JP4595104B2 - Objective severity assessment method for movement disorders - Google Patents
Objective severity assessment method for movement disorders Download PDFInfo
- Publication number
- JP4595104B2 JP4595104B2 JP28465799A JP28465799A JP4595104B2 JP 4595104 B2 JP4595104 B2 JP 4595104B2 JP 28465799 A JP28465799 A JP 28465799A JP 28465799 A JP28465799 A JP 28465799A JP 4595104 B2 JP4595104 B2 JP 4595104B2
- Authority
- JP
- Japan
- Prior art keywords
- difference
- data
- severity
- movement disorders
- frames
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Analogue/Digital Conversion (AREA)
- Image Analysis (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、パーキンソン病やハンチントン病などの運動障害を主症状とする疾病の重症度評価方法、あるいは薬物投与、手術、リハビリテーション等の医療行為が運動障害の改善にどの程度影響を及ぼしたかを評価するため運動障害の重症度のデータ収集の方法及び評価方法に関するものである。
【0002】
【従来の技術】
従来、運動障害の重症度の評価方法は、治療者の観察にもとづく、主観的な評価方法であるか、あるいはUnified Parkinson’s Disease Rating Scale、UnifiedHuntington’sDisease Rating Scale などを用いたスケール評価方法が中心であった。これらの方法はいずれも、治療者が視覚的情報をもとにして行う、主観にもとづいた評価方法であり、物理的計測データによらない、客観性の低い評価方法であった。
【0003】
【発明が解決しようとする課題】
上述したように、従来の運動障害の重症度評価方法では、客観性の点で慎重に検討する必要があった。本発明は、このような従来の評価方法の欠点を解消するためになされたものであって、同一データを誰が見ても同じように判定できるよう、データに客観性を持たせること、またそのデータをもとに客観的な重症度評価を行えるようにすることを課題としたものである。
【0004】
【課題を解決するための手段】
上記の課題を解決するために、請求項1の発明は、背景として布などの可視光や赤外光に対して低反射性である素材を用いまた前面と天井、及び2側面のうちの一方が開いていることを特徴とする運動障害テスト箱内において、被評価対象者によって被評価対象部位として身体の一部を用いた、手のひらを開いたり閉じたりする運動、上腕を回内回外する運動、人差し指の先端で素早く目標に触れる運動、手を静かにおいておく姿勢、下肢を上下させる運動などのテスト運動を行わせ、このテスト運動の様子を前記運動障害テスト箱の前面からビデオカメラを用いて撮影し、撮影した動画像をディジタル値に変換してコンピュータに入力し、このディジタル動画像の各フレームに対して連続する隣り合ったフレーム間、または一定間隔のフレーム数を隔てたフレーム間の差分処理を行い、検出されたすべての画素あるいはブロックの輝度差分値を1処理ごとに合計した値、または一定値以上の差分値を持つ画素またはブロックの総数を1計測時における被評価対象部位の擬似的な運動量(擬似運動量)としてこれを求め、得られた擬似運動量データに対してフーリエ変換やウェーブレット変換などの直交変換を行い、周波数のスペクトルを求め、あらかじめ同様の方法で求めた健常者データによるモデルスペクトルと比較して、ピーク位置のずれ、最大ピークにおける強さの違いによって運動障害の重症度を判定することを特徴とする運動障害の客観的重症度評価方法である。
【0005】
【発明の実施の形態】
本発明の実施例を、図面を参照しながら説明する。
図1は、本発明に係わる運動障害テスト及び評価のシステム構成を示す説明図である。図1において、被評価対象者の身体の一部(被評価対象部位)8を、可視光や赤外光に対して無反射性あるいは低反射性である素材を用いた背景71を特徴とする運動障害テスト箱7へ入れ、たとえば、手のひらを開いたり閉じたりする運動、上腕を回内回外する運動、人差し指の先端で素早く目標に触れる運動、手を静かにおいておく姿勢、下肢を上下させる運動などのテスト運動を行わせ、これをビデオカメラ1によって撮影し、ディジタルビデオレコーダー2、画像入力装置3、ビデオモニタ4、コンピュータ5、モニタ6から構成される解析システムに入力して画像処理、データ処理されるよう構成してある。
【0006】
この実施例においては、まず、被評価対象部位を8を運動障害テスト箱7の内部で15秒間前記テスト運動を行わせ、この様子をビデオカメラ1によって撮影し、ディジタルビデオテープレコーダー2によって記録する。また、被評価対象部位8を運動障害テスト箱内7に入れる前に、あらかじめ被評価対象者が居ない状態での背景71を前記ビデオカメラ1によって撮影し、ディジタルビデオテープレコーダー2によって記録しておく。
【0007】
前記方法により記録されたディジタルビデオ画像をディジタルビデオテープレコーダー2によってスロー再生し、画像入力装置3を通じてコンピュータ5に入力させ、ディジタル画像処理、それに続くデータ処理を行わせる。図2はコンピュータが行う画像処理とそれに続くデータ処理の流れを表すフローチャートである。入力されたデータはまず、被評価対象者が居ない状態での背景画像との差分を計算する背景差分P1またはフレーム差分P2がほどこされ、前記背景差分P1が行われたデータについては先端位置検出P11、重心位置検出P12が行われる。これらによって検出されたデータは2次元空間上に並べられ、運動の軌跡が描画されるP13。次にフレーム差分P2が行われたデータについては、1回のフレーム差分計算において得られたすべての画素部分における差分量を合計することによって疑似運動量算出P21が行われ、さらにこれを時間軸上に並べたデータについてフーリエ変換P22が施され、スペクトルが描かれるP23。
【0008】
コンピュータ5が行う画像処理についての説明は、次の通りである。
(1) 背景差分P1:あらかじめ入力した背景画像と被評価対象部位の運動に関する画像各フレームとのピクセルごと、あるいはブロックごとの輝度値差分を行う。
(2) フレーム差分P2:被評価対象部位の運動に関する画像の連続する2フレーム間あるいは一定時間隔のフレーム間におけるピクセルごと、あるいはブロックごとの輝度値差分を行う。
(3) 先端位置検出P11:背景差分によって検出された画像中の被評価対象部位のうち、運動方向最先端部位を検出し、x、yの2次元で表現する。
(4) 重心位置検出P12:背景差分によって検出された画像中の被評価対象部位を表現するすべてのピクセル、あるいはブロックの位置をx、yの2次元で表現し、これらの平均を求める。
(5) 擬似運動量算出P21:フレーム差分によって検出されたすべての画素あるいはブロックの輝度差分値を1処理ごとに合計した値、または一定値以上の差分値を持つ画素またはブロックの総数を1計測時における擬似運動量とする。
【0009】
図3は、軌跡データ解析についての説明図である。被評価対象部位の運動の軌跡データD1に基づく重症度診断は、健常者を相当数用いて作成したモデル曲線D2とのずれ面積D3を計算し、その面積の大きさが大きいほど重症度が高いと評価する。
【0010】
図4は、スペクトルデータ解析についての説明図である。被評価対象部位の擬似運動量からフーリエ変換によって求めたスペクトルD10に基づく重症度診断は、健常者を相当数用いて作成したモデルスペクトルD20とのピーク位置のずれD30、最大ピークにおける強さの違いD40をそれぞれ求め、その大きさが大きいほど重症度が高いと評価する。
【0011】
【他の実施形態】
図1及び図2に示した実施形態では可視光線を利用することを前提とした一般的な実施形態を示したが、図1に記載のビデオカメラとして赤外線カメラを用いてもよい。この場合、図2において記載のP1背景差分処理を省略することも可能である。
【0012】
【発明の効果】
以上説明したように、この発明によれば、運動障害の程度を物理的データとして表すことができるため、データに客観性を持たせること、またそのデータを用いて客観的な重症度評価を行うことが可能になる。
【図面の簡単な説明】
【図1】本発明に係わる運動障害テスト及び評価のシステム構成を示す説明図
【図2】コンピュータが行う画像処理とそれに続くデータ処理の流れを表すフローチャート
【図3】軌跡データ解析についての説明図
【図4】スペクトルデータ解析についての説明図
【符号の説明】
1 ビデオカメラ
2 ディジタルビデオレコーダー
3 画像入力装置
4 ビデオモニタ
5 コンピュータ
6 モニタ
7 運動障害テスト箱
8 被評価対象者の身体の一部(被評価対象部位)
71 低反射性素材を用いた背景
P1 背景差分
P2 フレーム差分
P11先端位置検出
P12重心位置検出
P13運動の軌跡描画
P21擬似運動量算出
P22フーリエ変換
P23スペクトル描画
D1 軌跡データ
D2 モデル曲線
D3 ずれ面積
D10スペクトルデータ
D20モデルパワースペクトル
D30ピーク位置のずれ
D40強さの違い[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for evaluating the severity of a disease whose main symptom is movement disorder such as Parkinson's disease or Huntington's disease, or how much medical practice such as drug administration, surgery or rehabilitation has affected the improvement of movement disorder. Therefore, the present invention relates to a data collection method and an evaluation method for the severity of movement disorders.
[0002]
[Prior art]
Conventionally, the method for evaluating the severity of movement disorder is a subjective evaluation method based on the observation of the therapist, or a scale evaluation method using Unified Parkinson's Disseating Rating Scale, Unified Huntington's Disseating Scale, etc. It was the center. Each of these methods is an evaluation method based on the subjectivity that the therapist performs based on visual information, and is an evaluation method with low objectivity that does not depend on physical measurement data.
[0003]
[Problems to be solved by the invention]
As described above, the conventional methods for assessing the severity of movement disorders require careful examination in terms of objectivity. The present invention has been made in order to eliminate the disadvantages of the conventional evaluation method, and to make the data objective, so that anyone can see the same data in the same way. The objective is to enable an objective assessment of severity based on data.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram showing the system configuration of a movement disorder test and evaluation according to the present invention. In FIG. 1, a part (evaluation target part) 8 of a subject's body is characterized by a
[0006]
In this embodiment, first, the
[0007]
The digital video image recorded by the above method is slowly reproduced by the digital
[0008]
The image processing performed by the
(1) Background difference P1: A luminance value difference for each pixel or each block between the background image input in advance and each frame of the image related to the motion of the evaluation target part is performed.
(2) Frame difference P2: A luminance value difference is calculated for each pixel or block between two consecutive frames of an image related to the motion of the evaluation target site or between frames at a fixed time interval.
(3) Tip position detection P11: Among the evaluation target parts in the image detected by the background difference, the tip part in the movement direction is detected and expressed in two dimensions of x and y.
(4) Barycentric position detection P12: The positions of all pixels or blocks representing the evaluation target part in the image detected by the background difference are expressed in two dimensions of x and y, and the average of these is obtained.
(5) Pseudo-momentum calculation P21: A value obtained by adding the luminance difference values of all pixels or blocks detected by the frame difference for each process, or the total number of pixels or blocks having a difference value equal to or greater than a certain value at the time of measurement The pseudo momentum at.
[0009]
FIG. 3 is an explanatory diagram of the trajectory data analysis. In the severity diagnosis based on the motion trajectory data D1 of the evaluation target part, the deviation area D3 from the model curve D2 created using a considerable number of healthy subjects is calculated, and the severity increases as the area size increases. And evaluate.
[0010]
FIG. 4 is an explanatory diagram of spectrum data analysis. Severity diagnosis based on the spectrum D10 obtained by Fourier transform from the pseudo momentum of the evaluation target site is performed with a peak position deviation D30 from the model spectrum D20 created using a considerable number of healthy subjects, and a difference in intensity D40 at the maximum peak. Each of these is determined, and the greater the size, the higher the severity.
[0011]
[Other Embodiments]
In the embodiment shown in FIG. 1 and FIG. 2, a general embodiment on the assumption that visible light is used is shown, but an infrared camera may be used as the video camera shown in FIG. In this case, the P1 background difference process described in FIG. 2 can be omitted.
[0012]
【The invention's effect】
As described above, according to the present invention, since the degree of movement disorder can be expressed as physical data, it is possible to make the data objective and to perform objective severity evaluation using the data. It becomes possible.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a system configuration of a movement disorder test and evaluation according to the present invention. FIG. 2 is a flowchart showing a flow of image processing performed by a computer and subsequent data processing. FIG. [Fig. 4] Explanatory diagram about spectral data analysis [Explanation of symbols]
DESCRIPTION OF
71 Background P1 Using Low Reflective Material Background Difference P2 Frame Difference P11 Tip Position Detection P12 Center of Gravity Position Detection P13 Motion Trajectory P21 Pseudo Momentum Calculation P22 Fourier Transform P23 Spectrum Drawing D1 Trajectory Data D2 Model Curve D3 Deviation Area D10 Spectrum Data D20 model power spectrum D30 peak position deviation D40 intensity difference
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28465799A JP4595104B2 (en) | 1999-08-30 | 1999-08-30 | Objective severity assessment method for movement disorders |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28465799A JP4595104B2 (en) | 1999-08-30 | 1999-08-30 | Objective severity assessment method for movement disorders |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001067483A JP2001067483A (en) | 2001-03-16 |
JP4595104B2 true JP4595104B2 (en) | 2010-12-08 |
Family
ID=17681305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28465799A Expired - Fee Related JP4595104B2 (en) | 1999-08-30 | 1999-08-30 | Objective severity assessment method for movement disorders |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4595104B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007114885A (en) * | 2005-10-18 | 2007-05-10 | National Institute Of Information & Communication Technology | Classification method and device by similarity of image |
JP5303355B2 (en) * | 2009-05-21 | 2013-10-02 | 学校法人 中央大学 | Periodic gesture identification device, periodic gesture identification method, periodic gesture identification program, and recording medium |
CN102198003B (en) * | 2011-06-07 | 2014-08-13 | 嘉兴恒怡科技有限公司 | Limb movement detection and evaluation network system and method |
JP6932946B2 (en) * | 2017-02-28 | 2021-09-08 | 株式会社ニコン | Detection system, detection method, and detection program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0385685A (en) * | 1989-08-30 | 1991-04-10 | Nippon Telegr & Teleph Corp <Ntt> | Method for detecting direction of head part rotation |
JPH03224580A (en) * | 1990-01-31 | 1991-10-03 | Fuji Electric Co Ltd | Processing method of moving image |
JPH06266840A (en) * | 1993-03-11 | 1994-09-22 | Hitachi Ltd | Status detector for moving object |
JPH08182786A (en) * | 1994-12-27 | 1996-07-16 | Shinkiyou Denshi Kk | Picture image analyzer of moving body |
-
1999
- 1999-08-30 JP JP28465799A patent/JP4595104B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0385685A (en) * | 1989-08-30 | 1991-04-10 | Nippon Telegr & Teleph Corp <Ntt> | Method for detecting direction of head part rotation |
JPH03224580A (en) * | 1990-01-31 | 1991-10-03 | Fuji Electric Co Ltd | Processing method of moving image |
JPH06266840A (en) * | 1993-03-11 | 1994-09-22 | Hitachi Ltd | Status detector for moving object |
JPH08182786A (en) * | 1994-12-27 | 1996-07-16 | Shinkiyou Denshi Kk | Picture image analyzer of moving body |
Also Published As
Publication number | Publication date |
---|---|
JP2001067483A (en) | 2001-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11744475B2 (en) | Remote heart rate monitoring based on imaging for moving subjects | |
EP3405105B1 (en) | Method and apparatus for estimating heart rate | |
Hassan et al. | Towards health monitoring using remote heart rate measurement using digital camera: A feasibility study | |
US11663845B2 (en) | Method and apparatus for privacy protected assessment of movement disorder video recordings | |
Przybyło | A deep learning approach for remote heart rate estimation | |
Churchill et al. | RIVCAM: a simple video-based kinematic analysis for clinical disorders of gait | |
Huang et al. | A motion-robust contactless photoplethysmography using chrominance and adaptive filtering | |
Hallock et al. | Muscle deformation correlates with output force during isometric contraction | |
JP2002345785A (en) | Footprint analyzing apparatus | |
JP4595104B2 (en) | Objective severity assessment method for movement disorders | |
Irani et al. | Contactless measurement of muscles fatigue by tracking facial feature points in a video | |
CN116530976A (en) | Human gait monitoring method | |
Onkaew et al. | Automatic extraction of retinal vessels based on gradient orientation analysis | |
Jeong et al. | Estimation of the ground reaction forces from a single video camera based on the spring-like center of mass dynamics of human walking | |
JP7560127B2 (en) | Severity prediction system | |
JP6240134B2 (en) | Skin condition estimating device and method of operating the same | |
JP4474107B2 (en) | Method for operating body sway measurement device, body sway measurement program, and body sway measurement system | |
JP3718156B2 (en) | Eye dynamics measurement device | |
Molodij et al. | Enhancing retinal images by nonlinear registration | |
Kayani et al. | Pulse rate extraction based on local-area motion magnification | |
Bailon et al. | First approach to automatic measurement of frontal plane projection angle during single leg landing based on depth video | |
Liu et al. | Deep Neural Network-Based Video Processing to Obtain Dual-Task Upper-Extremity Motor Performance Toward Assessment of Cognitive and Motor Function | |
Szymkowski et al. | A simple algorithm for hard exudate detection in diabetic retinopathy using spectral-domain Optical Coherence Tomography | |
KR20200049683A (en) | Respiratory measurement system using depth camera | |
WO2023179218A1 (en) | Quantitative evaluation method and system for static tremor of dyskinesia diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060818 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100901 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |