行うことができる表示装置または投射表示装置を提供することを目的とする。
上記目的を達成するための解決手段として、本発明は以下のような特徴を有するものである。
[1].放射光を放出する光源と、該光源から放出された光を均一照明させる照明手段と、アレイ状に配列された画素で画像を形成する空間光変調器と、前記空間光変調器の画素配列に応じた配列の光学素子と、前記空間光変調器で形成され前記光学素子通過した画像光の光路前記空間光変調器と同期して所定の量だけ光学的にシフトする制御を行う画素ずらし手段と、からなる表示装置であって、前記光学素子は前記空間光変調器の各画素の配光分布を照度分布に変換するものであり、前記空間光変調器と同期して前記画素ずらし手段によって前記照度分布の光の光路を光学的にシフトさせることによって前記空間光変調器の整数倍の解像度の画像表示する表示装置において、前記空間光変調器は、反射型の空間光変調器であり、前記光学素子は、画素配列に応じた配列のレンズからなり各画素の配光分布を照度分布に変換するレンズアレイであり、該レンズアレイは前記空間光変調器の直前に配置されており、前記照明手段から前記空間光変調器に向かう照明光と、前記空間光変調器から前記レンズアレイを通過して前記画素ずらし手段に向かう画像光とを分離するための偏光分離手段を有し、前記偏光分離手段に入射する前記照明光の光軸と前記偏光分離手段で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、前記レンズアレイの各レンズの中心からの距離に対するレンズ面の傾きは、前記面Aとのなす角が45度方向または135度方向の傾きが、前記面Aに平行な方向または垂直な方向の傾きに比べて緩やかであることを特徴とする(請求項1)。
[2].放射光を放出する光源と、該光源から放出された光を均一照明させる照明手段と、アレイ状に配列された画素で画像を形成する空間光変調器と、前記空間光変調器の画素配列に応じた配列の光学素子と、前記空間光変調器で形成され前記光学素子通過した画像光の光路前記空間光変調器と同期して所定の量だけ光学的にシフトする制御を行う画素ずらし手段と、からなる表示装置であって、前記光学素子は前記空間光変調器の各画素の配光分布を照度分布に変換するものであり、前記空間光変調器と同期して前記画素ずらし手段によって前記照度分布の光の光路を光学的にシフトさせることによって前記空間光変調器の整数倍の解像度の画像表示する表示装置において、前記空間光変調器は、反射型の空間光変調器であり、前記光学素子は、画素配列に応じた配列のレンズからなり各画素の配光分布を照度分布に変換するレンズアレイであり、該レンズアレイは前記空間光変調器の直前に配置されており、前記照明手段から前記空間光変調器に向かう照明光と、前記空間光変調器から前記レンズアレイを通過して前記画素ずらし手段に向かう画像光とを分離するための偏光分離手段を有し、前記偏光分離手段に入射する前記照明光の光軸と前記偏光分離手段で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、前記レンズアレイの各レンズのレンズ形状は、前記面Aとのなす角が45度の断面方向または135度の断面方向のコーニック定数が、前記面Aに平行な断面方向または垂直な断面方向のコーニック定数に比べて小さい値であることを特徴とする(請求項2)。
[3].放射光を放出する光源と、該光源から放出された光を均一照明させる照明手段と、アレイ状に配列された画素で画像を形成する空間光変調器と、前記空間光変調器の画素配列に応じた配列の光学素子と、前記空間光変調器で形成され前記光学素子通過した画像光の光路前記空間光変調器と同期して所定の量だけ光学的にシフトする制御を行う画素ずらし手段と、からなる表示装置であって、前記光学素子は前記空間光変調器の各画素の配光分布を照度分布に変換するものであり、前記空間光変調器と同期して前記画素ずらし手段によって前記照度分布の光の光路を光学的にシフトさせることによって前記空間光変調器の整数倍の解像度の画像表示する表示装置において、前記空間光変調器は、反射型の空間光変調器であり、前記光学素子は、画素配列に応じた配列のレンズからなり各画素の配光分布を照度分布に変換するレンズアレイであり、該レンズアレイは前記空間光変調器の直前に配置されており、前記照明手段から前記空間光変調器に向かう照明光と、前記空間光変調器から前記レンズアレイを通過して前記画素ずらし手段に向かう画像光とを分離するための偏光分離手段を有し、前記偏光分離手段に入射する前記照明光の光軸と前記偏光分離手段で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、前記レンズアレイの各レンズのレンズ形状は、前記面Aとのなす角が45度の断面方向または135度の断面方向の曲率半径が、前記面Aに平行な断面方向または垂直な断面方向の曲率半径に比べて大きい値であることを特徴とする(請求項3)。
[4].表示手段からの画像光を投射手段によって被投射面に投射して画像表示する投射表示装置において、前記表示手段として[1]〜[3]の何れか一つに記載の表示装置を備え、該表示装置の画素ずらし手段の後に前記投射手段を配備したことを特徴とする(請求項)。
本発明に係る表示装置では、空間光変調器の画素配列に応じた配列の光学素子と、空間光変調器で形成され前記光学素子通過した画像光の光路前記空間光変調器と同期して所定の量だけ光学的にシフトする制御を行う画素ずらし手段とを用い、前記光学素子は空間光変調器の各画素の配光分布を照度分布に変換するものであり、
前記空間光変調器と同期して前記画素ずらし手段によって照度分布の光の光路を光学的にシフトさせることによって前記空間光変調器の整数倍の解像度の画像表示するので、空間光変調器の整数倍の画素数を表示でき、かつ、表示隣接画素間の重なりを低減することが可能となる。
前記解決手段の[1]に記載の表示装置では、前記空間光変調器は、反射型の空間光変調器であり、前記光学素子は、画素配列に応じた配列のレンズからなり各画素の配光分布を照度分布に変換するレンズアレイであり、該レンズアレイは前記空間光変調器の直前に配置されており、前記照明手段から前記空間光変調器に向かう照明光と、前記空間光変調器から前記レンズアレイを通過して前記画素ずらし手段に向かう画像光とを分離するための偏光分離手段を有し、前記偏光分離手段に入射する前記照明光の光軸と前記偏光分離手段で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、前記レンズアレイの各レンズの中心からの距離に対するレンズ面の傾きは、前記面Aとのなす角が45度方向または135度方向の傾きが、前記面Aに平行な方向または垂直な方向の傾きに比べて緩やかであることにより、偏光解消が低減され、高コントラスト比の表示が可能になる。
[2]に記載の表示装置では、前記空間光変調器は、反射型の空間光変調器であり、前記光学素子は、画素配列に応じた配列のレンズからなり各画素の配光分布を照度分布に変換するレンズアレイであり、該レンズアレイは前記空間光変調器の直前に配置されており、前記照明手段から前記空間光変調器に向かう照明光と、前記空間光変調器から前記レンズアレイを通過して前記画素ずらし手段に向かう画像光とを分離するための偏光分離手段を有し、前記偏光分離手段に入射する前記照明光の光軸と前記偏光分離手段で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、前記レンズアレイの各レンズのレンズ形状は、前記面Aとのなす角が45度の断面方向または135度の断面方向のコーニック定数が、前記面Aに平行な断面方向または垂直な断面方向のコーニック定数に比べて小さい値であることにより、偏光解消が低減され、高コントラスト比の表示が可能になる。
[3]に記載の表示装置では、前記空間光変調器は、反射型の空間光変調器であり、前記光学素子は、画素配列に応じた配列のレンズからなり各画素の配光分布を照度分布に変換するレンズアレイであり、該レンズアレイは前記空間光変調器の直前に配置されており、前記照明手段から前記空間光変調器に向かう照明光と、前記空間光変調器から前記レンズアレイを通過して前記画素ずらし手段に向かう画像光とを分離するための偏光分離手段を有し、前記偏光分離手段に入射する前記照明光の光軸と前記偏光分離手段で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、前記レンズアレイの各レンズのレンズ形状は、前記面Aとのなす角が45度の断面方向または135度の断面方向の曲率半径が、前記面Aに平行な断面方向または垂直な断面方向の曲率半径に比べて大きい値であることにより、偏光解消が低減され、高コントラスト比の表示が可能になる。
[4]に記載の投射表示装置では、表示手段として[1]〜[3]の何れか一つに記載の表示装置を備え、該表示装置の画素ずらし手段の後に前記投射手段を配備したことにより、[1]〜[3]の何れかと同様の効果を有する投射表示装置が得られる。

以下、本発明の構成、動作及び作用を図面を参照して詳細に説明する。
アレイ状に配列された画素で画像を形成する空間光変調器としては、例えば透過型や反射型の液晶ライトバルブが有名であり、液晶ライトバルブを用いた表示装置や投射表示装置としては、ヘッドマウントディスプレイ(HMD)や液晶プロジェクタなどがある。
一例として、液晶プロジェクタの基本構成は、光源としてのランプと、ランプからの光を液晶ライトバルブに均一に照明するための照明光学系と、液晶ライトバルブの画像を拡大投影するための投射レンズからなる。液晶プロジェクタに用いるランプとしては、通常、放電ランプが使われる。この放電ランプとしては、メタルハライドランプ、超高圧水銀ランプ、キセノンランプなどが使われている。
これらの放電ランプには電極があるため、反射鏡付き放電ランプの配光分布は図3に示すように、放射角0°付近が窪んだ形状になる。さらに具体的には、ランプの反射鏡が回転放物面(パラボラ)タイプであり、図3の横軸は反射鏡付きランプからの放射光角度θを表し、縦軸はその放射光の強度(相対強度)I(θ)を示している。以後、図3のように、ある面への入射角度に対する光の強度分布を「配光分布」と呼ぶことにする。また、反射鏡付きランプ光は放射後のある面内の輝度分布(以後、「照度分布」と呼ぶ)も不均一である。図4は一般的なランプ直後の照度分布を示しており、同図(a)は回転放物面鏡付きランプの照度分布、同図(b)は回転楕円鏡付きランプの照度分布である。
放電ランプは図4(a),(b)のように不均一な照度分布を有するために均一照明光学系を必要とする。この均一照明光学系としてはロッドインテグレータ(カライドスコープ)やフライアイレンズインテグレータが用いられる。ロッドインテグレータ(カライドスコープ)は液晶ライトバルブのアスペクト比(有効画素面の縦・横の比)と同じ値の開口を有する直方体の透光性材料からなる光学素子で、ランプ光をレンズなどで収斂させてロッドインテグレータの片側の端面に入射させる。ロッドインテグレータの側面で多重反射が繰り返されて出射側端面で輝度分布が均一化される。輝度分布は面内の照度分布と言い換えても良い。また、リレーレンズを用いてロッドインテグレータの出射側端面を液晶ライトバルブに結像させることによって、均一照明にすることができる。
均一化照明光学系でフライアイレンズインテグレータは、通常、液晶ライトバルブのアスペクト比と同じレンズがアレイ状に配列される蝿の目レンズ(レンズアレイ)を2組と、コンデンサレンズとの組合せによって構成される。具体的には一つ目のレンズアレイの像側焦点位置に二つ目のレンズアレイを配置する。そして、二つ目のレンズアレイ直後にコンデンサレンズが配置され、このコンデンサレンズの像面焦点位置近傍に液晶ライトバルブを設置する。一つ目のレンズアレイ面では、配光分布も輝度分布も不均一であるが、一つ目のレンズアレイで分割されたランプ光束は各々が液晶ライトバルブを照明する。このため、レンズアレイのアレイ数が多いほど液晶ライトバルブでの「照度分布」が良好に均一化される。なお、液晶ライトバルブは、DMD(デジタル・マイクロミラー・デバイス)に代表されるMEMS技術を用いた空間光変調器であっても良い。
いずれの均一照明光学系も、反射鏡付きランプからの放射光が放射直後の面での照度分布の不均一を空間光変調器の面で均一化させる働きを有する。
一方、ヘッドマウントディスプレイなどの表示装置では、光源にLED(発光ダイオード)などの固体光源が用いられることが多い。LED光源もその出射光は照度分布が均一ではない。表示装置の小型化のために均一照明手段を省略する場合が多いが、表示面で明るさを均一にする要求がある場合には前述の均一照明光学系などを用いる必要がある。
次に本発明の基本的な動作について説明する。
表示装置の解像度(表示画素数)を向上するには液晶ライトバルブに代表される空間光変調器の画素数を増やす必要がある。しかし、液晶ライトバルブの画素数向上は現状で作製可能な最小画素ピッチで制限される。画素ピッチが一定であれば必然的に液晶ライトバルブの外形サイズを大きくして画素数向上を図るしかない。液晶ライトバルブは透過型では2枚の透光性基板(ガラス)が使われるため、形状を大きくするとガラス母材からの取り数が減るため、製品単価が上昇する。このため、背景技術で述べたように、液晶ライトバルブと画素ずらし素子を用いた高精細表示装置が提案されている。ここでは、一例として画素ずらし素子で水平方向に2つの光軸変化を発生させる場合について記述する。
液晶ライトバルブは、最終的に表示したい画像を、水平方向に奇数画素と偶数画素を高速にスイッチングする。この液晶ライトバルブに同期して画素ずらし素子は画素から放射される光の光軸をシフトさせる。画素ずらし素子としては、平行平板のあおり量を2種類、高速にスイッチングさせることで実現できる。すなわち、液晶ライトバルブの画素からの光を画素ピッチの半分の量だけ画素ずらし素子で光学的変位を与えている。さらに、鉛直方向と水平方向をそれぞれ2段階画素をずらす場合には、平行平板からなる画素ずらし素子を、あおり方向を2通りで、かつ、各々2段階のあおり量とする。これにより、鉛直方向と水平方向に画素ピッチの半分の距離だけ光学変位を与えることができる。そして、画素ずらし素子と液晶ライトバルブの同期をとって、4つのサブフレーム画像を表示させる。鉛直と水平の合計4通りの光学変位と液晶ライトバルブの4枚のサブフレームで、1枚の高精細な画像を表示することができる。なお、画素ずらし素子としては、平行平板の組み合せの他、液晶を用いた光偏向素子なども用いることができる。
ところで、前述の液晶ライトバルブと画素ずらし素子との組合せだけでは厳密に高精細とはならない。なぜなら液晶ライトバルブの半分の画素ピッチを画素ずらし素子で光学的に変位させるため、隣接する表示画素の一部同士が重なるからである。このため、隣接画素の重なりを無くすことが必要であるが、これは液晶ライトバルブの各画素の開口率が50%になれば、この重なりを無くすことができる。画素ピッチの小さい透過型液晶ライトバルブのように、元々開口率が小さい空間光変調器も存在するが、画素の開口率が小さいと表示装置の光利用効率が小さくなり、表示画像が暗くなる。従って、表示画像の明るさを保ちながら開口率を小さくする手段が必要となるが、この手段としてはライトバルブの開口率を光学的に小さくすることができる光学素子を用いれば良い。
画素のサイズを縮小するにはライトバルブの画素ピッチに対応して、かつ正の屈折パワーを有する光学系(光学素子)を用いる方法がある。正の屈折パワーを有する光学系としては、マイクロレンズアレイや凹面ミラーアレイなどを用いることができる。これらの光学系の焦点面では、ライトバルブの照明角度分布が強度分布となって現れる。現在、投射表示装置の光源としては前述したようにメタルハライドランプや超高圧水銀ランプなどの放電ランプが用いられることが多く、これらのランプの光強度の配光分布は、ランプ管球内の電極の影のため、放射角が0度の方向でピークにはならず、図3に示したような光強度の配光分布を示す。したがって、投射レンズの物体面を正の屈折パワーを有する光学系の焦点面に一致させると、投射画素の強度分布も図3に似た分布となってしまう。
そこで本発明者らは先に、投射レンズの物体面を正の屈折パワーを有する光学系(光学素子)の焦点面よりもライトバルブ側に位置させる構成を提案した(特願2003−38536号)。この配置構成により、投射ピッチに対して投射画素サイズを小さくできるにもかかわらず、投射画素プロファイルはランプ配向分布の影響を低減することができる。さらに、隣接投射画素へは小さい相対強度で重なっており、投射画像の硬さ(シャープさ)が低減されるので、見やすい画像になる。
ところが、マイクロレンズアレイの屈折面が球面形状とは著しく異なる非球面形状となった場合、例えば、アレイ中心の焦点位置と周辺部の焦点位置が大きく異なる場合には、上記の配置が成立しなくなる。
そこで、本発明では、マイクロレンズアレイや凹面ミラーアレイなどの光学素子の面形状が球面形状でも非球面形状であっても、隣接画素間の重なりを低減した高精細な表示が可能な表示装置(投射表示装置)を提供するものである。
次にレンズによってコントラスト比が低下する現象について図5を用いて説明する。図5(a)に示すように、レンズ50に直線偏光52(y軸方向に振動面をもつ)の光51がレンズの光軸(z軸)に沿って入射する。x軸から45度の方位53で入射した時、入射面と偏光面は45度傾いている。レンズ面Aで光が屈折する際、図5(b)に示すp偏光成分とs偏光成分の透過率はわずかに異なるために、屈折された光は図5(c)に示すようにy軸からαだけ偏光面が回転される。この回転量は図5(a)でx軸上とy軸上ではα=0で回転されない。x軸からの方位が45度のとき最もαが大きくなり、かつ、レンズの周辺に向かうほどαは大きくなる。この偏光回転(偏光解消)が起きると、空間光変調器への入射光が光線毎に偏光面が異なるため、偏光性の悪い入射光となり、また、画像光がレンズアレイを通過するときもこの偏光解消のために偏光性がさらに悪くなる。
そこで本発明では、隣接画素間の重なりを低減するとともに、レンズアレイ等の光学素子によるコントラスト比の低下が抑制された表示装置(投射表示装置)を提供するものである。
ここで、液晶ライトバルブの各画素をマイクロレンズアレイによって見かけ上、画素形状を小さくする動作を図2を用いて説明する。符号13は2枚のガラス基板21,22の間に液晶層20を封入した液晶ライトバルブを表しており、23は液晶ライトバルブの画素である。液晶ライトバルブの近傍にはライトバルブの画素ピッチに対応するマイクロレンズアレイ(以下、レンズアレイと記す)14が配置される。また、液晶ライトバルブ13は図示しない均一照明によって照度が均一化されている。しかし、画素面の照明光には光源に固有の配光分布特性を保持している。ただし、ランプ光源の光束を絞った照明光学系を採用すると、液晶ライトバルブ上では図3の横軸が伸びたような配光分布となる。逆にランプ光束を広げた場合には図3の横軸が圧縮された特性になる。さて、図2にもどり、図3のような配光分布を有する画素からの光をレンズアレイ14をへて絞る。レンズアレイ14は液晶画素に近接されるため、フィールドレンズに近いは働きをもつ。このため、画素23の配光分布形状がレンズ焦点位置25付近では図6に示すような照度分布(図3で横軸を位置xに、縦軸を輝度I(x)にそれぞれ置き換えた分布形状)となる。しかし、面25では照度分布の裾野付近(23a,23c)が広がり、液晶ライトバルブ13の隣接画素へ光がまわり込むため高精細な画像とはならない。ただし、焦点付近からレンズアレイ側の手前の位置24であっても、照度分布は液晶ライトバルブの画素面の配光分布にかなり似た図6に示すような照度分布が得られる。また、この位置24では隣接画素への光のまわり込みが少ない。したがって、位置24の面を見ると(または投射レンズで投影すると)、あたかも画素23が縮小されたかのような照度分布となる。
なお、符号24の位置は、ランプ等の点光源により作られた平行光の照明光を液晶ライトバルブ13に照射した場合に、レンズアレイ14で配光分布を照度分布に変換する理想的な位置と考えられるが、体積を持った光源により作られた擬似平行光(±数度〜10数度の光線を含む)で液晶ライトバルブを照射した場合は、それよりレンズアレイ側に最適位置があることをシミュレーションで確認した。
また、レンズアレイ14のレンズ形状が非球面で、かつ、近軸焦点距離が短くて(概ねアレイピッチの3倍以下の焦点距離で)レンズ周辺の屈折力がレンズ中心付近より弱い(すなわちレンズ傾斜角が小さい)場合には、レンズアレイの焦点付近で配光分布が照度分布に変換される。この場合、焦点位置25よりも画素ずらし素子側(図2で焦点位置25の面より右側)でも配光分布が照度分布に変換される。
したがって、レンズアレイや凹面ミラーアレイなどの面形状を工夫することにより、配光分布が照度分布に変換される位置を調整でき、画素を縮小する効果が得られ、また、偏光解消の低減も図ることができ、高コントラスト比の画像表示が可能になる。
以下、具体的な実施例に基いて本発明を詳細に説明する。
[実施例1]
図1は本発明の第1の実施例を説明するための表示装置の概略構成図である。この表示装置10は、光源としてのLED(発光ダイオード)11と、レンズ12と、空間光変調器としての透過型液晶素子(透過型液晶ライトバルブ)13と、レンズアレイ14と、画素ずらし素子15から構成されている。また、符号16は観測者を表わしている(観測者の目のみ図示している)。LED11から放射された光Lは、レンズ12の物体側焦点面にLED11の発光部を配置させるようにすることで、ほぼ平行光となる。また、この平行光の配光分布は図7に示すようになるが、レンズ12の直径(レンズ径)を制限することで、この平行光は図8に示すLED照度分布のほぼ均一な領域41のみを透過型液晶ライトバルブ13に入射させることができる。従って、レンズ12は均一照明光学系といえる。光源の照度が不均一な部分を利用しない本構成は光利用効率を犠牲にするが、表示装置の小型化、低コスト化に貢献することができる。
透過型液晶ライトバルブ13で作られた画像光は、液晶ライトバルブの画素ピッチと同じアレイピッチを有するレンズアレイ14に入射される。図2は液晶ライトバルブの近傍に配置したレンズアレイ14の動作について説明するための図であり、透過型液晶ライトバルブ13とレンズアレイ14の部分のみ拡大して図示している。液晶ライトバルブ13は2枚のガラス基板71,72に液晶層70が封止されている。図2では図示を省略しているが、ガラス基板71,72と液晶層70との間には透明電極や配向膜が配置されている。また、一般的には透過型液晶ライトバルブの両方のガラス基板71,72の外側には偏光板が配置される(図2では図示を省略)。ある画素73が明表示となったとき、画素73から放射される光のうち、代表的な三カ所からの光を図2に図示している。符号23aは画素の端(図2では画素の上側)からの光を表し、同様に、23bは画素の中央からの光を、また、23cは画素下側からの光を表している。液晶ライトバルブ13を物体面としレンズアレイ14のレンズ14aによって結像される面25よりレンズアレイ側の面24の照度分布は図7に非常に似た分布形状となる。これは、レンズ14aがフィールドレンズ(視野レンズ)の役割を果たしているためである。レンズアレイ14を液晶ライトバルブ13に近づけて配置しており、レンズ14aでの照度分布は図8の領域41のようにほぼ均一な分布であり、かつ、レンズ14aに入射する光の配光分布は図7とほぼ一致する。レンズ14aの像側焦点面(図2の面25)では、レンズ14a面の配光分布形状が照度分布に変換される。従って、面24の照度分布は図9の分布形状となる。レンズアレイ14のアレイピッチ内で図7と同様の分布形状となる照度分布(図9)が得られると、あたかも液晶ライトバルブ13の画素23が縮小されたことになる。なお、前述のように、非球面形状では像側焦点面(図2の面25)を含み、画素ずらし素子側でも配光分布を照度分布に変換される領域が存在する。
以上の説明のように、見かけ上、液晶ライトバルブ13の画素が小さくなる。次に、画素ずらし素子15で画素ピッチの半分の距離を光学シフトさせ、液晶ライトバルブの表示と画素ずらし素子の同期をとることによって、観測者16は液晶ライトバルブの2倍の解像度の画像を見ることができる。同様に、画素ずらし素子を水平方向と鉛直方向にも画素ピッチの半分の量を光学シフトすれば、液晶ライトバルブの4倍の解像度を表示することが可能になる。したがって、本実施例の構成によって、画像を形成する空間光変調器の整数倍の画素数を表示することが可能な表示装置を提供することができる。
なお、本実施例では光源をLED11としているが、これは表示装置の小型化のためには非常に有効である。しかし、LEDや半導体レーザのような固体光源以外にも、放電ランプなどを光源にすることも可能である。さらに、本実施例では空間光変調器として透過型液晶ライトバルブ13を使用している。この場合、レンズアレイ14には照明光が入らずに作像光のみ通過させることができる。これは、レンズアレイ自体の設計自由度を向上できる。例えば、レンズアレイを非球面化してアレイの周辺部のレンズパワー(レンズによる屈折力)をアレイ中心部より強くし、結果的に、照度分布形状をより一層圧縮させることが可能になる。
[実施例2]
次に空間光変調器として反射型液晶ライトバルブを用いた表示装置の実施例を示す。図10は本発明の第2の実施例を説明するための表示装置の概略構成図である。この表示装置30は、光源としてのLED(発光ダイオード)11と、レンズ12と、空間光変調器としての反射型液晶素子(反射型液晶ライトバルブ)31と、レンズアレイ32と、ビームスプリッタ33と、画素ずらし素子15から構成されている。
空間光変調器が反射型液晶ライトバルブの場合は、図10に示すように、ビームスプリッタ33を用いて照明光と画像光とを分離する。LED光源11からの放射光をレンズ12で平行光束化してビームスプリッタ33に入射する。このビームスプリッタ33はハーフミラーの働きを有するので、入射光の半分を透過し、残りを反射させる。平行光の半分の光量はビームスプリッタ33を透過し、レンズアレイ32越しに反射型液晶ライトバルブ31を照明する。このときレンズアレイ32がフィールドレンズの働きをすることでレンズアレイ32通過後には照度分布が図7の形状となる。この光のうちの半分がビームスプリッタ33で反射され、画素ずらし素子15で光学シフトを受けるので、観測者16は反射型液晶ライトバルブの整数倍の解像度表示を見ることができる。本実施例の構成では反射型液晶ライトバルブ31は無偏光に対して画素を明暗表示できるタイプ、例えばPDLC(ポリマー分散型液晶素子)が望ましい。また、偏光を利用するライトバルブの場合には偏光板が必要になる。
なお、ビームスプリッタの代わりに偏光ビームスプリッタを用いる構成も可能である(具体的な実施例については後述する)。この場合、反射型液晶ライトバルブ31には液晶の複屈折性または旋光性を利用した、TN(ツイストネマチック)液晶モードやSTN(スーパーツイストネマチック)液晶モードとECB液晶モードを利用することができる。
本実施例ではレンズアレイ32を反射型液晶ライトバルブ31の直前に配置している。しかし、レンズアレイ32を反射型液晶ライトバルブ31の構成備品の一つに組み込んで一体化しても良い。図示を省略するが、一般に反射型液晶ライトバルブは、透明基板と、反射画素電極を含むシリコンバックプレーン(下側基板)との間に液晶層が挟まれており、透明基板の液晶側の面には透明電極や配向膜が成膜されている。そこで、この透明基板をレンズアレイに置換えることにより、上記と同様の機能を持たせることができる。
また、レンズアレイ32を無くして、かつ、反射型液晶ライトバルブの透明基板はそのままにして、通常、平面形状である反射画素電極を凹面ミラー形状にすることによって、レンズアレイを用いた場合と同様の動作・効果を有することができる。すなわち、反射画素電極の反射面に凹面ミラーアレイを形成することにより、反射型液晶ライトバルブ自体に配光分布を照度分布に変換する機能を持たせることができる。なお、これらの具体的な実施例については後述する。
[実施例3]
次に空間光変調器として透過型液晶ライトバルブを用いた投射表示装置の実施例を示す。図11は本発明の第3の実施例を説明するための投射表示装置の概略構成図である。この投射表示装置60は、ランプ光源61と、照明光学系62,63と、透過型液晶ライトバルブ64と、レンズアレイ65と、画素ずらし素子66と、投射レンズ67から構成されており、スクリーン68に画像を投射して表示するものである。
ランプ光源61には回転放物面鏡付き超高圧水銀ランプ等を用いることができる。照明光学系として本実施例ではフライアイインテグレータを用いている。すなわち、一対のレンズアレイ62とコンデンサレンズ63でフライアイインテグレータを構成している。画像表示部は、透過型液晶ライトバルブ64で画像を形成し、画素ピッチとアレイピッチが等しいレンズアレイ65で透過型液晶ライトバルブ64の各画素の配光分布を照度分布に変換して画素を縮小する。そして、レンズアレイ95による縮小画素像は、画素ずらし素子66を経て投射レンズ67でスクリーン68に拡大投射され、スクリーン68上に画像が表示される。なお、透過型液晶ライトバルブ64とレンズアレイ65からなる画像表示部の構成は実施例1の表示装置と同様であり、画素の縮小は実施例1の説明で記述した通りなのでここでは説明を省略する。また、画素ずらし素子66の動作も前述の通りなので説明を省略する。
本実施例の構成によって、画像を形成する空間光変調器(透過型液晶ライトバルブ)の整数倍の画素数を表示することが可能な投射表示装置を提供することができる。
[実施例4]
次に空間光変調器として透過型液晶ライトバルブを用い、かつ中間像を形成させる高解像投射表示装置の実施例を示す。図12は本発明の第4の実施例を説明するための投射表示装置の概略構成図である。この高解像投射表示装置70は、ランプ光源61から透過型液晶ライトバルブ64までは実施例3と全く同じ構成である。液晶ライトバルブ64の後にはマクロレンズ71、レンズアレイ65、画素ずらし素子66、投射レンズ67が配置されている。
この投射表示装置70では、透過型液晶ライトバルブ64の画像はマクロレンズ71で一旦中間像として結像させる。このマクロレンズ71は物体側にも像側にもテレセントリックであることが望ましい。また、マクロレンズの倍率(横倍率)は特に制限されるものではない。
本実施例では、マクロレンズ71の像面の画素ピッチ(中間像の画素ピッチ)とレンズアレイピッチの等しいレンズアレイ65を像面直後に配置する。前述の実施例3では透過型液晶ライトバルブ64の直後にレンズアレイ65が配置されていたが、本実施例ではライトバルブを中間像に置換えただけである。従って、実施例3(または実施例1)と同様にレンズアレイ65を通過した光はランプの配光分布形状に似た照度分布形状となる。このため中間像の各画素が縮小されたように見える。この画像は画素ずらし素子66を経て投射レンズ67でスクリーンに拡大投射され、スクリーン68上に画像が表示される。
本実施例の構成によれば、画像を形成する空間光変調器(透過型液晶ライトバルブ)64の整数倍の画素数を表示することが可能な投射表示装置で、レンズアレイ65と画素ずらし素子66の設置自由度を高めることができる。また、本実施例では投射表示装置としたが、ランプ光源と照明光学系を実施例1と同様の固体光源(LED等)11とレンズ12に置き換え、投射レンズ67を外せば、観測者が画像を観察するタイプの高解像表示装置とすることができる。
[実施例5]
次に空間光変調器として反射型液晶ライトバルブを用いた表示装置の別の実施例を示す。図13は本発明の第5の実施例を説明するための表示装置の概略構成図である。この表示装置は、光源81と、レンズ82と、偏光板83a,83bと、レンズアレイ84と、空間光変調器85と、画素ずらし素子86で構成される。光源81としては、実施例1と同様にLED等の固体光源を用いることができるが、この他、可視域の光を放出する放電ランプを用いることができる。また、放電ランプに回転放物体の形状の反射鏡が付けばレンズ82は不要となる。レンズ82からの光を偏光板83aで直線偏光にする。偏光板83aを透過した光はレンズアレイ84を通過し、空間光変調器85に入射される。空間光変調器85としては反射型液晶素子(反射型液晶ライトバルブ)を用いることができ、例えばTN(ツイストネマチック)液晶素子を用いることができる。TN液晶素子は画素が配列されており、これらの画素に個別に電圧を印加して画素毎の偏光状態を制御する。レンズアレイ85の配列とピッチは、TN液晶素子の画素の配列とピッチと同じにする。
ここで、反射型液晶ライトバルブの各画素をレンズアレイ84によって見かけ上、画素形状を小さくする動作を図14を用いて説明する。反射型液晶ライトバルブ85は、透明基板91と、反射画素電極(図示せず)を含むシリコンバックプレーン(下側基板)92との間に液晶層90が挟まれており、透明基板91の液晶側の面には透明電極や配向膜(図示せず)が成膜されている。反射型液晶ライトバルブ85の近傍にはライトバルブの画素ピッチに対応するレンズアレイ84が配置される。また、反射型液晶ライトバルブ85は図示しない均一照明によって照度が均一化されている。ここで、図3のような配光分布を有する画素からの光をレンズアレイ84をへて絞る。レンズアレイ84は液晶画素に近接されるため、フィールドレンズに近いは働きをもつ。このため、一つの画素93の配光分布形状がレンズ焦点位置95付近では図6に示すような照度分布(図3で横軸を位置xに、縦軸を輝度I(x)にそれぞれ置き換えた分布形状)となる。しかし、面95では照度分布の裾野付近(93a,93c)が広がり、反射型液晶ライトバルブ85の隣接画素へ光がまわり込むため高精細な画像とはならない。ただし、焦点付近からレンズアレイ側の手前の位置94であっても、照度分布は反射型液晶ライトバルブの画素面の配光分布にかなり似た図6に示すような照度分布が得られる。また、この位置94では隣接画素への光のまわり込みが少ない。したがって、位置94の面を見ると、あたかも画素93が縮小されたかのような照度分布となる。
なお、符号94の位置は、ランプ等の点光源により作られた平行光の照明光をライトバルブ85に照射した場合に、レンズアレイ84で配光分布を照度分布に変換する理想的な位置と考えられるが、体積を持った光源により作られた擬似平行光(±数度〜10数度の光線を含む)でライトバルブを照射した場合は、それよりレンズアレイ側に最適位置がある。
また、レンズアレイ84のレンズ形状が非球面で、かつ、近軸焦点距離が短くて(概ねアレイピッチの3倍以下の焦点距離で)レンズ周辺の屈折力がレンズ中心付近より弱い(すなわちレンズ傾斜角が小さい)場合には、レンズアレイの焦点付近で配光分布が照度分布に変換される。この場合、焦点位置95よりも画素ずらし素子側(図14で焦点位置95の面より右側)でも配光分布が照度分布に変換される。
したがって、レンズアレイ84のレンズ面形状を工夫することにより、配光分布が照度分布に変換される位置を調整でき、画素を縮小する効果が得られ、また、偏光解消の低減も図ることができ、高コントラスト比の画像表示が可能になる。
次に本発明に係る表示装置に用いられるレンズアレイ84のレンズ面形状の一例について説明する。図15はレンズアレイ84の一つのレンズ84aを拡大して示す図であり、(a)はレンズの断面図、(b)はレンズを正面から見た図である。また、図15(a)はレンズ84aのアレイピッチ方向(正方形のアレイのアレイ配列方向)と対角方向の断面を各々の軸を重ねて図示している。アレイ配列方向の断面163ではレンズ面形状は球面の断面と一致している。すなわち断面163のレンズ面形状ではコーニック定数が0である。また、対角方向の断面162の近軸曲率半径は断面163と等しいが、コーニック定数が−10であり、アレイ配列方向のコーニック定数より小さい値を選んでいる。
ここで、上記のコーニック定数について説明する。
本実施例のコーニック定数はレンズ84aを正面から見て図16(a)に示す方位角θによっており、同図(b)に示すレンズ面のサグ量zは下記の式(1) で表すことができる。なお、この場合、コーニック定数kはθの関数となっている。
z=cr2/{1+√[1-(1+k(θ)c22)]} (1)
c=1/R (Rはレンズの曲率半径)
k(θ):コーニック定数
コーニック定数k(θ)としては、例えば図17に示すような周期関数を選ぶことができる。図17は、90°周期でkが0〜−10の間を増減するような関数k(θ)である。レンズの対角方向、すなわちθ=45°,135°,・・・でkが小さい値となるため、コントラストの低下を低減できる。なお、必ずしも周期関数は90°周期の必然は無く、また、増減は方位角θに対して線形性を保つ必要も無い。図17のkはほんの一例であることは言うまでも無い。
図15のようなレンズ形状によって、レンズアレイを正面から見たとき、図15(b)のようにハッチングをかけた領域(円の外側の領域)が、特に、球面形状から大きく異なり、斜面の傾斜が球面より緩やかになっている。すなわち、レンズの中心からの距離に対するレンズ面の傾斜が、レンズアレイ配列方向に比べて対角方向が緩やかになっている。そして、レンズアレイの対角方向のコーニック定数が、レンズアレイ配列方向のコーニック定数よりも小さい値となっている。
このような面形状にすることによってレンズ面による偏光解消を低減させることが可能になる。また、各画素の配光分布を照度分布に変換する作用は、球面形状の割合を多めにしておくことで可能となる。
なお、図15のレンズ形状は、金型を使ったモールド成形では金型の凹面アレイ形状を対角方向とアレイ配列方向で曲率半径を変えるように金型を作製することで、所望のレンズアレイを作ることができる。
以上の説明のように、本実施例の表示装置では、レンズアレイ84により、見かけ上、反射型液晶ライトバルブ85の画素が小さくなるが、次に図13の画素ずらし素子86について説明する。画素ずらし素子86は空間光変調器からの画像光を所定の距離だけ光路をシフトさせる機能を有する。例えば、画素ずらし素子として透光性平行平板をピエゾ素子で所定の角度だけあおる方式が利用できる。そして、画素ピッチの半分の距離を光学シフトさせ、空間光変調器85と画素ずらし素子86の同期をとることによって、観測者87は空間光変調器85の2倍の解像度画像を見ることができる。同様に、画素ずらし素子86を水平方向と鉛直方向にも画素ピッチの半分の量を光学シフトすれば、空間光変調器85の4倍の解像度を表示することが可能になる。
また、前述の通り、レンズ対角方向のコーニック定数が小さい値を選ぶため、完全な球面形状のレンズに比べて対角方向のレンズ面傾斜が緩やかになる。このため、前述のように偏光解消が低減できる。したがって、本実施例の構成によって、画像を形成する空間光変調器85の整数倍の画素数を表示することができ、かつ、レンズアレイ84による偏光解消を低減することができ、コントラスト比の高い表示装置を提供することができる。
なお、図13に示す構成の表示装置では、光源をLED(発光ダイオード)のような固体光源に置き換えることも十分可能である。LEDの場合にはコリメートレンズ82を用いると光利用効率の点で良い。また、光源の種類にかかわらず、空間光変調器はツイストネマチック(TN)以外にも、スーパーツイストネマチック(STN)、ECBモードなどを用いても良い。また、画素ずらし素子86としては、液晶を用いた光偏向素子なども利用できる。
[実施例6]
実施例5で説明したレンズアレイのレンズ面形状は、実施例1〜4の表示装置や投射表示装置にも同様に適用できるが、これらの表示装置や投射表示装置に適用されるレンズアレイのレンズ面形状としては、図15に示した形状の他、図18に示すような形状のものであっても良い。図18にはレンズアレイの一つのレンズを図示している。このレンズは、水平方向のシリンダーレンズと鉛直方向のシリンダーレンズの交わりで表される立体の表面形状である。面181a,181bが水平方向シリンダーレンズ面で、面182a,182bが鉛直方向シリンダーレンズ面である。図18の面形状では、アレイ中心からの距離に対するレンズ面の傾斜が、前記レンズアレイ配列方向に比べて、対角方向が緩やかであるため、上述と同様の効果が得られる。なお、レンズ面形状は、シリンダーレンズ面に代えて蒲鉾状としてもよい。
ここで、図18のレンズ面形状のレンズアレイを用いた光学系のコントラスト比と、球面レンズアレイを用いた光学系のコントラスト比の差異を以下の方法でシミュレーションした。
[方法]
・使用したシミュレータ;
3次元光学CAD・照明解析プログラムLight Tools(ライトツールズ)、オプティカルリサーチアソシエーツ社製、バージョン4.20。
・計算モデル;
図19にパーソナルコンピュータの画面上に表示した計算モデルとなる光学系を示す。
光源;一般的な放電ランプの配向分布をモデル上の光源に設定。
偏光分離素子;偏光ビームスプリッタ、入射面と、出射面には理想偏光板(透過軸に平行な偏光は100%透過、垂直な偏光は透過率0%)を配置、偏光ビームスプリッタとレンズアレイの間には4分の1波長板を配置した。
計算波長は550nmのみである。
偏光光線追跡モードで、光線総本数は50000本とした。
4分の1波長板の遅相軸を図19の面内に平行な場合を暗表示、紙面から45°傾けた場合を明状態とし、両者のレシーバ照度の比をコントラスト比と定義する。
・計算結果
レンズアレイが球面形状の場合:C/R=316
レンズアレイが図18のレンズ面形状の場合:C/R=493
以上のシミュレーションの結果、球面レンズアレイを用いた光学系のコントラスト比Aと図18のレンズ面形状のレンズアレイを用いた光学系のコントラスト比Bとの関係は、
A:B=1:1.6
となり、コントラスト比は約6割向上した。
[実施例7]
次に空間光変調器として反射型液晶ライトバルブを用いた投射表示装置の実施例を示す。図20は本発明の第7の実施例を説明するための投射表示装置の概略構成図である。この投射表示装置100は、ランプ光源101、フライアイレンズ102とコンデンサレンズ103からなる照明光学系、偏光ビームスプリッタ104、レンズアレイ105、空間光変調器としての反射型液晶素子(反射型液晶ライトバルブ)106、画素ずらし素子107、投射レンズ108で構成されており、スクリーン109に画像を拡大投射して表示する。ランプ光源101からの放射光は照明光学系102,103によって均一照度化される。この照明光のうち図面に平行な偏光成分はレンズアレイ側に透過される。レンズアレイ105と反射型液晶ライトバルブ(空間光変調器)106の構成と動作は前述の実施例5で述べた通りなのでここでは説明を省略する。見かけ上、縮小された画素は明状態なら偏光状態が90°回転され偏光ビームスプリッタ104で画素ずらし素子107側に反射される。画素ずらし素子107で所定の距離だけ高速に光路が切り替えられ、これらの光は投射レンズ108を経てスクリーン109に拡大投射される。
図20に示す投射表示装置のように偏光ビームスプリッタ104を用いる構成では、偏光ビームスプリッタ104に入射する照明光の光軸と画像光の光軸を含む面、または偏光ビームスプリッタ104に入射する照明光の光軸と偏光ビームスプリッタ104で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、
(1)レンズアレイ105の各レンズの中心からの距離に対するレンズ面の傾きは、面Aとのなす角が45度方向または135度方向の傾きが、面Aに平行な方向または垂直な方向の傾きに比べて緩やかにする、
(2)レンズアレイ105の各レンズのレンズ形状は、面Aとのなす角が45度の断面方向または135度の断面方向のコーニック定数を、面Aに平行な断面方向または垂直な断面方向のコーニック定数に比べて小さい値にする、
(3)レンズアレイの各レンズのレンズ形状は、面Aとのなす角が45度の断面方向または135度の断面方向の曲率半径を、面Aに平行な断面方向または垂直な断面方向の曲率半径に比べて大きい値にする、
の何れかの構成とすることにより、偏光解消が低減され、高コントラスト比の表示が可能になる。
具体的には、レンズアレイ105のレンズ面形状を前述の図15の形状(あるいは図18の形状)にすると良く、さらには、レンズアレイ105のアレイ配列方向の曲率半径に比べてアレイ対角方向の曲率半径を大きくした非球面形状とすると良い。このような形状にすると、特に、レンズの4隅の傾斜角が緩やかとなり、この面を通過する光の偏光回転量〈偏光解消量〉は小さくなる。従って、黒表示の明るさ(漏れ光)が減少し、スクリーン109上でのコントラスト比を向上することができる。
[実施例8]
図21は実施例7の変形例を説明するための図であり、レンズアレイ付き反射型液晶素子の概略断面図である。空間光変調器としての反射型液晶表示素子(反射型液晶ライトバルブ)110は、実施例7のレンズアレイ105と反射型液晶ライトバルブ106を一つの素子に置き換えたものである。液晶層113はレンズアレイ基板111とシリコンバックプレーン(下側基板)112に挟持される。シリコンバックプレーン112には反射画素電極(画素反射ミラー)116や画素の明暗表示を駆動させるための駆動素子(図示せず)が半導体プロセスで作製されている。画素反射ミラー116の上には平坦化層(図示せず)や配向膜115が積層されている。一方、レンズアレイ基板111の液晶層側の面には透明電極114と配向膜115が設置されている。レンズアレイのアレイピッチは画素電極のピッチと対応している。レンズアレイは液晶層113に近接されているが、動作は実施例5で述べた通りであるため、ここでは説明を省略する。
本実施例の構成によれば、反射型液晶ライトバルブ〈空間光変調器〉110のカバーガラスをレンズアレイ基板111で置き換えることができるので、装置を小型にできる。また、反射型液晶ライトバルブとレンズアレイを個別に組みつける場合にはレンズアレイを6軸(3軸位置調整と3軸回転またはあおり調整)で行う必要があるが、レンズアレイ付き反射型液晶ライトバルブを精度の高い貼り合せ装置で実装しておけば、投射表示装置の組付けは非常に簡単になる。
[実施例9]
次に空間光変調器として反射型液晶ライトバルブを用い、各画素の配光分布を照度分布に変換する光学素子として凹面ミラーアレイを用いた投射表示装置の実施例を示す。
本実施例では、図20に示された投射表示装置のレンズアレイ105と反射型液晶ライトバルブ106を図22に示す空間光変調器120で置き換えるものである。図22に示す空間光変調器120は、凹面ミラーアレイを一体化した反射型液晶ライトバルブであり、液晶層113がカバーガラス(透光性基板)121とシリコンバックプレーン(下側基板)112に挟持されている。シリコンバックプレーン112には凹面ミラーアレイ122や画素の明暗表示を駆動させるための駆動素子(図示せず)が半導体プロセスで作製されている。凹面ミラーアレイ122の上には平坦化層(図示せず)や配向膜115が積層されている。一方、カバーガラス121の液晶層側の面には透明電極114と配向膜115が設置されている。凹面ミラーアレイ122は反射画素電極を兼ねている。この反射型液晶ライトバルブ120は、レンズアレイに代わり凹面ミラーアレイが空間光変調器の各画素の配光分布を照度分布に変換する働きを有する。
凹面ミラーアレイ122の各ミラーの形状を図23に示す。図23(b)は凹面ミラーアレイの一つのミラーの正面図である。また、図23(a)はアレイ方向の断面131の断面図と対角方向の断面132の断面図を重ねて図示したものである。矩形配列された凹面ミラーアレイ122において、各ミラーの面形状は、アレイ対角方向の断面132の曲率半径がアレイ配列方向の断面131の曲率半径よりも長く作製されている。このため、特に、ミラー面の4隅の傾斜角は完全な球面形状よりも緩やかになっている。この形状によって、暗表示にミラーで反射される直前、直後の偏光状態は平面ミラーでのそれらに近い状態となる。このため、暗状態の画素からの光は偏光ビームスプリッタでほぼ反射されることなく光源側に戻る。このため、スクリーン上で黒表示画素が暗くなり、高コントラスト比の表示が可能になる。なお、図示しないが、アレイ対角方向のコーニック定数がアレイ配列方向のコーニック定数より小さい値となるミラー形状でも良い。
すなわち、図20に示す投射表示装置のように偏光ビームスプリッタ104を用いる構成で、図22に示す凹面ミラーアレイ付き空間光変調器120を用いる場合には、偏光ビームスプリッタ104に入射する照明光の光軸と画像光の光軸を含む面、または偏光ビームスプリッタ104に入射する照明光の光軸と偏光ビームスプリッタ104で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、
(1)凹面ミラーアレイ122の各ミラーの中心からの距離に対するミラー面の傾きは、面Aとのなす角が45度方向または135度方向の傾きが、面Aに平行な方向または垂直な方向の傾きに比べて緩やかにする、
(2)凹面ミラーアレイ122の各ミラーのミラー形状は、面Aとのなす角が45度の断面方向または135度の断面方向のコーニック定数を、面Aに平行な断面方向または垂直な断面方向のコーニック定数に比べて小さい値にする、
(3)凹面ミラーアレイ122の各ミラーのミラー形状は、面Aとのなす角が45度の断面方向または135度の断面方向の曲率半径を、面Aに平行な断面方向または垂直な断面方向の曲率半径に比べて大きい値にする、
の何れかの構成とすることにより、偏光解消が低減され、高コントラスト比の表示が可能になる。
[実施例10]
次に空間光変調器として反射型液晶ライトバルブを用い、偏光ビームスプリッタを用いた表示装置の実施例を示す。図24は本発明の第10の実施例を説明するための表示装置の概略構成図である。この表示装置は、光源としてのLED141と、レンズ142と、偏光分離手段である偏光ビームスプリッタ143とレンズアレイ144と、空間光変調器としての反射型液晶ライトバルブ145と画素ずらし素子146で構成されている。LED141から放射された光はレンズ142で平行光となり、偏光ビームスプリッタ143でp偏光(図24の紙面に平行な偏光)が透過し、レンズアレイ144を通過して反射型液晶ライトバルブ145に入射する。反射型液晶ライトバルブ145で変調を受けた画像光はs偏光成分が発生し、この偏光は偏光ビームスプリッタ143で反射されて画素ずらし素子146側に反射される。そして、観測者147は、画素ずらし素子146で光学的に画素ずらしされた画像を観測する。ここで、レンズアレイ144と反射型液晶ライトバルブ145の構成、動作および画素ずらし素子146の動作は前述の実施例5等で説明したものと同様なのでここでは説明を省略する。
本実施例の表示装置では、レンズアレイ144として図15(または図18)に示すレンズ面形状のレンズアレイを用いることができる。このレンズ形状については実施例5(または実施例6)で説明した通りであるため説明を省略する。このようなレンズ形状とすることによって、実施例5で記述したように見かけ上、画素を小さくすることが可能となる。また、レンズアレイによる偏光解消や、特にレンズの4隅の偏光解消を低減する効果も前述の通りで有り、高コントラスト比の画像が得られる。
また、図24において、レンズアレイ144と反射型液晶ライトバルブ145に代えて、図21に示したレンズアレイ付き反射型液晶ライトバルブ110を用いてもよく、さらには、図22に示す凹面ミラーアレイ付き反射型液晶ライトバルブ120を用いることもできる。なお、これらを用いたときの構成、動作および作用は前述した通りである。
以上説明したように、本発明によれば、画像を形成する空間光変調器の整数倍の画素数を表示でき、かつ、表示隣接画素間の重なりを低減することができ、さらには、コントラスト比の高い画像表示を行うことができる表示装置や投射表示装置を提供することができる。したがって、この表示装置や投射表示装置を用いることにより、高精細で高コントラストなヘッドマウントディスプレイやプロジェクタなどを実現することができる。また、本発明に係るレンズアレイ、凹面ミラーアレイは、高精細で高コントラストなヘッドマウントディスプレイやプロジェクタなどを実現するための光学素子として好適に利用することができる。
本発明の第1の実施例を説明するための表示装置の概略構成図である。 レンズアレイの動作について説明するための図であり、透過型液晶ライトバルブとレンズアレイの部分のみ拡大して示す概略断面図である。 ランプの配光分布を示す図である。 回転放物面鏡付きランプの照度分布と、回転楕円鏡付きランプの照度分布を示す図である。 レンズによってコントラスト比が低下する現象を説明するための説明図である。 ランプ光を用いた場合のレンズアレイによる縮小画素の照度分布を示す図である。 LEDの配光分布を示す図である。 LEDの照度分布を示す図である。 LED光を用いた場合のレンズアレイによる縮小画素の照度分布を示す図である。 本発明の第2の実施例を説明するための表示装置の概略構成図である。 本発明の第3の実施例を説明するための投射表示装置の概略構成図である。 本発明の第4の実施例を説明するための投射表示装置の概略構成図である。 本発明の第5の実施例を説明するための表示装置の概略構成図である。 レンズアレイの動作について説明するための図であり、反射型液晶ライトバルブとレンズアレイの部分のみ拡大して示す概略断面図である。 本発明に係るレンズアレイのレンズ面形状の一例を示す図である。 レンズ面形状を設定する際に用いられるコーニック定数を説明するための図である。 コーニック定数に用いられる関数の一例を示す図である。 本発明に係るレンズアレイのレンズ面形状の別の例を示す図である。 シミュレーションを行う際にパーソナルコンピュータの画面上で計算モデルとなる光学系の一例を示す図である。 本発明の第7の実施例を説明するための投射表示装置の概略構成図である。 本発明の第8の実施例を説明するための図であり、レンズアレイ付き反射型液晶素子の概略断面図である。 本発明の第9の実施例を説明するための図であり、凹面ミラーアレイ付き反射型液晶素子の概略断面図である。 本発明に係る凹面ミラーアレイのミラー面形状の一例を示す図である。 本発明の第10の実施例を説明するための表示装置の概略構成図である。
符号の説明
10,30,80,140:表示装置
11,81,141:LED光源
12,82,142:レンズ
13,64:透過型液晶素子(空間光変調器)
14,32,65,84,105,144:レンズアレイ(光学素子)
15,66,86,107,146:画素ずらし素子
16,87,147:観測者
31,85,106,145:反射型液晶素子(空間光変調器)
60,70,100:投射表示装置
61,101:ランプ光源
62,92:レンズアレイ(照明光学系)
63,93:コンデンサレンズ(照明光学系)
67,108:投射レンズ
68,109:スクリーン
71:マクロレンズ
104,143:偏光ビームスプリッタ
110:レンズアレイ付き反射型液晶素子(空間光変調器)
120:凹面ミラーアレイ付き反射型液晶素子(空間光変調器)
122:凹面ミラーアレイ

Claims (4)

  1. 放射光を放出する光源と、該光源から放出された光を均一照明させる照明手段と、アレイ状に配列された画素で画像を形成する空間光変調器と、前記空間光変調器の画素配列に応じた配列の光学素子と、前記空間光変調器で形成され前記光学素子通過した画像光の光路前記空間光変調器と同期して所定の量だけ光学的にシフトする制御を行う画素ずらし手段と、からなる表示装置であって、
    前記光学素子は前記空間光変調器の各画素の配光分布を照度分布に変換するものであり、前記空間光変調器と同期して前記画素ずらし手段によって前記照度分布の光の光路を光学的にシフトさせることによって前記空間光変調器の整数倍の解像度の画像表示する表示装置において、
    前記空間光変調器は、反射型の空間光変調器であり、
    前記光学素子は、画素配列に応じた配列のレンズからなり各画素の配光分布を照度分布に変換するレンズアレイであり、該レンズアレイは前記空間光変調器の直前に配置されており、
    前記照明手段から前記空間光変調器に向かう照明光と、前記空間光変調器から前記レンズアレイを通過して前記画素ずらし手段に向かう画像光とを分離するための偏光分離手段を有し、
    前記偏光分離手段に入射する前記照明光の光軸と前記偏光分離手段で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、
    前記レンズアレイの各レンズの中心からの距離に対するレンズ面の傾きは、前記面Aとのなす角が45度方向または135度方向の傾きが、前記面Aに平行な方向または垂直な方向の傾きに比べて緩やかであることを特徴とする表示装置。
  2. 放射光を放出する光源と、該光源から放出された光を均一照明させる照明手段と、アレイ状に配列された画素で画像を形成する空間光変調器と、前記空間光変調器の画素配列に応じた配列の光学素子と、前記空間光変調器で形成され前記光学素子通過した画像光の光路前記空間光変調器と同期して所定の量だけ光学的にシフトする制御を行う画素ずらし手段と、からなる表示装置であって、
    前記光学素子は前記空間光変調器の各画素の配光分布を照度分布に変換するものであり、前記空間光変調器と同期して前記画素ずらし手段によって前記照度分布の光の光路を光学的にシフトさせることによって前記空間光変調器の整数倍の解像度の画像表示する表示装置において、
    前記空間光変調器は、反射型の空間光変調器であり、
    前記光学素子は、画素配列に応じた配列のレンズからなり各画素の配光分布を照度分布に変換するレンズアレイであり、該レンズアレイは前記空間光変調器の直前に配置されており、
    前記照明手段から前記空間光変調器に向かう照明光と、前記空間光変調器から前記レンズアレイを通過して前記画素ずらし手段に向かう画像光とを分離するための偏光分離手段を有し、
    前記偏光分離手段に入射する前記照明光の光軸と前記偏光分離手段で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、
    前記レンズアレイの各レンズのレンズ形状は、前記面Aとのなす角が45度の断面方向または135度の断面方向のコーニック定数が、前記面Aに平行な断面方向または垂直な断面方向のコーニック定数に比べて小さい値であることを特徴とする表示装置。
  3. 放射光を放出する光源と、該光源から放出された光を均一照明させる照明手段と、アレイ状に配列された画素で画像を形成する空間光変調器と、前記空間光変調器の画素配列に応じた配列の光学素子と、前記空間光変調器で形成され前記光学素子通過した画像光の光路前記空間光変調器と同期して所定の量だけ光学的にシフトする制御を行う画素ずらし手段と、からなる表示装置であって、
    前記光学素子は前記空間光変調器の各画素の配光分布を照度分布に変換するものであり、前記空間光変調器と同期して前記画素ずらし手段によって前記照度分布の光の光路を光学的にシフトさせることによって前記空間光変調器の整数倍の解像度の画像表示する表示装置において、
    前記空間光変調器は、反射型の空間光変調器であり、
    前記光学素子は、画素配列に応じた配列のレンズからなり各画素の配光分布を照度分布に変換するレンズアレイであり、該レンズアレイは前記空間光変調器の直前に配置されており、
    前記照明手段から前記空間光変調器に向かう照明光と、前記空間光変調器から前記レンズアレイを通過して前記画素ずらし手段に向かう画像光とを分離するための偏光分離手段を有し、
    前記偏光分離手段に入射する前記照明光の光軸と前記偏光分離手段で光路を変えられた画像光の光軸とを含む面、を面Aとしたとき、
    前記レンズアレイの各レンズのレンズ形状は、前記面Aとのなす角が45度の断面方向または135度の断面方向の曲率半径が、前記面Aに平行な断面方向または垂直な断面方向の曲率半径に比べて大きい値であることを特徴とする表示装置。
  4. 表示手段からの画像光を投射手段によって被投射面に投射して画像表示する投射表示装置において、
    前記表示手段として請求項1〜3の何れか一つに記載の表示装置を備え、該表示装置の画素ずらし手段の後に前記投射手段を配備したことを特徴とする投射表示装置。
JP2004033440A 2004-02-10 2004-02-10 表示装置及び投射表示装置 Expired - Fee Related JP4598409B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004033440A JP4598409B2 (ja) 2004-02-10 2004-02-10 表示装置及び投射表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033440A JP4598409B2 (ja) 2004-02-10 2004-02-10 表示装置及び投射表示装置

Publications (2)

Publication Number Publication Date
JP2005227334A JP2005227334A (ja) 2005-08-25
JP4598409B2 true JP4598409B2 (ja) 2010-12-15

Family

ID=35002124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033440A Expired - Fee Related JP4598409B2 (ja) 2004-02-10 2004-02-10 表示装置及び投射表示装置

Country Status (1)

Country Link
JP (1) JP4598409B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9176536B2 (en) 2011-09-30 2015-11-03 Apple, Inc. Wireless display for electronic devices
CN103502849A (zh) 2012-01-13 2014-01-08 Lg化学株式会社 微透镜阵列片和包括该微透镜阵列片的背光单元
US9810942B2 (en) 2012-06-15 2017-11-07 Apple Inc. Quantum dot-enhanced display having dichroic filter
JP6484799B2 (ja) 2014-02-04 2019-03-20 パナソニックIpマネジメント株式会社 投写型画像表示装置および調整方法
JP6492283B2 (ja) 2014-03-17 2019-04-03 パナソニックIpマネジメント株式会社 投写型映像表示装置
CN108107572B (zh) * 2016-11-25 2020-07-14 中强光电股份有限公司 近眼显示装置
EP4123358A4 (en) * 2020-03-19 2023-04-26 BOE Technology Group Co., Ltd. DISPLAY DEVICE AND ASSOCIATED DISPLAY METHOD
WO2024075127A2 (en) * 2022-10-06 2024-04-11 Lumus Ltd. Beam-spreading arrangements for reflective-slm displays

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047115A (ja) * 1998-07-28 2000-02-18 Nikon Corp フライアイインテグレータ,それを用いた照明装置並びに投射型表示装置
JP2001051348A (ja) * 1999-08-16 2001-02-23 Sony Corp 照明光学装置と映像投射装置
JP2002139792A (ja) * 2000-10-30 2002-05-17 Ricoh Co Ltd 画像表示装置
JP2002174852A (ja) * 2000-08-30 2002-06-21 Ricoh Co Ltd 画像表示装置
JP2003091026A (ja) * 2001-09-18 2003-03-28 Ricoh Co Ltd 光偏向デバイス、該光偏向デバイスを用いた画像表示装置、撮像装置、及び光スイッチング装置
JP2003098595A (ja) * 2001-09-21 2003-04-03 Ricoh Co Ltd 画像表示装置及び画素像縮小方法及び画素像縮小光学構造
JP2003161962A (ja) * 2001-11-28 2003-06-06 Sharp Corp 画像シフト素子および画像表示装置
JP2003248189A (ja) * 2002-02-25 2003-09-05 Ricoh Co Ltd 画像表示装置
JP2003259255A (ja) * 2002-02-26 2003-09-12 Ricoh Co Ltd 投射画像表示装置
JP2003262893A (ja) * 2002-03-11 2003-09-19 Ricoh Co Ltd 光路偏向装置及び画像表示装置
JP2004021209A (ja) * 2002-06-20 2004-01-22 Seiko Epson Corp マイクロレンズアレイ、液晶パネル、投射型表示装置及びマイクロレンズアレイの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186780A (ja) * 1994-12-28 1996-07-16 Sony Corp 光学装置
JPH1055026A (ja) * 1996-08-12 1998-02-24 Fuji Xerox Co Ltd 投射型カラー表示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047115A (ja) * 1998-07-28 2000-02-18 Nikon Corp フライアイインテグレータ,それを用いた照明装置並びに投射型表示装置
JP2001051348A (ja) * 1999-08-16 2001-02-23 Sony Corp 照明光学装置と映像投射装置
JP2002174852A (ja) * 2000-08-30 2002-06-21 Ricoh Co Ltd 画像表示装置
JP2002139792A (ja) * 2000-10-30 2002-05-17 Ricoh Co Ltd 画像表示装置
JP2003091026A (ja) * 2001-09-18 2003-03-28 Ricoh Co Ltd 光偏向デバイス、該光偏向デバイスを用いた画像表示装置、撮像装置、及び光スイッチング装置
JP2003098595A (ja) * 2001-09-21 2003-04-03 Ricoh Co Ltd 画像表示装置及び画素像縮小方法及び画素像縮小光学構造
JP2003161962A (ja) * 2001-11-28 2003-06-06 Sharp Corp 画像シフト素子および画像表示装置
JP2003248189A (ja) * 2002-02-25 2003-09-05 Ricoh Co Ltd 画像表示装置
JP2003259255A (ja) * 2002-02-26 2003-09-12 Ricoh Co Ltd 投射画像表示装置
JP2003262893A (ja) * 2002-03-11 2003-09-19 Ricoh Co Ltd 光路偏向装置及び画像表示装置
JP2004021209A (ja) * 2002-06-20 2004-01-22 Seiko Epson Corp マイクロレンズアレイ、液晶パネル、投射型表示装置及びマイクロレンズアレイの製造方法

Also Published As

Publication number Publication date
JP2005227334A (ja) 2005-08-25

Similar Documents

Publication Publication Date Title
JP4301304B2 (ja) 画像表示装置
JP4462288B2 (ja) 映像表示装置及びそれを適用した3次元映像表示装置
JP4731938B2 (ja) 画像表示装置・投射光学系
CN1963659B (zh) 图像显示装置及投影机
JP2008209811A (ja) 表示装置及び投写型照明装置
JP2004163817A (ja) プロジェクタ
JP6007757B2 (ja) プロジェクター
JP5503841B2 (ja) 液晶表示装置、並びに、かかる液晶表示装置を利用した電子黒板装置
JP4966801B2 (ja) 映像表示装置
JP4598409B2 (ja) 表示装置及び投射表示装置
JP2010210985A (ja) プロジェクター
JP2003248181A (ja) 反射型空間光変調装置
US8567956B2 (en) Projector
JP2006010868A (ja) マイクロレンズアレイ、液晶表示装置、投射型表示装置
JP2003098595A (ja) 画像表示装置及び画素像縮小方法及び画素像縮小光学構造
JP3337022B2 (ja) プロジェクタ
US7161740B2 (en) Projector
JP2005070632A (ja) 空間光変調装置及びプロジェクタ
JP2015145934A (ja) プロジェクター
JP5695771B2 (ja) 液晶表示装置及びこれを利用した電子黒板装置
JP2013008062A (ja) 表示装置及び投写型照明装置
JP2005181607A (ja) 空間光変調装置及びプロジェクタ
JP4272446B2 (ja) 投射表示装置
JP4653416B2 (ja) 画像表示装置
JP4568533B2 (ja) 背面投射型画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees