JP4581842B2 - Fused flux for submerged arc welding - Google Patents
Fused flux for submerged arc welding Download PDFInfo
- Publication number
- JP4581842B2 JP4581842B2 JP2005154118A JP2005154118A JP4581842B2 JP 4581842 B2 JP4581842 B2 JP 4581842B2 JP 2005154118 A JP2005154118 A JP 2005154118A JP 2005154118 A JP2005154118 A JP 2005154118A JP 4581842 B2 JP4581842 B2 JP 4581842B2
- Authority
- JP
- Japan
- Prior art keywords
- weld metal
- content
- flux
- oxygen
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nonmetallic Welding Materials (AREA)
Description
本発明は、サブマージアーク溶接時に使用される溶融型フラックスに関する。 The present invention relates to a melt type flux used during submerged arc welding.
UOE鋼管や原油タンクの自動溶接方法として、GMAW溶接方法やサブマージアーク溶接方法等が用いられる。殊にサブマージアーク溶接方法は高能率で高性能な溶接金属を得ることが出来るため良く用いられている。 As an automatic welding method for a UOE steel pipe or a crude oil tank, a GMAW welding method, a submerged arc welding method, or the like is used. In particular, the submerged arc welding method is often used because a highly efficient and high performance weld metal can be obtained.
サブマージアーク溶接に用いられるフラックスとしては、ボンドフラックスと溶融型フラックスがある。溶融型フラックスは各種鉱物質の原材料を1200℃以上の高温で溶融し冷却後に粉砕したものであり吸湿性が低く取り扱いや保管が容易な上、多電極溶接との組み合わせにより高速溶接が可能な特徴を有しておりUOE鋼管の製造に多用される。
ボンドフラックスは、原材料に結合材を少量加えて造粒した後に600℃程度で焼き固めたものである。ボンドフラックスに金属原料や脱酸剤を添加することにより溶接金属の化学成分を比較的自由に調整できる特徴を有する反面、吸湿性が高く取り扱いに難があり、また高速溶接には適さないと言う問題点がある。
As flux used for submerged arc welding, there are bond flux and molten flux. Melt-type flux is made by melting raw materials of various minerals at a high temperature of 1200 ° C or higher, crushing them after cooling, has low hygroscopicity, is easy to handle and store, and can be used for high-speed welding in combination with multi-electrode welding It is frequently used for manufacturing UOE steel pipes.
The bond flux is obtained by adding a small amount of a binder to a raw material and granulating it, followed by baking at about 600 ° C. Although it has the characteristic that the chemical composition of the weld metal can be adjusted relatively freely by adding metal raw materials and deoxidizers to the bond flux, it is highly hygroscopic and difficult to handle, and is not suitable for high-speed welding. There is a problem.
いずれのフラックスにしても溶接に際しては、溶融スラグを形成することにより溶融金属を大気から遮断し溶接金属の窒化、酸化を防ぐとともにメタル/スラグ反応を介して溶融金属と冶金反応を行い短時間で清浄な溶接金属を作り、良好なビードを形成する等の重要な働きをしている。 In any of the fluxes, during welding, the molten metal is shielded from the atmosphere by forming molten slag to prevent nitridation and oxidation of the weld metal, and the metal / slag reaction is used to perform a metallurgical reaction with the molten metal in a short time. It plays important roles such as making clean weld metal and forming good beads.
先に述べたように溶融型フラックスは多電極の高速溶接に適しており、ビード外観も優れることからラインパイプ用UOE鋼管等の高級鋼管の製造に多用されている。これらの高級鋼管では溶接金属について高強度とともに良好な靱性が求められる。一般に強度と靱性は相反する特性であり、強度が増加するほど靱性の確保が困難になる。この課題に対応するためには溶接金属の酸素量の低減が有効であることが知られており、種々の成分を有する溶融型フラックスが、例えば、特許文献1ないし特許文献10等に提案されている。 As described above, the melt type flux is suitable for high-speed welding of multi-electrodes and has an excellent bead appearance, and is therefore frequently used for the production of high-grade steel pipes such as UOE steel pipes for line pipes. These high-grade steel pipes require high strength and good toughness for the weld metal. Generally, strength and toughness are contradictory properties, and it becomes difficult to ensure toughness as the strength increases. In order to cope with this problem, it is known that reduction of the oxygen content of the weld metal is effective, and molten fluxes having various components have been proposed in, for example, Patent Document 1 to Patent Document 10 and the like. Yes.
いずれの特許文献においても、フラックス中の塩基性成分と酸性成分の調整による酸素量の低減(あるいは溶接金属靱性の改善)と配合比の調整による溶接性確保の観点からの提案となっている。これらの提案の中で具体的に溶接金属酸素量を示しているのは特許文献1、3、8、9、10である。この中で最も酸素量の低減をしているのは特許文献3、10である。
特許文献10の実施例中の溶接金属酸素量は190〜270ppmに低減されている。特許文献3の実施例では酸素は180〜270ppmに低減されている。他の例では溶接金属酸素量は概ね250〜300ppmに低減されている。すなわちこれらの提案により溶接金属の酸素量は概ね300ppm以下に低減することが示されている。
The amount of weld metal oxygen in the example of Patent Document 10 is reduced to 190 to 270 ppm. In the example of Patent Document 3, oxygen is reduced to 180 to 270 ppm. In another example, the weld metal oxygen content is reduced to approximately 250-300 ppm. That is, these proposals show that the oxygen content of the weld metal is reduced to approximately 300 ppm or less.
上記の各特許文献では溶接金属の強度レベルへの言及がないが、実施例に使用された母材鋼板や溶接ワイヤの化学成分から推定すると引張り強さで60キロ級を対象としている。一方で、近年ではラインパイプ用鋼管としてX100(引張り強さ75キロ級)やX120級(引張り強さ95キロ級)の開発が進められており、これらの高強度鋼管の製造では従来以上に溶接金属酸素量の低減が重要になることが予想される。 In each of the above-mentioned patent documents, there is no mention of the strength level of the weld metal, but if it is estimated from the chemical components of the base steel plate and the welding wire used in the examples, the 60 kg class is targeted for the tensile strength. On the other hand, in recent years, development of X100 (tensile strength 75 kg class) and X120 class (tensile strength 95 kg class) as steel pipes for line pipes has been promoted. It is expected that reduction of the amount of metal oxygen will be important.
そこで、本発明では従来以上に溶接金属の酸素量が低減可能な(具体的には引張り強さ75キロ級以上の強度レベルで安定して250ppm以下)UOE鋼管の製造等に適したサブマージアーク溶接用溶融型フラックスを提供することを目的とする。 Therefore, in the present invention, the amount of oxygen in the weld metal can be reduced more than before (specifically, it is stable at 250 ppm or less at a strength level of 75 kg or higher in tensile strength) and submerged arc welding suitable for the manufacture of UOE steel pipes. An object of the present invention is to provide a melting type flux.
本発明者らは、サブマージアーク溶接による溶接金属の酸素量を低減するべく、フラックス成分の溶接金属中の酸素量に対する影響に関する考察を行った。具体的には、フラックスが同一成分の溶融スラグを形成すると仮定して、各スラグ成分に対する平衡酸素活量を熱力学的に推定し、その影響を考察した。その結果、平衡酸素活量を支配するのはフラックス中のSiO2含有率であることを見出し、SiO2 含有率を従来以上に低減することで、酸素量が250ppm以下となる溶接金属を安定して製造可能な溶融型フラックスを見出し、本発明を完成した。 In order to reduce the amount of oxygen in the weld metal by submerged arc welding, the present inventors have considered the influence of the flux component on the amount of oxygen in the weld metal. Specifically, assuming that the flux forms molten slag of the same component, the equilibrium oxygen activity for each slag component was estimated thermodynamically and the effect was considered. As a result, it was found that it is the SiO 2 content in the flux that dominates the equilibrium oxygen activity, and by reducing the SiO 2 content more than before, the weld metal with an oxygen content of 250 ppm or less can be stabilized. The present invention has been completed by finding a melt-type flux that can be produced.
ここに、本発明は、質量%で、SiO2:5〜13%、MnO:1〜10%、CaO:10〜30%、CaF2:40〜50%、MgO:2〜10%、Al2O3:2〜20%、TiO2:2〜20%、BaO:1〜10%を含有し、その含有率の合計が少なくとも95%であることを特徴とする引張り強さ75キロ以上のUOE鋼管のサブマージアーク溶接用溶融型フラックスである。 Here, the present invention is, in terms of mass%, SiO 2: 5~ 13% , MnO: 1~10%, CaO: 10~30%, CaF 2: 40~50%, MgO: 2~10%, Al 2 O 3: 2~20%, TiO 2 : 2~20%, BaO: contains 1 to 10%, UOE total content thereof is more than the tensile strength of 75 kg, characterized in that at least 95% This is a molten flux for submerged arc welding of steel pipes .
質量%で、さらにNa2O:3%以下、K2O:3%以下、B2O3:1.0%以下のうち1種または2種以上を含有してもよい。
従来の提案、研究では、溶接金属の酸素量はフラックスの酸性成分と塩基性成分の比率から導出される塩基度で整理されている。SiO2は酸性成分の1つとして重要な成分として取り扱われているが、その含有量は他の酸性成分とのバランスの中で決定されている。また、SiO2はスラグをガラス化させる重要な成分であることから、20〜40%の比較的多量含有するのが一般的である。前出の既存技術において最もSiO2を低減した提案である特許文献5におけるSiO2の含有率は13〜24%である。本発明ではSiO2の含有率を5〜15%としており、従来に比べて著しく低減している。
Further, it may contain one or more of Na 2 O: 3% or less, K 2 O: 3% or less, and B 2 O 3 : 1.0% or less.
In conventional proposals and research, the oxygen content of the weld metal is organized by basicity derived from the ratio of the acidic and basic components of the flux. SiO 2 is handled as an important component as one of the acidic components, but its content is determined in balance with other acidic components. Further, since SiO 2 is an important component for vitrifying slag, it is generally contained in a relatively large amount of 20 to 40%. The content rate of SiO 2 in Patent Document 5, which is a proposal for reducing SiO 2 most in the above-described existing technology, is 13 to 24%. In the present invention, the content of SiO 2 is set to 5 to 15%, which is remarkably reduced as compared with the prior art.
また、SiO2の減少に伴いSiO2に対する平衡酸素活量は減少するが、SiO2の少ない領域ではMnOに対する平衡酸素活量が増大するため、MnOの含有率についても制限を加える必要がある。 Further, although the equilibrium oxygen activity with respect to SiO 2 decreases as SiO 2 decreases, the equilibrium oxygen activity with respect to MnO increases in a region with little SiO 2 , so it is necessary to limit the MnO content.
一方で、SiO2をこのように極端に低減した場合にはビード外観やスラグの剥離性が劣化する可能性があるが、CaF2を40〜50%含有するとビード外観やスラグの剥離性にはほとんど悪影響がないことを合わせて見出した。この原因は明らかではないが、CaF2を40%〜50%含有すると、スラグがCaF2を多量に含む相と他の酸化物を多量に含む相の2相に分離し、このような2相分離したスラグの物性の変化がビード性状等への悪影響を緩和したと推定される。 On the other hand, when SiO 2 is extremely reduced in this way, the bead appearance and slag peelability may be deteriorated, but when CaF 2 is contained in an amount of 40 to 50%, the bead appearance and slag peelability may be reduced. We found that there was almost no adverse effect. The reason for this is not clear, but when CaF 2 is contained in an amount of 40% to 50%, the slag is separated into two phases, a phase containing a large amount of CaF 2 and a phase containing a large amount of other oxides. It is estimated that the change in physical properties of the separated slag alleviated adverse effects on bead properties and the like.
本発明により、高速溶接においても溶接欠陥の発生や溶接ビードの外観劣化を防止しつつ、溶接金属の酸素量を250ppm以下に低減することが可能となった。特にX80グレードを越えるような高強度ラインパイプや高周波ベンド管の溶接金属の低温靱性の確保・向上の観点から価値のある発明である。 According to the present invention, it is possible to reduce the oxygen content of the weld metal to 250 ppm or less while preventing generation of welding defects and appearance deterioration of the weld bead even in high-speed welding. In particular, it is a valuable invention from the viewpoint of securing and improving the low temperature toughness of weld metal of high strength line pipes and high frequency bend pipes exceeding the X80 grade.
次に、本発明においてフラックス組成を上述のように限定した理由を説明する。なお、本発明においてフラックス中の各成分の含有率を規定する「%」は、とくにことわりがない限り、「質量%」である。また、本発明のフラックスは、不純物を除けば金属酸化物およびCaF2からなるので、各成分の含有率は、フラックス中の金属元素含有率を金属酸化物に換算した含有率、およびフッ素含有率をCaF2に換算した含有率の意味である。 Next, the reason why the flux composition is limited as described above in the present invention will be described. In the present invention, “%” defining the content of each component in the flux is “% by mass” unless otherwise specified. In addition, since the flux of the present invention is composed of a metal oxide and CaF 2 except for impurities, the content of each component is the content obtained by converting the metal element content in the flux into a metal oxide, and the fluorine content. Is a content rate in terms of CaF 2 .
SiO2:5〜15%
SiO2はスラグを構成する重要な成分である。SiO2はスラグをガラス化させ、ビード外観を改善する。またSiO2の配合量が少ないとスラグ粘性が大きくなり、アンダーカットやスラグ巻き込みなどを生じやすくなる。このため5%以上SiO2を含む必要である。一方でSiO2は酸性成分であり、SiO2の増加は溶接金属の酸素量を増加させる。特に、本発明で目標とする、溶接金属の酸素量を250ppm以下にするには、その含有率を15%以下にする。好ましい上限は15%未満であり、更に好ましい上限は13%であり、更に好ましい上限は10%以下である。
SiO 2: 5~15%
SiO 2 is an important component constituting slag. SiO 2 vitrifies the slag and improves the bead appearance. On the other hand, when the amount of SiO 2 is small, the slag viscosity increases, and undercuts and slag entrainment are likely to occur. For this reason, it is necessary to contain 5% or more of SiO 2 . On the other hand, SiO 2 is an acidic component, and an increase in SiO 2 increases the amount of oxygen in the weld metal. In particular, in order to reduce the oxygen content of the weld metal, which is a target in the present invention, to 250 ppm or less, the content is made 15% or less. A preferable upper limit is less than 15%, a more preferable upper limit is 13%, and a more preferable upper limit is 10% or less.
MnO:1〜10%
MnOはスラグの流動性を向上させ、ビード外観を滑らかにする効果を有する。また、溶接金属へのMnの歩留まりを改善する効果も期待される。これらの効果を得るには1%以上の含有が必要である。一方、MnOは酸性成分であり多量の配合は溶接金属の酸素量を増加させるため、その上限を10%とする。好ましくは2.0〜7.0%である。
MnO: 1-10%
MnO has the effect of improving the fluidity of the slag and smoothing the bead appearance. Moreover, the effect which improves the yield of Mn to a weld metal is also anticipated. In order to obtain these effects, a content of 1% or more is necessary. On the other hand, since MnO is an acidic component and a large amount of compound increases the oxygen content of the weld metal, the upper limit is made 10%. Preferably it is 2.0 to 7.0%.
CaO:10〜30%
CaOは塩基性成分であり溶接金属の酸素量を低減する作用を有する。酸素量低減には含有量が多いほど好ましいが、多量の含有はスラグ剥離性を劣化させるとともにフラックスの耐吸湿性の劣化を通してポックマークを形成しやすくする。よってその含有率を10〜30%とする。好ましくは12〜20%である。
CaO: 10-30%
CaO is a basic component and has the effect of reducing the oxygen content of the weld metal. A higher content is preferable for reducing the oxygen content, but a larger content deteriorates the slag peelability and facilitates the formation of pock marks through the deterioration of the moisture absorption resistance of the flux. Therefore, the content is made 10 to 30%. Preferably it is 12 to 20%.
CaF2:40〜50%
CaF2は溶接金属の酸素量を低減するのに極めて有効な成分である。SiO2低減によるビード外観の劣化を防止する。しかし、多量に含有するとスラグの剥離性を損なうため、その含有率を40〜50%とする。好ましい範囲は40%超50%以下である。
CaF 2 : 40-50%
CaF 2 is a very effective component for reducing the oxygen content of the weld metal. Prevents deterioration of bead appearance due to SiO 2 reduction. However, since a slag peelability will be impaired when it contains abundantly, the content rate shall be 40 to 50%. A preferable range is more than 40% and 50% or less.
MgO:2〜10%
MgOは塩基性成分であり、溶接金属の酸素量を低減するとともに粘度調整のために添加される。この効果を得るためには2%以上の含有が必要である。一方で10%を越えて含有すると粘度が大きくなりすぎ、アンダーカットやスラグ巻き込みを発生しやすくするとともに、フラックスの耐吸湿性劣化によりポックマークを形成しやすくする。よって、その上限を10%とする。好ましくは2.5〜6.5%である。
MgO: 2 to 10%
MgO is a basic component and is added to reduce the oxygen content of the weld metal and adjust the viscosity. In order to obtain this effect, a content of 2% or more is necessary. On the other hand, when the content exceeds 10%, the viscosity becomes too high, and undercuts and slag entrainment are likely to occur, and a pock mark is easily formed due to the moisture absorption resistance deterioration of the flux. Therefore, the upper limit is made 10%. Preferably it is 2.5 to 6.5%.
Al2O3:2〜20%
Al2O3は中性の成分であり、スラグの融点、粘度調整を目的に添加される。2%未満の添加ではスラグの粘性不足によりビード外観が劣化し、スラグの剥離性も劣化する。一方で、多量の含有はスラグの融点、粘度を上昇させ、ビードのアンダーカットやスラグ巻き込みを生じて形状を悪化させる。このため上限を20%とする。好ましくは4〜16%である。
Al 2 O 3 : 2 to 20%
Al 2 O 3 is a neutral component and is added for the purpose of adjusting the melting point and viscosity of the slag. If the addition is less than 2%, the bead appearance deteriorates due to insufficient slag viscosity, and the slag peelability also deteriorates. On the other hand, the inclusion of a large amount increases the melting point and viscosity of the slag, and causes the undercut of the bead and slag entrainment to deteriorate the shape. For this reason, the upper limit is set to 20%. Preferably it is 4 to 16%.
TiO2:2〜20%
TiO2は少量の含有でスラグの剥離性を改善するとともに、溶接金属へのTiの歩留まりを改善する。この効果を得るために2%以上の含有が必要である。一方、多量の含有はスラグ粘性の増大によりアンダーカットやスラグ巻き込みを生じてビード形状を悪化させる。このため上限を20%とする。好ましい上限は15%であり、一方、好ましい下限は2.5%である。
TiO 2 : 2 to 20%
A small amount of TiO 2 improves the slag peelability and improves the yield of Ti to the weld metal. In order to obtain this effect, it is necessary to contain 2% or more. On the other hand, if a large amount is contained, undercut or slag entrainment occurs due to an increase in slag viscosity, which deteriorates the bead shape. For this reason, the upper limit is set to 20%. A preferred upper limit is 15%, while a preferred lower limit is 2.5%.
BaO:1〜10%
BaOはスラグの融点を調整するとともに溶接金属の酸素量を低減する有効な成分である。この効果を得るために1%以上含有が必要である。一方で過剰に含有するとビード形状を悪化させるためその上限を10%とする。
BaO: 1-10%
BaO is an effective component that adjusts the melting point of the slag and reduces the oxygen content of the weld metal. In order to acquire this effect, 1% or more needs to be contained. On the other hand, if contained excessively, the bead shape is deteriorated, so the upper limit is made 10%.
上記の成分の他、Na2O、K2OおよびB2O3のうちの1種または2種以上を含有してもよい。
Na2O、K2O:3%以下
Na2OとK2Oは、スラグの粘度調整のために含有することが出来る。この効果を得るにはそれぞれ0.2%以上の添加すればよい。一方、多量の含有は粘度の過度な増加によりビード形状の劣化を招くため、上限を3%とする。
In addition to the above components, one or more of Na 2 O, K 2 O and B 2 O 3 may be contained.
Na 2 O, K 2 O: 3% or less Na 2 O and K 2 O can be contained for adjusting the viscosity of the slag. In order to obtain this effect, 0.2% or more may be added. On the other hand, since a large amount causes a bead shape deterioration due to an excessive increase in viscosity, the upper limit is made 3%.
B2O3:1.0%以下
B2O3は、溶接金属にボロンを添加するために含有してもよい。添加するボロン量に応じて含有量は調整されるが、0.1%以上1.0%以下の配合で効果があり、この範囲内であれば酸素量や溶接性に大きな影響は与えない。
B 2 O 3 : 1.0% or less B 2 O 3 may be contained in order to add boron to the weld metal. Although the content is adjusted according to the amount of boron to be added, it is effective when the content is 0.1% or more and 1.0% or less. If the content is within this range, the oxygen amount and weldability are not significantly affected.
本発明のフラックスは、上記成分の合計を95%以上含む。残部はFeO等の不純物である。上記成分の合計は97%以上が好ましく、99%以上がより好ましい。
このような組成を有するフラックスは、1200℃以上で一旦溶融され、冷却・凝固後に粉砕されて製造される。フラックスの粒度はふるい分けに用いたふるいの最大および最小の呼び寸法に対応するメッシュで表すように定められている(JIS Z 3352等)。フラックスの粒度は適用する溶接条件、特に適用電流により使い分けられる。
本発明において溶接法自体は慣用のものとして特に制限されない。
The flux of the present invention contains 95% or more of the total of the above components. The balance is impurities such as FeO. The total of the above components is preferably 97% or more, and more preferably 99% or more.
The flux having such a composition is manufactured by being melted once at 1200 ° C. or higher, and pulverized after cooling and solidification. The particle size of the flux is determined so as to be represented by a mesh corresponding to the maximum and minimum nominal dimensions of the sieve used for sieving (JIS Z 3352 etc.). The particle size of the flux is properly selected depending on the welding conditions to be applied, particularly the applied current.
In the present invention, the welding method itself is not particularly limited as a conventional one.
次に、実施例によって本発明の作用効果をさらに具体的に説明する。 Next, the effects of the present invention will be described more specifically with reference to examples.
原材料の配合比率をかえることにより、表1に示す種々の化学成分を有する溶融型フラックスを製造した。なお、本実施例では太径のワイヤを用いた大入熱溶接であるため、フラックスの粒度は細かい目に粉砕した。具体的な粒度メッシュは20xDであった。 By changing the mixing ratio of the raw materials, molten fluxes having various chemical components shown in Table 1 were produced. In this example, since the heat input welding using a large-diameter wire was used, the particle size of the flux was finely crushed. The specific particle size mesh was 20xD.
溶接試験の母材には、表2に示す化学成分を有する鋼板を用いた。鋼板の板厚は16mmであり、2枚の鋼板の端に開先深さ6mm、開先角度70度のV開先を作製し、溶接長1.0mの1層の溶接を行った。作製した溶接ビードの健全性を外観の目視検査で確認するとともに、溶接金属酸素量を分析した。 As a base material for the welding test, a steel plate having chemical components shown in Table 2 was used. The plate thickness of the steel plate was 16 mm, and a V groove having a groove depth of 6 mm and a groove angle of 70 degrees was produced at the ends of the two steel plates, and one layer welding with a welding length of 1.0 m was performed. The soundness of the produced weld beads was confirmed by visual inspection of the appearance, and the amount of weld metal oxygen was analyzed.
溶接は、表3に示す化学成分を有する直径4mmのソリッドワイヤを用い、表4に示す条件で、4電極のサブマージアーク溶接を行った。先頭極に直流電源を用い他の電極には交流電源を用いた。 For welding, a 4 mm diameter solid wire having the chemical composition shown in Table 3 was used, and four-electrode submerged arc welding was performed under the conditions shown in Table 4. A DC power source was used for the leading electrode, and an AC power source was used for the other electrodes.
溶接金属酸素量の分析結果と目視検査の結果を表5に示す。また、一部の溶接金属については全溶接金属の引張り試験と-30℃でのシャルピー試験を行った結果を併せて表5に示している。これらの結果から、本発明にかかる溶融型フラックスが75キロ級以上の強度レベルの高級UOE鋼管の製造に用いることができることが分かる。 Table 5 shows the results of analysis of the amount of weld metal oxygen and the results of visual inspection. Table 5 shows the results of a tensile test of all weld metals and a Charpy test at −30 ° C. for some weld metals. From these results, it can be seen that the melt type flux according to the present invention can be used for the production of a high-grade UOE steel pipe having a strength level of 75 kg or higher.
本発明例ではいずれも酸素量が250ppm以下に制御できている。さらにSiO2の上限を13%に制限することでさらに溶接金属の酸素量は安定的に低減され、ほぼ200ppm以下に制御することが可能である。 In all the examples of the present invention, the oxygen amount can be controlled to 250 ppm or less. Further, by limiting the upper limit of SiO 2 to 13%, the oxygen content of the weld metal is further stably reduced and can be controlled to approximately 200 ppm or less.
比較例1ではSiO2が本発明範囲の上限を越えており、且つCaF2の下限を満たしていないため、溶接金属の酸素量が250ppmを越えている。
比較例2ではSiO2本発明範囲の上限を越えているため、溶接金属の酸素量が250ppmを越えている。
In Comparative Example 1, since SiO 2 exceeds the upper limit of the range of the present invention and does not satisfy the lower limit of CaF 2 , the oxygen content of the weld metal exceeds 250 ppm.
In Comparative Example 2, the amount of oxygen in the weld metal exceeds 250 ppm because SiO 2 exceeds the upper limit of the present invention range.
比較例3ではMnOが本発明範囲の上限を越えているため、溶接金属の酸素量が250ppmを越えている。
比較例4ではCaOが本発明の下限を満たしておらず、溶接金属の酸素量が250ppmを越えている。
In Comparative Example 3, since MnO exceeds the upper limit of the range of the present invention, the oxygen content of the weld metal exceeds 250 ppm.
In Comparative Example 4, CaO does not satisfy the lower limit of the present invention, and the oxygen content of the weld metal exceeds 250 ppm.
比較例5ではCaF2が本発明の上限を越えている。このためスラグの剥離性が劣化した。
比較例6から15では溶接金属酸素量に最も大きな影響を与えるSiO2、CaF2、CaO、MnOの配合比が本発明を満たしているため溶接金属酸素量は本発明の目的とする250ppm以下に低減されている。しかし、MgO、Al2O3、TiO2およびBaOの含有率が本発明の範囲から逸脱しているために、ビードの外観劣化やスラグ剥離性の低下あるいはアンダーカットの発生を生じている。
In Comparative Example 5, CaF 2 exceeds the upper limit of the present invention. For this reason, the slag peelability deteriorated.
In Comparative Examples 6 to 15, the mixing ratio of SiO 2 , CaF 2 , CaO, and MnO that has the greatest influence on the amount of oxygen in the weld metal satisfies the present invention, so the amount of oxygen in the weld metal is 250 ppm or less, which is the object of the present invention. Has been reduced. However, since the contents of MgO, Al 2 O 3 , TiO 2, and BaO deviate from the scope of the present invention, the appearance of the beads is deteriorated, the slag peelability is reduced, or the undercut occurs.
上記の比較例に対し、本発明例16、17、22、23に示したように、本発明範囲に含有率を制御した溶融型フラックスでは、酸素量を低減することができると同時にビードの健全性が保たれた。 In contrast to the above comparative example, as shown in Invention Examples 16 , 17, 22, and 23, in the melt type flux whose content is controlled within the scope of the present invention, the amount of oxygen can be reduced and, at the same time, the bead health. Sex was preserved.
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005154118A JP4581842B2 (en) | 2005-05-26 | 2005-05-26 | Fused flux for submerged arc welding |
PCT/JP2006/310210 WO2006126519A1 (en) | 2005-05-26 | 2006-05-23 | Fused flux for submerged arc welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005154118A JP4581842B2 (en) | 2005-05-26 | 2005-05-26 | Fused flux for submerged arc welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006326642A JP2006326642A (en) | 2006-12-07 |
JP4581842B2 true JP4581842B2 (en) | 2010-11-17 |
Family
ID=37451944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005154118A Expired - Fee Related JP4581842B2 (en) | 2005-05-26 | 2005-05-26 | Fused flux for submerged arc welding |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4581842B2 (en) |
WO (1) | WO2006126519A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4903912B2 (en) * | 2009-04-10 | 2012-03-28 | 新日本製鐵株式会社 | Molten high basic flux for submerged arc welding |
JP6318704B2 (en) * | 2014-03-03 | 2018-05-09 | 新日鐵住金株式会社 | Fused flux for submerged arc welding |
JP7294979B2 (en) * | 2019-10-08 | 2023-06-20 | 株式会社神戸製鋼所 | Welding material, weld metal and electroslag welding method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855197A (en) * | 1981-09-28 | 1983-04-01 | Sumitomo Metal Ind Ltd | Fused flux for submerged arc welding |
JPS5945097A (en) * | 1982-09-08 | 1984-03-13 | Sumitomo Metal Ind Ltd | Multielectrode submerged arc welding method |
JPS6366637B2 (en) * | 1982-09-08 | 1988-12-21 | Sumitomo Metal Ind | |
JPH0513040B2 (en) * | 1985-01-22 | 1993-02-19 | Kobe Steel Ltd | |
JPH0729206B2 (en) * | 1990-10-09 | 1995-04-05 | 住友金属工業株式会社 | High-speed submerged arc welding method using multiple electrodes |
JP2669283B2 (en) * | 1992-11-24 | 1997-10-27 | 住友金属工業株式会社 | Pipe welding method for thick and large diameter welded steel pipe |
JPH11267844A (en) * | 1998-03-19 | 1999-10-05 | Sumitomo Metal Ind Ltd | Manufacture of welded steel structure and welded steel structure |
JP2003311321A (en) * | 2002-04-25 | 2003-11-05 | Nippon Steel Corp | Method for manufacturing high-strength uoe steel tube |
-
2005
- 2005-05-26 JP JP2005154118A patent/JP4581842B2/en not_active Expired - Fee Related
-
2006
- 2006-05-23 WO PCT/JP2006/310210 patent/WO2006126519A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855197A (en) * | 1981-09-28 | 1983-04-01 | Sumitomo Metal Ind Ltd | Fused flux for submerged arc welding |
JPS5945097A (en) * | 1982-09-08 | 1984-03-13 | Sumitomo Metal Ind Ltd | Multielectrode submerged arc welding method |
JPS6366637B2 (en) * | 1982-09-08 | 1988-12-21 | Sumitomo Metal Ind | |
JPH0513040B2 (en) * | 1985-01-22 | 1993-02-19 | Kobe Steel Ltd | |
JPH0729206B2 (en) * | 1990-10-09 | 1995-04-05 | 住友金属工業株式会社 | High-speed submerged arc welding method using multiple electrodes |
JP2669283B2 (en) * | 1992-11-24 | 1997-10-27 | 住友金属工業株式会社 | Pipe welding method for thick and large diameter welded steel pipe |
JPH11267844A (en) * | 1998-03-19 | 1999-10-05 | Sumitomo Metal Ind Ltd | Manufacture of welded steel structure and welded steel structure |
JP2003311321A (en) * | 2002-04-25 | 2003-11-05 | Nippon Steel Corp | Method for manufacturing high-strength uoe steel tube |
Also Published As
Publication number | Publication date |
---|---|
JP2006326642A (en) | 2006-12-07 |
WO2006126519A1 (en) | 2006-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100998839B1 (en) | Flux-cored wire for gas-shielded arc welding | |
JP6188621B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP4958872B2 (en) | Large heat input electroslag welding method | |
JP5153421B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP2017148821A (en) | Flux-cored wire for arc welding developed for duplex stainless steel and welding metal | |
CN101396774B (en) | Flux-cored wire | |
JP5922078B2 (en) | Fused flux for submerged arc welding | |
CN106794559B (en) | Flux-cored wire for gas-shielded arc welding | |
JP5912969B2 (en) | Fused flux used for submerged arc welding and welding method using the same | |
JP4581842B2 (en) | Fused flux for submerged arc welding | |
JP6437420B2 (en) | Firing flux for submerged arc welding of high strength steel | |
CN112621016A (en) | Welding material, welding metal, and electroslag welding method | |
JP6084948B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP4297880B2 (en) | Bond flux for submerged arc welding | |
JP2009050865A (en) | Multiple electrode submerged arc welding method | |
JP7252051B2 (en) | Solid wire and weld joints for electroslag welding | |
JP6071797B2 (en) | Flux for single-sided submerged arc welding | |
JP6787043B2 (en) | Flux for submerged arc welding | |
JP2011206828A (en) | Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding | |
JP2021137855A (en) | Flux for electroslag welding and electroslag welding method | |
JP3550770B2 (en) | Flux for sub-mark welding | |
JP2001170795A (en) | Sintered flux for submerged arc welding and method for manufacturing the same and submerged arc fillet welding method | |
JPH0122078B2 (en) | ||
JP3718464B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP7578484B2 (en) | Submerged Arc Welding Flux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100803 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100816 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4581842 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |