[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4595568B2 - Double roof structure - Google Patents

Double roof structure Download PDF

Info

Publication number
JP4595568B2
JP4595568B2 JP2005025180A JP2005025180A JP4595568B2 JP 4595568 B2 JP4595568 B2 JP 4595568B2 JP 2005025180 A JP2005025180 A JP 2005025180A JP 2005025180 A JP2005025180 A JP 2005025180A JP 4595568 B2 JP4595568 B2 JP 4595568B2
Authority
JP
Japan
Prior art keywords
ventilation layer
facing
long wavelength
heat
wavelength emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005025180A
Other languages
Japanese (ja)
Other versions
JP2005273448A (en
Inventor
義仁 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005025180A priority Critical patent/JP4595568B2/en
Publication of JP2005273448A publication Critical patent/JP2005273448A/en
Application granted granted Critical
Publication of JP4595568B2 publication Critical patent/JP4595568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Description

本発明は、建築物の屋根構造に関し、屋根断熱通気工法の断熱特性を向上させる二重屋根構造に関する。     The present invention relates to a roof structure of a building, and relates to a double roof structure that improves the heat insulation characteristics of a roof heat insulation ventilation method.

建築物の外装などを断熱構造化することは、快適な屋内環境の形成と省エネルギー化に有効なため、断熱構造に関して種々の技術が提案されている。そのなかで、屋根からの入熱制御は、夏期において最も重要な課題の一つである。     Since it is effective for forming a comfortable indoor environment and saving energy to make the exterior of a building a heat insulating structure, various techniques have been proposed for the heat insulating structure. Among them, heat input control from the roof is one of the most important issues in the summer.

屋根面に入射する日射熱の屋内への貫流を防止する工法を大別すると屋根断熱通気工法と断熱二重折板屋根構造がある。     Broadly speaking, there are a roof insulation ventilation method and a heat insulation double folded plate roof structure to prevent the solar heat incident on the roof surface from flowing into the room.

非特許文献1は、屋根断熱通気工法に関し、野地板上に断熱材を敷設し、その上部に通気層を設けて屋根材を葺く工法について解説されている。通気層は日射により高温となる屋根材の熱を棟上部に設けた換気孔によって排出する機能を有し、屋内への日射熱を有効に遮断する。通気層の作用としては、以下の2点があげられる。
(1)通気層内の空気は上葺き材からの熱伝達により加熱されると、浮力による換気駆動力が作用し、棟上部から外部に排気されるため、屋内への貫流熱量が減少する。
(2)通気層によって、日射によって熱せられる上葺き材と下部構造が分離されるので、熱伝導により直接日射熱が下部構造に貫流することが抑制される。
Non-Patent Document 1 relates to a roof heat insulation ventilation method, which describes a method of laying a heat insulating material on a field board and providing a ventilation layer on the top to spread the roof material. The ventilation layer has a function of exhausting the heat of the roof material, which becomes high due to solar radiation, through a ventilation hole provided in the upper part of the building, and effectively blocks the solar radiation indoors. The following two points can be given as the action of the ventilation layer.
(1) When the air in the ventilation layer is heated by heat transfer from the upper covering material, a ventilation driving force due to buoyancy acts and the air is exhausted from the upper part of the building to the outside, so that the amount of heat flowing through indoors is reduced.
(2) Since the upper material to be heated by solar radiation and the lower structure are separated by the ventilation layer, it is possible to suppress direct solar heat from flowing through the lower structure by heat conduction.

特許文献1は、断熱二重折板屋根に関し、金属屋根材を二重に葺き、その間隙部に断熱材を充填し日射熱の屋内への貫流を防止する構造において、通常ヒートブリッジとなる金属屋根材の上側折板と下側折板の連結部材の断熱性を高め、上側折板から下側折板への熱流を抑制するものである。     Patent Document 1 relates to a heat-insulated double folded plate roof, a metal that normally becomes a heat bridge in a structure in which metal roofing material is double-spreaded and the gap is filled with heat insulating material to prevent the solar heat from flowing into the room indoors. The heat insulation of the connection member of the upper folded board and lower folded board of a roof material is improved, and the heat flow from an upper folded board to a lower folded board is suppressed.

断熱二重折板屋根は、断熱効果が断熱材の厚みに依存するので、断熱効果を十分得ようとすると断熱材が厚くなり、屋根の設計上、断熱効果に制約が生じることが指摘されている。     It is pointed out that the insulation double-folded roof has a heat insulation effect that depends on the thickness of the heat insulation material. Yes.

図6は断熱二重折板屋根の一例の概略構造を示し、上葺き材100と下葺き材200との間に断熱材300が挟まれる構造となっている。   FIG. 6 shows a schematic structure of an example of a heat insulating double folded plate roof, in which a heat insulating material 300 is sandwiched between an upper roof material 100 and a lower roof material 200.

また、これらの工法に属さず、屋根の断熱性を向上させるものとして、屋根の表面にガラスビーズ等を含有する塗装を施し、遮熱効果を発揮する技術も開発されている。
解説記事「住宅の次世代省エネルギー基準と指針」P237〜256 財団法人 住宅・建築省エネルギー機構 特開平7−207844号公報
In addition, as a technique for improving the heat insulating property of the roof, which does not belong to these methods, a technique for applying a coating containing glass beads or the like to the surface of the roof and exhibiting a heat shielding effect has been developed.
Explanation article "Next-generation energy-saving standards and guidelines for houses" P237-256 Japan Housing and Architecture Energy Conservation Organization JP-A-7-207844

屋根断熱通気工法における通気層の効果は、通気層により、外装材の日射吸収率、長波長放射(定義:常温で放射される輻射)率が低下するのと同等とみなして試算した場合、30mmの幅の通気層で、貫流熱量が10%程度減少する結果が得られている。     The effect of the ventilation layer in the roof insulation ventilation method is 30 mm when calculated by assuming that the ventilation layer reduces the solar absorptivity and long-wavelength radiation (definition: radiation emitted at normal temperature) of the exterior material. The result is that the heat flow through is reduced by about 10% with a ventilation layer with a width of.

しかしながら、本工法の効果を効果的に発揮する提案はなされておらず、通気層の遮熱効果が充分に得られていない。     However, no proposal has been made to effectively demonstrate the effect of this construction method, and the heat shielding effect of the ventilation layer has not been sufficiently obtained.

本発明は、屋根断熱通気工法の効率を向上させ、優れた断熱効果を有する金属二重屋根を提供することを目的とする。     An object of this invention is to provide the metal double roof which improves the efficiency of a roof heat insulation ventilation method, and has the outstanding heat insulation effect.

本発明者等は、屋根断熱通気工法における通気層の存在が屋根から下部構造への日射熱の熱貫流に及ぼす影響について詳細に検討した。一般に、屋根の断熱設計では、外気側の総合熱貫流率は20kcal/mh℃を用いる。 The present inventors examined in detail about the influence which the presence of the ventilation layer in the roof insulation ventilation method has on the heat flow of solar heat from the roof to the lower structure. Generally, in the heat insulation design of the roof, 20 kcal / m 2 h ° C. is used as the total heat transmissivity on the outside air side.

総合熱伝達率は、対流熱伝達率と輻射熱伝達率からなり、対流熱伝達率は通常風速3m/sを前提としている。この場合の輻射熱伝達率の寄与は25%程度である。しかしながら、実際の通気層内の風速は0.1m/s程度であることが近年の研究にて明らかになり、この場合の対流熱伝達率は1/3程度に低下する。     The total heat transfer coefficient is composed of a convective heat transfer coefficient and a radiant heat transfer coefficient, and the convective heat transfer coefficient is premised on a normal wind speed of 3 m / s. In this case, the contribution of the radiant heat transfer coefficient is about 25%. However, recent studies reveal that the actual wind speed in the ventilation layer is about 0.1 m / s, and the convective heat transfer coefficient in this case is reduced to about 1 /.

その結果、輻射熱での伝達率の割合が相対的に高くなり、通気層を挟んだ、上葺き材と下葺き材の間での輻射による熱伝達量が断熱効果を向上させる重要な要素となることを知見した。     As a result, the ratio of the transmission rate by radiant heat becomes relatively high, and the amount of heat transfer by radiation between the upper and lower facing materials sandwiching the ventilation layer is an important factor for improving the heat insulation effect. I found out.

本検討において、上記対流熱伝達率の算出には、ユルゲスの強制対流熱伝達率計算式(α=5.0+3.4v,v:風速m/s)を用いた。 In this study, the calculation of the convective heat transfer coefficient was based on the Jurges forced convection heat transfer coefficient calculation formula (α c = 5.0 + 3.4 v, v: wind speed m / s).

以上の検討より、本発明の課題は以下の手段により解決される。
1上葺き材と下葺き材の間に通気層を設けた屋根構造であって、前記通気層に面する前記上葺き材の下面の長波長放射率は、前記通気層に面する前記下葺き材の上面の長波長放射率よりも大きく、該下葺き材の上面の長波長放射率は、前記下葺き材の下面の長波長放射率以下であることを特徴とする屋根構造。
2上葺き材と下葺き材の間に通気層を設けた屋根構造であって、前記下葺き材の上面が断熱材に被われ、前記通気層に面する前記上葺き材の下面の長波長放射率は、前記通気層に面する前記断熱材の上面の長波長放射率よりも大きく、該断熱材の上面の長波長放射率は、前記下葺き材の下面の長波長放射率以下であることを特徴とする屋根構造。
3前記上葺き材の下面の長波長放射率が、上葺き材の上面の日射吸収率および/または長波長放射率よりも大きいことを特徴とする1または2に記載の屋根構造。
4通気層に面する表面を、亜鉛、鉛、マグネシウム、アルミニウム、チタンのうち少なくとも1つを含む材料で、塗装、被覆あるいはめっきしたことを特徴とした1乃至3何れか一つに記載の屋根構造。
From the above examination, the problem of the present invention is solved by the following means.
1 A roof structure in which a ventilation layer is provided between an upper facing material and a lower facing material, wherein the long wavelength emissivity of the lower surface of the upper facing material facing the ventilation layer is the lower facing surface facing the ventilation layer. A roof structure characterized by being larger than the long wavelength emissivity of the upper surface of the material, wherein the long wavelength emissivity of the upper surface of the lower covering material is less than or equal to the long wavelength emissivity of the lower surface of the lower covering material.
(2) A roof structure in which a ventilation layer is provided between an upper facing material and a lower facing material, wherein an upper surface of the lower covering material is covered with a heat insulating material, and a long wavelength of a lower surface of the upper facing material facing the ventilation layer The emissivity is larger than the long wavelength emissivity of the upper surface of the heat insulating material facing the ventilation layer, and the long wavelength emissivity of the upper surface of the heat insulating material is equal to or lower than the long wavelength emissivity of the lower surface of the lower covering material. A roof structure characterized by that.
[3] The roof structure according to [1] or [2], wherein a long wavelength emissivity of a lower surface of the upper covering material is larger than a solar radiation absorption rate and / or a long wavelength emissivity of an upper surface of the upper covering material.
[4] The roof according to any one of [1] to [3], wherein the surface facing the ventilation layer is painted, coated or plated with a material containing at least one of zinc, lead, magnesium, aluminum, and titanium. Construction.

本発明によれば、屋根断熱通気工法を採用する屋根構造において、通気層の断熱効率が向上し、優れた断熱特性が確実に得られ、熱環境の良好な建築物の建設が可能となる。     ADVANTAGE OF THE INVENTION According to this invention, in the roof structure which employ | adopts a roof heat insulation ventilation method, the heat insulation efficiency of a ventilation layer improves, the outstanding heat insulation characteristic is acquired reliably, and construction of a favorable thermal environment is attained.

本発明は、屋根断熱通気工法を採用する屋根構造において、屋内への日射熱の貫流を抑制するため、通気層を挟んで配置される上葺き材から下葺き材への伝熱量を少なくし屋根構造の断熱特性を向上させると共に、通気層内の輻射伝熱を抑制し、日射に対する遮熱効果と、高温になった屋内の放熱促進することを特徴とする。     The present invention is directed to a roof structure that employs a roof insulation ventilation method, in order to suppress the flow of solar heat into the indoor space, to reduce the amount of heat transferred from the upper roofing material to the lower flooring material that is disposed with the ventilation layer interposed therebetween. It is characterized by improving the heat insulating properties of the structure, suppressing radiant heat transfer in the ventilation layer, and promoting the heat shielding effect against solar radiation and heat dissipation in indoors that have become hot.

最も望ましい形態は、上葺き材の屋外面の日射吸収率を小さくして日射吸収を抑制するとともに、長波長放射率を大きくして放射冷却効果を高める。そして、上葺き材、下葺き材の通気層に面するそれぞれの面の長波長放射率を小さくすると良い。     The most desirable mode is to reduce the solar absorptivity on the outdoor surface of the upper covering material to suppress the solar absorptivity and increase the long wavelength emissivity to enhance the radiation cooling effect. And it is good to make small the long-wavelength emissivity of each surface which faces the ventilation layer of an upper covering material and a lower covering material.

夏期の西日により壁面や室温が高温となる場合、下葺き材の屋内側に面する面の長波長放射率を通気層内以上とすることによって、屋内側からの輻射を吸収し、通気層から排熱するように構成する。

図1に本発明を適用する屋根断熱工法による屋根構造の一例を概略断面で示す。図において1が屋根構造、2が上葺き材、3が下葺き材を示し、上葺き材2と下葺き材3の間に通気層が設けられている。通気層内の矢印は自然換気による空気の移動方向を示す。
When the wall surface or room temperature becomes high due to the western sun in the summer, the long-wavelength emissivity of the surface facing the indoor side of the underlaying material is set to be greater than or equal to the inside of the ventilation layer, so that the radiation from the indoor side is absorbed and the ventilation layer It is configured to exhaust heat.

FIG. 1 is a schematic cross-sectional view showing an example of a roof structure by a roof insulation method to which the present invention is applied. In the figure, 1 is a roof structure, 2 is an upper covering material, 3 is a lower covering material, and a ventilation layer is provided between the upper covering material 2 and the lower covering material 3. Arrows in the ventilation layer indicate the direction of air movement due to natural ventilation.

図2に図1に示した屋根構造の部分断面図を示す。本発明では上葺き材2の通気層に面した下面21の長波長放射率を下葺き材3の通気層に面した上面31の長波長放射率よりも大きくし、下葺き材3の通気層に面する上面31の長波長放射率を、下葺き材3の下面32の長波長放射率以下に設定する。本発明では、下葺き材3の下面32は屋内側に面する面、上葺き材2の上面22は屋外側に面する面とする。     FIG. 2 is a partial sectional view of the roof structure shown in FIG. In the present invention, the long-wavelength emissivity of the lower surface 21 facing the ventilation layer of the upper covering material 2 is made larger than the long-wavelength emissivity of the upper surface 31 facing the ventilation layer of the lower covering material 3. The long-wavelength emissivity of the upper surface 31 facing is set to be equal to or lower than the long-wavelength emissivity of the lower surface 32 of the lower covering material 3. In the present invention, the lower surface 32 of the lower material 3 is a surface facing the indoor side, and the upper surface 22 of the upper material 2 is a surface facing the outdoor side.

下葺き材3に、上葺き材2から放射される放射熱量は、通気層を挟んで対向する下面21と上面31の形態係数、長波長放射率、およびそれぞれの絶対温度の4乗の差に比例する。   The amount of radiant heat radiated from the upper material 2 to the lower material 3 depends on the difference between the form factor of the lower surface 21 and the upper surface 31 facing each other with the ventilation layer interposed therebetween, the long wavelength emissivity, and the fourth power of each absolute temperature. Proportional.

屋内から下葺き材3へ放射される熱量も同じく、屋内の長波長放射率と下葺き材3の下面32の長波長放射率に比例するため、上葺き材2の通気層側の下面21の長波長放射率を下葺き材3の通気層側の上面31の長波長放射率よりも大きく、かつ下葺き材3の通気層側の上面31の長波長放射率を下葺き材3の屋内側の下面32の長波長放射率以下に設定すると、通気層を挟んで対向する下面21と上面31間の伝熱量が抑制される。上記規定には、さらに以下のより好ましい形態が考えられる。
一の形態は、上葺き材2の通気層側の下面21と下葺き材3の通気層側の上面31の長波長放射率を0.1〜0.4程度の範囲内で、下面21の長波長放射率が、上面31の長波長放射率より大きくなるようにする場合であり、上葺き材から下葺き材への放射熱が少なくなり、断熱性能を向上させることができより好ましい。
The amount of heat radiated from the indoor to the lower covering material 3 is also proportional to the indoor long wavelength emissivity and the long wavelength emissivity of the lower surface 32 of the lower covering material 3. The long wavelength emissivity is larger than the long wavelength emissivity of the upper surface 31 of the lower covering material 3 on the ventilation layer side, and the long wavelength emissivity of the upper surface 31 of the lower covering material 3 on the ventilation layer side is the indoor side of the lower covering material 3. If it is set to be equal to or lower than the long wavelength emissivity of the lower surface 32, the amount of heat transfer between the lower surface 21 and the upper surface 31 facing each other with the ventilation layer interposed therebetween is suppressed. The following more preferable forms are further conceivable for the above definition.
One form is that the long-wavelength emissivity of the lower surface 21 of the upper facing material 2 on the ventilation layer side and the upper surface 31 of the lower facing material 3 on the ventilation layer side is within the range of about 0.1 to 0.4. This is a case where the long wavelength emissivity is set to be larger than the long wavelength emissivity of the upper surface 31, and the radiant heat from the upper material to the lower material is reduced, and the heat insulation performance can be improved, which is more preferable.

さらに、下葺き材3の、屋内側の下面32の長波長放射率を、通気層側の上面31以上とすることで、上葺き材2からの下葺き材3への輻射入熱を抑制し、冷却された床面からの冷輻射を吸収するため、屋根の屋内面の温度低下速度を速めることも可能となる。   Furthermore, by setting the long wavelength emissivity of the lower side 32 of the lower facing material 3 to be equal to or higher than the upper surface 31 on the ventilation layer side, radiation heat input from the upper facing material 2 to the lower facing material 3 is suppressed. In addition, since the cold radiation from the cooled floor surface is absorbed, the temperature decrease rate of the indoor surface of the roof can be increased.

他の形態は、上葺き材2の通気層側の下面21の長波長放射率を下葺き材3の通気層側の上面31の長波長放射率よりも大きくし、かつ上葺き材の下面21の長波長放射率を、上葺き材の上面22の日射吸収率および/または長波長放射率よりも大きくする方法である。
本来は、上葺き材の上面の日射吸収率を非常に小さくし、かつ、上葺き材2の屋外側の上面22の長波長放射率を通気層側の下面21より大きくすれば、日射吸収による温度上昇を抑制するとともに大気放射が促進され、上葺き材2が高温になるのが防止されるので、屋根から屋内への貫流熱量が大幅に減少し非常に好ましい形態となる。
しかし一般に、長波長放射率の大きい材料は、ガラスを除いて日射吸収率も大きい場合が多い。上葺き材2の屋外側の上面22の日射吸収率が大きくなれば、日射による表面温度上昇効果が、長波長放射率を大きくしたことによる大気放射による冷却効果よりも大きくなり、前述のように遮熱性能向上を期待する事は難しくなる。
そこで、上葺き材2の屋外側の上面22の日射吸収率を非常に小さくして日射の吸収を抑制し、更に、放射による冷却を促進するために、通気層側の下面21の長波長放射率を非常に大きくすることで、上葺き材2に蓄えられた熱量を通気層内に放射し、放熱促進を図るものである。
この場合、上葺き材2の通気層側の下面21の長波長放射率を0.8〜1程度、下葺き材3の通気層側の上面31の長波長放射率を0.1〜0.4程度、上葺き材2の上面材22の日射吸収率は0.1〜0.4程度としておくことが特に望ましい。
放熱量は前述のように長波長放射率と絶対温度の4乗に比例するので、この形態では、上葺き材2が通気層内に放射する熱量が大きくなり、上葺き材2の温度低下を促進することができる。一方、下葺き材3の通気層側の上面31の長波長放射率が非常に小さく、上葺き材2からの放射熱の多くを反射することにより、下葺き材3への放射熱伝達量は更に小さくなる。通気層内空気の温度が上昇するが、棟部に設けられた自然排気口から排出されるので、下葺き材3の熱吸収を小さくすることができる。
In another embodiment, the long wavelength emissivity of the lower surface 21 of the upper facing material 2 on the ventilation layer side is made larger than the long wavelength emissivity of the upper surface 31 of the lower facing material 3 on the ventilation layer side, and the lower surface 21 of the upper facing material 3 The long wavelength emissivity is made larger than the solar radiation absorption rate and / or the long wavelength emissivity of the upper surface 22 of the upper covering material.
Originally, if the solar radiation absorption rate on the upper surface of the upper material is made very small, and the long wavelength emissivity of the upper surface 22 on the outdoor side of the upper material 2 is made larger than that of the lower surface 21 on the ventilation layer side, Since the temperature rise is suppressed and atmospheric radiation is promoted, and the upper roofing material 2 is prevented from reaching a high temperature, the amount of heat passing through from the roof to the room is greatly reduced, which is a very preferable mode.
However, in general, a material having a large long wavelength emissivity often has a large solar absorptivity except glass. If the solar radiation absorption rate of the upper surface 22 on the outdoor side of the upper roofing material 2 is increased, the effect of increasing the surface temperature due to solar radiation becomes greater than the cooling effect due to atmospheric radiation by increasing the long wavelength emissivity, as described above. It is difficult to expect improved heat shielding performance.
Therefore, in order to suppress the absorption of solar radiation by reducing the solar radiation absorption rate of the upper surface 22 of the upper facing material 2 on the outdoor side, and to promote cooling by radiation, the long wavelength radiation of the lower surface 21 on the ventilation layer side By making the rate very large, the amount of heat stored in the upper material 2 is radiated into the ventilation layer to promote heat dissipation.
In this case, the long wavelength emissivity of the lower surface 21 of the upper facing material 2 on the ventilation layer side is about 0.8 to 1, and the long wavelength emissivity of the upper surface 31 of the lower facing material 3 on the ventilation layer side is 0.1 to 0. It is particularly desirable that the solar radiation absorption rate of the upper surface material 22 of the upper facing material 2 is about 0.1 to about 0.4.
Since the heat radiation amount is proportional to the long wavelength emissivity and the fourth power of the absolute temperature as described above, in this embodiment, the amount of heat radiated from the upper material 2 into the ventilation layer increases, and the temperature of the upper material 2 decreases. Can be promoted. On the other hand, the long wavelength emissivity of the upper surface 31 of the lower facing material 3 on the ventilation layer side is very small, and by reflecting most of the radiant heat from the upper facing material 2, the amount of radiant heat transfer to the lower facing material 3 is It becomes even smaller. Although the temperature of the air in the ventilation layer rises, since it is discharged from the natural exhaust port provided in the ridge, the heat absorption of the lower covering material 3 can be reduced.

さらに、上葺き材2から下葺き材3が吸収する放射熱より下葺き材3から屋内に放射される熱量が大きいので、屋根構造としての保有熱量が早く減少し、遮熱性能が向上する。     Further, since the amount of heat radiated indoors from the lower covering material 3 is larger than the radiant heat absorbed by the lower covering material 2 from the upper covering material 2, the amount of heat retained as the roof structure is quickly reduced, and the heat shielding performance is improved.

上葺き材2の屋外側の上面22の仕上げは、金属光沢色、クリア塗装、あるいは光沢白色塗装して用いると日射吸収率、長波長放射率を小さくでき、好ましい。めっき鋼板、ステンレス鋼板、アルミニウム板などを金属光沢色で用いることが好ましいがこれらに限定するものではない。表面の日射吸収率を長期間維持する場合は、酸化チタンなどの光触媒材や、珪素化合物等の親水材料、あるいはフッ素樹脂などの撥水材料を適宜選択して更に被覆する。この場合、日射吸収率0.1〜0.4が維持される。   The finish of the upper surface 22 on the outdoor side of the upper facing material 2 is preferably used in a metallic glossy color, clear coating, or glossy white coating because the solar absorptance and long wavelength emissivity can be reduced. Although it is preferable to use a plated steel plate, a stainless steel plate, an aluminum plate, etc. with a metallic luster color, it is not limited to these. When maintaining the solar radiation absorption rate on the surface for a long period of time, a photocatalyst material such as titanium oxide, a hydrophilic material such as a silicon compound, or a water repellent material such as a fluororesin is appropriately selected and further coated. In this case, the solar radiation absorption rate of 0.1 to 0.4 is maintained.

上葺き材、下葺き材で通気層側となる面の長波長放射率を小さくする場合は、光沢金属素地面のほか、光沢金属色、光沢めっき面とするか、光沢白色塗装を施すことが好ましい。特に、亜鉛、鉛、マグネシウム、アルミニウム、チタンのうち少なくとも1つを含む材料で、塗装、被覆あるいはめっきするのが好ましい。ここでいう材料とは、
a)亜鉛、鉛、マグネシウム、アルミニウム、チタンのうちの何れかの金属
b)上記a)のうち少なくとも1つを含む合金
c)上記a)のうち少なくとも1つを含む化合物
d)上記a)からc)のうち少なくとも1つを含む塗料又は被覆用材料等
の何れかを示す。より具体的には、屋根材として上記a)や上記b)を用いためっき鋼板(例えば、ガルバリウム鋼板)やステンレス鋼板、アルミニウム板を金属光沢色で用いるか 、適当な屋根材に酸化チタンあるいはアルミニウムを成分とした光沢白色系顔料を塗装して用いるか、が好ましい。なお、これらの上葺き材と下葺き材の表面仕上材は、同様の効果を奏すればこれらに限定するものではない。
When reducing the long-wavelength emissivity of the surface on the ventilation layer side with the upper and lower materials, it is necessary to use a bright metal surface, a bright metal color, a bright plating surface, or a bright white coating. preferable. In particular, it is preferable to paint, coat or plate with a material containing at least one of zinc, lead, magnesium, aluminum and titanium. The material here is
a) any metal of zinc, lead, magnesium, aluminum, titanium b) an alloy containing at least one of the above a) c) a compound containing at least one of the above a) d) from the above a) Any one of paint or coating material containing at least one of c) is shown. More specifically, a plated steel plate (for example, a galvalume steel plate), a stainless steel plate, or an aluminum plate using the above a) or b) as a roofing material is used in a metallic luster color, or titanium oxide or aluminum is used for an appropriate roofing material. It is preferable to use a glossy white pigment with a component of. In addition, the surface finishing materials of these upper and lower facing materials are not limited to these as long as the same effect is obtained.

本発明では、下葺き材の上面を断熱材で被い、更に断熱性能を向上させることも可能である。この場合、日射熱の遮熱効果を高めることができる。図3は下葺き材3の上面を断熱材4で被った屋根構造の部分断面図を示す。   In the present invention, it is also possible to cover the upper surface of the lower covering material with a heat insulating material to further improve the heat insulating performance. In this case, the heat shielding effect of solar heat can be enhanced. FIG. 3 shows a partial cross-sectional view of the roof structure in which the upper surface of the lower covering material 3 is covered with the heat insulating material 4.

断熱材4で被う場合は、通気層に面した断熱材4の上面41の長波長放射率を、図2における下葺き材3の通気層側の下面31の長波長放射率と同様に設定する。即ち、断熱材4の通気層側の上面41の長波長放射率を、下葺き材3の屋内側の下面32の長波長放射率以下に設定する。   When covering with the heat insulating material 4, the long wavelength emissivity of the upper surface 41 of the heat insulating material 4 facing the ventilation layer is set similarly to the long wavelength emissivity of the lower surface 31 on the ventilation layer side of the lower covering material 3 in FIG. To do. That is, the long wavelength emissivity of the upper surface 41 of the heat insulating material 4 on the ventilation layer side is set to be equal to or lower than the long wavelength emissivity of the lower surface 32 of the lower covering material 3 on the indoor side.

通気層に面した断熱材4の上面41の長波長放射率の設定は、表面仕上材を用いることで実現できる。例えば、アルミ蒸着シート等の光沢金属シートや光沢白色シートで被ったり、光沢白色塗装を施すことが好ましいが、同様の効果を奏するのであればこれらに限定するものではない。図4に表面仕上げ材を用いた場合の一例を模式的に示す。   The setting of the long wavelength emissivity of the upper surface 41 of the heat insulating material 4 facing the ventilation layer can be realized by using a surface finishing material. For example, it is preferable to cover with a glossy metal sheet such as an aluminum vapor-deposited sheet or a glossy white sheet, or to apply a glossy white coating, but it is not limited to these as long as the same effect is exhibited. An example at the time of using a surface finishing material in FIG. 4 is shown typically.

断熱材4としてロックウール、グラスウールなどの無機繊維系断熱材、ポリスチレンフォーム、ポリエチレンフォーム、フェノールフォーム、ウレタンフォームなどの有機系ボード状断熱材などが使用可能であるが、本発明では特に限定しない。   As the heat insulating material 4, inorganic fiber heat insulating materials such as rock wool and glass wool, and organic board heat insulating materials such as polystyrene foam, polyethylene foam, phenol foam, and urethane foam can be used, but the present invention is not particularly limited.

以下、実施例を用いて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

図2に示した屋根構造を用い、上葺き材2(下面21)と下葺き材3(上面31)との間隔を30mmとし、通気層とした。   The roof structure shown in FIG. 2 was used, and the space between the upper covering material 2 (lower surface 21) and the lower covering material 3 (upper surface 31) was set to 30 mm to form a ventilation layer.

本発明の実施例では、上葺き材2は鋼板の屋根材とし、屋外面22を暗褐色のカラー鋼板(日射吸収率0.9、長波長放射率0.8)とし、通気層側の面21には酸化チタンあるいはアルミニウムを基材とした光沢白色系顔料(長波長放射率0.1以上、0.4以下)により塗装を施した。下葺き材3の通気層側の上面31には、酸化チタンあるいはアルミニウムを基材とし、かつ上葺き材の通気層側の面21よりも小さくなるようにした光沢白色系顔料(長波長放射率0.1以上、0.4以下)により塗装を施した。屋内側の面32にはベージュ系の塗装(長波長放射率0.8)を施した。   In the embodiment of the present invention, the upper covering material 2 is a steel roofing material, the outdoor surface 22 is a dark brown colored steel plate (sunlight absorption rate 0.9, long wavelength emissivity 0.8), and the surface on the ventilation layer side. No. 21 was coated with a bright white pigment (long wavelength emissivity of 0.1 or more and 0.4 or less) based on titanium oxide or aluminum. A bright white pigment (long wavelength emissivity) made of titanium oxide or aluminum as a base material and made smaller than the surface 21 on the ventilation layer side of the upper material is formed on the upper surface 31 on the ventilation layer side of the lower material 3. 0.1 to 0.4). The indoor side surface 32 was painted beige (long wavelength emissivity 0.8).

一方、比較例では上葺き材2を通常の塗装鋼板の屋根材とし、屋外面22を同じく暗褐色のカラー鋼板(日射吸収率0.9、長波長放射率0.8)としたが、上葺き材2の通気層側の下面21、下葺き材3の通気層側の上面31、および屋内側の下面32に特別な配慮をしていないため、ベージュ系の塗装(長波長放射率0.8)としている。   On the other hand, in the comparative example, the upper roofing material 2 is a roof material of a normal coated steel plate, and the outdoor surface 22 is a dark brown colored steel plate (solar absorption rate 0.9, long wavelength emissivity 0.8). Since no special consideration is given to the lower surface 21 of the ventilation layer 2 of the straw material 2, the upper surface 31 of the ventilation layer side of the lower material 3, and the lower surface 32 of the indoor side, beige-based coating (long wavelength emissivity 0. 8).

以下に効果比較を行った結果を示す。日射量740(kcal/mh℃)、夜間放射26(kcal/mh℃)、外気温31(℃)、風速(3m/s),室温28(℃)時の、上葺き材2の表面温度は、63℃、下葺き材3の屋内側の下面32の温度は31(℃)となった。 The results of effect comparison are shown below. Topping material 2 when solar radiation is 740 (kcal / m 2 h ° C), night radiation 26 (kcal / m 2 h ° C), outside air temperature 31 (° C), wind speed (3 m / s), room temperature 28 (° C) The surface temperature of this was 63 ° C., and the temperature of the lower surface 32 on the indoor side of the lower covering 3 was 31 (° C.).

本実施例の仕様の通気層部分の放射伝熱量Qは、
=(0.1〜0.4)×4.876×10‐8×((63+273.16)‐(31+273.16))=2.05〜32.9(kcal/mh℃)となる。
Amount of radiation heat to Q 1 ventilation layer portion of the specification of this embodiment,
Q 1 = (0.1 to 0.4) 2 × 4.876 × 10 −8 × ((63 + 273.16) 4 − (31 + 273.16) 4 ) = 2.05 to 32.9 (kcal / m 2 h ° C).

一方、比較例の通気層部分の放射伝熱量Qは、 Q=0.8×4.876×10‐8×((63+273.16)‐(31+273.16)
=131.4(kcal/mh℃)となり、本実施例によれば、放射伝熱量は1.5〜25%程度とすることができる。
On the other hand, radiation heat transfer amount Q 2 of the ventilation layer portion of the comparative example, Q 2 = 0.8 2 × 4.876 × 10 -8 × ((63 + 273.16) 4 - (31 + 273.16) 4)
= 131.4 (kcal / m 2 h ° C.), and according to this embodiment, the amount of radiant heat transfer can be about 1.5 to 25%.

通気層内の風速を0.1m/s、対流熱伝達量を上葺き材側と下葺き材側と共通として、5.34(kcal/mh℃)とすれば、対流熱伝達量Qc=1/(1/5.34+1/5.34)×(63−31)=85.4(kcal/mh℃)であるから、下葺き材3への入熱量を、通気層の熱抵抗を無視した安全側の評価により比較すると、本実施例では87.4〜118.3kcal/mh℃に対し、比較例では216.8kcal/mh℃となり、本実施例において、下葺き材3への入熱量を通常の40〜55%程度に抑制できることが確認できた。図5に効果比較の結果を模式的に示す。 If the wind speed in the ventilation layer is 0.1 m / s and the convection heat transfer amount is common to the upper and lower winder material sides, and is 5.34 (kcal / m 2 h ° C.), the convective heat transfer amount Qc. = 1 / (1 / 5.34 + 1 / 5.34) × (63-31) = 85.4 (kcal / m 2 h ° C.) Therefore, the amount of heat input to the lower covering material 3 is determined by the heat of the ventilation layer. Comparing by the evaluation on the safety side ignoring the resistance, this example shows 86.8 to 118.3 kcal / m 2 h ° C., while the comparative example shows 216.8 kcal / m 2 h ° C. In this example, It was confirmed that the amount of heat input to the wood material 3 can be suppressed to about 40 to 55% of the normal amount. FIG. 5 schematically shows the result of effect comparison.

本試算に使用した計算式を以下に示す。
放射熱伝達量Q=εεσ(T −T
ε:上葺き材長波長放射率(下面21)
ε:下葺き材長波長放射率(上面31)
σ:ステファンボルツマン定数(4.876×10−8kcal/mh℃)
:上葺き材温度(K)
:下葺き材温度(K)
The formula used for this trial calculation is shown below.
Amount radiant heat transfer Q r = ε 1 ε 2 σ (T 1 4 -T 2 4)
ε 1 : Upper wood long wavelength emissivity (lower surface 21)
ε 2 : Long wavelength emissivity of the lower material (upper surface 31)
σ: Stefan Boltzmann constant (4.876 × 10 −8 kcal / m 2 h ° C.)
T 1 : Upper wood temperature (K)
T 2 : Lower wood temperature (K)

図2に示した屋根構造で、上葺き材2(下面21)と下葺き材3(上面31)との間隔を50mmとし、通気層とした。   In the roof structure shown in FIG. 2, the space between the upper covering material 2 (lower surface 21) and the lower covering material 3 (upper surface 31) was set to 50 mm to form a ventilation layer.

本発明の実施例では、上葺き材2は鋼板の屋根材とし、屋外面22を白色のカラー鋼板(日射吸収率0.3、長波長放射率0.5)とし、通気層側の面21には黒色系顔料(長波長放射率0.9以上、1以下)により塗装を施した。   In the embodiment of the present invention, the upper covering material 2 is a steel roofing material, the outdoor surface 22 is a white colored steel plate (sunlight absorption rate 0.3, long wavelength emissivity 0.5), and the surface 21 on the ventilation layer side. Was coated with a black pigment (long wavelength emissivity of 0.9 or more and 1 or less).

下葺き材3の通気層側の上面31には酸化チタンあるいはアルミニウムを基材とした光沢色白色系顔料(長波長放射率0.1以上、0.4以下)により塗装を施し、室内側の面32にはベージュ系の塗装(長波長放射率0.8)を施した。   The upper surface 31 on the ventilation layer side of the lower covering material 3 is coated with a glossy white pigment (long wavelength emissivity of 0.1 or more and 0.4 or less) based on titanium oxide or aluminum, The surface 32 was painted beige (long wavelength emissivity 0.8).

本構成では、上葺き材2から通気層内に熱が放射されるが、下葺き材3での放射が反射され、通気層内の空気が暖められて自然対流により排出される。温度条件が実施例1と同じ場合は、初期の放射量は実施例1と比較して多くなるが、通気層への放熱効果が大きいために上葺き材2の冷却速度は実施例1よりも速くなる。   In this configuration, heat is radiated from the upper material 2 into the ventilation layer, but the radiation from the lower material 3 is reflected, and the air in the ventilation layer is warmed and discharged by natural convection. When the temperature condition is the same as in Example 1, the initial radiation amount is larger than that in Example 1. However, since the heat dissipation effect to the ventilation layer is large, the cooling rate of the upper material 2 is higher than that in Example 1. Get faster.

上葺き材2の上面を本実施例の構成とすれば、日射吸収による表面温度上昇が抑制されるため、温度条件は実施例1よりも低くなり、所定の効果が得られる。ここでは、白色のカラー鋼板を例示したが、金属光沢色とすれば、より効果は高まる。   If the upper surface of the upper facing material 2 is configured as in the present embodiment, the surface temperature rise due to solar radiation absorption is suppressed, so the temperature condition is lower than in the first embodiment and a predetermined effect is obtained. Here, a white colored steel plate is illustrated, but the effect is further enhanced if the metallic gloss color is used.

本構成について試算すると以下のようになる。   The calculation of this configuration is as follows.

上葺き材2の表面温度として、実施例1に示す実験時の気象条件より、相当外気温度SAT(℃)を求めると、SAT=31+(0.3×740−0.5×26)/20=約41℃が得られ、実施例1の条件よりも22(℃)低くなる。   When the equivalent outside air temperature SAT (° C.) is determined as the surface temperature of the upper material 2 from the weather conditions during the experiment shown in Example 1, SAT = 31 + (0.3 × 740−0.5 × 26) / 20 = About 41 ° C. is obtained, which is 22 (° C.) lower than the conditions of Example 1.

下葺き材3の表面温度を実施例1と同じく31(℃)と不利側に仮定しても、輻射伝達量Qr=6.0〜26.8(W/m2)が得られ、同様の効果が発揮されることが確認できた。   Even if the surface temperature of the lower material 3 is assumed to be 31 (° C.) as disadvantageous as in Example 1, the radiation transfer amount Qr = 6.0 to 26.8 (W / m 2) is obtained, and the same effect is obtained. Has been confirmed to be exhibited.

図4に示した屋根構造で、上葺き材2は鋼板の屋根材とし、屋外面22を亜鉛アルミ合金めっきにクリア系の塗装仕上げ(日射吸収率0.15、長波長放射率0.2)とし、通気層側の面21には黒色系顔料(長波長放射率0.9以上、1以下)により塗装を施した。   In the roof structure shown in FIG. 4, the upper roofing material 2 is a steel roofing material, and the outdoor surface 22 is coated with zinc-aluminum alloy in a clear paint finish (irradiation rate 0.15, long wavelength emissivity 0.2) The surface 21 on the air-permeable layer side was coated with a black pigment (long wavelength emissivity of 0.9 or more and 1 or less).

下葺き材3の上面31にグラスウールからなる断熱材4が配置されている。断熱材4の通気層に面する上面41にはアルミガラスクロス(長波長放射率0.1〜0.4)が光沢面を通気層に向けて配置されている。   A heat insulating material 4 made of glass wool is disposed on the upper surface 31 of the lower covering material 3. An aluminum glass cloth (long wavelength emissivity 0.1 to 0.4) is disposed on the upper surface 41 of the heat insulating material 4 facing the ventilation layer with the glossy surface facing the ventilation layer.

上葺き材2(下面21)と断熱材4の通気層に面する上面41との間隔を50mmとし、軒先と棟上で外気に開放部を設けて通気層とした。室内側の面32にはベージュ系の塗装(長波長放射率0.8)を施した。   The space between the upper facing material 2 (lower surface 21) and the upper surface 41 facing the air-permeable layer of the heat insulating material 4 was 50 mm, and an open portion was provided in the outside air on the eaves and the building to form an air-permeable layer. The indoor surface 32 was painted beige (long wavelength emissivity 0.8).

この構成は、断熱材4の通気層に面する上面41を下葺き材3の通気層側の上面31に置き換えると、実施例2と同じで、断熱材4の通気層に面する上面41に伝達される放射熱量は、実施例2と同じであるが、通気層下部に断熱材4を配置することにより、通気層から室内への伝熱量をより減少させることができる。   This configuration is the same as in Example 2 when the upper surface 41 facing the ventilation layer of the heat insulating material 4 is replaced with the upper surface 31 of the lower covering material 3 on the ventilation layer side. Although the amount of radiant heat transferred is the same as that of the second embodiment, the heat transfer amount from the ventilation layer to the room can be further reduced by disposing the heat insulating material 4 below the ventilation layer.

屋根断熱通気工法を用いた屋根構造の一例を示す部分断面図。The fragmentary sectional view which shows an example of the roof structure using a roof heat insulation ventilation method. 屋根断熱通気工法を用いた屋根構造の一部を示す部分拡大図。The elements on larger scale which show a part of roof structure using the roof heat insulation ventilation method. 屋根断熱通気工法を用いた屋根構造(断熱材を用いた場合)の一部を示す部分拡大図。The elements on larger scale which show a part of roof structure (when using a heat insulating material) using the roof heat insulation ventilation method. 屋根断熱通気工法を用いた屋根構造(断熱材を用いた場合)の一部を示す部分拡大図。The elements on larger scale which show a part of roof structure (when using a heat insulating material) using the roof heat insulation ventilation method. 発明例(実施例1)と比較例における下葺き材の下面32表面温度と時刻の関係を示す図。The figure which shows the relationship between the surface temperature and the time of the lower surface 32 of the lower material in an invention example (Example 1) and a comparative example. 従来例。Conventional example.

符号の説明Explanation of symbols

1 屋根断熱通気工法を用いた屋根構造
2 上葺き材
3 下葺き材
4 断熱材
21、32 下面
22、31、41 上面
100 上葺き材
200 下葺き材
300 断熱材


DESCRIPTION OF SYMBOLS 1 Roof structure using roof heat insulation ventilation method 2 Upper covering material 3 Lower covering material 4 Heat insulating material 21, 32 Lower surface 22, 31, 41 Upper surface 100 Upper covering material 200 Lower covering material 300 Heat insulating material


Claims (4)

上葺き材と下葺き材の間に通気層を設けた屋根構造であって、前記通気層に面する前記上葺き材の下面の長波長放射率は、前記通気層に面する前記下葺き材の上面の長波長放射率よりも大きく、該下葺き材の上面の長波長放射率は、前記下葺き材の下面の長波長放射率以下であることを特徴とする屋根構造。 A roof structure in which a ventilation layer is provided between an upper facing material and a lower facing material, wherein a long wavelength emissivity of a lower surface of the upper facing material facing the ventilation layer is the lower facing material facing the ventilation layer. The long-wavelength emissivity of the upper surface of the lower covering material is larger than the long-wavelength emissivity of the lower covering material, and the lower wavelength emissivity of the lower covering material is lower than the long-wavelength emissivity of the lower covering material. 上葺き材と下葺き材の間に通気層を設けた屋根構造であって、前記下葺き材の上面が断熱材に被われ、前記通気層に面する前記上葺き材の下面の長波長放射率は、前記通気層に面する前記断熱材の上面の長波長放射率よりも大きく、該断熱材の上面の長波長放射率は、前記下葺き材の下面の長波長放射率以下であることを特徴とする屋根構造。 A roof structure in which a ventilation layer is provided between an upper and lower roofing material, wherein the upper surface of the lower heating material is covered with a heat insulating material, and the long wavelength radiation of the lower surface of the upper heating material facing the ventilation layer The rate is greater than the long wavelength emissivity of the upper surface of the heat insulating material facing the ventilation layer, and the long wavelength emissivity of the upper surface of the heat insulating material is less than or equal to the long wavelength emissivity of the lower surface of the lower covering material A roof structure characterized by 前記上葺き材の下面の長波長放射率が、上葺き材の上面の日射吸収率および/または長波長放射率よりも大きいことを特徴とする請求項1または2に記載の屋根構造。 The roof structure according to claim 1 or 2, wherein a long wavelength emissivity of a lower surface of the upper covering material is larger than a solar radiation absorptivity and / or a long wavelength emissivity of an upper surface of the upper covering material. 通気層に面する表面を、亜鉛、鉛、マグネシウム、アルミニウム、チタンのうち少なくとも1つを含む材料で、塗装、被覆あるいはめっきしたことを特徴とした請求項1乃至3何れか一つに記載の屋根構造。 The surface facing the ventilation layer is painted, coated or plated with a material containing at least one of zinc, lead, magnesium, aluminum, and titanium, according to any one of claims 1 to 3. Roof structure.
JP2005025180A 2004-02-26 2005-02-01 Double roof structure Expired - Fee Related JP4595568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025180A JP4595568B2 (en) 2004-02-26 2005-02-01 Double roof structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004050802 2004-02-26
JP2005025180A JP4595568B2 (en) 2004-02-26 2005-02-01 Double roof structure

Publications (2)

Publication Number Publication Date
JP2005273448A JP2005273448A (en) 2005-10-06
JP4595568B2 true JP4595568B2 (en) 2010-12-08

Family

ID=35173405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025180A Expired - Fee Related JP4595568B2 (en) 2004-02-26 2005-02-01 Double roof structure

Country Status (1)

Country Link
JP (1) JP4595568B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932179B2 (en) * 2004-07-02 2012-05-16 新日本製鐵株式会社 Exterior wall structure, roof structure
JP4994914B2 (en) * 2007-03-30 2012-08-08 新日本製鐵株式会社 Thin-walled lightweight steel structure outer wall structure and roof structure
JP2009046970A (en) * 2007-07-23 2009-03-05 Aichi Prefecture Roof construction and wall construction
JP2013245539A (en) * 2012-05-29 2013-12-09 Kmew Co Ltd Building board for external facing, and external wall structure
JP6804826B2 (en) * 2015-03-31 2020-12-23 大和ハウス工業株式会社 Roof structure
JP7282559B2 (en) * 2019-03-26 2023-05-29 旭化成ホームズ株式会社 Air circulation system, building, and method for supporting photocatalyst
CN111910852A (en) * 2020-08-31 2020-11-10 清华大学 Intelligent adjustable novel passive roof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248245A (en) * 2000-03-03 2001-09-14 Katsuo Miki Radiant energy shielding structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248245A (en) * 2000-03-03 2001-09-14 Katsuo Miki Radiant energy shielding structure

Also Published As

Publication number Publication date
JP2005273448A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
Spanaki et al. On the selection and design of the proper roof pond variant for passive cooling purposes
Khedari et al. Experimental study of a roof solar collector towards the natural ventilation of new houses
CA2489925C (en) Wall construction and constructional element therefor
Krüger et al. Effectiveness of indirect evaporative cooling and thermal mass in a hot arid climate
Xu et al. Field experiments on natural energy utilization in a residential house with a double skin façade system
Etzion et al. Adaptive architecture: integrating low-energy technologies for climate control in the desert
JP2008513632A (en) Window and window frame
JP4595568B2 (en) Double roof structure
TWI280306B (en) Structure of exterior wall or roof having air permeable layer which can reduce radiative heat transfer and absorption of solar radiation and outer covering for exterior wall or roof covering
Duan et al. Thermal performance and condensation risk of single-pane glazing with low emissivity coatings
Duraković et al. Passive solar heating/cooling strategies
US20220381524A1 (en) Systems and Methods for Spectrally Selective Thermal Radiators with Partial Exposures to Both the Sky and the Terrestrial Environment
CN102312648A (en) Two-color energy-saving shutter curtain
Fairey Radiant energy transfer and radiant barrier systems in buildings
JP2009262378A (en) Surface material, its manufacturing method, building, outdoor unit casing of air-conditioner, and outdoor heat exchanger
WO2013036113A1 (en) Outside wall cladding element
Inoue et al. Advanced technologies for appropriate control of heat and light at windows
Su et al. A case study of roof thermal performance in naturally ventilated houses in hot-humid climates under summer conditions
Su et al. Roof thermal design for naturally ventilated houses in a hot humid climate
CN206298997U (en) A kind of ventilation of building surface, insulation buffering interstratified structure
JP3552712B2 (en) Attic insulation structure
Rajagopalan Recent Advances in Passive Cooling Techniques
Mohammed et al. Solar Control and Shading Strategies for Double Skin Facade in Hot Climate
CN213868471U (en) Double-layer ventilation curtain wall mechanism
WO2021111949A1 (en) Composite material

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4595568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees