JP4586126B2 - ITO powder and manufacturing method thereof, ITO paint, and ITO conductive film - Google Patents
ITO powder and manufacturing method thereof, ITO paint, and ITO conductive film Download PDFInfo
- Publication number
- JP4586126B2 JP4586126B2 JP2006058569A JP2006058569A JP4586126B2 JP 4586126 B2 JP4586126 B2 JP 4586126B2 JP 2006058569 A JP2006058569 A JP 2006058569A JP 2006058569 A JP2006058569 A JP 2006058569A JP 4586126 B2 JP4586126 B2 JP 4586126B2
- Authority
- JP
- Japan
- Prior art keywords
- ito
- ito powder
- particle diameter
- powder
- powder according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Paints Or Removers (AREA)
- Conductive Materials (AREA)
- Manufacturing Of Electric Cables (AREA)
Description
本発明は、透明導電膜の形成に用いられるITO粉体およびその製造方法、当該ITO粉体を含むITO塗料、並びに当該ITO塗料を用いて成膜されるITO導電膜に関する。 The present invention relates to an ITO powder used for forming a transparent conductive film and a method for producing the same, an ITO paint containing the ITO powder, and an ITO conductive film formed using the ITO paint.
本明細書においてITOとは、スズを含有するインジウム酸化物のことである。このITOを含有する膜は、可視光に対する高い透光性と導電性とを示すことから、各種表示デバイスや太陽電池などの透明導電膜として用いられている。そして、このITOを用いた透明導電膜の成膜方法として、当該ITOをスパッタリング等により成膜する物理成膜法、当該ITO粒子分散液または含ITO有機化合物をITO塗料として塗布する塗布成膜法が知られている。 In this specification, ITO is an indium oxide containing tin. This film containing ITO is used as a transparent conductive film for various display devices, solar cells, and the like because it exhibits high transmissivity and conductivity with respect to visible light. As a method for forming a transparent conductive film using ITO, a physical film forming method for forming the ITO film by sputtering or the like, and a coating film forming method for applying the ITO particle dispersion or the ITO-containing organic compound as an ITO paint It has been known.
塗布成膜法により得られるITO導電膜は、スパッタリング法などの物理成膜法により得られるITO膜と比べて導電性は多少低いものの、成膜の際に真空装置などの高価な装置を用いることが不要な上、大面積や複雑形状の成膜が可能である。この結果、塗布成膜法により得られるITO導電膜は、低コストなる利点がある。さらに、当該塗布成膜法の中でも、ITO塗料としてITO粒子分散液を用いる方法は、ITO塗料として含ITO有機化合物を用いる方法と比較して、塗布膜を熱分解させることが不要な為、比較的低温プロセスで成膜出来、良好な導電性も得られる。従って、ITO塗料としてITO粒子分散液を用いたITO導電膜の製造方法は、ブラウン管の電磁波シールド膜の成膜方法として広く用いられており、さらには、LCDやELなどの表示デバイスへの応用も検討されている。 The ITO conductive film obtained by the coating film formation method is slightly lower in conductivity than the ITO film obtained by the physical film formation method such as the sputtering method, but an expensive apparatus such as a vacuum apparatus is used for film formation. In addition, film formation of a large area or a complicated shape is possible. As a result, the ITO conductive film obtained by the coating film forming method has an advantage of low cost. Furthermore, among the coating film forming methods, the method using the ITO particle dispersion as the ITO coating does not require thermal decomposition of the coating film as compared with the method using the ITO-containing organic compound as the ITO coating. The film can be formed by a low temperature process and good conductivity can be obtained. Therefore, an ITO conductive film manufacturing method using an ITO particle dispersion as an ITO paint is widely used as a method for forming an electromagnetic wave shielding film of a cathode ray tube, and further applied to display devices such as LCD and EL. It is being considered.
ここで、ITO粒子分散液に用いられる、ITO粒子の形状について説明する。
従来、ITO粒子分散液に用いられるITO粒子の形状としては、一般に粒状ITO粉が使用されてきたが、近年、さらなる膜抵抗の低減を目指し、導電経路の形成をさせる為、粒子同士の接触度を高めるべく、針状、板状、等の形状を有するITO粒子を用いることが提案されている。
Here, the shape of the ITO particles used in the ITO particle dispersion will be described.
Conventionally, as the shape of the ITO particles used in the ITO particle dispersion, granular ITO powder has been generally used. However, in recent years, in order to further reduce the film resistance, to form a conductive path, the degree of contact between particles. In order to increase the thickness, it has been proposed to use ITO particles having a shape such as a needle shape or a plate shape.
次に、ITO粒子分散液に用いられる、ITO粒子の組成について説明する。
ITO粒子の組成もITO導電膜の導電性に影響を与える。
ITOの導電性発現の機構には2種類の機構がある。第一の機構は、ITO結晶中のIn3+をSn4+で置換するものである。当該置換によりSn原子一個あたり、自由電子が1個生じることとなる。第二の機構は、ITO結晶中に酸素欠損を作るものであり、当該酸素欠損一個あたり二個の自由電子が作られることとなる。
Next, the composition of the ITO particles used in the ITO particle dispersion will be described.
The composition of the ITO particles also affects the conductivity of the ITO conductive film.
There are two types of mechanisms for expressing the conductivity of ITO. The first mechanism is to replace In 3+ in the ITO crystal with Sn 4+ . This substitution results in one free electron per Sn atom. The second mechanism is to create oxygen vacancies in the ITO crystal, and two free electrons are created for each oxygen vacancy.
当該Sn4+や酸素欠損は、キャリアである自由電子密度を増大させて、ITO導電膜の導電性を高めることとなる。しかし、当該酸素欠損を付与されたITO粒子は、粉体としての保存安定性に課題があった。これは、格子欠陥により生じた歪みエネルギーが減少する方向、すなわち当該酸素欠損を付与されたITO粒子と、大気中の酸素とが再結合して、当該酸素欠損を少なくする方向に進む原因となる。そして当該酸素欠損の減少がITO導電膜の導電性の経時変化につながる。 The Sn 4+ and oxygen deficiency increases the free electron density is a carrier, and thus to increase the conductivity of the ITO conductive film. However, the ITO particles provided with the oxygen deficiency have a problem in storage stability as a powder. This causes the strain energy generated by lattice defects to decrease, that is, the ITO particles imparted with the oxygen vacancies and the oxygen in the atmosphere recombine to cause the oxygen vacancies to decrease. . And the reduction | decrease of the said oxygen deficiency leads to the time-dependent change of the electroconductivity of an ITO electrically conductive film.
次に、ITO粒子分散液に用いられる、ITO粒子の製造方法について説明する。
塗料に用いられるITO粒子の代表的な製法例として、
(1)スズ塩とインジウム塩とを所定の比率で混合し、水を加えた後に中和剤を添加し、スズ含有水酸化インジウムを得る工程、
(2)得られたスズ含有水酸化インジウムを、250℃以上1000℃以下の温度で焼成する工程、
を有するものがある。
そして(2)の焼成工程は、ITO粒子へ酸素欠損を付与するために、還元雰囲気で行われる。
Next, a method for producing ITO particles used in the ITO particle dispersion will be described.
As a typical manufacturing method of ITO particles used in paint,
(1) A step of mixing a tin salt and an indium salt at a predetermined ratio, adding water and then adding a neutralizer to obtain tin-containing indium hydroxide,
(2) A step of firing the obtained tin-containing indium hydroxide at a temperature of 250 ° C. or higher and 1000 ° C. or lower,
Some have
The firing step (2) is performed in a reducing atmosphere in order to impart oxygen deficiency to the ITO particles.
ここで、特許文献1には、針状ITO粒子と粒状ITO粒子とを混合して用いることにより、膜の電気抵抗値が10kΩ/□以下でありながら、80%以上の可視光透過率と2%以下のヘイズとを有するITO導電膜が得られることが記載されている。
特許文献2には、ITO粉体として、比表面積が15m2/g以上、30m2/g以下であり、CIEが定めるL*a*b*表色系においてa*:−12以上、−7以下、b*:15以上、25以下であるITO粒子を含むものを用いることにより、膜の電気抵抗値が103Ω/□以下でありながら、可視光反射率が1%以下という反射防止性を有し、経時変化による導電性の低下が小さい透明導電膜を得られることが記載されている。
特許文献3には、有機溶媒や還元カ゛スを用いてITO粒子の表面処理を行い、酸素空孔量や表面酸性量を調節することにより、低電気抵抗値を発揮するITO粒子を得ることが記載されている。
Here, in Patent Document 1, by using a mixture of acicular ITO particles and granular ITO particles, the visible light transmittance of 80% or more and 2 while the electrical resistance value of the film is 10 kΩ / □ or less. It is described that an ITO conductive film having a haze of not more than% can be obtained.
Patent Document 2 discloses that ITO powder has a specific surface area of 15 m 2 / g or more and 30 m 2 / g or less, and in the L * a * b * color system defined by CIE, a *: −12 or more, −7 Hereinafter, b *: using an anti-reflective material containing ITO particles of 15 or more and 25 or less, the film has an electric resistance value of 10 3 Ω / □ or less, and an antireflection property that the visible light reflectance is 1% or less. It is described that it is possible to obtain a transparent conductive film that has a small decrease in conductivity due to changes over time.
Patent Document 3 describes that ITO particles that exhibit a low electrical resistance value are obtained by surface treatment of ITO particles using an organic solvent or reducing gas and adjusting the amount of oxygen vacancies and surface acidity. Has been.
ITO塗料としてITO粒子分散液を塗布し、ITO導電膜を得る方法は、上述のように利点の多い方法である。しかしながら、当該方法で成膜されたITO導電膜は未だ導電性が低く、大型ブラウン管の電磁波シールド膜や表示デバイスの高繊細電極用には適用できていないという問題がある。そこで、本発明の目的は導電性が高く、大気中であっても導電性の経時変化の少ないITO導電膜を成膜できるITO粉体およびその製造方法、当該ITO粉体を用いたITO導電膜塗料、並びに透明導電膜を提供することである。 The method of applying an ITO particle dispersion as an ITO paint to obtain an ITO conductive film is a method having many advantages as described above. However, the ITO conductive film formed by this method is still low in conductivity and has a problem that it cannot be applied to an electromagnetic wave shielding film of a large cathode ray tube or a high-definition electrode of a display device. Accordingly, an object of the present invention is to provide an ITO powder capable of forming an ITO conductive film having high conductivity and little change in conductivity over time even in the air, a method for producing the same, and an ITO conductive film using the ITO powder. It is to provide a paint and a transparent conductive film.
本発明者らは、上述の課題を解決すべく研究をおこなった結果、透明導電膜の形成に用いられるITO粉体を構成するITOの1次粒子において、所定の粒子径を有する1次粒子を所定の配合比で存在させることで、1次粒子間同士の接触抵抗を減少させることができることに想到し本発明を完成したものである。 As a result of researches to solve the above-mentioned problems, the present inventors have obtained primary particles having a predetermined particle diameter in the primary particles of ITO constituting the ITO powder used for forming the transparent conductive film. The present invention has been completed by conceiving that the contact resistance between the primary particles can be reduced by making it exist at a predetermined mixing ratio.
即ち、上述の課題を解決するための第1の手段は、
透明導電膜の形成に用いられるITO粉体であって、
当該ITO粉体に含まれるITOの1次粒子のうち、当該1次粒子径が1nm以上、20nm以下のものの存在割合をAwt%、当該1次粒子径が20nmを超え、100nm以下のものの存在割合をBwt%としたとき、3≦A≦50、且つ、50≦B≦97、(但し、A+B≦100)であり、
且つ、当該1次粒子径において95%粒子径を与える粒子径値と、5%粒子径を与える粒子径値との差が30nm以上であり、
且つ、当該1次粒子の最大粒子径が200nm以下であることを特徴とするITO粉体である。
That is, the first means for solving the above-described problem is:
ITO powder used for forming a transparent conductive film,
Among the primary particles of ITO contained in the ITO powder, the abundance ratio of those whose primary particle diameter is 1 nm or more and 20 nm or less is Awt%, and the abundance ratio of those whose primary particle diameter exceeds 20 nm and 100 nm or less. Is Bwt%, 3 ≦ A ≦ 50 and 50 ≦ B ≦ 97 (provided that A + B ≦ 100),
And the difference between the particle size value giving 95% particle size and the particle size value giving 5% particle size in the primary particle size is 30 nm or more,
In addition, the ITO powder is characterized in that the primary particles have a maximum particle size of 200 nm or less.
第2の手段は、
前記1次粒子の粒度分布において、少なくとも2つ以上の極大値を有することを特徴とする第1の手段に記載のITO粉体である。
The second means is
The ITO powder according to the first means having at least two maximum values in the particle size distribution of the primary particles.
第3の手段は、
1次粒子の平均粒子径が異なる、2種以上のITO粉体の混合物であることを特徴とする第1または第2の手段に記載のITO粉体である。
The third means is
The ITO powder according to the first or second means, which is a mixture of two or more kinds of ITO powders having different average particle diameters of primary particles.
第4の手段は、
前記2種以上のITO粉体を混合する際に、1次粒子径の平均粒子径が最も大きなITO粉体を第1種成分とし、1次粒子の平均粒子径が2番目に大きなITO粉体を第2種成分とし、以下、順次、各ITO粉体に番号を付加し、
前記第1種成分に係るITO粉体の1次粒子の平均粒子径をR1、粉体の重量をW1、前記第n種成分以降に係るITO粉体の1次粒子の平均粒子径をRn、粉体の総重量をWn、(n≧2)としたとき、
(式2)
であることを特徴とする第3の手段に記載のITO粉体である。
The fourth means is
When mixing the two or more kinds of ITO powders, the ITO powder having the largest average particle diameter of the primary particles is the first kind component, and the ITO powder having the second largest average particle diameter of the primary particles. As a second type component, and sequentially adding numbers to each ITO powder,
The average particle diameter of primary particles of the ITO powder related to the first type component is R 1 , the weight of the powder is W 1 , and the average particle diameter of the primary particles of the ITO powder related to the nth type component and thereafter is R n , when the total weight of the powder is W n (n ≧ 2),
(Formula 2)
It is ITO powder as described in the 3rd means characterized by these.
第5の手段は、
前記2種のITO粉体を混合する際に、1次粒子径の平均粒子径が大きなITO粉体を第1種成分とし、1次粒子の平均粒子径が小さなITO粉体を第2種成分とし、
前記第1種成分に係るITO粉体の1次粒子の平均粒子径をR1、粉体の重量をW1、前記第2種成分以降に係るITO粉体の1次粒子の平均粒子径をR2、粉体の総重量をW2としたとき、
1.0<R1/R2≦10、且つ、0.05≦W2/(W1+W2)≦0.5
であることを特徴とする第3の手段に記載のITO粉体である。
The fifth means is
When mixing the two kinds of ITO powders, the ITO powder having a large average primary particle diameter is the first type component, and the ITO powder having the small primary particle average particle size is the second type component. age,
The average particle diameter of the primary particles of the ITO powder according to the first type component is R 1 , the weight of the powder is W 1 , and the average particle diameter of the primary particles of the ITO powder according to the second type component and thereafter is R 2 , when the total weight of the powder is W 2 ,
1.0 <R 1 / R 2 ≦ 10 and 0.05 ≦ W 2 / (W 1 + W 2 ) ≦ 0.5
It is ITO powder as described in the 3rd means characterized by these.
第6の手段は、
前記第1種成分に係るITO粉体として、当該第1種成分に係るITO粉体を1t/cm2で成形した圧縮体の電気抵抗値が0.05Ω・cm以下であるITO粉体を用い、
前記第2種成分以降に係るITO粉体として、当該第2種成分以降に係るITO粉体を1t/cm2で成形した圧縮体の電気抵抗値が0.1Ω・cm以下であるITO粉体を用いることを特徴とする第4または第5の手段に記載のITO粉体である。
The sixth means is
As the ITO powder according to the first type component, an ITO powder having an electric resistance value of 0.05 Ω · cm or less of a compressed body obtained by molding the ITO powder according to the first type component at 1 t / cm 2 is used. ,
An ITO powder having an electric resistance value of 0.1 Ω · cm or less of a compressed body obtained by molding the ITO powder according to the second type component or later at 1 t / cm 2 as the ITO powder according to the second type component or later. The ITO powder according to the fourth or fifth means, wherein the ITO powder is used.
第7の手段は、
前記ITO粉体に1t/cm2の加圧を行って作製した圧粉体の初期の電気抵抗値(初期圧粉体抵抗値)を測定し、当該圧粉体を、気温60℃、相対湿度90%で46時間貯蔵して経時変化させた後の電気抵抗値(貯蔵後圧粉体抵抗値)を測定し、式1より経時変化率を算定したとき、当該経時変化率が600%以下であることを特徴とする第1から第6の手段のいずれかに記載のITO粉体である。
(式1) 経時変化率(%)=貯蔵後圧粉体抵抗値÷初期圧粉体抵抗値×100
The seventh means is
The measured initial resistance value of the ITO powder 1t / cm 2 of were produced by performing pressurized compact (initial compact resistance), the green compact, the temperature 60 ° C., relative humidity When the electrical resistance value after being stored at 90% for 46 hours and changed with time (green compact resistance value after storage) was measured and the rate of change with time was calculated from Equation 1, the rate of change with time was 600% or less. The ITO powder according to any one of the first to sixth means, which is characterized in that it exists.
(Formula 1) Rate of change over time (%) = Green resistance after storage ÷ Initial green resistance × 100
第8の手段は、
前記ITO粉体は、可視光領域における透過色をCIE(国際照明委員会)が定めるL*a*b*表色系で評価したとき、b*の値が−15以上、0以下であることを特徴とする第1から第7の手段のいずれかに記載のITO粉体である。
The eighth means is
The ITO powder, it when evaluating the transmission color in the visible light region in CIE (International Commission on Illumination) defines the L * a * b * color system, b * value of -15 or more and 0 or less The ITO powder according to any one of the first to seventh means characterized by the above.
第9の手段は、
第1から第8の手段のいずれかに記載のITO粉体を含むことを特徴とするITO塗料である。
The ninth means is
An ITO paint comprising the ITO powder according to any one of the first to eighth means.
第10の手段は、
第1から第8の手段のいずれかに記載のITO粉体を含むことを特徴とするITO導電膜である。
The tenth means is
An ITO conductive film comprising the ITO powder according to any one of the first to eighth means.
第11の手段は、
第1から第8の手段のいずれかに記載のITO粉体の製造方法であって、
1次粒子の平均粒子径が20nm以上、200nm以下のITO粉体と、1次粒子の平均粒子径が1nm以上、20nm以下のITO粉体とを、所定の割合で混合する工程を有することを特徴とするITO粉体の製造方法である。
The eleventh means is
An ITO powder manufacturing method according to any one of the first to eighth means,
Having a step of mixing an ITO powder having an average primary particle diameter of 20 nm or more and 200 nm or less and an ITO powder having an average primary particle diameter of 1 nm or more and 20 nm or less in a predetermined ratio. It is the manufacturing method of the ITO powder characterized.
第1から第8のいずれかの手段に係るITO粉体は、圧粉体としたときに高い導電性を示し、大気中であっても導電性の経時変化の少ないものである。 The ITO powder according to any one of the first to eighth means exhibits high conductivity when formed into a green compact, and has little change with time in conductivity even in the air.
第9の手段に係るITO塗料によれば、高い導電性と透明度とを有するITO膜を容易に成膜することが出来る。 According to the ITO paint according to the ninth means, an ITO film having high conductivity and transparency can be easily formed.
第10の手段に係るITO膜は、高い導電性と透明度とを有するものである。 The ITO film according to the tenth means has high conductivity and transparency.
第11の手段に係るITO粉体の製造方法によれば、第1から第8のいずれかの手段に係るITO粉体を、容易且つ高い生産性をもって製造することが出来る。 According to the method for producing ITO powder according to the eleventh means, the ITO powder according to any one of the first to eighth means can be produced easily and with high productivity.
本発明に係るITO粉体は、粒子径1nm〜20nmを有する1次粒子の存在割合が3〜50%、粒子径20nm〜100nmを有する1次粒子の存在割合が97〜50%と、従来の技術に係るITO粉体よりブロードな粒子径範囲を持つ。さらに、本発明に係るITO粉体は、当該ITO粉体を構成する1次粒子の95%粒子径の値から5%粒子径の値を差し引いた値が30nm以上である。本発明者らは、ITO粉体がこのような粒度分布を有するとき、当該ITO粉体を圧縮して得られた圧縮体の導電性が、従来の技術に係るITO粉体を圧縮して得られた圧縮体の導電性より大きな値を示すことを見出した。 In the ITO powder according to the present invention, the existing ratio of primary particles having a particle diameter of 1 nm to 20 nm is 3 to 50%, and the existing ratio of primary particles having a particle diameter of 20 nm to 100 nm is 97 to 50%. It has a broader particle size range than the ITO powder related to the technology. Furthermore, in the ITO powder according to the present invention, the value obtained by subtracting the value of the 5% particle diameter from the value of the 95% particle diameter of the primary particles constituting the ITO powder is 30 nm or more. When the ITO powder has such a particle size distribution, the inventors have obtained that the conductivity of the compressed body obtained by compressing the ITO powder is obtained by compressing the ITO powder according to the prior art. It has been found that it exhibits a value greater than the conductivity of the resulting compact.
通常、均一状態で合成されたITO粉体の粒度分布は対数正規分布で近似でき、1山の極大値を有する。これに対し、本発明に係るITO粉体は、複数の状態で合成された、異なる対数正規分布を有する複数のITO粉体の混合物で構成されている。つまり、本発明に係るITO粉体の粒度分布は、前記異なる対数正規分布が重畳したものとなり、粒子径の頻度分布において、少なくとも2点で極大点を持つ。即ち、頻度分布曲線を作成すれば、当該頻度分布曲線は少なくとも2つ以上の山を持った形状になる。また、粒子径の頻度分布全体を考えると、95%粒子径と5%粒子径との差は、30nm以上となり裾野の広いブロードな粒度分布を持つことが判る。その結果、本発明に係るITO体においては、ITO粉体内に複数の対数正規分布を有するITO粉体の粒子が混在することになり、当該粒子間の空隙率が減少し、電導性が向上しているのだと考えられる。 Usually, the particle size distribution of ITO powder synthesized in a uniform state can be approximated by a lognormal distribution and has a maximum value of one peak. On the other hand, the ITO powder according to the present invention is composed of a mixture of a plurality of ITO powders synthesized in a plurality of states and having different lognormal distributions. That is, the particle size distribution of the ITO powder according to the present invention is obtained by superimposing the different lognormal distributions, and has a maximum point at least two points in the frequency distribution of particle diameters. That is, if a frequency distribution curve is created, the frequency distribution curve has a shape having at least two peaks. Further, considering the entire frequency distribution of particle diameters, it can be seen that the difference between the 95% particle diameter and the 5% particle diameter is 30 nm or more and has a broad particle size distribution with a broad base. As a result, in the ITO body according to the present invention, ITO powder particles having a plurality of lognormal distributions are mixed in the ITO powder, the porosity between the particles is reduced, and the electrical conductivity is improved. It is thought that it is.
本発明者らは当該知見に基づき、本発明に係るITO粉体を用いることでITO粉体の圧縮体の導電性が向上するのであれば、本発明に係るITO粉を用いて塗布によるITO導電膜を製造することで、当該ITO導電膜の導電性を向上させることが出来ることに想到した。但し、当該ITO導電膜には、導電性に加えて可視光に対する透明性ももとめられる為、当該ITO導電膜中の粒子の最大粒子径は200nm以下であることが求められる。ITO導電膜中の粒子の最大粒子径が200nm以下であれば、当該ITO導電膜の可視光に対する透明性を保つことが出来るからである。 Based on this knowledge, the inventors of the present invention can use the ITO powder according to the present invention to improve the conductivity of the compressed body of the ITO powder. It was conceived that the conductivity of the ITO conductive film can be improved by manufacturing the film. However, since the ITO conductive film is required to have transparency to visible light in addition to conductivity, the maximum particle diameter of the particles in the ITO conductive film is required to be 200 nm or less. This is because if the maximum particle size of the particles in the ITO conductive film is 200 nm or less, the ITO conductive film can be kept transparent to visible light.
本発明に係る、少なくとも2つ以上の極大値を有する粒度分布をもったITO粉体を得る方法として、ITO粉体の製造段階の粒子径をコントロールする工程において、意図的に不均一な状態を作り出すことが考えられる。具体的には、ITO粉体の焼成段階において焼成炉内の温度分布を広くとることによって実施することが考えられる。また、湿式反応工程でITO粉体の粒子径を調整する場合においては、当該湿式工程における撹拌速度を極端に遅くする制御をおこなうことも考えられる。しかし、上述の焼成炉内の温度分布制御または撹拌速度制御は、いずれの場合も非常に精密な制御が求められ、再現良く所望の粒度分布を持ったITO粉体を得ることは困難であった。 As a method for obtaining an ITO powder having a particle size distribution having at least two maximum values according to the present invention, in the process of controlling the particle diameter at the production stage of the ITO powder, an intentionally uneven state is obtained. It is possible to create. Specifically, it is conceivable to carry out by widening the temperature distribution in the firing furnace in the firing stage of the ITO powder. Moreover, when adjusting the particle diameter of ITO powder by a wet reaction process, it can also consider performing control which makes the stirring speed in the said wet process extremely slow. However, the above temperature distribution control or stirring speed control in the firing furnace requires very precise control in all cases, and it is difficult to obtain ITO powder having a desired particle size distribution with good reproducibility. .
ここで、本発明者らは、本発明に係る少なくとも2山の極大値を有する粒度分布をもったITO粉体を、容易、且つ、高い生産性をもって低コストで製造するには、2種以上の異なった粒子径分布を有するITO粉体を混合して製造すればよいことに想到した。当該混合方法は、当該2種以上のITO粉体同士が十分に混ざり合うように行い、且つ、当該混合されるITO粉体において、2次粒子が出来るだけ1次粒子の粒子径にまで粉砕されることが望ましい。 Here, in order to produce ITO powder having a particle size distribution having a maximum value of at least two peaks according to the present invention easily and with high productivity at low cost, two or more kinds are used. It has been conceived that ITO powders having different particle size distributions may be mixed and manufactured. The mixing method is performed so that the two or more kinds of ITO powders are sufficiently mixed, and in the mixed ITO powder, secondary particles are pulverized to the primary particle size as much as possible. It is desirable.
上述した2種以上の異なった粒子径分布を有するITO粉体のうち、第1種成分のITO粉体は、1次粒子の平均粒子径が20nm以上と比較的大きな粒子を有するものを用いる。第2種成分以降の粉体は、少なくとも、第1種成分の平均1次粒子径より小さい平均1次粒子径を有するものを用いる。さらに、第1種成分の平均1次粒子径と第2種成分以降の平均1次粒子径との粒子径比は大きい方が好ましい。 Of the above-mentioned ITO powders having two or more different particle size distributions, the first type of ITO powder is one having relatively large particles with an average primary particle size of 20 nm or more. As the powder after the second type component, at least one having an average primary particle size smaller than the average primary particle size of the first type component is used. Furthermore, it is preferable that the particle size ratio between the average primary particle size of the first type component and the average primary particle size after the second type component is large.
つまり、第1種成分に含まれる1次粒子の平均粒子径をR1、第2種成分に含まれる1次粒子の平均粒子径をR2、第n種成分に含まれる1次粒子の平均粒子径をRnとしたとき、第1種成分の粉体において20nm≦R1であり、第2種成分の粉体において、R2<R1であり、第n種成分の粉体において、Rn<Rn−1である。 That is, the average particle size of the primary particles contained in the first type component is R 1 , the average particle size of the primary particles contained in the second type component is R 2 , and the average of the primary particles contained in the nth type component When the particle diameter is R n , 20 nm ≦ R 1 in the first type component powder, R 2 <R 1 in the second type component powder, and n type component powder, it is an R n <R n-1.
次に、第1種成分と、第2種成分以降の成分との混合比について説明する。
まず、第1種成分および第2種成分を含む場合について説明する。
この第1種成分および第2種成分を含む場合は、当該両成分が、次式を満たす関係であればよい。
1.0<R1/R2≦10、且つ、0.05≦W2/(W1+W2)≦0.5
但し W1:第1種成分の粉体の重量
W2:第2種成分の粉体の重量
Next, the mixing ratio between the first type component and the second and subsequent components will be described.
First, the case where a 1st type component and a 2nd type component are included is demonstrated.
When the first type component and the second type component are included, the two components may be in a relationship satisfying the following formula.
1.0 <R 1 / R 2 ≦ 10 and 0.05 ≦ W 2 / (W 1 + W 2 ) ≦ 0.5
W 1 : Weight of the first component powder
W 2 : Weight of the second kind component powder
第1種成分から第n種成分を含む一般的な場合には、当該各成分が、式2を満たす関係であればよい。
(式2)
但し W1:第1種成分の粉体の重量
Wn:第n種成分の粉体の重量
n≧2
In the general case of including the first type component to the nth type component, it is only necessary that the respective components satisfy the expression 2.
(Formula 2)
W 1 : Weight of the first component powder
W n : Weight of powder of the n-th component
n ≧ 2
以下、第1種成分および第2種成分を含む場合を例として説明する。
後述する実施例において、R1/R2=4.1、0.05≦W2/(W1+W2)≦0.5および、R1/R2=2.7、0.05≦W2/(W1+W2)≦0.5の場合を記載したが、粒子径比R1/R2は、1以上であれば、幾何学的な充填密度の向上に効果があり、当該粒子径比が大きいほど最密充填構造に近づくので好ましい。しかし、ITO粒子の粒子径が小さいほど、合成は困難となり、酸素欠損の不安定さは増大する。従って、ITO粒子の粒子径の下限値には自ずと限界があり、1次粒子の平均粒子径で高々7nm程度、好ましくは15nm程度以上である。一方、当該ITO粒子の可視光にたいする透過性を勘案すると、1次粒子径の平均は70nm以下、且つ、最大粒子径は200nm以下、好ましくは100nm以下である。この結果、20nm≦R1≦70nmであり、R1/R2の好ましい範囲は、1.0<R1/R2≦10、さらに好ましくは1.0<R1/R2≦5である。
Hereinafter, the case where a 1st type component and a 2nd type component are included is demonstrated as an example.
In Examples described later, R 1 / R 2 = 4.1, 0.05 ≦ W 2 / (W 1 + W 2 ) ≦ 0.5, and R 1 / R 2 = 2.7, 0.05 ≦ W 2 / (W 1 + W 2 ) ≦ 0.5 is described, but if the particle diameter ratio R 1 / R 2 is 1 or more, there is an effect in improving the geometric packing density. A larger diameter ratio is preferable because it approaches a close-packed structure. However, the smaller the particle size of the ITO particles, the more difficult it is to synthesize and the instability of oxygen deficiency increases. Accordingly, the lower limit of the particle diameter of the ITO particles is naturally limited, and the average particle diameter of the primary particles is at most about 7 nm, preferably about 15 nm or more. On the other hand, considering the transparency of the ITO particles to visible light, the average primary particle size is 70 nm or less, and the maximum particle size is 200 nm or less, preferably 100 nm or less. As a result, a 20nm ≦ R 1 ≦ 70nm, the preferred range of R 1 / R 2 is, 1.0 <R 1 / R 2 ≦ 10, more preferably is 1.0 <R 1 / R 2 ≦ 5 .
W2/(W1+W2)の値が0.05以上であると、W2の混合量が所定量以上確保され、上述した最密充填が完全なものとなり、低抵抗化への効果が発揮される。また、W2/(W1+W2)の値が0.5以下であれば微粒子の割合が所定量以下となるので、経時変化率が低下し、抵抗値の経時変化が回避される。 When the value of W 2 / (W 1 + W 2 ) is 0.05 or more, the mixing amount of W 2 is ensured to be a predetermined amount or more, and the above-mentioned close-packing is completed, which has the effect of reducing resistance. Demonstrated. Further, since if W 2 / (W 1 + W 2) value of 0.5 or less percentage of fine particles is equal to or less than a predetermined amount, aging rate decreases with time change of the resistance value can be avoided.
以上、第1種成分と第2種成分との混合の効果について説明したが、これ以降も、第3種成分から第n種成分まで混合する場合が考えられる。この場合、第3種以降の成分も第1種成分のITO粉体の空隙を充填することが役割である。そこで、当該観点から第2種成分の場合に準じて考えれば良い。この結果、添加する第2種成分以降のITO粉体における1次粒子径の範囲は、第2種成分から第n成分までのITO粉体の重量平均で与えられる。一方、添加する第2種成分以降のITO粉体における重量比率は、第2種成分から第n種成分までの総和に対する比率となる。 As described above, the effect of mixing the first type component and the second type component has been described. However, the case where the third type component to the nth type component are mixed is considered. In this case, the role of the third and subsequent components is also to fill the voids of the ITO powder of the first type component. Therefore, it may be considered according to the case of the second type component from this viewpoint. As a result, the range of the primary particle diameter in the ITO powder after the second type component to be added is given by the weight average of the ITO powder from the second type component to the nth component. On the other hand, the weight ratio in the ITO powder after the second type component to be added is a ratio to the total from the second type component to the nth type component.
上述の効果は、粒子径の異なる粒子を混合することにより、圧粉体の充填層の構造がより最密充填に近づいた為に発現したものと考えられる。粒子径の異なる2種以上の球形粒子を混合した場合の充填密度は幾何学的に計算されているが、当該計算結果によれば、第1種成分の粒子を20〜40wt%配合することが最適混合比率となり、本発明における最適混合比率と良く一致している。さらに、当該幾何学的計算によれば、3種以上の粒子を混合し、より最密充填構造を達成することも出来る。但しコスト面を勘案すると2種の成分の混合が現実的である。 It is considered that the above-described effect is manifested by mixing the particles having different particle diameters so that the structure of the packed bed of the green compact is closer to the closest packing. The packing density when two or more kinds of spherical particles having different particle diameters are mixed is calculated geometrically, but according to the calculation result, it is possible to blend 20 to 40 wt% of the first kind component particles. The optimum mixing ratio is in good agreement with the optimum mixing ratio in the present invention. Furthermore, according to the geometric calculation, it is possible to mix three or more kinds of particles to achieve a more closely packed structure. However, in consideration of the cost, it is realistic to mix two components.
勿論、当該第1種成分および第2種成分の各粉体の圧粉体の導電性も重要である。各粉体の圧粉体の導電性が高いほど、これらを混合したITO粉体の導電性が高くなる。当該観点より第2種成分以降の粉体の圧縮体の電気抵抗値が0.1Ω・cm超えないことが好ましい。 Of course, the conductivity of the green compact of each powder of the first type component and the second type component is also important. The higher the electrical conductivity of the green compact of each powder, the higher the electrical conductivity of the ITO powder mixed with them. From this viewpoint, it is preferable that the electric resistance value of the compact of the powder after the second type component does not exceed 0.1 Ω · cm.
ここで、ITO粒子には、小さくなると酸素欠損状態が不安定となるという問題がある。
これは、ITO粒子は、結晶内へ意図的に酸素欠損を導入することで導電性を持たせているが、1次粒子径が30nm以下程度になると比表面積が増大して表面の酸素欠陥が不安定となる。当該酸素欠損は、特に粒子表面近傍において不安定であり、大気中の水分や酸素により当該酸素欠損がうしなわれ、導電性が経時変化により当該酸素欠損が減少して導電性が低下するのだと考えられる。例えば、従来の方法で還元焼成した粒子径17nmのITO粒子の場合、当該経時変化は、60℃、RH90%の条件下で46時間後に、初期抵抗値に比べて10倍以上に抵抗値が増大する。
Here, the ITO particles have a problem that an oxygen deficient state becomes unstable when it becomes small.
This is because ITO particles are made conductive by intentionally introducing oxygen vacancies into the crystal. However, when the primary particle diameter is about 30 nm or less, the specific surface area increases and surface oxygen defects occur. It becomes unstable. The oxygen deficiency is unstable especially near the particle surface, the oxygen deficiency is caused by moisture and oxygen in the atmosphere, and the conductivity decreases due to a decrease in the oxygen deficiency due to aging. Conceivable. For example, in the case of ITO particles having a particle diameter of 17 nm reduced and fired by a conventional method, the change over time increases the resistance value by 10 times or more compared to the initial resistance value after 46 hours under the conditions of 60 ° C. and RH 90%. To do.
本発明者らは、後述するITO粉体の焼成工程の後に、当該ITO粉体に対し低酸素濃度雰囲気下で一定時間処理を行うことで、ITO粒子が微粒子であっても酸素欠損状態が安定したITO粒子を製造できることに想到し、抵抗変化率の低い微粒のITO粉体を得ることが出来た。
具体的には、アンモニアガスと窒素ガスとの混合ガス雰囲気下で還元焼成を行った後、室温程度まで冷却し、大気よりも低濃度な酸素雰囲気下で、安定化処理を行うものである。当該処理により、ITO粉体の抵抗変化率が低下するのは、ITO粒子表面が極薄い安定化層で覆われた為であると考えられる。
The inventors of the present invention have a stable oxygen deficient state even if the ITO particles are fine by performing a process for a certain period of time in a low oxygen concentration atmosphere after the ITO powder firing step described below. As a result, it was possible to obtain fine ITO powder having a low resistance change rate.
Specifically, after reducing and firing in a mixed gas atmosphere of ammonia gas and nitrogen gas, cooling is performed to about room temperature, and stabilization treatment is performed in an oxygen atmosphere having a lower concentration than the atmosphere. It is considered that the resistance change rate of the ITO powder is reduced by the treatment because the surface of the ITO particles is covered with an extremely thin stabilization layer.
一方、本発明に係るITO粉体において、上述した酸素欠損量は当該粉体の色に影響を与える。即ち、当該粉体色をL*a*b*表色系で表した場合に、b*の値が0を超えれば粉体色は黄色であり、当該粉体において酸素欠損が少ない状態であること示している。これに対し、b*の値が0より小さければ青みがかった粉体色であり、当該粉体において酸素欠損が多い状態であることを示す。本発明者らの検討によれば、本発明に係るITO粉体においてb*は−15以上、0以下であることが好ましく、さらに好ましくは−15以上、−5以下であることが判明した。 On the other hand, in the ITO powder according to the present invention, the oxygen deficiency described above affects the color of the powder. That is, when the powder color is expressed in the L * a * b * color system, if the value of b * exceeds 0, the powder color is yellow, and the powder is in a state with few oxygen vacancies. It shows that. On the other hand, when the value of b * is smaller than 0, the powder color is bluish, indicating that the powder has many oxygen vacancies. According to the study by the present inventors, it was found that in the ITO powder according to the present invention, b * is preferably −15 or more and 0 or less, more preferably −15 or more and −5 or less.
[本発明に係るITO粉体の製造方法]
本発明に係るITO粉体の製造方法について説明する。
まず、第1の工程として、スズ塩とインジウム塩とを秤量混合し、当該混合物を純水へ溶解してスズ塩とインジウム塩との混合溶液とし、当該スズ塩とインジウム塩との混合溶液と、アルカリとを反応させて水酸化スズと水酸化インジウムとのスラリーを生成させる。
尚、スズとインジウムの塩は塩酸塩、硫酸鉛、硝酸塩などがあるが、一般的には塩酸塩が用いられる。また、アルカリは、アンモニア、苛性ソーダ、苛性カリ及びその炭酸塩が用いられるが、水酸化スズと水酸化インジウムとのスラリー生成後における不純物を削減する観点から、アンモニアを用いることが好ましい。
[Production method of ITO powder according to the present invention]
The manufacturing method of the ITO powder according to the present invention will be described.
First, as a first step, a tin salt and an indium salt are weighed and mixed, the mixture is dissolved in pure water to obtain a mixed solution of a tin salt and an indium salt, and a mixed solution of the tin salt and the indium salt; Then, an alkali is reacted to form a slurry of tin hydroxide and indium hydroxide.
In addition, although the salt of tin and indium has hydrochloride, lead sulfate, nitrate, etc., hydrochloride is generally used. As the alkali, ammonia, caustic soda, caustic potash, and carbonates thereof are used. From the viewpoint of reducing impurities after slurry formation of tin hydroxide and indium hydroxide, it is preferable to use ammonia.
生成した水酸化スズと水酸化インジウムとのスラリーを固液分離により採集し、純水により不純物を洗浄することで、純度を高めたスズ含有水酸化インジウムのケーキが得られる。得られたケーキを、室温以上、望ましくは80℃以上の温度で乾燥することにより、スズ含有水酸化インジウムの乾燥粉が得られる。 The produced slurry of tin hydroxide and indium hydroxide is collected by solid-liquid separation, and impurities are washed with pure water to obtain a tin-containing indium hydroxide cake with improved purity. The obtained cake is dried at a temperature of room temperature or higher, preferably 80 ° C. or higher, whereby a dry powder of tin-containing indium hydroxide is obtained.
当該スズ含有水酸化インジウム中において、スズは、(1)水酸化インジウムのインジウムと置換している場合もあるが、(2)酸化スズ、または/および、水酸化スズとして、水酸化インジウムと共沈している場合もあり、(3)酸化スズ、または/および、水酸化スズとして、水酸化インジウムと、非晶質の混合体となっている場合もある。 In the tin-containing indium hydroxide, tin may be substituted for indium hydroxide in (1) indium hydroxide, but (2) tin oxide and / or tin hydroxide coexists with indium hydroxide. In some cases, it is precipitated, and (3) as tin oxide and / or tin hydroxide, it may be an amorphous mixture with indium hydroxide.
当該スズ含有水酸化インジウムの粒子径は、水酸化物を得る工程で決定されるが、主に反応温度、反応pH、反応温度を制御することで所望の粒子径の水酸化物を得ることが出来る。 The particle size of the tin-containing indium hydroxide is determined in the step of obtaining a hydroxide, but it is possible to obtain a hydroxide having a desired particle size mainly by controlling the reaction temperature, reaction pH, and reaction temperature. I can do it.
次に、第2の工程である、得られたスズ含有水酸化インジウムを焼成する工程について説明する。
当該焼成工程の目的は、(1)スズ含有水酸化インジウムを、酸化物であるITOに変えること、(2)得られるITO粒子の粒子径を調整すること、(3)得られるITOの結晶に酸素欠損を与えること、である。従って、当該焼成工程は、ITOの結晶に酸素欠損を与えるために、不活性と還元ガスとを混合した弱還元雰囲気下で行われる。そして、通常、当該弱還元雰囲気として、窒素やヘリウム、アルゴン等の不活性ガスへ、水素や一酸化炭素、アンモニアガスを混合した混合ガスが用いられる。当該混合ガスにおける各ガスの混合比率は、ITOの結晶へ付与しようとする酸素欠損量により異なる。但し、当該混合ガスの還元力が強すぎると、スズ含有水酸化インジウムはInO、金属In等になってしまう。また、水素や一酸化炭素等の混合比率の目安は、混合ガスが大気中で爆発限界を超えない程度の濃度にすることが望ましい。
Next, the step of firing the obtained tin-containing indium hydroxide, which is the second step, will be described.
The purpose of the firing step is (1) changing tin-containing indium hydroxide to ITO, which is an oxide, (2) adjusting the particle diameter of the obtained ITO particles, and (3) obtaining the ITO crystals. Giving oxygen deficiency. Therefore, in order to give oxygen deficiency to the ITO crystal, the firing step is performed in a weak reducing atmosphere in which inert gas and reducing gas are mixed. Usually, as the weak reducing atmosphere, a mixed gas in which hydrogen, carbon monoxide, or ammonia gas is mixed with an inert gas such as nitrogen, helium, or argon is used. The mixing ratio of each gas in the mixed gas varies depending on the amount of oxygen deficiency to be imparted to the ITO crystal. However, if the reducing power of the mixed gas is too strong, the tin-containing indium hydroxide becomes InO, metal In, or the like. Moreover, it is desirable that the standard of the mixing ratio of hydrogen, carbon monoxide, or the like is such that the mixed gas does not exceed the explosion limit in the atmosphere.
当該焼成工程における焼成温度は、300℃以上、1000℃迄の条件で行われる。300℃以上であれば完全な酸化物を得ることが出来、1000℃以下であれば、ITO粒子間同士の激しい焼結を回避出来るので、ITO粉体を塗料化する際に分散することが可能となる。好ましくは400℃以上、800℃以下である。当該焼成工程により生成するITO粒子は、焼成温度が高いほど粒子同士の焼結が進むことにより、1次粒子径が大きくなる。 The firing temperature in the firing step is performed under conditions of 300 ° C. or more and 1000 ° C. If it is 300 ° C or higher, a complete oxide can be obtained, and if it is 1000 ° C or lower, intense sintering between ITO particles can be avoided, so it is possible to disperse ITO powder when coating it. It becomes. Preferably it is 400 degreeC or more and 800 degrees C or less. The ITO particles produced by the firing step have a primary particle size that increases as the firing temperature increases, so that sintering of the particles progresses.
ここで、ITO粒子の粒子径を所定の大きさに制御する方法について説明する。
ITO粒子の粒子径を所定の粒子径に制御する方法には、大別して2方法がある。
第1の方法は、まず、BET値が50〜150m2/g程度の微細なスズ含有水酸化インジウムを合成し、当該スズ含有水酸化インジウムを焼成してITOとする際の焼成温度を制御する方法である。第2の方法は、まず、所定の粒子径を有する粒状で結晶性の良いスズ含有水酸化インジウムを合成し、当該スズ含有水酸化インジウムの粒子径を保持したまま、焼成してITOとする方法である。
Here, a method for controlling the particle diameter of the ITO particles to a predetermined size will be described.
There are roughly two methods for controlling the particle diameter of ITO particles to a predetermined particle diameter.
In the first method, first, fine tin-containing indium hydroxide having a BET value of about 50 to 150 m 2 / g is synthesized, and the firing temperature when firing the tin-containing indium hydroxide into ITO is controlled. Is the method. The second method is a method of first synthesizing a tin-containing indium hydroxide having a predetermined particle diameter and good crystallinity, and firing it into ITO while maintaining the particle diameter of the tin-containing indium hydroxide. It is.
第1の方法では、焼成温度を通常450℃〜1000℃とするが、焼成温度が高いほど、微細なスズ含有水酸化インジウム粒子同士が焼結するため、大きな1次粒子径を有するITO粒子が生成する。従って、第1の方法で得られるITOの1次粒子の粒子径は焼成条件により決定される。上述したように、第1種成分の1次粒子の平均粒子径は20nm以上と粗粒子であり、焼成温度は550〜1000℃程度、好ましくは550〜800℃である。焼成時間は、前記焼成温度を10min以上保持すれば、所定の粒子は生成するが、望ましくは30min〜6hrである。焼成時の雰囲気は弱還元雰囲気であればよく、窒素とアンモニア、または、窒素と水素の混合ガスが好ましい。さらに、アンモニアの範囲は0.1〜10vol%が好ましく、水素の範囲は0.01〜5%が好ましい。 In the first method, the firing temperature is usually 450 ° C. to 1000 ° C., but the higher the firing temperature, the finer the tin-containing indium hydroxide particles sinter, so the ITO particles having a large primary particle diameter Generate. Therefore, the particle diameter of the primary ITO particles obtained by the first method is determined by the firing conditions. As described above, the average particle size of the primary particles of the first type component is 20 nm or more and coarse particles, and the firing temperature is about 550 to 1000 ° C., preferably 550 to 800 ° C. The firing time is preferably 30 min to 6 hr although predetermined particles are generated if the firing temperature is maintained for 10 min or more. The atmosphere during firing may be a weak reducing atmosphere, and a mixed gas of nitrogen and ammonia or nitrogen and hydrogen is preferable. Furthermore, the range of ammonia is preferably 0.1 to 10% by volume, and the range of hydrogen is preferably 0.01 to 5%.
第2種成分以降のITO粉体の製造条件は、550〜300℃の範囲で、所定の粒子径を得ることの出来る焼成温度を実験により求め当該求められた温度にて焼成を行う。このとき、焼成時の雰囲気や時間は第1成分を製造する場合と同じで良い。
但し、第2種以降の成分は非常に微粒子であることから、焼成後、大気中に暴露する前に、低酸素の状態で一定時間保持する事が望ましい。具体的には、焼成終了後、100℃以下まで冷却させた後、大気中の酸素濃度よりも低い雰囲気下に置き、10min〜2hr保持する。当該保持処理により、第2種以降のITO粉体における酸素欠損の安定性が増す。
The manufacturing conditions of the ITO powder after the second type component are within a range of 550 to 300 ° C., and a firing temperature at which a predetermined particle diameter can be obtained is obtained by experiments and firing is performed at the determined temperature. At this time, the atmosphere and time at the time of baking may be the same as in the case of producing the first component.
However, since the second and subsequent components are very fine particles, it is desirable to keep them in a low oxygen state for a certain period of time after being baked and before being exposed to the atmosphere. Specifically, after the firing is completed, the mixture is cooled to 100 ° C. or lower, and then placed in an atmosphere lower than the oxygen concentration in the atmosphere and held for 10 min to 2 hr. The retention treatment increases the stability of oxygen deficiency in the second and subsequent ITO powders.
第2の方法では、スズ含有水酸化インジウム粒子合成の際の、反応液の温度、反応時間、反応pHを制御することにより、所定の粒子径のスズ含有水酸化インジウム粒子を生成させる。得られた所定の粒子径のスズ含有水酸化インジウム粒子を、300℃〜550℃の比較的低温で焼成する事により、水酸化物の形状、粒子径を保持したままITO粒子を得ることが出来る。 In the second method, tin-containing indium hydroxide particles having a predetermined particle diameter are generated by controlling the temperature of the reaction solution, the reaction time, and the reaction pH during the synthesis of tin-containing indium hydroxide particles. By firing the obtained tin-containing indium hydroxide particles having a predetermined particle size at a relatively low temperature of 300 ° C. to 550 ° C., ITO particles can be obtained while maintaining the shape and particle size of the hydroxide. .
製造された第1種成分、第2種成分等のITO粉体の具体的な混合方法として、例えば、乾式混合の場合であれば、ボールミルや振動ミル、湿式混合の場合であれば、ボールミル、サンドグラインダーなどが使用できる。 As a specific mixing method of the ITO powder such as the first type component and the second type component produced, for example, in the case of dry mixing, a ball mill or vibration mill, in the case of wet mixing, a ball mill, A sand grinder can be used.
さらに、本発明に係るITO粉体が塗液として用いられることを考慮すれば、混合操作はV型混合機などを用いたプレ混合とし、塗液化の際に、当該ITO粉体を1次粒子の粒子径に迄、分散させる方法も好ましい。 Furthermore, considering that the ITO powder according to the present invention is used as a coating liquid, the mixing operation is premixing using a V-type mixer or the like, and the ITO powder is converted into primary particles during the coating process. A method of dispersing to a particle size of is also preferred.
以上説明したように、本発明に係るITO粉体は、複数の状態で合成された複数の対数正規分布を有するITO粉体で構成されている。その結果、当該ITO粉体は、粒子径の頻度分布において、少なくとも2点で極大点を持つこととなる。即ち、頻度分布曲線を作成すれば、当該頻度分布曲線は少なくとも2つ以上の山を持った形状になる。また、粒子径の頻度分布全体を考えると、95%粒子径と5%粒子径との差は30nm以上となり裾野の広いとブロードな粒度分布を持つこととなる。 As described above, the ITO powder according to the present invention is composed of ITO powder having a plurality of lognormal distributions synthesized in a plurality of states. As a result, the ITO powder has maximum points at at least two points in the frequency distribution of particle diameters. That is, if a frequency distribution curve is created, the frequency distribution curve has a shape having at least two peaks. Considering the entire frequency distribution of particle diameters, the difference between the 95% particle diameter and the 5% particle diameter is 30 nm or more, and a broad particle size distribution is obtained when the base is wide.
そして、当該ITO粉体に含まれるITOの1次粒子のうち、当該1次粒子径が1nm以上、20nm以下のものの存在割合をAwt%、当該1次粒子径が20nmを超え、100nm以下のものの存在割合をBwt%としたとき、3≦A≦50、且つ、50≦B≦97、(但し、A+B≦100)であり、且つ、当該1次粒子径において95%粒子径を与える粒子径値と、5%粒子径を与える粒子径値との差が30nm以上であり、且つ、当該1次粒子の最大粒子径が200nm以下の範囲に調節することで、それぞれのITO粉体単独では到達し得なかった高い電導度が得られる。 Of the primary particles of ITO contained in the ITO powder, the abundance ratio of the primary particle diameter is 1 nm or more and 20 nm or less is Awt%, and the primary particle diameter is more than 20 nm and 100 nm or less. When the existing ratio is Bwt%, 3 ≦ A ≦ 50 and 50 ≦ B ≦ 97 (however, A + B ≦ 100), and a particle size value giving a 95% particle size in the primary particle size And the difference between the particle size value giving 5% particle size is 30 nm or more, and the maximum particle size of the primary particles is adjusted to the range of 200 nm or less, so that each ITO powder alone can reach. High electrical conductivity not obtained is obtained.
詳細は、実施例にて説明するが、抵抗値が0.041Ωcmを示す第1種成分のITO粉体へ、抵抗値が0.096Ωcmを示す第2種成分のITO粉体を25wt%混合し、A=15、B=85、5%粒子径と95%粒子径との粒子径値差を80nmとしたところ、0.022Ωcmを示す低抵抗値のITO粉体が得られた。 Details will be described in Examples, but 25 wt% of the first type ITO powder having a resistance value of 0.041 Ωcm and the second type ITO powder having a resistance value of 0.096 Ωcm are mixed, When the difference in particle size between A = 15, B = 85, 5% particle size and 95% particle size was 80 nm, an ITO powder having a low resistance value of 0.022 Ωcm was obtained.
尚、一次粒子の粒度分布を1次粒子として、当該粒子径が20nmを超え、100nm以下のものの存在割合をBwt%としたとき、3≦A≦50、且つ、50≦B≦97、(但し、A+B≦100)とする構成による電導度の向上方法は、汎用性の高い方法である。従って、上述した製造方法により製造されたITO粉に限られず適用できる。つまり、第1成分、第2成分以降にて使用する粉体として、異なる製造方法で製造されたより低抵抗なITO粉体を用いる場合でも、当該第1成分のITOの抵抗値を低減できると考えられる。 In addition, when the particle size distribution of the primary particles is primary particles and the abundance ratio of the particles having a particle diameter of more than 20 nm and not more than 100 nm is Bwt%, 3 ≦ A ≦ 50 and 50 ≦ B ≦ 97 (however, , A + B ≦ 100), a method for improving conductivity is a highly versatile method. Therefore, the present invention is not limited to the ITO powder manufactured by the manufacturing method described above. That is, even when a lower resistance ITO powder manufactured by a different manufacturing method is used as the powder used in the first component and the second component, the resistance value of the first component ITO can be reduced. It is done.
また、塗布型の膜の電気抵抗値は、一般的なスパッタ膜と比較して、体積抵抗値において2桁高いと言われている。しかし、ITO粉体として本発明に係るITO粉体を用いて塗布型の膜とすることで、その差が1/2以下に縮まることとなった。この結果、従来スパッタ膜が用いられていた一部用途に、本発明に係る塗布型の膜が応用できるものと考えられる。 Further, it is said that the electric resistance value of the coating type film is two orders of magnitude higher in volume resistance value than a general sputtered film. However, when the ITO powder according to the present invention is used as the ITO powder to form a coating film, the difference is reduced to ½ or less. As a result, it is considered that the coating-type film according to the present invention can be applied to some uses where a sputtered film has been conventionally used.
[本発明に係るITO粉体を用いた塗液の製造方法例]
本発明に係るITO粉体は、分散剤を用いて液状媒体物に分散させることにより液状またはペースト状の分散物として塗料化される。当該塗料化の方法は、公知の方法を適用できる。液状媒体物としてはアルコール、ケトン、エーテル、エステル等の有機溶媒や水を使用でき、分散剤としては、界面活性剤やカップリング剤等を使用すればよい。バインダーは所望により用いればよいが、用いる場合は、エポキシ樹脂、アクリル樹脂、塩ビ樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂等が好適に使用できるが、これに限られない。本発明に係るITO粉体を液状媒体物に分散させる際は、ビーズミル等の分散装置を用いて分散させるのが好ましい。
[Example of production method of coating liquid using ITO powder according to the present invention]
The ITO powder according to the present invention is formed into a liquid or paste-like dispersion by dispersing it in a liquid medium using a dispersant. A publicly known method can be applied to the method for forming the paint. As the liquid medium, an organic solvent such as alcohol, ketone, ether or ester or water can be used, and as the dispersant, a surfactant, a coupling agent or the like may be used. The binder may be used as desired. When used, an epoxy resin, an acrylic resin, a vinyl chloride resin, a polyurethane resin, a polyvinyl alcohol resin, or the like can be preferably used, but is not limited thereto. When dispersing the ITO powder according to the present invention in a liquid medium, it is preferable to disperse it using a dispersing device such as a bead mill.
[本発明に係るITO粉体を含む塗液を用いた塗膜の製造方法例]
本発明に係るITO粉体を含む、液状またはペースト状の分散物の塗布または塗膜化に際しては、スクリーン印刷、スピンコート、ディップコード、ロールコート、刷毛コート、スプレーコート等の公知の方法を用いることが出来る。例えば、当該分散物を基板上に塗布する場合には、当該基板材料として、有機高分子、プラスチック、ガラス等をあげることができ、当該基板形状としてはフィルム状のものが一般的である。特に、タッチパネルのようにフレキシビリティを要求される基板には高分子フィルムが好ましく、当該高分子フィルムには、ポリエチレンテレフタレート(PET)、ポリエチレンタフタレート(PEN)、ポリイミド、アラミド、ポリカーボネート等のフィルムを用いることが出来る。
[Example of manufacturing method of coating film using coating liquid containing ITO powder according to the present invention]
When applying or coating a liquid or paste-like dispersion containing the ITO powder according to the present invention, a known method such as screen printing, spin coating, dip code, roll coating, brush coating, spray coating or the like is used. I can do it. For example, when the dispersion is applied onto a substrate, examples of the substrate material include organic polymers, plastics, and glass, and the substrate shape is generally a film. In particular, a polymer film is preferable for a substrate that requires flexibility such as a touch panel, and the polymer film is a film of polyethylene terephthalate (PET), polyethylene tphthalate (PEN), polyimide, aramid, polycarbonate, or the like. Can be used.
[測定方法]
(ITO粒子の粒子径測定方法)
ITO粒子の粒子径測定方法について説明する。
ITO粒子の粒子径測定は、当該ITO粒子のTEM写真上におけるITO粒子の大きさを測定する事により算出することが出来る。そこで、当該算出方法について図1を参照しながら説明する。図1は、本発明に係るITO粒子の10000倍のTEM写真である。図1から明らかなように、ITO粒子は、完全な球形ではないが、測定に際しては当該ITO粒子において最大となる部分の長さ(図1中において、白抜き矢印で示した長さ)を測定し、その測定値を当該ITO粒子の直径とした。尚、測定するITO粒子の数は多いほど好ましく、少なくとも100個以上を測定することが好ましい。尚、当該ITO粒子において、粒子境界が明確でないものは測定の対象外とした。
[Measuring method]
(Method for measuring particle diameter of ITO particles)
A method for measuring the particle diameter of ITO particles will be described.
The particle diameter measurement of the ITO particles can be calculated by measuring the size of the ITO particles on a TEM photograph of the ITO particles. The calculation method will be described with reference to FIG. FIG. 1 is a 10,000 times TEM photograph of ITO particles according to the present invention. As is apparent from FIG. 1, the ITO particles are not completely spherical, but the length of the ITO particles (the length indicated by the white arrow in FIG. 1) is measured during the measurement. And the measured value was made into the diameter of the said ITO particle. In addition, it is so preferable that there are many ITO particles to measure, and it is preferable to measure at least 100 or more. In addition, in the said ITO particle | grains, the particle | grain boundary whose particle boundary is not clear was excluded from the object of a measurement.
上述したITO粒子の粒子径測定結果に基づいて、粒子径と粒子数とから平均粒子径、5%粒子径、および95%粒子径の体積粒子径分布を求めることが出来る。具体的には、まず、試料粉体中に含まれるITO粒子の最大1次粒子径と最少1次粒子径との間を、10〜20の粒子径区間に分ける。次に、当該分けられた各区間に含まれる粒子量の全粒子に対する体積割合と、対象となる区間の粒子径以下の粒子径を有する粒子量との総和粒子量が、全粒子量に対する体積割合のことである。このとき、分けられた各区間に含まれる粒子量の全粒子に対する体積割合を示すのが頻度分布表であり、対象となる区間の粒子径以下の粒子径を有する粒子量との総和粒子量が、全粒子量に対する体積割合を示すのが積算分布表である。 Based on the particle diameter measurement results of the ITO particles described above, volume particle diameter distributions of average particle diameter, 5% particle diameter, and 95% particle diameter can be obtained from the particle diameter and the number of particles. Specifically, first, the interval between the maximum primary particle diameter and the minimum primary particle diameter of the ITO particles contained in the sample powder is divided into 10 to 20 particle diameter sections. Next, the total particle amount of the volume ratio of the particle amount contained in each divided section with respect to all particles and the amount of particles having a particle diameter equal to or smaller than the particle diameter of the target section is the volume ratio with respect to the total particle amount. That is. At this time, the frequency distribution table shows the volume ratio of the amount of particles contained in each divided section with respect to all particles, and the total particle amount with the particle amount having a particle diameter equal to or smaller than the particle size of the target section is The cumulative distribution table shows the volume ratio with respect to the total particle amount.
図2は、後述する実施例3に係るITO試料の頻度分布図と積算分布図とを重ねたグラフである。図2において左縦軸は頻度を示し、右縦軸は積算を示し、横軸は1次粒子径の区分を示している。尚、横軸において、粒子径の範囲が広い場合は対数目盛りを用いることが便宜である。 FIG. 2 is a graph in which a frequency distribution diagram and an integrated distribution diagram of an ITO sample according to Example 3 described later are superimposed. In FIG. 2, the left vertical axis indicates the frequency, the right vertical axis indicates the integration, and the horizontal axis indicates the primary particle size classification. In the horizontal axis, it is convenient to use a logarithmic scale when the particle diameter range is wide.
図2より2種のITO粉体を混合したITO粉体には、頻度分布図において二つの山が現れている。一方、積算分布図において、対象となる区間の粒子径以下の粒子径を有する粒子量との総和粒子量が、全粒子量に対する体積割合において、5%に達する粒子径を5%粒子径、50%に達する粒子径を平均粒子径、95%に達する粒子径を95%粒子径という。
尚、上述したTEM写真から測定した1次粒子の平均径と、BET法で測定したBET値から求めた平均粒子径とは、ほぼ一致した。
As shown in FIG. 2, two peaks appear in the frequency distribution diagram of the ITO powder obtained by mixing two kinds of ITO powder. On the other hand, in the cumulative distribution diagram, the total particle amount with the particle amount having a particle size equal to or smaller than the particle size of the target section reaches 5% in terms of the volume ratio with respect to the total particle amount. The particle diameter reaching% is referred to as the average particle diameter, and the particle diameter reaching 95% is referred to as the 95% particle diameter.
In addition, the average diameter of the primary particles measured from the TEM photograph described above and the average particle diameter determined from the BET value measured by the BET method almost coincided.
(実施例1〜10)
インジウム濃度が18.45wt%の塩化インジウム水溶液(InCl3)366gと、塩化スズ(SnCl2)22gとを秤量し、純水に溶解して塩化インジウムと塩化スズとの混合溶液1.5lを調製した。尚、当該混合溶液において、スズの濃度は、インジウムとスズの合計に対して15mol%となっている。
一方、濃度25wt%のNH3水溶液275gを純水2100gで希釈し、液温を50℃とした。尚、当該NH3水溶液において、NH3量は、前記塩化インジウムと塩化スズとの混合溶液を中和するのに必要な量の2倍量である。
当該NH3水溶液を攪拌し、ここへ前記塩化インジウムと塩化スズとの混合溶液を3分間かけて添加し、スズ含有水酸化インジウムの懸濁液とした。生成したスズ含有水酸化インジウムの懸濁物を濾過収集して、純水によって洗浄しスズ含有水酸化インジウムのケーキを得た。当該スズ含有水酸化インジウムのケーキを100℃で乾燥した。得られたスズ含有水酸化インジウムの比表面積は90m2/gであった。当該スズ含有水酸化インジウムを、焼成炉内に設置し、アンモニアを0.5%含有する窒素雰囲気下で520℃、2時間の焼成を行った。焼成終了後、焼成炉内を30℃迄冷却し、炉内の雰囲気を酸素濃度0.1%の窒素雰囲気として10分間処理した後、炉内の雰囲気の酸素濃度を徐々に上昇させ、1時間かけて20.9%としてITO試料1を製造した。得られたITO試料1の性状を表1に示す。
(Examples 1 to 10)
366 g of indium chloride aqueous solution (InCl 3 ) having an indium concentration of 18.45 wt% and 22 g of tin chloride (SnCl 2 ) are weighed and dissolved in pure water to prepare a mixed solution of 1.5 l of indium chloride and tin chloride. did. In the mixed solution, the concentration of tin is 15 mol% with respect to the total of indium and tin.
On the other hand, 275 g of an NH 3 aqueous solution having a concentration of 25 wt% was diluted with 2100 g of pure water to adjust the liquid temperature to 50 ° C. In the NH 3 aqueous solution, the amount of NH 3 is twice the amount necessary to neutralize the mixed solution of indium chloride and tin chloride.
The NH 3 aqueous solution was stirred, and the mixed solution of indium chloride and tin chloride was added thereto over 3 minutes to obtain a suspension of tin-containing indium hydroxide. The resulting suspension of tin-containing indium hydroxide was collected by filtration and washed with pure water to obtain a tin-containing indium hydroxide cake. The tin-containing indium hydroxide cake was dried at 100 ° C. The specific surface area of the obtained tin-containing indium hydroxide was 90 m 2 / g. The tin-containing indium hydroxide was placed in a firing furnace and baked at 520 ° C. for 2 hours in a nitrogen atmosphere containing 0.5% ammonia. After the firing, the inside of the firing furnace is cooled to 30 ° C., and the atmosphere in the furnace is treated with a nitrogen atmosphere having an oxygen concentration of 0.1% for 10 minutes, and then the oxygen concentration in the atmosphere in the furnace is gradually increased for 1 hour. As a result, ITO sample 1 was produced at 20.9%. The properties of the obtained ITO sample 1 are shown in Table 1.
ここで、ITO粉体の色度は、測式色差計を用い反射光の測定で行った。尚、測式色差計は、日本電色工業株式会社製Z-300Aを用いた。 Here, the chromaticity of the ITO powder was measured by measuring reflected light using a colorimeter. In addition, Nippon Denshoku Industries Co., Ltd. Z-300A was used for the measurement type color difference meter.
次に、前記焼成炉の焼成温度を612℃とした以外は、ITO試料1の製造と同様の操作を行い、ITO試料2を製造した。得られたITO試料2の性状を表1に示す。 Next, an ITO sample 2 was produced in the same manner as in the production of the ITO sample 1 except that the firing temperature of the firing furnace was set to 612 ° C. Properties of the obtained ITO sample 2 are shown in Table 1.
次に、前記焼成炉の焼成温度を640℃とした以外は、ITO試料1の製造と同様の操作を行い、ITO試料3を製造した。得られたITO試料3の性状を表1に示す。 Next, an ITO sample 3 was manufactured in the same manner as in the manufacture of the ITO sample 1 except that the baking temperature in the baking furnace was 640 ° C. The properties of the obtained ITO sample 3 are shown in Table 1.
さらに、比較のためITO試料1の製造と同様であるが、焼成終了後に焼成炉内を30℃迄冷却した後、酸素処理を実施せず、そのまま大気中に取り出して、ITO試料4を製造した。得られたITO試料4の性状を表1に示す。 Furthermore, for the sake of comparison, it is the same as the production of the ITO sample 1, but after the firing was completed, the inside of the firing furnace was cooled to 30 ° C., and then the oxygen treatment was not performed, and the sample was taken out into the atmosphere as it was to produce the ITO sample 4. . Properties of the obtained ITO sample 4 are shown in Table 1.
ここで、ITO試料3の95wt%と、ITO試料1の5wt%とを混合して、実施例1に係るITO粉体を製造した。 Here, 95 wt% of the ITO sample 3 and 5 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 1.
ここで、ITO試料3の90wt%と、ITO試料1の10wt%とを混合して、実施例2に係るITO粉体を製造した。 Here, 90 wt% of the ITO sample 3 and 10 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 2.
次に、ITO試料3の75wt%と、ITO試料1の25wt%とを混合して、実施例3に係るITO粉体を製造した。 Next, 75 wt% of the ITO sample 3 and 25 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 3.
ここで、ITO試料3の60wt%と、ITO試料1の40wt%とを混合して、実施例4に係るITO粉体を製造した。 Here, 60 wt% of the ITO sample 3 and 40 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 4.
次に、ITO試料3の50wt%と、ITO試料1の50wt%とを混合して、実施例5に係るITO粉体を製造した。 Next, 50 wt% of the ITO sample 3 and 50 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 5.
次に、ITO試料2の95wt%と、ITO試料1の5wt%とを混合して、実施例6に係るITO粉体を製造した。 Next, 95 wt% of the ITO sample 2 and 5 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 6.
次に、ITO試料2の90wt%と、ITO試料1の10wt%とを混合して、実施例7に係るITO粉体を製造した。 Next, 90 wt% of the ITO sample 2 and 10 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 7.
次に、ITO試料2の75wt%と、ITO試料1の25wt%とを混合して、実施例8に係るITO粉体を製造した。 Next, 75 wt% of the ITO sample 2 and 25 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 8.
次に、ITO試料2の60wt%と、ITO試料1の40wt%とを混合して、実施例9に係るITO粉体を製造した。 Next, 60 wt% of the ITO sample 2 and 40 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 9.
次に、ITO試料2の50wt%と、ITO試料1の50wt%とを混合して、実施例10に係るITO粉体を製造した。 Next, 50 wt% of the ITO sample 2 and 50 wt% of the ITO sample 1 were mixed to produce an ITO powder according to Example 10.
以上、製造された実施例1〜10に係るITO粉体の性状を測定した。当該測定結果を表1に記載する。 The properties of the ITO powders according to Examples 1 to 10 thus manufactured were measured. The measurement results are shown in Table 1.
次に、製造された実施例1〜10に係るITO粉体について、圧粉体の抵抗値および当該圧粉体の抵抗値の経時変化率測定を行い、さらに比較のため、ITO試料1〜4についても同様の測定を行った。当該測定結果を表1に記載する。 Next, with respect to the manufactured ITO powder according to Examples 1 to 10, the resistance value of the green compact and the rate of change over time of the resistance value of the green compact were measured, and for comparison, ITO samples 1 to 4 were used. The same measurement was performed for. The measurement results are shown in Table 1.
(圧粉体の抵抗値測定)
ITO粉体の圧粉体の抵抗値測定について説明する。
上述したITO粉体に1t/cm2の圧力をかけ、直径25mmの円柱状のペレットを作製した。当該ペレットの電気抵抗値を四探針法により測定した。尚、測定装置には、三菱化学製 LORESTA HPを用いた。
(Measurement of resistance value of green compact)
The resistance value measurement of the green compact of ITO powder will be described.
A pressure of 1 t / cm 2 was applied to the ITO powder described above to produce a cylindrical pellet having a diameter of 25 mm. The electric resistance value of the pellet was measured by a four-probe method. The measuring apparatus used was LORESTA HP manufactured by Mitsubishi Chemical.
(圧粉体の抵抗値の経時変化率測定)
ITO粉体の圧粉体における抵抗値の経時変化率の測定について説明する。
上述した圧粉体の電導度測定で作製したITO粉体の圧粉体を、高温恒湿器内に設置し60℃、相対湿度90%で46時間貯蔵した。そして、当該圧粉体作製直後の電気抵抗値を初期圧粉体の電気抵抗値とし、高温恒湿器内貯蔵後の電気抵抗値を経時変化後の圧粉体の電気抵抗値として、両者の変化率を算定し、式1を用いて圧粉体の電気抵抗値の経時変化率を求めた。
(式1) 経時変化率(%)=貯蔵後圧粉体抵抗値÷初期圧粉体抵抗値×100
(Measurement of time-dependent change rate of resistance value of green compact)
The measurement of the rate of change over time of the resistance value in the green compact of the ITO powder will be described.
The green compact of ITO powder produced by the above-described measurement of the electrical conductivity of the green compact was placed in a high-temperature humidity chamber and stored at 60 ° C. and 90% relative humidity for 46 hours. Then, the electrical resistance value immediately after the green compact production is the electrical resistance value of the initial green compact, and the electrical resistance value after storage in the high temperature and humidity chamber is the electrical resistance value of the green compact after time change. The rate of change was calculated, and the rate of change over time in the electrical resistance value of the green compact was determined using Equation 1.
(Formula 1) Rate of change over time (%) = Green resistance after storage ÷ Initial green resistance × 100
(実施例1〜10のまとめ)
表1の結果から明らかなように、粒子径の大きなITO粉体と粒子径の小さなITO粉体とを混合し、当該ITO粉体に含まれるITOの1次粒子のうち、当該1次粒子径が1nm以上、20nm以下のものの存在割合をAwt%、当該1次粒子径が20nmを超え、100nm以下のものの存在割合をBwt%としたとき、3≦A≦50、且つ、50≦B≦97、(但し、A+B≦100)であると、圧粉体抵抗値は0.022Ω・cm〜0.04Ω・cmと低く、圧粉体の抵抗値の経時変化率も330%〜520%と小さいことが判明した。
(Summary of Examples 1 to 10)
As is clear from the results in Table 1, an ITO powder having a large particle size and an ITO powder having a small particle size are mixed, and among the primary particles of ITO contained in the ITO powder, the primary particle size. Is 1 wt% or more and 20 nm or less, Awt%, and the primary particle diameter is more than 20 nm and 100 nm or less is Bwt%, 3 ≦ A ≦ 50 and 50 ≦ B ≦ 97 (However, when A + B ≦ 100), the green compact resistance value is as low as 0.022 Ω · cm to 0.04 Ω · cm, and the time-dependent change rate of the green compact resistance value is as small as 330% to 520%. It has been found.
即ち、各々のITO試料1〜3を単体で使用した場合に比べて、これらを所定の割合で混合することにより、原料であるITO試料1〜3に較べても、圧粉体抵抗値が低く、経時変化率の小さなITO粉体を得ることが出来た。
一方、比較のために製造し特性を測定したITO試料4は、緑黄色をしており粉体抵抗が0.22Ω・cmと高く、経時変化率も1200%と大きかった。
さらにITO試料4は、ITO試料3に安定化処理を行わなかった場合に相当する試料である。このITO試料4は粉体の抵抗値が高く、ITO試料3と混合した場合も、低抵抗値を有する透明導電膜を得ることは出来なかった。
That is, compared with the case where each of the ITO samples 1 to 3 is used alone, the green compact resistance value is lower by mixing them at a predetermined ratio than the ITO samples 1 to 3 which are raw materials. An ITO powder having a small rate of change with time was obtained.
On the other hand, ITO sample 4 produced for comparison and measured for properties was greenish yellow, had a high powder resistance of 0.22 Ω · cm, and a rate of change with time of 1200%.
Furthermore, the ITO sample 4 is a sample corresponding to the case where the ITO sample 3 was not subjected to stabilization treatment. This ITO sample 4 has a high powder resistance value, and even when mixed with the ITO sample 3, a transparent conductive film having a low resistance value could not be obtained.
Claims (11)
当該ITO粉体に含まれるITOの1次粒子のうち、当該1次粒子径が1nm以上、20nm以下のものの存在割合をAwt%、当該1次粒子径が20nmを超え、100nm以下のものの存在割合をBwt%としたとき、3≦A≦50、且つ、50≦B≦97、(但し、A+B≦100)であり、
且つ、当該1次粒子径において95%粒子径を与える粒子径値と、5%粒子径を与える粒子径値との差が30nm以上であり、
且つ、当該1次粒子の最大粒子径が200nm以下であることを特徴とするITO粉体。 ITO powder used for forming a transparent conductive film,
Among the primary particles of ITO contained in the ITO powder, the abundance ratio of those whose primary particle diameter is 1 nm or more and 20 nm or less is Awt%, and the abundance ratio of those whose primary particle diameter exceeds 20 nm and 100 nm or less. Is Bwt%, 3 ≦ A ≦ 50 and 50 ≦ B ≦ 97 (provided that A + B ≦ 100),
And the difference between the particle size value giving 95% particle size and the particle size value giving 5% particle size in the primary particle size is 30 nm or more,
And the ITO powder characterized by the maximum particle diameter of the said primary particle being 200 nm or less.
前記第1種成分に係るITO粉体の1次粒子の平均粒子径をR1、粉体の重量をW1、前記第n種成分以降に係るITO粉体の1次粒子の平均粒子径をRn、粉体の総重量をWn、(n≧2)としたとき、
(式2)
であることを特徴とする請求項3に記載のITO粉体。 When mixing the two or more kinds of ITO powders, the ITO powder having the largest average particle diameter of the primary particles is the first kind component, and the ITO powder having the second largest average particle diameter of the primary particles. As a second type component, and sequentially adding numbers to each ITO powder,
The average particle diameter of primary particles of the ITO powder related to the first type component is R 1 , the weight of the powder is W 1 , and the average particle diameter of the primary particles of the ITO powder related to the nth type component and thereafter is R n , when the total weight of the powder is W n (n ≧ 2),
(Formula 2)
The ITO powder according to claim 3, wherein:
前記第1種成分に係るITO粉体の1次粒子の平均粒子径をR1、粉体の重量をW1、前記第2種成分以降に係るITO粉体の1次粒子の平均粒子径をR2、粉体の総重量をW2としたとき、
1.0<R1/R2≦10、且つ、0.05≦W2/(W1+W2)≦0.5
であることを特徴とする請求項3に記載のITO粉体。 When mixing the two kinds of ITO powders, the ITO powder having a large average primary particle diameter is the first type component, and the ITO powder having the small primary particle average particle size is the second type component. age,
The average particle diameter R 1 of the primary particles of ITO powder according to the first-component, the weight of the powder W 1, the average particle diameter of primary particles of ITO powder according to later the second-component R 2 , when the total weight of the powder is W 2 ,
1.0 <R 1 / R 2 ≦ 10 and 0.05 ≦ W 2 / (W 1 + W 2 ) ≦ 0.5
The ITO powder according to claim 3, wherein:
前記第2種成分以降に係るITO粉体として、当該第2種成分以降に係るITO粉体を1t/cm2で成形した圧縮体の電気抵抗値が0.1Ω・cm以下であるITO粉体を用いることを特徴とする請求項4または5に記載のITO粉体。 As the ITO powder according to the first type component, an ITO powder having an electric resistance value of 0.05 Ω · cm or less of a compressed body obtained by molding the ITO powder according to the first type component at 1 t / cm 2 is used. ,
An ITO powder having an electric resistance value of 0.1 Ω · cm or less of a compressed body obtained by molding the ITO powder according to the second type component or later at 1 t / cm 2 as the ITO powder according to the second type component or later. The ITO powder according to claim 4 or 5, wherein the ITO powder is used.
(式1) 経時変化率(%)=貯蔵後圧粉体抵抗値÷初期圧粉体抵抗値×100 The initial electrical resistance value (initial green compact resistance value) of the green compact produced by applying a pressure of 1 t / cm 2 to the ITO powder was measured, and the green compact was measured at an air temperature of 60 ° C. and a relative humidity. When the electrical resistance value after being stored at 90% for 46 hours and changed with time (green compact resistance value after storage) was measured and the rate of change with time was calculated from Equation 1, the rate of change with time was 600% or less. The ITO powder according to claim 1, wherein the ITO powder is present.
(Formula 1) Rate of change over time (%) = Green resistance after storage ÷ Initial green resistance × 100
1次粒子の平均粒子径が20nm以上、200nm以下のITO粉体と、1次粒子の平均粒子径が1nm以上、20nm以下のITO粉体とを、所定の割合で混合する工程を有することを特徴とするITO粉体の製造方法。 A method for producing the ITO powder according to any one of claims 1 to 8,
Having a step of mixing an ITO powder having an average primary particle diameter of 20 nm or more and 200 nm or less and an ITO powder having an average primary particle diameter of 1 nm or more and 20 nm or less in a predetermined ratio. A method for producing ITO powder, which is characterized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006058569A JP4586126B2 (en) | 2006-03-03 | 2006-03-03 | ITO powder and manufacturing method thereof, ITO paint, and ITO conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006058569A JP4586126B2 (en) | 2006-03-03 | 2006-03-03 | ITO powder and manufacturing method thereof, ITO paint, and ITO conductive film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007238337A JP2007238337A (en) | 2007-09-20 |
JP4586126B2 true JP4586126B2 (en) | 2010-11-24 |
Family
ID=38584237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006058569A Expired - Fee Related JP4586126B2 (en) | 2006-03-03 | 2006-03-03 | ITO powder and manufacturing method thereof, ITO paint, and ITO conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4586126B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4590566B2 (en) * | 2006-03-31 | 2010-12-01 | Dowaエレクトロニクス株式会社 | ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film |
JP5589214B2 (en) * | 2007-10-01 | 2014-09-17 | Dowaエレクトロニクス株式会社 | ITO powder and manufacturing method thereof, coating material for transparent conductive material, and transparent conductive film |
JP5754580B2 (en) * | 2010-10-26 | 2015-07-29 | 三菱マテリアル電子化成株式会社 | Indium tin oxide powder |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001261336A (en) * | 2000-03-22 | 2001-09-26 | Fuji Titan Kogyo Kk | Tin-containing indium oxide microparticulate powder and method of producing the same |
JP2005060220A (en) * | 2003-07-30 | 2005-03-10 | Mitsubishi Materials Corp | Minute tin oxide powder, its manufacture method, and its use |
JP2005225700A (en) * | 2004-02-12 | 2005-08-25 | Sumitomo Osaka Cement Co Ltd | Indium tin oxide fine particle, coating for forming transparent conductive film, transparent conductive film and display apparatus, and method of manufacturing transparent conductive film |
JP2006044993A (en) * | 2004-08-04 | 2006-02-16 | Mitsui Mining & Smelting Co Ltd | Indium oxide powder |
JP2006044994A (en) * | 2004-08-04 | 2006-02-16 | Mitsui Mining & Smelting Co Ltd | Indium oxide powder |
-
2006
- 2006-03-03 JP JP2006058569A patent/JP4586126B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001261336A (en) * | 2000-03-22 | 2001-09-26 | Fuji Titan Kogyo Kk | Tin-containing indium oxide microparticulate powder and method of producing the same |
JP2005060220A (en) * | 2003-07-30 | 2005-03-10 | Mitsubishi Materials Corp | Minute tin oxide powder, its manufacture method, and its use |
JP2005225700A (en) * | 2004-02-12 | 2005-08-25 | Sumitomo Osaka Cement Co Ltd | Indium tin oxide fine particle, coating for forming transparent conductive film, transparent conductive film and display apparatus, and method of manufacturing transparent conductive film |
JP2006044993A (en) * | 2004-08-04 | 2006-02-16 | Mitsui Mining & Smelting Co Ltd | Indium oxide powder |
JP2006044994A (en) * | 2004-08-04 | 2006-02-16 | Mitsui Mining & Smelting Co Ltd | Indium oxide powder |
Also Published As
Publication number | Publication date |
---|---|
JP2007238337A (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4686776B2 (en) | ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film | |
US5071800A (en) | Oxide powder, sintered body, process for preparation thereof and targe composed thereof | |
JP2695605B2 (en) | Target and manufacturing method thereof | |
JP4560149B2 (en) | Transparent conductive material, transparent conductive glass and transparent conductive film | |
JP5349587B2 (en) | Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film | |
TWI433823B (en) | Composite oxide sinter, method for producing composite oxide sinter, method for producing sputtering target and thin film | |
JP5089386B2 (en) | In / Sm oxide sputtering target | |
JP4994068B2 (en) | Oxide conductive material and manufacturing method thereof | |
JP4586126B2 (en) | ITO powder and manufacturing method thereof, ITO paint, and ITO conductive film | |
JP4617506B2 (en) | ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film | |
JP6159867B1 (en) | Transparent conductive film forming target, transparent conductive film forming target manufacturing method, and transparent conductive film manufacturing method | |
JP4841029B2 (en) | Tin oxide-added indium oxide powder and method for producing the same | |
JP5418752B2 (en) | ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film | |
JP4590566B2 (en) | ITO powder and manufacturing method thereof, ITO conductive film paint, and transparent conductive film | |
KR20100135823A (en) | Sputtering target | |
JP5285412B2 (en) | Tin-doped indium oxide particles and method for producing the same | |
JP5018553B2 (en) | ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby | |
JP2008115024A (en) | Conductive oxide powder and method of manufacturing conductive oxide powder | |
KR102302205B1 (en) | Silver powder manufacturing method | |
TWI597236B (en) | ITO powder | |
JP2006156121A (en) | Visible light transmissive particle dispersed conductor, conductive particle, visible light transmissive conductive article, and method for producing the same | |
JP5018552B2 (en) | ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby | |
JP2010269984A (en) | METHOD FOR MANUFACTURING ZnO-BASED SINTERED COMPACT CONTAINING BORON | |
JP2013256425A (en) | Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target | |
TW201434753A (en) | ITO powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100714 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100726 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100726 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4586126 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130917 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |