JP4581596B2 - Ultrasonic diagnostic equipment - Google Patents
Ultrasonic diagnostic equipment Download PDFInfo
- Publication number
- JP4581596B2 JP4581596B2 JP2004276852A JP2004276852A JP4581596B2 JP 4581596 B2 JP4581596 B2 JP 4581596B2 JP 2004276852 A JP2004276852 A JP 2004276852A JP 2004276852 A JP2004276852 A JP 2004276852A JP 4581596 B2 JP4581596 B2 JP 4581596B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- signal
- echo
- detection
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Description
本発明は、超音波を用いて生体内の動脈壁組織の運動速度あるいは移動変位を検出し、動脈壁組織の厚み変化あるいは弾性率を算出する超音波診断装置に関する。 The present invention relates to an ultrasonic diagnostic apparatus that detects the motion speed or displacement of an arterial wall tissue in a living body using ultrasound and calculates the thickness change or elastic modulus of the arterial wall tissue.
超音波を用いて生体内組織の組織性状診断を行う手法として、生体内に超音波パルスを送受信し音響インピーダンスを求める手法や(例えば、特許文献1)、生体組織に応力が加わったときの変位を計測し、歪あるいは弾性率を求める手法が知られている(例えば、特許文献2、3)。
As a technique for diagnosing tissue properties of living tissue using ultrasonic waves, a method for obtaining acoustic impedance by transmitting / receiving ultrasonic pulses in the living body (for example, Patent Document 1), displacement when stress is applied to living tissue There is a known method for measuring the strain and obtaining the strain or elastic modulus (for example,
また、超音波を用いて、生体内組織の運動速度あるいは移動変位を計測する手法として、例えば、超音波エコー信号のドプラ効果を応用したFFTドプラ法や、自己相関法を適用した手法が知られている(非特許文献1)。 Also, as a technique for measuring the motion speed or displacement of a living tissue using ultrasonic waves, for example, an FFT Doppler method using the Doppler effect of an ultrasonic echo signal, or a method using an autocorrelation method is known. (Non-Patent Document 1).
超音波による生体内組織の計測における空間分解能は、超音波のビーム収束幅で決定する超音波プローブの表面方向の方位分解能と、超音波の伝搬方向の分解能である距離分解能に分けられる。 Spatial resolution in the measurement of in-vivo tissue by ultrasonic waves is divided into azimuth resolution in the surface direction of the ultrasonic probe determined by the beam convergence width of ultrasonic waves and distance resolution that is resolution in the propagation direction of ultrasonic waves.
超音波の伝搬方向の距離分解能は、超音波パルスの中心周波数および超音波パルス数と、超音波の生体内の伝搬速度で決定し、生体内組織の超音波の伝搬速度は、ほぼ1540m/sであることから、超音波の伝搬方向の距離分解能は、超音波パルスの中心周波数および超音波パルス数で決定する。 The distance resolution in the propagation direction of ultrasonic waves is determined by the center frequency of ultrasonic pulses, the number of ultrasonic pulses, and the propagation speed of ultrasonic waves in the living body. The propagation speed of ultrasonic waves in tissue in the living body is approximately 1540 m / s. Therefore, the distance resolution in the propagation direction of the ultrasonic wave is determined by the center frequency of the ultrasonic pulse and the number of ultrasonic pulses.
また、生体組織内に送信する超音波パルスのパルス数が少ないと、前記超音波パルスの周波数スペクトル分布が広がってしまうため、生体内の組織で反射した超音波エコー信号の中心周波数のスペクトル強度が小さくなり、受信感度が低下する。 In addition, if the number of ultrasonic pulses transmitted into the living tissue is small, the frequency spectrum distribution of the ultrasonic pulse is widened. Therefore, the spectral intensity of the center frequency of the ultrasonic echo signal reflected by the tissue in the living body is increased. It becomes smaller and the reception sensitivity decreases.
このため、前記超音波エコー信号の中心周波数での受信感度を高めるために、例えば、非特許文献1に示されているように、生体組織内に送信する超音波パルスのパルス数を増やすことにより、前記超音波パルスの周波数分布を狭め、生体内の組織で反射する超音波エコー信号の中心周波数のスペクトル強度を高くする手法が行われている。
生体内の動脈壁は動脈硬化症の疾患に伴い、粥腫の発生、石灰化等により組織性状が変化するため、動脈壁の組織の性状を分別・同定することは非常に重要となっており、超音波による計測・診断も多く行われている。 As the arterial wall in the body changes with the development of atheroma and calcification due to the disease of arteriosclerosis, it is very important to distinguish and identify the tissue characteristics of the arterial wall. Many ultrasonic measurement and diagnosis are also performed.
超音波の伝搬方向の距離分解能は、超音波パルスの中心周波数および超音波パルス数と、超音波の生体内の伝搬速度で決定し、生体内組織の超音波の伝搬速度は、ほぼ1540m/sであることから、超音波の伝搬方向の距離分解能は、超音波パルスの中心周波数および超音波パルス数で決定し、中心周波数7.5MHzの超音波を用いてパルス数を1とした場合の距離分解能は約400μmとなる。 The distance resolution in the propagation direction of ultrasonic waves is determined by the center frequency of ultrasonic pulses, the number of ultrasonic pulses, and the propagation speed of ultrasonic waves in the living body. The propagation speed of ultrasonic waves in tissue in the living body is approximately 1540 m / s. Therefore, the distance resolution in the propagation direction of the ultrasonic wave is determined by the center frequency and the number of ultrasonic pulses of the ultrasonic pulse, and the distance when the number of pulses is set to 1 using the ultrasonic wave with the central frequency of 7.5 MHz. The resolution is about 400 μm.
しかしながら、超音波振動子をパルス数を1として励振しても、超音波振動子は共振するために、送信される超音波は振動子の振動の減衰を伴った尾引きと呼ばれる複数のパルスが発生する。 However, even if the ultrasonic vibrator is excited with the number of pulses set to 1, the ultrasonic vibrator resonates, so that the transmitted ultrasonic wave has a plurality of pulses called tailing accompanied by attenuation of the vibration of the vibrator. appear.
例えば、動脈壁を計測する場合、動脈内腔と動脈壁内表面(内膜)との境界では、血液と動脈壁組織の音響インピーダンスが異なるために、動脈内腔と動脈壁表面の反射が振幅の大きい強エコーとなり、動脈壁内表面から外表面にかけての組織での反射の振幅の小さい弱エコーの部分に干渉してしまう。 For example, when measuring the arterial wall, the acoustic impedance of blood and arterial wall tissue differs at the boundary between the arterial lumen and the inner surface of the arterial wall (intima). And a strong echo with a large amplitude, and interferes with a weak echo portion having a small amplitude of reflection from the inner surface to the outer surface of the artery wall.
したがって、動脈壁の歪を計測しようとする場合、近傍に強エコーが存在するような弱エコー部では、強エコー部の影響により、歪が発生しないようにみえるため、尾引きを充分考慮した計測点を設定する必要があり、距離分解能が低下するという課題がある。 Therefore, when trying to measure the distortion of the arterial wall, it seems that distortion does not occur due to the influence of the strong echo part in the weak echo part where there is a strong echo in the vicinity. It is necessary to set a point, and there is a problem that distance resolution is lowered.
しかしながら、強エコーが存在しない弱エコーのみが分布する動脈壁組織内では、分布している複数の弱エコーそれぞれについて区別することが可能であれば、それぞれの弱エコーに対して計測点を設定し、歪を計測することが可能となる。 However, in an arterial wall tissue where only weak echoes without strong echoes are distributed, if it is possible to distinguish each of a plurality of weak echoes distributed, a measurement point is set for each weak echo. The strain can be measured.
本発明は、このような課題を解決するためになされたものであり、強エコーと弱エコーが存在する動脈壁組織のような生体組織の歪を計測する場合に、超音波エコー信号の強度に応じて、歪を計測するための複数の計測点間距離の設定を行うことにより、最適な距離分解能で誤差のない歪計測を可能とすることを目的とするものである。 The present invention has been made to solve such a problem, and in the case of measuring strain of a living tissue such as an arterial wall tissue where strong and weak echoes exist, the intensity of the ultrasonic echo signal is increased. Accordingly, an object of the present invention is to enable distortion measurement without error with optimum distance resolution by setting a distance between a plurality of measurement points for measuring distortion.
本発明の超音波診断装置は、超音波振動子群で構成された超音波プローブと、送信信号発生手段と、各超音波振動子の送受信信号の遅延制御手段と、前記遅延制御量を記憶する遅延制御量記憶手段と、各超音波振動子群からの受信信号を合成する受信信号合成手段と、合成された受信信号を検波する検波手段と、前記検波された超音波エコー検波信号から生体内の動脈壁組織の運動速度および移動変位量を検出する運動速度検出手段と、前記運動速度から生体内の動脈壁の歪量を求める信号処理手段を備えた構成を有する。 The ultrasonic diagnostic apparatus of the present invention stores an ultrasonic probe configured by a group of ultrasonic transducers, a transmission signal generating unit, a transmission / reception signal delay control unit of each ultrasonic transducer, and the delay control amount. A delay control amount storage means; a reception signal synthesis means for synthesizing a reception signal from each ultrasonic transducer group; a detection means for detecting the synthesized reception signal; and a living body from the detected ultrasonic echo detection signal. And a signal processing means for determining the amount of distortion of the arterial wall in the living body from the movement speed.
この構成により、生体内に超音波を送信し、生体内から得られた超音波エコー信号から、生体内の動脈壁の運動速度、移動変位量、歪量を検出することが可能となる。 With this configuration, it is possible to transmit ultrasonic waves into the living body and detect the motion speed, movement displacement amount, and distortion amount of the arterial wall in the living body from the ultrasonic echo signals obtained from the living body.
また、前記検波部は、超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性に基づいた波形情報のテーブルを記憶する機能を有し、前記超音波エコー検波信号と比較する機能を備える。 Further, the detection unit has a function of storing a table of waveform information based on propagation attenuation characteristics in the living tissue for each center frequency and number of pulses of ultrasonic transmission / reception, and a function to compare with the ultrasonic echo detection signal Is provided.
この構成により、実際に計測された超音波エコー信号が、前記超音波振動子の尾引きによるものと、生体組織から反射したものを比較することができ、また、超音波送受信中心周波数に応じて、前記波形情報をテーブル化することにより、様々な前記中心周波数の超音波プローブについて、前記信号の比較が可能となる。 With this configuration, the actually measured ultrasonic echo signal can be compared with the one reflected from the biological tissue by the tailing of the ultrasonic transducer, and according to the ultrasonic transmission / reception center frequency. By making the waveform information into a table, the signals can be compared with respect to various ultrasonic probes having the center frequency.
さらに、前記検波部は、超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性に基づいた波形情報を演算する機能を有し、前記超音波エコー検波信号と比較する機能を備える。 Further, the detection unit has a function of calculating waveform information based on propagation attenuation characteristics in the living tissue for each center frequency and number of pulses of ultrasonic transmission / reception, and has a function of comparing with the ultrasonic echo detection signal. .
この構成により、実際に計測された超音波エコー信号が、前記超音波振動子の尾引きによるものと、生体組織から反射したものを比較することができ、また、超音波送受信中心周波数に応じて、前記波形情報を演算することにより、様々な前記中心周波数の超音波プローブあるいは様々な減衰特性をもつ生体組織について、前記信号の比較が可能となる。 With this configuration, the actually measured ultrasonic echo signal can be compared with the one reflected from the biological tissue by the tailing of the ultrasonic transducer, and according to the ultrasonic transmission / reception center frequency. By calculating the waveform information, the signals can be compared for ultrasonic probes having various center frequencies or biological tissues having various attenuation characteristics.
また、前記信号処理部は、前記検波部における生体組織内の伝搬減衰特性に基づいた波形情報と超音波エコー検波信号の比較結果に基づき、弾性率の算出を行うための複数の計測点間隔の設定を任意に設定する機能を備える。 In addition, the signal processing unit has a plurality of measurement point intervals for calculating the elastic modulus based on a comparison result of the waveform information based on the propagation attenuation characteristic in the living tissue in the detection unit and the ultrasonic echo detection signal. A function to set the setting arbitrarily is provided.
この構成により、強エコーと弱エコーが存在する動脈壁組織のような生体組織の歪を計測する場合に、超音波エコー信号の強度に応じて、歪を計測するための複数の計測点間距離の設定を行うことにより、最適な距離分解能で誤差のない歪計測を可能となる。 With this configuration, when measuring strain in living tissue such as arterial wall tissue where strong and weak echoes exist, the distance between multiple measurement points for measuring strain according to the intensity of the ultrasonic echo signal By performing the above setting, it is possible to perform distortion measurement without error with optimum distance resolution.
本発明は、超音波振動子群で構成された超音波プローブと、送信信号発生手段と、各超音波振動子の送受信信号の遅延制御手段と、前記遅延制御量を記憶する遅延制御量記憶手段と、各超音波振動子群からの受信信号を合成する受信信号合成手段と、合成された受信信号を検波する検波手段と、前記検波された超音波エコー検波信号から生体内の動脈壁組織の運動速度および移動変位量を検出する運動速度検出手段と、前記運動速度から生体内の動脈壁の歪量を求める信号処理手段を備えた構成を備えた超音波診断装置であって、前記検波手段が、生体組織内の伝搬減衰特性に基づいた波形情報と超音波エコー検波信号の比較結果に基づき、弾性率の算出を行うための複数の計測点間隔の設定を任意に設定することにより、強エコーと弱エコーが存在する動脈壁組織のような生体組織の歪を計測する場合に、超音波エコー信号の強度に応じて、歪を計測するための複数の計測点間距離の設定を行うことにより、最適な距離分解能で誤差のない歪計測を行うことができるものである。 The present invention relates to an ultrasonic probe comprising a group of ultrasonic transducers, a transmission signal generating unit, a delay control unit for transmission / reception signals of each ultrasonic transducer, and a delay control amount storage unit for storing the delay control amount. Receiving signal synthesizing means for synthesizing the received signals from each ultrasonic transducer group, detecting means for detecting the synthesized received signals, and detection of the arterial wall tissue in the living body from the detected ultrasonic echo detection signals. An ultrasonic diagnostic apparatus comprising: a motion speed detection means for detecting a motion speed and a movement displacement amount; and a signal processing means for obtaining a distortion amount of an arterial wall in a living body from the motion speed, wherein the detection means However, based on the comparison result of the waveform information based on the propagation attenuation characteristics in the living tissue and the ultrasonic echo detection signal, the setting of the multiple measurement point intervals for calculating the elastic modulus is arbitrarily set. Echo and weak eco When measuring strains of living tissue such as arterial wall tissue where there is a noise, it is optimal to set the distance between multiple measurement points to measure the strain according to the intensity of the ultrasonic echo signal. Distortion measurement without error can be performed with distance resolution.
以下、本発明の実施の形態について、図1から図4を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(第1の実施の形態)
図1は、本発明の実施の形態の超音波診断装置の構成を示すブロック図であり、1は超音波振動子群、2は超音波プローブ、3は遅延制御部、4は遅延制御量記憶部、5は送信信号発生部、6は受信信号合成部、7は受信信号記憶部、8は検波部、9は運動速度検出部、10は信号処理演算部、11は表示部、12は制御部、13は記憶部、31は生体信号検出部である。
(First embodiment)
FIG. 1 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention. 1 is an ultrasonic transducer group, 2 is an ultrasonic probe, 3 is a delay control unit, and 4 is a delay control amount storage. , 5 is a transmission signal generation unit, 6 is a reception signal synthesis unit, 7 is a reception signal storage unit, 8 is a detection unit, 9 is a motion speed detection unit, 10 is a signal processing calculation unit, 11 is a display unit, and 12 is a control unit. , 13 is a storage unit, and 31 is a biological signal detection unit.
送信信号発生部5で生成された超音波送信信号は、超音波振動子群1の各振動子ごとに、遅延制御部3で遅延制御され、超音波プローブ2の超音波振動子群1を介して、生体内に送信される。
The ultrasonic transmission signal generated by the transmission signal generation unit 5 is delayed by the delay control unit 3 for each transducer of the ultrasonic transducer group 1, and passes through the ultrasonic transducer group 1 of the
生体内の組織で反射した超音波エコーは、超音波プローブ2の超音波振動子群1の各振動子で受信され、遅延制御部3で遅延制御された後、受信信号合成部6で一つの超音波エコー信号に合成される。
The ultrasonic echo reflected by the tissue in the living body is received by each transducer of the ultrasonic transducer group 1 of the
検波部8では、受信信号合成部6で合成された超音波エコー信号を検波する。 The detection unit 8 detects the ultrasonic echo signal synthesized by the reception signal synthesis unit 6.
また、検波部8は、超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性に基づいた波形情報のテーブルを記憶する機能を有し、検波することによって得られた超音波エコー検波信号と予め設定された波形情報を比較する。 The detection unit 8 has a function of storing a table of waveform information based on propagation attenuation characteristics in the living tissue for each center frequency and number of pulses of ultrasonic transmission / reception, and an ultrasonic echo obtained by detection The detection signal is compared with preset waveform information.
さらに、検波部8は、超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性に基づいた波形情報を演算する機能を有し、検波することによって得られた超音波エコー検波信号と予め演算された波形情報を比較する。 Furthermore, the detection unit 8 has a function of calculating waveform information based on propagation attenuation characteristics in the living tissue for each center frequency and number of pulses of ultrasonic transmission / reception, and an ultrasonic echo detection signal obtained by detection And the previously calculated waveform information are compared.
なお、検波部8における検波手法は、包絡線検波、直交検波など、どの手法でも良い。 The detection method in the detection unit 8 may be any method such as envelope detection or quadrature detection.
運動速度検出部9では、検波部8で検波された超音波エコー検波信号から、測定対象である生体内の組織の運動速度および移動変位を検出する。 The motion speed detector 9 detects the motion speed and displacement of the tissue in the living body that is the measurement target from the ultrasonic echo detection signal detected by the detector 8.
なお、前記生体内の各計測点の運動速度の検出は、一般的に用いられているFFTドプラ法、自己相関法など、どの手法でも良く、また、超音波ビームを走査させることにより、空間的に生体内の複数の計測点の運動速度を検出しても良い。 The movement speed of each measurement point in the living body can be detected by any of the commonly used methods such as FFT Doppler method and autocorrelation method. In addition, the motion speed of a plurality of measurement points in the living body may be detected.
また、運動速度検出部9は、一つの超音波エコー信号に複数の計測点を設定し、同時に前記複数の計測点の運動速度あるいは移動変位を検出することが可能である。 The motion speed detector 9 can set a plurality of measurement points in one ultrasonic echo signal and simultaneously detect the motion speeds or movement displacements of the plurality of measurement points.
信号処理演算部10では、運動速度検出部8で検出された複数の計測点の生体内の動脈壁の運動速度および移動変位から、歪量を求めることが可能である。
In the signal
また、生体信号検出部31で検出された血圧値あるいは予め設定した血圧値を用いて、前記動脈壁の歪量から、弾性率を求めることが可能である。
Further, it is possible to obtain the elastic modulus from the amount of distortion of the arterial wall using the blood pressure value detected by the biological
表示部11は、運動速度検出部8で検出された生体内の動脈壁の運動速度および移動変位と、信号処理演算部で求められた生体内の動脈壁の歪量および弾性率を表示する。 The display unit 11 displays the motion speed and displacement of the in-vivo arterial wall detected by the motion speed detection unit 8, and the strain amount and elastic modulus of the in-vivo artery wall obtained by the signal processing calculation unit.
なお、前記生体内の動脈壁の運動速度、移動変位、歪量および弾性率は一般的な超音波診断装置の基本機能であるBモード断層画像上に重ねて表示しても良い。 The motion speed, displacement, strain, and elastic modulus of the arterial wall in the living body may be displayed superimposed on a B-mode tomographic image that is a basic function of a general ultrasonic diagnostic apparatus.
制御部12は、遅延制御部3、送信信号発生部5、受信信号合成部6、運動速度検出部8、信号処理演算部9および表示部10の制御を行い、また、前記遅延制御部3、送信信号発生部5、受信信号合成部6、運動速度検出部8、信号処理演算部9および表示部11で得られた情報および制御情報を記憶部13に記憶する。
The
図2は、生体の動脈壁の運動速度、移動変位および歪量を計測する一実施例である。 FIG. 2 shows an example of measuring the motion speed, displacement, and strain of a living artery wall.
図2の一実施例に示すように、一つの超音波ビーム上に、動脈壁の内膜側と外膜側に計測点を複数設定し、同時に前記複数の計測点の運動速度あるいは移動変位を検出する。 As shown in one embodiment of FIG. 2, a plurality of measurement points are set on the intima side and the adventitia side of the arterial wall on one ultrasonic beam, and at the same time, the motion speed or displacement of the plurality of measurement points is set. To detect.
なお、本実施例では、動脈壁の内膜側と外膜側に計測点を設定したが、内膜側から外膜側に複数の計測点を設定しても良い。 In this embodiment, the measurement points are set on the intima side and the adventitia side of the artery wall, but a plurality of measurement points may be set from the intima side to the adventitia side.
また、図2の一実施例に示すように、超音波ビームを走査することにより、動脈壁の運動速度、移動変位および歪量を空間的に計測することが可能である。 Further, as shown in one embodiment of FIG. 2, it is possible to spatially measure the arterial wall motion speed, displacement, and strain by scanning an ultrasonic beam.
(第2の実施の形態)
図3は、強エコーの反射体の近傍に弱エコーの反射体があった場合の、検波部8で検波した超音波エコー検波信号とパルス数ごとの生体組織内の伝搬減衰特性に基づいた波形情報を比較する一実施例である。
(Second Embodiment)
FIG. 3 shows a waveform based on the ultrasonic echo detection signal detected by the detection unit 8 and the propagation attenuation characteristic in the living tissue for each pulse number when there is a weak echo reflector in the vicinity of the strong echo reflector. It is one Example which compares information.
検波部8は、超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性に基づいた波形情報のテーブルを記憶する機能を有し、検波することによって得られた超音波エコー検波信号と予め設定された波形情報を比較することができ、波形の振幅値あるいは相互相関法を用いて、波形情報の比較を行うことが可能である。 The detection unit 8 has a function of storing a table of waveform information based on propagation attenuation characteristics in the living tissue for each center frequency and number of pulses of ultrasonic transmission / reception, and an ultrasonic echo detection signal obtained by detection And the preset waveform information can be compared, and the waveform information can be compared using the amplitude value of the waveform or the cross-correlation method.
図3に示すように、超音波プローブ2から送信された超音波は、境界面Aおよび境界面Bで反射が起き、超音波エコー信号は超音波プローブからの伝搬距離に応じた境界面Aでの反射と境界面Bの反射が、時間差を持った一つの時間信号として検出される。
As shown in FIG. 3, the ultrasonic wave transmitted from the
境界面Aと境界面Bで反射した超音波は、超音波エコー信号の中にピークとなって現れ、図3のように境界面がAとB二つ存在した場合には、二つのピークが現れる。 The ultrasonic waves reflected by the boundary surface A and the boundary surface B appear as peaks in the ultrasonic echo signal. When there are two boundary surfaces A and B as shown in FIG. appear.
この超音波エコー信号のピークの振幅は、境界面を構成する二つの媒質の音響インピーダンスの差によって変化する。 The amplitude of the peak of the ultrasonic echo signal changes depending on the difference in acoustic impedance between the two media constituting the boundary surface.
検波部8は、図3に示した超音波エコー信号のように、境界面で反射した超音波エコー信号のピークを検出する機能を有する。 The detector 8 has a function of detecting the peak of the ultrasonic echo signal reflected at the boundary surface, like the ultrasonic echo signal shown in FIG.
ピークの検出の一実施例として、超音波エコー信号を包絡線検波し、得られた包絡線の変曲点を検出することで容易に実施することができる。 As an example of peak detection, an ultrasonic echo signal can be easily detected by detecting an envelope and detecting an inflection point of the obtained envelope.
なお、本実施例では、ピーク検出に用いる波形を超音波エコー信号を包絡線検波したものを用いたが、超音波エコー信号を直交検波した信号から求めた振幅波形を用いても良い。 In this embodiment, the waveform used for peak detection is obtained by envelope detection of an ultrasonic echo signal. However, an amplitude waveform obtained from a signal obtained by orthogonal detection of the ultrasonic echo signal may be used.
また、検波部8は、超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性に基づいた波形情報のテーブルを記憶する機能を有する。 The detector 8 also has a function of storing a table of waveform information based on propagation attenuation characteristics in the living tissue for each center frequency and number of pulses of ultrasonic transmission / reception.
波形情報は超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性に基づいた検波信号の理論値であり、超音波送受信の条件に応じて、複数の波形情報がテーブル化されて用意される。 Waveform information is the theoretical value of the detection signal based on the propagation attenuation characteristics in the living tissue for each center frequency and number of pulses of ultrasound transmission / reception. A plurality of waveform information is tabulated according to the conditions of ultrasound transmission / reception. Prepared.
さらに、検波部8は、前記テーブル化された波形情報と、検波することによって得られた超音波エコー検波信号と比較を行う。 Further, the detection unit 8 compares the tabulated waveform information with the ultrasonic echo detection signal obtained by the detection.
前記比較は、前記テーブル化された超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性の理論値に対して、検波することによって得られた超音波エコー検波信号との振幅あるいは振幅と位相の相違点を検出することによって行う。 The comparison is performed by comparing the amplitude of the ultrasonic echo detection signal obtained by detection with respect to the theoretical value of the propagation attenuation characteristic in the living tissue for each center frequency and number of pulses of the tabulated ultrasonic transmission / reception. This is done by detecting the difference between amplitude and phase.
前記比較の一実施例として、前記超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性の理論値と検波することによって得られた超音波エコー検波信号との相互相関をとることにより容易に実施することができ、相関窓幅は固定でも良いが、例えば、理論値の最大振幅の半値幅を基準に任意に設定できるようにしても良い。 As an example of the comparison, a cross-correlation between the theoretical value of the propagation attenuation characteristic in the living tissue for each center frequency and number of pulses of the ultrasonic transmission / reception and the ultrasonic echo detection signal obtained by the detection is taken. The correlation window width may be fixed, but may be arbitrarily set based on the half-value width of the maximum amplitude of the theoretical value, for example.
なお、本実施例では、相互相関をとることにより、前記理論値と超音波検波信号との比較を行ったが、前記理論値と前記検出された超音波エコー検波信号のピークの振幅値を比較することでも良い。 In this embodiment, the theoretical value was compared with the ultrasonic detection signal by taking the cross-correlation, but the theoretical value was compared with the peak amplitude value of the detected ultrasonic echo detection signal. You can do it.
(第3の実施の形態)
また、検波部8は、超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性に基づいた波形情報を演算する機能を有し、検波することによって得られた超音波エコー検波信号と予め演算された波形情報を比較することができ、波形の振幅値あるいは相互相関法を用いて、波形情報の比較を行うことが可能である。
(Third embodiment)
The detection unit 8 has a function of calculating waveform information based on propagation attenuation characteristics in the living tissue for each center frequency and number of pulses of ultrasonic transmission / reception, and an ultrasonic echo detection signal obtained by detection. And the previously calculated waveform information can be compared, and the waveform information can be compared using the amplitude value of the waveform or the cross-correlation method.
波形情報は、超音波プローブ2の送信信号波形と超音波の生体組織内での減衰特性から求められる。
The waveform information is obtained from the transmission signal waveform of the
ここで、一般的に超音波プローブ2の送信信号波形はガウス関数で近似できることが知られており、この送信信号波形に超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性に基づいた波形情報を演算した結果を乗算することで求められる。
Here, it is generally known that the transmission signal waveform of the
超音波の生体組織内の減衰率は、dB/cm/MHzの単位で表され、周波数依存性を持っており、一般的な生体組織の減衰率は、0.5〜0.7dB/cm/MHzである。 The attenuation rate of ultrasonic waves in living tissue is expressed in units of dB / cm / MHz, and has a frequency dependence. The attenuation rate of general living tissue is 0.5 to 0.7 dB / cm / MHz.
この減衰率を用いて、減衰をシステム関数H(d,f)として数式化すると、
H(d,f)=exp(−2αdf)
と表され、プローブで受信される信号Y(d,f)と送信信号X(d,f)の関係式は、
Y(d,f)=H(d,f)X(d,f)
で表すことができる。
Using this attenuation factor, when attenuation is expressed as a system function H (d, f),
H (d, f) = exp (-2αdf)
The relational expression between the signal Y (d, f) received by the probe and the transmission signal X (d, f) is
Y (d, f) = H (d, f) X (d, f)
Can be expressed as
ここで、aは減衰率、dは反射源の位置、fは周波数である。 Here, a is the attenuation factor, d is the position of the reflection source, and f is the frequency.
検波部8は、超音波送信のパルス数によって変化する周波数スペクトル分布に基づき、各周波数の減衰特性を演算し、超音波送信のパルス数に応じた生体組織内の伝搬減衰特性を求める。 The detection unit 8 calculates the attenuation characteristic of each frequency based on the frequency spectrum distribution that changes depending on the number of pulses of ultrasonic transmission, and obtains the propagation attenuation characteristic in the living tissue according to the number of pulses of ultrasonic transmission.
なお、本実施例では、超音波送信信号の周波数スペクトル分布に基づき、各周波数の減衰特性を演算する手法を示したが、前記周波数スペクトル分布が狭い場合は、前記超音波送信信号の中心周波数のみの減衰特性のみ演算しても良い。 In the present embodiment, the method of calculating the attenuation characteristic of each frequency based on the frequency spectrum distribution of the ultrasonic transmission signal is shown. However, when the frequency spectrum distribution is narrow, only the center frequency of the ultrasonic transmission signal is shown. Only the attenuation characteristic may be calculated.
また、本実施例では、超音波送信信号をガウス関数で近似する手法を示したが、実際にハイドロホン等で計測した超音波送信信号をテーブル化して記憶させたものを用いても良い。 In the present embodiment, a method of approximating an ultrasonic transmission signal with a Gaussian function is shown. However, an ultrasonic transmission signal actually measured with a hydrophone or the like may be stored as a table.
さらに、検波部8は、前記第2の実施の形態と同様に、前記演算された波形情報と、検波することによって得られた超音波エコー検波信号と比較を行う。 Further, as in the second embodiment, the detection unit 8 compares the calculated waveform information with the ultrasonic echo detection signal obtained by detection.
前記比較は、前記テーブル化された超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性の理論値に対して、検波することによって得られた超音波エコー検波信号との振幅あるいは振幅と位相の相違点を検出することによって行う。 The comparison is performed by comparing the amplitude of the ultrasonic echo detection signal obtained by detection with respect to the theoretical value of the propagation attenuation characteristic in the living tissue for each center frequency and number of pulses of the tabulated ultrasonic transmission / reception. This is done by detecting the difference between amplitude and phase.
前記比較の一実施例として、前記超音波送受信の中心周波数およびパルス数ごとの生体組織内の伝搬減衰特性の理論値と検波することによって得られた超音波エコー検波信号との相互相関をとることにより容易に実施することができ、相関窓幅は固定でも良いが、例えば、理論値の最大振幅の半値幅を基準に任意に設定できるようにしても良い。 As an example of the comparison, a cross-correlation between the theoretical value of the propagation attenuation characteristic in the living tissue for each center frequency and number of pulses of the ultrasonic transmission / reception and the ultrasonic echo detection signal obtained by the detection is taken. The correlation window width may be fixed, but may be arbitrarily set based on the half-value width of the maximum amplitude of the theoretical value, for example.
なお、本実施例では、相互相関をとることにより、前記理論値と超音波検波信号との比較を行ったが、前記理論値と前記検出された超音波エコー検波信号のピークの振幅値を比較することでも良い。 In this embodiment, the theoretical value was compared with the ultrasonic detection signal by taking the cross-correlation, but the theoretical value was compared with the peak amplitude value of the detected ultrasonic echo detection signal. You can do it.
(第4の実施の形態)
本発明の実施の形態の超音波診断装置の前記信号処理演算部10は、前記検波部9における生体組織内の伝搬減衰特性に基づいた波形情報と超音波エコー検波信号の比較結果に基づき、弾性率の算出を行うための複数の計測点間隔の設定を任意に設定することが可能である。
(Fourth embodiment)
The signal
図4に動脈長軸断面の解剖学的構造と超音波断層像の模式図を示す。 FIG. 4 shows a schematic diagram of an anatomical structure of an arterial long-axis section and an ultrasonic tomogram.
図4に示すように、動脈壁の解剖学的構造を見ると、動脈の内腔側から内膜、中膜、外膜の三層構造になっており、体表に近い動脈壁を前壁、遠い方を後壁と呼ぶ。 As shown in FIG. 4, the anatomical structure of the arterial wall is a three-layer structure of the intima, media and adventitia from the lumen side of the artery. The far side is called the rear wall.
このような三層構造を持った動脈を超音波で計測すると、超音波は音響インピーダンスが異なる境界部分で反射することから、動脈内膜側と動脈内腔の血液の境界、動脈の外膜と周辺の組織の境界、中膜と外膜との境界などで反射が起き、超音波断層像では図4の模式図のようになる。 When an artery having such a three-layer structure is measured with ultrasound, the ultrasound is reflected at the boundary portion where the acoustic impedance is different, so that the boundary between the arterial side and the blood in the arterial lumen, the arterial outer membrane, Reflection occurs at the boundary of the surrounding tissue, the boundary between the media and the outer membrane, and the ultrasonic tomogram is as shown in the schematic diagram of FIG.
しかしながら、前記境界面での超音波の反射強度は各境界面での音響インピーダンスの差の違いによって大きく異なり、例えば、動脈内腔の血液と内膜の境界面による反射が強エコーになるのに対して、内膜と中膜の境界面の反射強度は非常に小さい弱エコーとなる。 However, the reflection intensity of the ultrasonic wave at the boundary surface varies greatly depending on the difference in acoustic impedance at each boundary surface. For example, reflection from the boundary surface between the blood in the artery lumen and the intima becomes a strong echo. On the other hand, the reflection intensity at the boundary surface between the inner membrane and the inner membrane is a very small weak echo.
さらに、前述したように送信超音波のパルス数および尾引き等によって、反射波の幅が広がるために距離分解能が落ちてしまい、弱エコーの反射体が強エコーの反射体の近傍に位置していた場合、弱エコーは強エコーの中に埋もれてしまい分別が困難となる。 Furthermore, as described above, the width of the reflected wave is widened due to the number of transmitted ultrasonic pulses and tailing, resulting in a decrease in distance resolution, and the weak echo reflector is located in the vicinity of the strong echo reflector. In this case, the weak echo is buried in the strong echo, making it difficult to separate.
動脈壁を歪を計測するためには、複数の計測点を設定し、設定したそれぞれの計測点についてトラッキングを行い、同時に設定した複数の計測点の運動速度あるいは移動変位の差を求める必要があり、複数の計測点の設定が同じ強エコー部にあると、歪を求めることができなくなる。 In order to measure strain on the arterial wall, it is necessary to set multiple measurement points, track each set measurement point, and obtain the difference in motion speed or movement displacement of the multiple measurement points set at the same time If a plurality of measurement points are set in the same strong echo portion, distortion cannot be obtained.
図5および図6に生体組織内の距離減衰特性に基づいた波形情報と超音波エコー検波信号の比較結果に基づいた計測点設定の模式図を示す。 FIG. 5 and FIG. 6 are schematic diagrams of measurement point setting based on a comparison result between waveform information based on distance attenuation characteristics in a living tissue and an ultrasonic echo detection signal.
図5において、境界Aは強エコーの反射、境界Bは弱エコーの反射をする境界面である。 In FIG. 5, boundary A is a boundary surface that reflects strong echoes and boundary B is a boundary surface that reflects weak echoes.
超音波プローブ2より、境界A側から超音波が入射した場合、境界Aで発生した強エコーの尾引きが、境界B側で発生する弱エコー部を超える位置まで、延びてしまい、境界Bからの反射エコー強度が距離減衰した境界Aで発生した反射エコー強度よりも小さい場合には、境界Bからの反射エコーを識別することはできない。
When an ultrasonic wave is incident from the
一方、図6において、境界Aおよび境界Bともに同じエコー強度の反射をする境界面である。 On the other hand, in FIG. 6, both the boundary A and the boundary B are boundary surfaces that reflect the same echo intensity.
超音波プローブ2より、境界A側から超音波が入射した場合、境界Aで発生した強エコーの尾引きが、境界B側で発生する弱エコー部を超える位置まで、延びてしまうが、境界Bからの反射エコー強度が距離減衰した境界Aで発生した反射エコー強度よりも大きい場合には、境界Bからの反射エコーを識別することが可能となる。
When an ultrasonic wave enters from the boundary A side from the
信号処理演算部10は、前記検波部9における生体組織内の伝搬減衰特性に基づいた波形情報と超音波エコー検波信号の比較結果に基づき、弾性率の算出を行うための複数の計測点間隔の設定を任意に設定することが可能である。
The signal
この構成により、強エコーと弱エコーが存在する動脈壁組織のような生体組織の歪を計測する場合に、超音波エコー信号の強度に応じて、歪を計測するための複数の計測点間距離の設定を行うことにより、最適な距離分解能で誤差のない歪計測を可能となる。 With this configuration, when measuring strain in living tissue such as arterial wall tissue where strong and weak echoes exist, the distance between multiple measurement points for measuring strain according to the intensity of the ultrasonic echo signal By performing the above setting, it is possible to perform distortion measurement without error with optimum distance resolution.
本発明は、超音波振動子群で構成された超音波プローブと、送信信号発生手段と、各超音波振動子の送受信信号の遅延制御手段と、前記遅延制御量を記憶する遅延制御量記憶手段と、各超音波振動子群からの受信信号を合成する受信信号合成手段と、合成された受信信号を検波する検波手段と、前記検波された超音波エコー検波信号から生体内の動脈壁組織の運動速度および移動変位量を検出する運動速度検出手段と、前記運動速度から生体内の動脈壁の歪量を求める信号処理手段を備えた構成を備えた超音波診断装置であって、前記検波手段が、生体組織内の伝搬減衰特性に基づいた波形情報と超音波エコー検波信号の比較結果に基づき、弾性率の算出を行うための複数の計測点間隔の設定を任意に設定することにより、強エコーと弱エコーが存在する動脈壁組織のような生体組織の歪を計測する場合に、超音波エコー信号の強度に応じて、歪を計測するための複数の計測点間距離の設定を行うことにより、最適な距離分解能で誤差のない歪計測を行うことができるものであり、複数の計測点で計測された生体内の動脈壁の運動速度および移動変位から歪量を求め、さらに、生体信号検出手段で検出された血圧値あるいは予め設定した血圧値を用いて、生体内の動脈壁の歪量と弾性率を求める超音波診断装置などに有用である。 The present invention relates to an ultrasonic probe comprising a group of ultrasonic transducers, a transmission signal generating unit, a delay control unit for transmission / reception signals of each ultrasonic transducer, and a delay control amount storage unit for storing the delay control amount. Receiving signal synthesizing means for synthesizing the received signals from each ultrasonic transducer group, detecting means for detecting the synthesized received signals, and detection of the arterial wall tissue in the living body from the detected ultrasonic echo detection signals. An ultrasonic diagnostic apparatus comprising: a motion speed detection means for detecting a motion speed and a movement displacement amount; and a signal processing means for obtaining a distortion amount of an arterial wall in a living body from the motion speed, wherein the detection means However, based on the comparison result of the waveform information based on the propagation attenuation characteristics in the living tissue and the ultrasonic echo detection signal, the setting of the multiple measurement point intervals for calculating the elastic modulus is arbitrarily set. Echo and weak eco When measuring strains of living tissue such as arterial wall tissue where there is a noise, it is optimal to set the distance between multiple measurement points to measure the strain according to the intensity of the ultrasonic echo signal. Strain measurement without error can be performed with distance resolution, and the amount of strain is obtained from the movement speed and displacement of the arterial wall in the living body measured at multiple measurement points, and further detected by the biological signal detection means This is useful for an ultrasonic diagnostic apparatus or the like that obtains the strain amount and elastic modulus of an arterial wall in a living body using the blood pressure value set in advance or the blood pressure value set in advance.
1 超音波振動子群
2 超音波プローブ
3 遅延制御部
4 遅延制御量記憶部
5 送信信号発生部
6 受信信号合成部
7 受信信号記憶部
8 検波部
9 運動速度検出部
10 信号処理演算部
11 表示部
12 制御部
13 記憶部
31 生体信号検出部
DESCRIPTION OF SYMBOLS 1
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004276852A JP4581596B2 (en) | 2004-09-24 | 2004-09-24 | Ultrasonic diagnostic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004276852A JP4581596B2 (en) | 2004-09-24 | 2004-09-24 | Ultrasonic diagnostic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006087675A JP2006087675A (en) | 2006-04-06 |
JP4581596B2 true JP4581596B2 (en) | 2010-11-17 |
Family
ID=36229184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004276852A Expired - Fee Related JP4581596B2 (en) | 2004-09-24 | 2004-09-24 | Ultrasonic diagnostic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4581596B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5346440B2 (en) * | 2007-02-15 | 2013-11-20 | 富士フイルム株式会社 | Ultrasonic diagnostic apparatus and data measurement program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11318896A (en) * | 1998-05-18 | 1999-11-24 | Masao Ito | Blood vessel membrane thickness measuring instrument and arteriosclerosis diagnostic device |
JP2000271117A (en) * | 1999-03-25 | 2000-10-03 | Aloka Co Ltd | Ultrasonic blood vessel measuring device |
JP2001299752A (en) * | 2000-04-25 | 2001-10-30 | Aloka Co Ltd | Ultrasonographic instrument |
JP2004254829A (en) * | 2003-02-25 | 2004-09-16 | Hitachi Medical Corp | Ultrasonic diagnosing apparatus |
-
2004
- 2004-09-24 JP JP2004276852A patent/JP4581596B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11318896A (en) * | 1998-05-18 | 1999-11-24 | Masao Ito | Blood vessel membrane thickness measuring instrument and arteriosclerosis diagnostic device |
JP2000271117A (en) * | 1999-03-25 | 2000-10-03 | Aloka Co Ltd | Ultrasonic blood vessel measuring device |
JP2001299752A (en) * | 2000-04-25 | 2001-10-30 | Aloka Co Ltd | Ultrasonographic instrument |
JP2004254829A (en) * | 2003-02-25 | 2004-09-16 | Hitachi Medical Corp | Ultrasonic diagnosing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2006087675A (en) | 2006-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11464489B2 (en) | Ultrasonic shear wave imaging with focused scanline beamforming | |
JP6129744B2 (en) | Adjusting the measurement of the acoustic radiation force effect on the background motion effect | |
EP2816958B1 (en) | Determining material stiffness using multiple aperture ultrasound | |
JPWO2006082966A1 (en) | Ultrasonic diagnostic equipment | |
JPWO2007063619A1 (en) | Ultrasonic diagnostic equipment | |
US8617074B2 (en) | Method and apparatus for generating hardness and/or strain information of a tissue | |
JP7304937B2 (en) | Systems and methods for performing pulse wave velocity measurements | |
US11776526B2 (en) | Method and system for ultrasonic characterization of a medium | |
JP2006115937A (en) | Ultrasonic diagnostic apparatus | |
JP2007006914A (en) | Ultrasonograph | |
JP3668687B2 (en) | Pulse wave velocity measuring device and ultrasonic diagnostic device | |
JPWO2007080870A1 (en) | Ultrasonic diagnostic equipment | |
JP4581596B2 (en) | Ultrasonic diagnostic equipment | |
US20170209117A1 (en) | System and method for measurement of longitudinal and circumferential wave speeds in cylindrical vessels | |
JP2006166957A (en) | Ultrasonograph | |
US20240315663A1 (en) | System and Method for Non-Invasive Determination of Pressure in a Biological Compartment | |
JP4627220B2 (en) | Ultrasonic diagnostic equipment | |
JP2007020999A (en) | Ultrasonograph | |
Greenleaf et al. | Use of Radiation Force to Measure Arterial Properties | |
JP2009201557A (en) | Ultrasonic diagnostic system for tissue characterization | |
JP2008183118A (en) | Ultrasonic diagnostic apparatus | |
Fridman | Ultrasound physics | |
JP2007097938A (en) | Ultrasonic diagnostic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070510 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20070613 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100803 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100816 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4581596 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |