[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4583974B2 - Needle valve - Google Patents

Needle valve Download PDF

Info

Publication number
JP4583974B2
JP4583974B2 JP2005052857A JP2005052857A JP4583974B2 JP 4583974 B2 JP4583974 B2 JP 4583974B2 JP 2005052857 A JP2005052857 A JP 2005052857A JP 2005052857 A JP2005052857 A JP 2005052857A JP 4583974 B2 JP4583974 B2 JP 4583974B2
Authority
JP
Japan
Prior art keywords
valve
flow
needle
flow rate
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005052857A
Other languages
Japanese (ja)
Other versions
JP2006234132A (en
Inventor
芳比古 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Corp
Original Assignee
Kitz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corp filed Critical Kitz Corp
Priority to JP2005052857A priority Critical patent/JP4583974B2/en
Publication of JP2006234132A publication Critical patent/JP2006234132A/en
Application granted granted Critical
Publication of JP4583974B2 publication Critical patent/JP4583974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

本発明は、流量計を取付けた流量調整式のニードルバルブに関し、特に、リニア流量特性を満たす流量制御を可能にしたニードルバルブに関する。 The present invention relates to a flow rate adjustable needle valve fitted with flow meters, in particular, it relates to a needle valve that enables flow control to meet the linear flow characteristics.

通常、この種のバルブは、弁体の昇降動によって弁体と弁座との流通の開口面積を順次変化させることで流量制御を行う弁として、半導体、液晶等の製造分野をはじめ、各種分野で使用されている。この種のバルブでは、特に、弁体のリフト量に対応した安定流量の確保が重要であり、例えば、実開平6−83946号公報には、バルブシートの流通孔の流入口側をテーパ部に形成して、弁体全開時の流量低下を防止したニードルバルブが開示されている。   Normally, this type of valve is a valve that performs flow control by sequentially changing the opening area of the flow between the valve body and the valve seat by raising and lowering the valve body, and various fields including semiconductor and liquid crystal manufacturing fields. Used in. In this type of valve, it is particularly important to secure a stable flow rate corresponding to the lift amount of the valve body. For example, in Japanese Utility Model Publication No. 6-83946, the inlet side of the flow hole of the valve seat is a tapered portion. A needle valve that is formed to prevent a decrease in flow rate when the valve body is fully open is disclosed.

ところで、流量測定用の流量計はバルブとは別に用意されるため、実開平6−83946号公報をはじめ、従来技術では、流量計とバルブとを合成した総合流量特性については何ら考慮されておらず、このため、バルブに流量計を取付けた場合、総合流量特性が悪化して、安定した流量調整が行えないなどの問題を起こしていた。これを解決するために、流量コントローラを用いて、流量計が検出した計測流量と設定流量とを比較し、バルブの開度調整をフィードバック制御して、計測流量が設定流量に一致するように自動修正することも考えられる。
実開平6−83946号公報
By the way, since a flow meter for measuring the flow rate is prepared separately from the valve, the conventional technology, such as Japanese Utility Model Publication No. 6-83946, does not take into account the total flow characteristics obtained by combining the flow meter and the valve. For this reason, when a flow meter is attached to the valve, the overall flow characteristics deteriorate, causing problems such as inability to stably adjust the flow rate. To solve this problem, the flow rate controller is used to compare the measured flow rate detected by the flow meter with the set flow rate, feedback control of the valve opening adjustment, and automatically adjust the measured flow rate to match the set flow rate. It is possible to correct it.
Japanese Utility Model Publication No. 6-83946

しかしながら、上記流量コントローラを用いたとしても、流量計を取り付けたことが、バルブを含む総合流量特性にどのような影響を与えるかを正確に把握した上で、バルブの製造を行わなければ、総合流量特性を所望の流量特性にできず、安定した流量調整の実現は不可能である。   However, even if the above-mentioned flow controller is used, it is necessary to accurately understand how the installation of the flow meter will affect the overall flow characteristics including the valve. The flow rate characteristic cannot be changed to a desired flow rate characteristic, and stable flow rate adjustment cannot be realized.

本発明は、上記の課題点に鑑み、鋭意研究の結果開発に至ったものであり、その目的とするところは、流量計を取付けたバルブであっても、その総合流量特性がリニア流量特性を満たし、安定した流量制御を可能にすると共に、流量計を含む装置全体の小型化とコストの削減化をも可能にしたニードルバルブを提供することにある。   The present invention has been developed as a result of diligent research in view of the above-mentioned problems, and the object of the present invention is to provide a linear flow rate characteristic even if the valve is equipped with a flow meter. It is an object of the present invention to provide a needle valve that satisfies the requirements and enables stable flow rate control, as well as downsizing and cost reduction of the entire apparatus including the flow meter.

上記の目的を達成するため、本発明は、流量計を取付けたニードルバルブにおいて、弁座部の最大開口面積と弁本体の流入口の流路面積を、バルブ単体での制御においてリニア流量特性を満たす面積比に設定すると共に、当該バルブ単体の最大Cv 値と流量計単体のCv 値を、流量計を含むバルブの総合流量特性がリニア流量特性と成るCv値比に設定したニードルバルブである。 In order to achieve the above object, according to the present invention , in a needle valve equipped with a flow meter, the maximum opening area of the valve seat and the flow passage area of the inlet of the valve main body are linear flow characteristics in the control of the valve alone. The needle valve is set to satisfy the area ratio, and the maximum Cv 1 value of the valve unit and the Cv 2 value of the flow meter unit are set to the Cv value ratio in which the total flow rate characteristic of the valve including the flow meter is a linear flow rate characteristic. is there.

発明によると、流量計を取付けたバルブであっても、リニア流量特性を満たし、安定した流量制御の実現を可能にし、例えば、半導体の純水供給制御装置をはじめ、各種分野の制御装置に適用しうるニードルバルブを提供でき、もって、流量計を含む装置全体の小型化とコストの削減化が可能になった。 According to the present invention, even a valve equipped with a flow meter satisfies linear flow characteristics and enables stable flow control . For example, control devices in various fields including a semiconductor pure water supply control device to provide a needle valve that can be applied to, with, the size of the entire apparatus including the flow meter and the cost reduction of becomes available.

以下に、本発明におけるニードルバルブの一実施形態を図面に基づいて説明する。図1には、本発明の原理に基づくニードルバルブの一例が示されている。図1において、ニードルバルブの一次側には、ボルト等の固定部材を介して流量計Mが取付けられている。この流量計Mは、その先端部を弁本体1の流入口2内に挿入固定されており、弁本体1と一体を成している。従って、ニードルバルブと流量計Mとの間に、別途の配管や継手を接続する必要がないので、小型化とコストの削減化を図った流量計付きニードルバルブを得ることができる。図中3は、弁本体1の二次側に位置する流出口であり、図中4は、流出入口2,3の流路に設けた弁室である。なお、流量計Mはニードルバルブの二次側に取付けてもよいが、ニードルバルブ流下後の乱流体の影響を受けないようにするためには、ニードルバルブの一次側に取付けるのが好ましい。   Hereinafter, an embodiment of a needle valve according to the present invention will be described with reference to the drawings. FIG. 1 shows an example of a needle valve based on the principle of the present invention. In FIG. 1, a flow meter M is attached to the primary side of the needle valve via a fixing member such as a bolt. The flow meter M has its tip end inserted and fixed in the inlet 2 of the valve body 1 and is integrated with the valve body 1. Therefore, since it is not necessary to connect a separate pipe or joint between the needle valve and the flow meter M, it is possible to obtain a needle valve with a flow meter that is reduced in size and cost. In the figure, 3 is an outlet located on the secondary side of the valve body 1, and 4 in the figure is a valve chamber provided in the flow path of the outlets 2 and 3. The flow meter M may be attached to the secondary side of the needle valve, but is preferably attached to the primary side of the needle valve so as not to be affected by the turbulent fluid after the needle valve flows down.

図中5は、弁室4内に装着される環状の弁座部(本例では金属製)であり、該弁座部5の弁口には上方に向って拡がる傾斜面が形成されている。図中6は、前記弁座部5に着座するニードル(本例では金属製)であり、該ニードル6の外周部にはテーパ面が形成されている。このテーパ面の上方位置に外周溝7が設けてあり、着座時にニードル6と弁座部5との間を密封するOリング8が装着されている。本例で示す外周溝7には、一次側を拡げた空隙部が形成され、また、Oリング当接面側をOリング8の半径と略一致しうるアールを呈した円弧面とし、弁微開時のOリング8の飛び出しを防いだ構造としている。勿論、弁座部5やニードル6等の形状・構造は、これに限定されない。   In the figure, reference numeral 5 denotes an annular valve seat portion (made of metal in this example) mounted in the valve chamber 4, and an inclined surface extending upward is formed at the valve port of the valve seat portion 5. . In the figure, reference numeral 6 denotes a needle (made of metal in this example) seated on the valve seat portion 5, and a tapered surface is formed on the outer peripheral portion of the needle 6. An outer peripheral groove 7 is provided above the tapered surface, and an O-ring 8 that seals between the needle 6 and the valve seat portion 5 at the time of seating is mounted. The outer peripheral groove 7 shown in this example is formed with a gap that expands the primary side, and the O-ring contact surface side is an arcuate surface that exhibits a radius that can substantially match the radius of the O-ring 8. The structure prevents the O-ring 8 from popping out when opened. Of course, the shape and structure of the valve seat 5 and the needle 6 are not limited to this.

図1において、前記ニードル6は、流量制御のための移動範囲の最上位にあり、当該バルブを流れる流量が最も多い全開状態にある。この全開状態において、ニードル6の外周テーパ面と弁座部5の最小口径傾斜面(本例では円筒状縮径部5a)との面間で構成される開口面積を、弁座部5の最大開口面積A1とした場合、この最大開口面積A1と流入口2の流路面積A2とは、後述するが、バルブ単体での制御においてリニア流量特性を満たす面積比に設定されており、且つ、前記面積比を有したバルブ単体の最大Cv値と流量計MのCv値は、後述するが、バルブ+流量計の総合流量特性がリニア流量特性と成るCv値比に設定されている。 In FIG. 1, the needle 6 is at the top of the moving range for flow rate control, and is in a fully open state where the flow rate through the valve is the largest. In this fully open state, the opening area formed between the outer peripheral tapered surface of the needle 6 and the minimum diameter inclined surface of the valve seat portion 5 (in this example, the cylindrical reduced diameter portion 5a) is set to the maximum of the valve seat portion 5. When the opening area A1 is set, the maximum opening area A1 and the flow path area A2 of the inlet 2 are set to an area ratio that satisfies a linear flow rate characteristic in the control of the single valve, and will be described later. The maximum Cv 1 value of the single valve having an area ratio and the Cv 2 value of the flow meter M are set to a Cv value ratio at which the total flow characteristic of the valve + flow meter becomes a linear flow characteristic, as will be described later.

図中9は、弁室4と連通させて設けた軸装穴であり、図中10は、ニードル6の軸部である。図中11は、ニードル6の軸部10に装入されるOリングであり、図中12は、Oリング11の装着溝、図中13、14は、軸装する筒体(軸装体)と保持体(軸装体)である。筒体13(本例では樹脂製)には、円筒状の突部13aが設けてあり、内部に軸部挿通孔13bが形成されている。一方、保持体14(本例では樹脂製)には、前記筒体13の突部13aを嵌合させる嵌合溝14aが設けてあり、内部にこの嵌合溝14aを貫通して軸部挿通孔14bが形成されている。この筒体13に設けた突部13aを保持体14に設けた嵌合溝14aに嵌合させると、筒体13と保持体14との間にOリング11を装着させる装着溝12が形成される。この軸封構造は一例であって、これに限定されない。   In the figure, 9 is a shaft mounting hole provided in communication with the valve chamber 4, and 10 in the figure is a shaft portion of the needle 6. In the figure, 11 is an O-ring inserted into the shaft portion 10 of the needle 6, 12 in the figure is a mounting groove of the O-ring 11, and 13 and 14 in the figure are cylindrical bodies (shaft assemblies) to be axially mounted. And a holding body (shaft assembly). The cylindrical body 13 (made of resin in this example) is provided with a cylindrical protrusion 13a, and a shaft portion insertion hole 13b is formed therein. On the other hand, the holding body 14 (made of resin in this example) is provided with a fitting groove 14a for fitting the projection 13a of the cylindrical body 13, and the shaft part is inserted through the fitting groove 14a. A hole 14b is formed. When the protrusion 13 a provided on the cylindrical body 13 is fitted into the fitting groove 14 a provided on the holding body 14, a mounting groove 12 for mounting the O-ring 11 is formed between the cylindrical body 13 and the holding body 14. The This shaft seal structure is an example, and is not limited to this.

図中15は、コイルスプリングであり、図中16は、軸部10に設けた座金、図中17は、筒状のブッシュである。なお、図示しないが、弁本体1とブッシュ17には、外部と連通させる連通孔が設けてある。図中18は、直動型電動モータ(ステッピングモータ)であり、図中19は、前記電動モータ18の出力軸、また、図中20は、前記電動モータ18を内蔵したアクチュエータである。   In the figure, 15 is a coil spring, 16 in the figure is a washer provided on the shaft portion 10, and 17 in the figure is a cylindrical bush. Although not shown, the valve body 1 and the bush 17 are provided with a communication hole that communicates with the outside. In the figure, 18 is a direct-acting electric motor (stepping motor), 19 in the figure is an output shaft of the electric motor 18, and 20 in the figure is an actuator incorporating the electric motor 18.

図2は、図1におけるニードルバルブの分離斜視図であり、同図に基づいて組立手順を説明すると、先ず、環状の弁室4と連通形成した軸装穴9から、シールリング21を装着した環状弁座5を弁本体1に装入して、これを弁室4の流入側に設けた段部1aに配置する。このとき、環状弁座5は遠心方向に適宜の間隙を有した状態で環状の弁室4内に装着される。保持体14と軸装穴9との間をシールするシールリング22を配置する。   FIG. 2 is an exploded perspective view of the needle valve in FIG. 1. The assembly procedure will be described with reference to FIG. 1. First, a seal ring 21 is mounted from a shaft mounting hole 9 formed in communication with the annular valve chamber 4. The annular valve seat 5 is inserted into the valve body 1 and disposed on the step portion 1 a provided on the inflow side of the valve chamber 4. At this time, the annular valve seat 5 is mounted in the annular valve chamber 4 with an appropriate gap in the centrifugal direction. A seal ring 22 that seals between the holding body 14 and the shaft mounting hole 9 is disposed.

続いて、ニードル6に設けた外周溝7にOリング8を装着する。このニードル6の軸部10に筒体(軸装体)13を軸装後、Oリング11を装入し、且つ、このOリング11を介在させた状態で保持体(軸装体)14を軸装する。図1に示すように、筒体13に設けた突部13aを保持体14に設けた嵌合溝14aに嵌合させると、筒体13と保持体14との間にOリング11を装着させる装着溝12が形成される。従って、従来のように、Oリング装着用の溝部をステムや軸装部に一体加工する必要がないので、小さいサイズのバルブであっても優れた軸封性能が実現され、しかも、Oリング位置の移動を伴わない箇所にOリング11を装着させた構造であるので、従来のようなステムにOリングを装着させた構造と比べ、格段に優れた耐久性能を備えている。しかも、ニードル6の軸部10に装入されたOリング11は、筒体13の突部13aと保持体14の嵌合溝14aとを嵌合すれば、装着溝12内に装着された状態となり、優れた密封機能が効果的に発揮されうる状態となる。   Subsequently, an O-ring 8 is attached to the outer circumferential groove 7 provided in the needle 6. After the cylindrical body (shaft assembly) 13 is mounted on the shaft portion 10 of the needle 6, the O-ring 11 is inserted, and the holding body (shaft assembly) 14 is mounted with the O-ring 11 interposed. Shaft. As shown in FIG. 1, when the protrusion 13 a provided on the cylindrical body 13 is fitted in the fitting groove 14 a provided on the holding body 14, the O-ring 11 is mounted between the cylindrical body 13 and the holding body 14. A mounting groove 12 is formed. Therefore, unlike the conventional case, it is not necessary to integrally process the groove for mounting the O-ring on the stem or the shaft mounting portion, so that excellent shaft sealing performance is realized even with a small-sized valve, and the O-ring position Since the O-ring 11 is attached to a portion not accompanied by the movement, the durability is far superior to the conventional structure in which the O-ring is attached to the stem. In addition, the O-ring 11 inserted into the shaft portion 10 of the needle 6 is mounted in the mounting groove 12 if the protrusion 13a of the cylindrical body 13 and the fitting groove 14a of the holding body 14 are fitted. Thus, an excellent sealing function can be effectively exhibited.

前記保持体(軸装体)14を組付けた筒体(軸装体)13は、前記弁室4に装入して環状弁座5の上端面を押圧し、一方、前記保持体14の上部には、弾発付勢するスプリング15の一端を取付け、このスプリング15の他端を軸部10に設けた座金16に係止して、前記スプリング15の弾発力で旧位に復帰する構造としているので、直動型電動モータ18のバックラッシュの影響を受けることなく、ニードル6の昇降動が直ちに前記電動モータ18の駆動に追随可能となり、正確な流路コントロールを実現することができる。しかも、前記ニードル6の軸部10と前記直動型電動モータ18の出力軸19とは別体であり、芯ずれを起こし難い構造が実現されている。   A cylindrical body (shaft assembly) 13 assembled with the holding body (shaft assembly) 14 is inserted into the valve chamber 4 to press the upper end surface of the annular valve seat 5, while One end of a spring 15 that urges and urges the spring is attached to the upper portion, and the other end of the spring 15 is locked to a washer 16 provided on the shaft portion 10 to return to the old position by the elastic force of the spring 15. Since the structure is adopted, the up and down movement of the needle 6 can immediately follow the drive of the electric motor 18 without being affected by the backlash of the direct acting electric motor 18, and accurate flow path control can be realized. . In addition, the shaft portion 10 of the needle 6 and the output shaft 19 of the direct acting electric motor 18 are separate from each other, and a structure that does not cause misalignment is realized.

更に、本例に示すニードルバルブは、前記軸部10に筒体13とOリング11を介して保持体14を組付け、且つ、この保持体14の上部に、弾発付勢するスプリング15の一端を取り付け、このスプリング15の他端を軸部10に設けた座金16に係止させて、これをユニットとして構成しており、図2において、下側からOリング8、ニードル6、筒体13、Oリング11、保持体14、スプリング15、座金16、割りリング16aを一連の仮組み状態として、この仮組み状態からの組立てを可能にしており、優れた組立容易性を実現している。   Further, in the needle valve shown in this example, a holding body 14 is assembled to the shaft portion 10 via a cylindrical body 13 and an O-ring 11, and a spring 15 for elastically energizing is provided on the upper portion of the holding body 14. One end is attached, and the other end of the spring 15 is engaged with a washer 16 provided on the shaft portion 10 to constitute a unit. In FIG. 2, an O-ring 8, a needle 6, a cylinder body is formed from the lower side. 13, O-ring 11, holding body 14, spring 15, washer 16, and split ring 16 a are made into a series of temporary assembled states, and can be assembled from this temporarily assembled state, thereby realizing excellent ease of assembly. .

上述のごとく、仮組み状態にある前記ユニットを、弁室4と連通形成した軸装穴9から弁本体1に装入し、前記環状弁座5の上面に位置させた後、軸装穴9から筒状のブッシュ17を装入して前記保持体14の上面に位置させる。弁本体1とブッシュ17には外部と連通させる図示しない連通孔が設けてあるので、ユニットを弁本体1に装入する際、弁本体1内の気体が前記連通孔から排出され、円滑な装入が可能である。   As described above, the unit in the temporarily assembled state is inserted into the valve body 1 from the shaft mounting hole 9 formed in communication with the valve chamber 4 and is positioned on the upper surface of the annular valve seat 5. A cylindrical bushing 17 is inserted and positioned on the upper surface of the holding body 14. Since the valve body 1 and the bush 17 are provided with a communication hole (not shown) that communicates with the outside, when the unit is inserted into the valve body 1, the gas in the valve body 1 is discharged from the communication hole, so that smooth installation is possible. It is possible to enter.

続いて、軸部10の押し下げ動作によって、前記ニードル6を介して環状弁座5を求遠心方向に調整して調芯がなされる。本例では前記ニードル6のテーパ面の拡径部が、前記環状弁座5の傾斜面の縮径部の一部を押圧しながら調芯するように構成され、軸部10の押し下げ動作は複数回行ってもよく、また、本例では軸部10がスプリング15の弾発力で旧位に復帰する構造を採用しているので、複数回の押し下げ動作が容易である。押し下げの手段は手動の他、弁本体1に装着されるアクチュエータや別途装置を用いてもよい。   Subsequently, the annular valve seat 5 is adjusted through the needle 6 in the centrifugal direction by the pushing-down operation of the shaft portion 10 to perform alignment. In this example, the diameter-enlarged portion of the tapered surface of the needle 6 is configured to align while pressing a part of the diameter-reduced portion of the inclined surface of the annular valve seat 5, and the shaft portion 10 has a plurality of push-down operations. Further, in this example, the shaft portion 10 employs a structure in which the spring portion 15 returns to the old position by the elastic force of the spring 15, so that a plurality of push-down operations are easy. As a means for depressing, in addition to manual operation, an actuator mounted on the valve body 1 or a separate device may be used.

環状弁座5の調芯が完了したら、ボルト等の取付部品を用いて、アクチュエータ20の筐体20aを弁本体1に固定する。これにより、ブッシュ17を介して軸装体である筒体13と保持体14が押圧され、環状弁座5も弁本体1に固定される。本例ではアクチュエータ20の設置が完了したとき、ニードル6の軸芯と環状弁座5の軸芯とが一致した状態となっている。なお、軸部10を押し下げた状態で、アクチュエータ20の筐体20aを弁本体1に固定することにより、環状弁座5を調芯状態に保持したまま、弁本体1に固定することもできる。   When the alignment of the annular valve seat 5 is completed, the housing 20a of the actuator 20 is fixed to the valve body 1 using mounting parts such as bolts. Thereby, the cylindrical body 13 and the holding body 14 which are shaft bodies are pressed via the bush 17, and the annular valve seat 5 is also fixed to the valve body 1. In this example, when the installation of the actuator 20 is completed, the axis of the needle 6 and the axis of the annular valve seat 5 are in alignment. In addition, by fixing the housing 20a of the actuator 20 to the valve body 1 in a state where the shaft portion 10 is pushed down, the annular valve seat 5 can be fixed to the valve body 1 while being kept aligned.

組立てが完了すれば、環状弁座5は弁室4内に強固に固定されるので、この調芯固定された状態は、アクチュエータ20の筐体20aを取り外さない限り確実に維持される。このように、ニードルバルブの組立時に環状弁座5の調芯を完了しているので、バルブ作動時の弁座・弁体の調芯に伴う摺動抵抗が抑制され、軸部10を細くしたり(本例では約φ3mm)、アクチュエータを出力の小さいものとすることができ、バルブ全体を更にコンパクトにし、バルブ内部に滞留する流体量を低減することも可能である。   When the assembly is completed, the annular valve seat 5 is firmly fixed in the valve chamber 4, so that the centering and fixing state is reliably maintained unless the casing 20a of the actuator 20 is removed. Thus, since the alignment of the annular valve seat 5 is completed when the needle valve is assembled, the sliding resistance associated with the alignment of the valve seat / valve body during the valve operation is suppressed, and the shaft portion 10 is made thinner. (In this example, about φ3 mm), the actuator can have a small output, the entire valve can be made more compact, and the amount of fluid staying inside the valve can be reduced.

本願発明者の鋭意研究によって、一次側に流量計Mを取付けたバルブの流量特性は、弁座部5の最大開口面積A1と流入口2の流路面積A2との面積比、並びにこのバルブ単体の最大Cv値と流量計MのCv値の比によって決まることを見出した。これを実証すべく、以下の試験を行った。リニア流量特性の許容範囲は、JIS B 2005−2−4に基づき、後述する「弁体リフト量−容量係数(Cv値)特性グラフ」において、供試品の流量特性の「傾きの最大偏り」が、理想のリニア特性の傾きに対して2倍以下の範囲とした。 Through the diligent research of the inventor of the present application, the flow rate characteristics of the valve having the flow meter M attached to the primary side are as follows. The maximum Cv 1 value and the Cv 2 value of the flow meter M were found to be determined. In order to prove this, the following tests were conducted. The allowable range of the linear flow rate characteristic is based on JIS B 2005-2-4. In the “valve lift amount-capacity coefficient (Cv value) characteristic graph” described later, the “maximum inclination of the slope” of the flow rate characteristic of the test sample is shown. However, the range was less than twice the slope of the ideal linear characteristic.

ここで言う「傾きの最大偏り」とは、供試品の「弁体リフト量−容量係数(Cv値)特性グラフ」において、隣接する各測定値を結ぶ直線の傾きが、理想のリニア特性(制御範囲の最大・最小開度におけるCv値を直線で接続した特性)に対して、最も大きい差となる測定値間の直線の傾きと理想直線の傾きとの比をいう。例えば、後述する図3中、供試品No.1において、理想のリニア特性に対して最も大きい差となる測定値間はH−G区間であり、その傾きは0.0016667である。理想のリニア特性の傾き(H−A区間)は0.160619であるので、傾きの最大偏りは、H−A区間の傾き/H−G区間の傾き=96.37となる。   The "maximum inclination of inclination" here refers to the ideal linear characteristic (inclination of the straight line connecting each adjacent measurement value in the "valve lift amount-capacity coefficient (Cv value) characteristic graph" of the specimen. This is the ratio of the slope of the straight line between the measured values that makes the largest difference to the slope of the ideal straight line with respect to the characteristic in which the Cv values at the maximum and minimum opening of the control range are connected by a straight line. For example, in FIG. In FIG. 1, the measurement value having the largest difference with respect to the ideal linear characteristic is the HG section, and the slope thereof is 0.0016667. Since the slope of the ideal linear characteristic (HA section) is 0.160619, the maximum bias of the slope is slope of HA section / slope of HG section = 96.37.

(試験1)
バルブ単体でのリニア特性の実現:
バルブ+流量計でのリニア流量特性の実現を図るには、先ず、バルブ単体でリニア流量特性を実現する必要がある。本試験では、呼び径10Aのバルブを用い、原則としてバルブの一次側流入口の流路面積A2を一定とし、弁座部の最大開口面積A1を変えることで、開口面積比A2/A1の値が異なる5種類の供試品No.1〜No.5を作成し、流量特性試験を行った。なお、供試品No.4は流路面積A2の値も変更の上、開口面積比を調整した。試験結果を表1に示し、開口面積比別の流量特性データを図3に示す。
(Test 1)
Realization of linear characteristics with a single valve:
In order to achieve a linear flow rate characteristic with a valve and a flow meter, it is first necessary to realize a linear flow rate characteristic with a single valve. In this test, a valve with a nominal diameter of 10A was used. As a general rule, the flow area A2 of the primary inlet of the valve was kept constant, and the maximum opening area A1 of the valve seat portion was changed to obtain the value of the opening area ratio A2 / A1. Five types of specimens with different numbers 1-No. 5 was prepared and the flow characteristic test was conducted. The specimen No. In No. 4, the value of the flow path area A2 was also changed, and the opening area ratio was adjusted. The test results are shown in Table 1, and the flow rate characteristic data for each opening area ratio is shown in FIG.

Figure 0004583974
Figure 0004583974

本試験結果から、No.1〜No.3は、「傾きの最大偏り」が2より大きく、リニア特性は得られていない。一方、No.4とNo.5は、「傾きの最大偏り」が2以下であり、弁体のリフト開始から最大に至るまでの移動範囲全域にわたって、リフト量の等量増分がCv値の等量増分を生じるリニア流量特性が得られている。   From the results of this test, no. 1-No. For “3”, the “maximum bias of inclination” is larger than 2, and no linear characteristic is obtained. On the other hand, no. 4 and no. No. 5 is a linear flow rate characteristic in which the “maximum inclination of inclination” is 2 or less, and an equal increment of the lift amount causes an equal increment of the Cv value over the entire movement range from the start of lift of the valve body to the maximum. Has been obtained.

図4は、表1及び図3のデータに基づき、開口面積比に対する「傾きの最大偏り」を示したものである。供試品No.5の「傾きの最大偏り」は2未満であり、リニア特性が得られるものの、開口面積比(A2/A1)は口径1段落ちに相当する値5.5を上回る開口面積比(15.4)であるため、バルブの大きさ(呼び径)が実際の流量に対して過剰となる。従って、供試品No.4であれば、バルブの大きさが過剰となることなく、リニア流量特性を得ることができる。   FIG. 4 shows the “maximum inclination of inclination” with respect to the aperture area ratio based on the data in Table 1 and FIG. Specimen No. Although the “maximum deviation of inclination” of 5 is less than 2 and linear characteristics are obtained, the opening area ratio (A2 / A1) is larger than the opening area ratio (15.4) corresponding to a drop of one step in the diameter. Therefore, the size (nominal diameter) of the valve is excessive with respect to the actual flow rate. Therefore, the sample No. If it is 4, the linear flow rate characteristic can be obtained without the size of the valve becoming excessive.

次に、「傾きの最大偏り」上限2に相当する流入口の流路面積A2と弁座部の最大開口面積A1との面積比、即ち、最小の開口面積比は図4より約3.5であり、これを上回る比となるように、弁座部の最大開口面積A1と流入口の流路面積A2を設定することで、バルブ単体としてリニア特性を満たす制御が可能となる。一方、リニア特性は満たすものの、前述のように、Cv値を配管口径1段落ち(例えば、口径を呼び径10Aから8Aに下げる)に相当する値まで低下させるような開口面積比の設定はバルブに対する実流量が極めて少ないものとなり、バルブの大きさが過剰なものとなる。1段落ちに相当する開口面積比、即ち、最大の開口面積比は、口径を10Aから8Aに下げる例として、以下のように算出される。   Next, the area ratio between the flow path area A2 of the inlet corresponding to the “maximum deviation of inclination” upper limit 2 and the maximum opening area A1 of the valve seat, that is, the minimum opening area ratio is about 3.5 from FIG. By setting the maximum opening area A1 of the valve seat portion and the flow passage area A2 of the inlet so as to exceed this ratio, it is possible to perform control satisfying the linear characteristics as a single valve. On the other hand, although the linear characteristic is satisfied, as described above, the setting of the opening area ratio that reduces the Cv value to a value corresponding to a drop in the pipe diameter by one step (for example, the diameter is reduced from 10A to 8A) is a valve. The actual flow rate with respect to is extremely small and the size of the valve becomes excessive. The opening area ratio corresponding to one drop, that is, the maximum opening area ratio is calculated as follows as an example of reducing the aperture from 10A to 8A.

1段落ちの開口面積比は、(10÷8)=1.56であることから、最大開口面積比は、3.5(最小開口面積比)×1.56=5.46となる。従って、一次側に流量計を取付けた呼び径10Aのバルブにおいて、弁座部の最大開口面積A1と流入口の流路面積A2との面積比(A2/A1)を3.5〜5.5に設定することで、バルブの大きさが過剰となることなく、リニア流量特性を得ることができる。なお、本実施形態のニードルバルブによれば、弁座部5やニードル6を交換することにより、弁座部の最大開口面積A1の設定を変えることができるので、上記面積比(A2/A1)の調整を容易に行うことができる。 Since the opening area ratio of one drop is (10 ÷ 8) 2 = 1.56, the maximum opening area ratio is 3.5 (minimum opening area ratio) × 1.56 = 5.46. Therefore, in a valve having a nominal diameter of 10A with a flow meter attached to the primary side, the area ratio (A2 / A1) between the maximum opening area A1 of the valve seat and the flow passage area A2 of the inlet is 3.5 to 5.5. By setting to, a linear flow rate characteristic can be obtained without the valve size becoming excessive. According to the needle valve of the present embodiment, the setting of the maximum opening area A1 of the valve seat portion can be changed by exchanging the valve seat portion 5 and the needle 6, so that the area ratio (A2 / A1) Can be easily adjusted.

(試験2)
バルブ+流量計でのリニア特性の実現:
本試験では、呼び径10Aのバルブを用い、バルブ単体と流量計単体とのCv値比が異なる3種類の供試品No.4(1)〜No.4(3)を作成し、流量特性試験を行った。試験結果を表2に示し、Cv値比別の流量特性データを図5に示す。なお、本実施例においては、簡易的に下記計算式によってバルブと流量計との合成Cv値を算出することで評価した。
(Test 2)
Realization of linear characteristics with valve + flow meter:
In this test, a valve with a nominal diameter of 10A was used, and three types of specimens with different Cv value ratios between the valve unit and the flow meter unit. 4 (1) -No. 4 (3) was created and a flow characteristic test was performed. The test results are shown in Table 2, and the flow rate characteristic data for each Cv value ratio is shown in FIG. In this example, evaluation was performed by simply calculating the combined Cv value of the valve and the flow meter by the following formula.

計算式

Figure 0004583974
a formula
Figure 0004583974

Figure 0004583974
Figure 0004583974

本試験結果から、No.4(1)とNo.4(2)は、「傾きの最大偏り」が2以下であり、弁体のリフト開始から最大に至るまでの移動範囲全域にわたって、リフト量の等量増分がCv値の等量増分を生じるリニア流量特性が得られている。一方、No.4(3)は、「傾きの最大偏り」が2より大きく、リニア特性は得られていない。   From the results of this test, no. 4 (1) and no. In 4 (2), the “maximum deviation of inclination” is 2 or less, and the lift amount equal increment over the entire moving range from the start of lift of the valve body to the maximum is a linear in which the Cv value equal increment is generated. Flow characteristics are obtained. On the other hand, no. In 4 (3), the “maximum inclination of inclination” is larger than 2, and no linear characteristic is obtained.

図6は、表2及び図5のデータに基づき、バルブ単体と流量計単体とのCv値比に対する「傾きの最大偏り」を示したものである。供試品No.4(3)のCv値が供試品No.4(2)に対して、最大約2割程度低いものとなる(最大リフト量4.8mmにおけるCv値を参照)が、本実施例の流量計付きバルブが取付けられる装置に応じて、「傾きの最大偏り」が2以下の範囲内で適切な流量特性が得られるよう、適宜選択すればよい。   FIG. 6 shows the “maximum inclination of inclination” with respect to the Cv value ratio between the single valve and the single flowmeter based on the data in Table 2 and FIG. Specimen No. The Cv value of 4 (3) is the specimen No. 4 (2), which is about 20% lower than the maximum (refer to the Cv value at the maximum lift amount of 4.8 mm). May be selected as appropriate so that an appropriate flow rate characteristic can be obtained within a range of “maximum deviation of 2” or less.

上述した試験1、2の結果からも明らかであるように、一次側に流量計を設けたニードルバルブの流量特性は、弁座部の最大開口面積A1と一次側流入口の流路面積A2との面積比、並びにこのバルブ単体の最大Cv値と流量計のCv値の比によって決まり、流量計付きバルブにおけるリニア流量特性を満たす制御の実現が可能となる。具体的には、一次側に流量計を取付けた呼び径10Aのバルブにおいて、弁座部の最大開口面積A1と流入口の流路面積A2との面積比(A2/A1)を3.5〜5.5に設定することに加え、このバルブ単体と流量計単体とのCv値比(Cv:Cv)を1:2.5〜1:4に設定することにより、バルブと流量計とを合成した総合流量特性において、「傾きの最大偏り」を理想のリニア特性の傾きに対して2倍以下に抑制することができ、流量計付きニードルバルブを正確で安定したリニア特性に基づいて流量制御することができる。 As is clear from the results of tests 1 and 2 described above, the flow characteristics of the needle valve provided with the flow meter on the primary side are the maximum opening area A1 of the valve seat and the flow path area A2 of the primary inlet. And the ratio of the maximum Cv 1 value of this single valve unit to the Cv 2 value of the flow meter, and it is possible to realize control satisfying the linear flow rate characteristic in the valve with flow meter. Specifically, in a valve having a nominal diameter of 10A with a flow meter attached to the primary side, the area ratio (A2 / A1) between the maximum opening area A1 of the valve seat and the flow path area A2 of the inlet is 3.5 to In addition to setting to 5.5, by setting the Cv value ratio (Cv 1 : Cv 2 ) between the valve unit and the flow meter unit to 1: 2.5 to 1: 4, In the combined flow characteristics, the “maximum inclination of inclination” can be suppressed to less than twice the inclination of the ideal linear characteristics, and the flow rate of the needle valve with flowmeter is based on accurate and stable linear characteristics. Can be controlled.

本発明に係るニードルバルブによれば、半導体製造装置、液晶製造装置、化学食品プラントなど、あらゆる分野の流量調整を行う調整弁として適用することが可能であり、例えば、冷熱媒、純水や薬液配送、又はその他の分野において、特に、高精度な微少流量の制御を行う必要のある用途においても、高精度な微少流量制御と完全遮断を実現し、しかも、リニア流量特性を満たす制御を実現したコンパクトなニードルバルブとして提供することが可能である。 The needle valve according to the present invention can be applied as a regulating valve for adjusting the flow rate in various fields such as a semiconductor manufacturing apparatus, a liquid crystal manufacturing apparatus, and a chemical food plant. For example, a cooling medium, pure water, or a chemical solution delivery, or in other fields, in particular, even in applications that need to control the precise minute flow rate, to realize highly accurate micro flow rate control and a fully blocking, moreover, realizes the control that meets the linear flow characteristics It is possible to provide as a compact needle valve.

本発明におけるニードルバルブの一例を示した断面図である。It is sectional drawing which showed an example of the needle valve in this invention. 図1におけるニードルバルブの分離斜視図である。FIG. 2 is an exploded perspective view of the needle valve in FIG. 1. 本発明のバルブ単体における開口面積比別の流量特性データを示したグラフである。It is the graph which showed the flow rate characteristic data according to opening area ratio in the valve | bulb single body of this invention. 図3における開口面積比と傾きの最大偏りの関係を示したグラフである。It is the graph which showed the relationship between the opening area ratio in FIG. 3, and the maximum deviation of inclination. 本発明のバルブ+流量計におけるCv値比別の流量特性データを示したグラフである。It is the graph which showed the flow characteristic data according to Cv value ratio in the valve | bulb + flowmeter of this invention. 図5におけるCv値比と傾きの最大偏りの関係を示したグラフである。6 is a graph showing the relationship between the Cv value ratio and the maximum deviation in slope in FIG. 5.

符号の説明Explanation of symbols

1 弁本体
2 流入口
5 弁座部
A1 弁座部の最大開口面積
A2 流入口の流路面積
M 流量計
DESCRIPTION OF SYMBOLS 1 Valve body 2 Inlet 5 Valve seat part A1 Maximum opening area of valve seat A2 Flow path area of inlet M Flow meter

Claims (1)

流量計を取付けたニードルバルブにおいて、弁座部の最大開口面積と弁本体の流入口の流路面積を、バルブ単体での制御においてリニア流量特性を満たす面積比に設定すると共に、当該バルブ単体の最大Cv 値と流量計単体のCv 値を、流量計を含むバルブの総合流量特性がリニア流量特性と成るCv値比に設定したことを特徴とするニードルバルブ。 In a needle valve equipped with a flow meter, the maximum opening area of the valve seat and the flow passage area of the inlet of the valve body are set to an area ratio that satisfies the linear flow characteristics in the control of the valve alone, and A needle valve characterized in that the maximum Cv 1 value and the Cv 2 value of the single flowmeter are set to a Cv value ratio in which the total flow characteristic of the valve including the flowmeter is a linear flow characteristic .
JP2005052857A 2005-02-28 2005-02-28 Needle valve Active JP4583974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005052857A JP4583974B2 (en) 2005-02-28 2005-02-28 Needle valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005052857A JP4583974B2 (en) 2005-02-28 2005-02-28 Needle valve

Publications (2)

Publication Number Publication Date
JP2006234132A JP2006234132A (en) 2006-09-07
JP4583974B2 true JP4583974B2 (en) 2010-11-17

Family

ID=37042014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005052857A Active JP4583974B2 (en) 2005-02-28 2005-02-28 Needle valve

Country Status (1)

Country Link
JP (1) JP4583974B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6178557B2 (en) * 2012-10-17 2017-08-09 株式会社鷺宮製作所 Flow control valve
JP6492129B2 (en) * 2017-07-14 2019-03-27 株式会社鷺宮製作所 Flow control valve
JP6474863B2 (en) * 2017-07-14 2019-02-27 株式会社鷺宮製作所 Flow control valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118365U (en) * 1990-03-19 1991-12-06
JPH0586076U (en) * 1991-05-17 1993-11-19 日立金属株式会社 Digital valve
JPH0683946U (en) * 1993-05-17 1994-12-02 エヌオーケー株式会社 Needle valve
JPH09303609A (en) * 1996-05-21 1997-11-28 Toshiba Corp Flow control valve and flow control system using it
JP2005273708A (en) * 2004-03-23 2005-10-06 Ckd Corp Fluid control valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118365U (en) * 1990-03-19 1991-12-06
JPH0586076U (en) * 1991-05-17 1993-11-19 日立金属株式会社 Digital valve
JPH0683946U (en) * 1993-05-17 1994-12-02 エヌオーケー株式会社 Needle valve
JPH09303609A (en) * 1996-05-21 1997-11-28 Toshiba Corp Flow control valve and flow control system using it
JP2005273708A (en) * 2004-03-23 2005-10-06 Ckd Corp Fluid control valve

Also Published As

Publication number Publication date
JP2006234132A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP5144880B2 (en) Flow control valve
JP3276936B2 (en) Flow control valve
US6622753B2 (en) Variable pressure regulated flow controllers
US20050061372A1 (en) Pressure regulator assembly
US10571031B2 (en) Flow-rate adjustable valve
KR20080001627A (en) Flow control valve
US10767765B2 (en) Flow-rate adjustable valve and method of manufacturing the same
US10795381B2 (en) Flow-rate adjustable valve
WO2006057109A1 (en) Flow control valve
US20140026995A1 (en) Valve device with a flow guiding device
KR20100084121A (en) Valve for controlling back pressure
JP4583974B2 (en) Needle valve
JP5369065B2 (en) Three-way valve
JP6595338B2 (en) Self-aligning disc
JP2019167982A (en) Electric valve
JP4330505B2 (en) Regulator for liquid
JP4566715B2 (en) Needle valve alignment fixing method
JP2004164033A (en) Flow rate controller
JP4566714B2 (en) Needle valve
US7032883B2 (en) Hybrid butterfly fluid control valve
EP3191909B1 (en) Fluid regulator having a retractable sense tube
JP2017201200A (en) Flow regulating valve
CN111102365B (en) Fluid regulator
US20240159323A1 (en) Adjustable Flow Control Valve
US11566716B2 (en) Jump valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4583974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250