[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4581354B2 - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP4581354B2
JP4581354B2 JP2003300869A JP2003300869A JP4581354B2 JP 4581354 B2 JP4581354 B2 JP 4581354B2 JP 2003300869 A JP2003300869 A JP 2003300869A JP 2003300869 A JP2003300869 A JP 2003300869A JP 4581354 B2 JP4581354 B2 JP 4581354B2
Authority
JP
Japan
Prior art keywords
communication path
space
suction
opening end
muffler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003300869A
Other languages
Japanese (ja)
Other versions
JP2005069121A (en
Inventor
明 中野
耕 稲垣
貴規 石田
修平 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003300869A priority Critical patent/JP4581354B2/en
Priority to KR1020057003013A priority patent/KR100653669B1/en
Priority to US10/525,262 priority patent/US20060039803A1/en
Priority to PCT/JP2004/011012 priority patent/WO2005019645A1/en
Priority to EP04748168A priority patent/EP1697637A1/en
Priority to CNA2004800007240A priority patent/CN1701179A/en
Publication of JP2005069121A publication Critical patent/JP2005069121A/en
Application granted granted Critical
Publication of JP4581354B2 publication Critical patent/JP4581354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/125Cylinder heads

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Description

冷蔵庫、エアーコンディショナー、冷凍冷蔵装置等に使用される密閉型圧縮機の吸入マフラーの改良に関するものである。   The present invention relates to an improvement in a suction muffler of a hermetic compressor used in a refrigerator, an air conditioner, a freezer / refrigerator, and the like.

近年、冷凍冷蔵装置等に使用される密閉型圧縮機は運転による騒音が低いことに加えて、エネルギー効率が高いことが強く望まれている。   In recent years, a hermetic compressor used in a refrigerator-freezer or the like is strongly desired to have high energy efficiency in addition to low noise during operation.

従来の密閉型圧縮機としては、吸入マフラーの消音効果を高めると共に、消音効果を有効に使い圧縮室内への冷媒循環量を増加させることによりエネルギー効率を高めたものがある(例えば、特許文献1参照)。   As a conventional hermetic compressor, there is one that enhances the noise reduction effect of the suction muffler and increases the energy efficiency by effectively using the noise reduction effect and increasing the refrigerant circulation amount into the compression chamber (for example, Patent Document 1). reference).

また、冷凍サイクルから戻る冷媒ガスを低温でより密度の高い状態に維持し圧縮室に吸入することによりエネルギー効率を高めたものがある(例えば、特許文献2参照)。   In addition, there is one in which the energy efficiency is improved by maintaining the refrigerant gas returning from the refrigeration cycle at a low temperature in a higher density state and sucking it into the compression chamber (for example, see Patent Document 2).

以下、図面を参照しながら上述した従来の密閉型圧縮機について、以下その動作を説明する。   Hereinafter, the operation of the above-described conventional hermetic compressor will be described with reference to the drawings.

図6は従来の密閉型圧縮機の断面図、図7は従来の密閉型圧縮機の吸入マフラーの断面図、図8は従来の密閉型圧縮機の吸入マフラー内の冷媒ガスの挙動を示す流速ベクトル図である。   6 is a cross-sectional view of a conventional hermetic compressor, FIG. 7 is a cross-sectional view of a suction muffler of a conventional hermetic compressor, and FIG. 8 is a flow velocity showing the behavior of refrigerant gas in the suction muffler of the conventional hermetic compressor. It is a vector diagram.

図6において、密閉容器1内に、巻線部2を保有する固定子3と回転子4からなる電動要素5と、電動要素5によって駆動される圧縮要素6を収容し、オイル8は密閉容器1内に貯留している。   In FIG. 6, the hermetic container 1 accommodates an electric element 5 including a stator 3 and a rotor 4 having a winding portion 2, and a compression element 6 driven by the electric element 5. 1 is stored.

次に、圧縮要素6の概略構成について以下に説明する。クランクシャフト10は、回転子4を圧入固定した主軸部11および主軸部11に対して偏心して形成された偏心部12を有すると共に、主軸部11の内部にはオイルポンプ13がオイル8中に開口するように設けてある。電動要素5の上方に形成されているシリンダーブロック20は、略円筒形の圧縮室22を有すると共に主軸部11を軸支する軸受け部23を備えている。ピストン30は、シリンダーブロック20の圧縮室22に往復摺動自在に挿入され、偏心部12との間を連結手段31によって連結されている。   Next, a schematic configuration of the compression element 6 will be described below. The crankshaft 10 has a main shaft portion 11 in which the rotor 4 is press-fitted and fixed, and an eccentric portion 12 formed eccentric to the main shaft portion 11, and an oil pump 13 is opened in the oil 8 inside the main shaft portion 11. It is provided to do. The cylinder block 20 formed above the electric element 5 has a substantially cylindrical compression chamber 22 and a bearing portion 23 that supports the main shaft portion 11. The piston 30 is inserted into the compression chamber 22 of the cylinder block 20 so as to be slidable back and forth, and is connected to the eccentric portion 12 by a connecting means 31.

圧縮室22の開口端面を封止するバルブプレート35は、吸入バルブ34の開閉により圧縮室22と連通する吸入孔38を備えている。シリンダーヘッド36は、バルブプレート35を介して圧縮室22の反対側に固定されている。吸入管37は、密閉容器1に固定されると共に冷凍サイクルの低圧側(図示せず)に接続され、冷媒ガス(図示せず)を密閉容器1内に導く。吸入マフラー40は、バルブプレート35とシリンダーヘッド36に挟持されることで固定され、主にガラス繊維を添加したポリブチレンテレフタレートなどの合成樹脂で形成されている。   The valve plate 35 that seals the open end surface of the compression chamber 22 includes a suction hole 38 that communicates with the compression chamber 22 by opening and closing the suction valve 34. The cylinder head 36 is fixed to the opposite side of the compression chamber 22 via the valve plate 35. The suction pipe 37 is fixed to the sealed container 1 and connected to the low pressure side (not shown) of the refrigeration cycle, and guides a refrigerant gas (not shown) into the sealed container 1. The suction muffler 40 is fixed by being sandwiched between the valve plate 35 and the cylinder head 36, and is mainly formed of a synthetic resin such as polybutylene terephthalate to which glass fiber is added.

図7において、吸入マフラー40は、消音空間43を有すると共に、一端46bが密閉容器1内に連通し他端46aが消音空間43に延出しながら開口する第2連通路46と、一端45bがバルブプレート35の吸入孔38と連通し、他端45aが消音空間43に延出し開口する第1連通路45を有す。   In FIG. 7, the suction muffler 40 has a silencing space 43, a second communication path 46 that opens while one end 46 b communicates with the sealed container 1 and the other end 46 a extends into the silencing space 43, and one end 45 b has a valve. The plate 35 has a first communication passage 45 that communicates with the suction hole 38 of the plate 35, and the other end 45 a extends into the silencing space 43.

図8は、コンピュータシミュレーションにより得られた吸入マフラー40内の冷媒ガスの挙動を示す流速ベクトル60であり、各ベクトルの長さが流速の大きさを示すと共に、ベクトルの向きが冷媒ガスの流れ方向を示している。   FIG. 8 is a flow velocity vector 60 showing the behavior of the refrigerant gas in the suction muffler 40 obtained by computer simulation. The length of each vector indicates the magnitude of the flow velocity, and the direction of the vector is the flow direction of the refrigerant gas. Is shown.

また、第2連通路46の開口端46aから開放される冷媒ガスのうち上方への流れにより形成される上方渦61と、第2連通路46の開口端46aから開放される冷媒ガスのうち下方への流れにより形成される下方渦62をそれぞれ矢印で示している。 Further, an upper vortex 61 formed by the upward flow of the refrigerant gas is released from the open end 46a of the second communication passage 46, the lower of the refrigerant gas is released from the open end 46a of the second communication passage 46 Each of the lower vortices 62 formed by the flow to the is indicated by an arrow.

以上のように構成された密閉型圧縮機について以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

電動要素5の回転子4がクランクシャフト10を回転させ、偏心部12の回転運動が連結手段31を介してピストン30に伝えられることでピストン30が圧縮室22内を往復運動する。本動作により、吸入管37を通して冷却システム(図示せず)から冷媒ガスが密閉容器1内に導かれる。密閉容器1内に導かれた冷媒ガスは吸入マフラー40の開口端46bから吸入され、第2連通路46の開口端46aから消音空間43に開放される。開放された冷媒ガスは図8に示すように開口端46aに近接対向する吸入マフラー40の外郭壁に衝突した後、上方渦61および下方渦62を形成し消音空間43を循環する。その後、主に上方渦61から構成される冷媒ガスは第1連通路45の開口端45aから第1連通路45に吸入され、バルブプレート35に開口した吸入孔38へと導かれる。そして、吸入バルブ34が開いたときに冷媒ガスは圧縮室22内に吸入され、ピストン30の往復運動により圧縮され、冷却システムへと吐出される。   The rotor 4 of the electric element 5 rotates the crankshaft 10, and the rotational movement of the eccentric portion 12 is transmitted to the piston 30 via the connecting means 31, so that the piston 30 reciprocates in the compression chamber 22. By this operation, the refrigerant gas is guided into the sealed container 1 from the cooling system (not shown) through the suction pipe 37. The refrigerant gas introduced into the hermetic container 1 is sucked from the opening end 46 b of the suction muffler 40 and is opened to the sound deadening space 43 from the opening end 46 a of the second communication path 46. As shown in FIG. 8, the released refrigerant gas collides with the outer wall of the suction muffler 40 that is close to and opposed to the opening end 46 a, and then forms an upper vortex 61 and a lower vortex 62 and circulates in the sound deadening space 43. Thereafter, the refrigerant gas mainly composed of the upper vortex 61 is sucked into the first communication path 45 from the opening end 45 a of the first communication path 45 and led to the suction hole 38 opened in the valve plate 35. When the suction valve 34 is opened, the refrigerant gas is sucked into the compression chamber 22, compressed by the reciprocating motion of the piston 30, and discharged to the cooling system.

ここで、圧縮室22内に冷媒が吸い込まれる際に発生する冷媒の圧力脈動は、上記冷媒流れの逆方向に伝播していき第1連通路45の開口端45aから消音空間43に伝播する。ここで、消音効果の高い消音空間43内に第1連通路45を延出し、例えば騒音の問題となる3〜4kHz域の音の節に開口端45aを位置させることにより、特定の周波数帯における高い消音効果を得ることができる。   Here, the pressure pulsation of the refrigerant generated when the refrigerant is sucked into the compression chamber 22 propagates in the reverse direction of the refrigerant flow and propagates from the opening end 45 a of the first communication path 45 to the sound deadening space 43. Here, the first communication path 45 is extended in the silencing space 43 having a high silencing effect, and the opening end 45a is positioned at a node of a sound in the 3 to 4 kHz region that causes noise, for example, in a specific frequency band. A high silencing effect can be obtained.

また、消音空間43にて減衰された圧力脈動は、消音空間43の寸法および第2連通路46の長さや内径を調整することによりさらに減衰されるので、より高い消音効果を得ることができる。   Further, since the pressure pulsation attenuated in the silencing space 43 is further attenuated by adjusting the size of the silencing space 43 and the length and inner diameter of the second communication passage 46, a higher silencing effect can be obtained.

また図9は、他の従来の密閉型圧縮機の吸入マフラー50の断面図を示したものである。以下、図面を参照しながら他の従来例について説明する。なお、吸入マフラー50を除く全体的な構成は先の従来例と同様であるため詳細な説明は省略する。   FIG. 9 is a sectional view of a suction muffler 50 of another conventional hermetic compressor. Hereinafter, another conventional example will be described with reference to the drawings. Since the overall configuration excluding the suction muffler 50 is the same as that of the prior art, detailed description thereof is omitted.

図9において、吸入マフラー50は、吸入空間57を囲むように設けられた共鳴空間58を有する。第2連通路56は一端が密閉容器1内へ、他端が吸入空間57へ連通している。第1連通路55は一端が吸入空間57へ開口し、他端が吸入バルブ34を介して圧縮室22へ連通している。また、連通孔59は第1連通路55と共鳴空間58を連通している。   In FIG. 9, the suction muffler 50 has a resonance space 58 provided so as to surround the suction space 57. The second communication path 56 has one end communicating with the sealed container 1 and the other end communicating with the suction space 57. One end of the first communication passage 55 opens to the suction space 57, and the other end communicates with the compression chamber 22 via the suction valve 34. Further, the communication hole 59 communicates the first communication path 55 and the resonance space 58.

以上のように構成された密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

冷凍システム(図示せず)から戻る低温の冷媒ガスは、第2連通路56から吸入マフラー50の吸入空間57に吸入された後、第1連通路55より圧縮室22に吸入される。このとき、吸入空間57は共鳴空間58に囲まれているため、吸入空間57は共鳴空間58にある冷媒ガスおよび共鳴空間58の外殻壁によって断熱される。これにより、吸入空間57内の冷媒ガスは密閉容器1内の高温の冷媒ガスにより直接加熱されることがなく、高い密度の冷媒ガスを圧縮室22に吸入することができ、吸入効率を高めることができる。また共鳴空間58は連通孔59を介して吸入空間と連通しているため共鳴室としての働きがあり、騒音を低減することができる。
特開2003−42064号公報 特開平11−303739号公報
The low-temperature refrigerant gas returning from the refrigeration system (not shown) is sucked into the suction space 57 of the suction muffler 50 from the second communication path 56 and then sucked into the compression chamber 22 through the first communication path 55. At this time, since the suction space 57 is surrounded by the resonance space 58, the suction space 57 is thermally insulated by the refrigerant gas in the resonance space 58 and the outer shell wall of the resonance space 58. As a result, the refrigerant gas in the suction space 57 is not directly heated by the high-temperature refrigerant gas in the hermetic container 1, and a high-density refrigerant gas can be sucked into the compression chamber 22 to increase the suction efficiency. Can do. In addition, since the resonance space 58 communicates with the suction space via the communication hole 59, it functions as a resonance chamber, and noise can be reduced.
JP 2003-42064 A Japanese Patent Laid-Open No. 11-303739

しかしながら従来の構成は、ピストン30の往復運動により冷却システム(図示せず)から密閉容器1を介して吸入マフラー40に吸引され、第2連通路46から消音空間43に開放される冷媒ガスは、図8に示すように、直接第1連通路45に流入するのではなく、開口端46aに近接対向する吸入マフラー40の外郭壁に衝突した後、上方渦61および下方渦62を形成し消音空間43内を循環する。そのため、冷却システムから戻った低温の冷媒ガスは近接対向する外郭壁を介して密閉容器1内の高温の冷媒ガスと熱交換することとなり大きく加熱される。更に、上方渦61および下方渦62により形成される循環流は、消音空間43内に滞留している温度上昇した冷媒ガスで加熱された後に第1連通路45の開口端45aから吸引され圧縮室22に流入することとなり、圧縮室22に吸入できる冷媒の質量流量が減少し吸入効率が低下するという問題あった。   However, in the conventional configuration, the refrigerant gas that is sucked into the suction muffler 40 from the cooling system (not shown) by the reciprocating motion of the piston 30 through the sealed container 1 and opened to the sound deadening space 43 from the second communication path 46 is As shown in FIG. 8, instead of directly flowing into the first communication path 45, after colliding with the outer wall of the suction muffler 40 that is in close proximity to the opening end 46 a, an upper vortex 61 and a lower vortex 62 are formed to form a silencing space. It circulates in 43. Therefore, the low-temperature refrigerant gas returned from the cooling system exchanges heat with the high-temperature refrigerant gas in the hermetic container 1 through the adjacent outer wall and is greatly heated. Furthermore, the circulating flow formed by the upper vortex 61 and the lower vortex 62 is sucked from the opening end 45a of the first communication passage 45 after being heated by the refrigerant gas whose temperature has increased and stays in the silencing space 43. Therefore, there is a problem that the mass flow rate of the refrigerant that can be sucked into the compression chamber 22 is reduced and the suction efficiency is lowered.

また、第2連通路46の開口端46aから消音空間43に開放された冷媒ガスが上方渦61および下方渦62を形成するため、第2連通路46の開口端46aから第1連通路45の開口端45aに至るまでの間の消音空間43内において吸入された冷媒ガスの流動慣性力が大幅に低下し圧力損失が大きくなる。その結果、圧縮室22に吸入する冷媒ガスの質量流量が更に低下する要因となり、吸入効率を更に悪化させるという問題があった。   In addition, since the refrigerant gas released from the opening end 46 a of the second communication path 46 to the sound deadening space 43 forms the upper vortex 61 and the lower vortex 62, the refrigerant gas opened from the opening end 46 a of the second communication path 46 to the first communication path 45. The flow inertia force of the refrigerant gas sucked in the silencing space 43 up to the opening end 45a is greatly reduced, and the pressure loss is increased. As a result, there is a problem that the mass flow rate of the refrigerant gas sucked into the compression chamber 22 is further reduced, and the suction efficiency is further deteriorated.

また、第1連通路45の開口端45aが吸入マフラー40の外郭壁に近接して対向しているため、圧力脈動の最大となる開口端45aの影響で近接対向する吸入マフラー40の外郭壁が加振され、冷媒の脈動音が吸入マフラー40外へ放射され騒音が増大するという問題があった。   In addition, since the opening end 45a of the first communication passage 45 faces the outer wall of the suction muffler 40 in the vicinity, the outer wall of the suction muffler 40 that faces and closes under the influence of the opening end 45a that causes the maximum pressure pulsation. There is a problem that the vibration is oscillated and the pulsation noise of the refrigerant is radiated to the outside of the suction muffler 40 to increase the noise.

一方、他の従来の構成においては、吸入マフラー50を構成する吸入空間57を共鳴空間58が囲むように設けられているため、吸入空間57内の冷媒ガスが密閉容器1内の高温の冷媒ガスにより直接加熱されることを防止し吸入効率を高めることはできるが、前述した実施例と同様に、第2連通路56から吸入空間57に吸入された冷媒ガスが第1連通路55に至るまでに大きく渦を形成し大幅な圧力損失が生じる。その結果、圧縮室22に吸入できる冷媒ガスの質量流量が減少し、吸入効率が低下するという問題があった。   On the other hand, in another conventional configuration, since the resonance space 58 surrounds the suction space 57 constituting the suction muffler 50, the refrigerant gas in the suction space 57 is a high-temperature refrigerant gas in the sealed container 1. However, the refrigerant gas sucked into the suction space 57 from the second communication path 56 reaches the first communication path 55 as in the above-described embodiment. A large vortex is formed and a large pressure loss occurs. As a result, there is a problem that the mass flow rate of the refrigerant gas that can be sucked into the compression chamber 22 is reduced, and the suction efficiency is lowered.

また、吸入空間57全体を共鳴空間58で囲む構成とするためには吸入マフラー50全体の寸法が大きくなるという問題があると共に、部品点数が多くなる或いは成形が複雑になるといった問題点を有していた。   Further, in order to surround the entire suction space 57 with the resonance space 58, there is a problem that the entire size of the suction muffler 50 is increased, and there is a problem that the number of parts is increased or the molding is complicated. It was.

本発明は、効率が高くかつ低騒音な密閉型圧縮機を提供することを目的とする。   An object of the present invention is to provide a hermetic compressor with high efficiency and low noise.

上記課題を解決するため、本発明の密閉型圧縮機は、密閉容器内に電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は圧縮室開口端に配設する吸入バルブと、吸入マフラーとを備え、前記吸入マフラーは消音空間を形成するマフラー本体と、前記吸入バルブと前記消音空間とを連通する第1連通路と、前記密閉容器内と前記前記消音空間とを連通する第2連通路とを有し、前記第1連通路と前記第2連通路の前記消音空間内開口端が同一方向に向いて開口するとともに、前記消音空間を形成する外殻壁のうち少なくとも前記第1連通路と前記第2連通路の前記消音空間内開口端が開口する対向面の壁面を、内部に区画空間が形成される二重壁としたものであり、第2連通路から吸引された低温の冷媒ガスの受熱損失を低減すると共に、二重壁ゆえ透過音が少なく、吸入マフラーの加振を抑制することで騒音を低減することができるという作用を有する。 In order to solve the above-described problems, a hermetic compressor according to the present invention accommodates a compression element driven by an electric element in a hermetic container, and the compression element is disposed at an opening end of a compression chamber, and a suction muffler. The muffler includes a muffler body that forms a silencing space, a first communication passage that communicates the suction valve and the silencing space, and a second communication that communicates the inside of the sealed container and the silencing space. An opening end in the silencing space of the first communicating path and the second communicating path opens in the same direction, and at least the first communicating wall of the outer shell wall forming the silencing space. The wall surface of the opposing surface where the opening end in the silencing space of the passage and the second communication passage opens is a double wall in which a partition space is formed , and the low temperature sucked from the second communication passage To reduce the heat loss of refrigerant gas To have the effect that it is possible to reduce noise by double walls thus transmitted sound is small, to suppress the excitation of the suction muffler.

また、密閉容器内に電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は圧縮室開口端に配設する吸入バルブと、吸入マフラーとを備え、前記吸入マフラーは消音空間を形成するマフラー本体と、前記吸入バルブと前記消音空間とを連通する第1連通路と、前記密閉容器内と前記消音空間とを連通する第2連通路とを有し、前記第1連通路と前記第2連通路の前記消音空間内開口端が同一方向に向いて開口するとともに、前記第1連通路と第2連通路の消音空間内開口端がそれぞれ対向する壁面と所定間隔介して前記第1連通路と第2連通路の各消音空間内開口端側に位置し、かつ前記第2連通路から前記消音空間へ開放された冷媒ガスを前記第1連通路に誘導する誘導壁を設けたものであり、吸入される冷媒ガスを整流することにより圧力損失を低減し効率が向上するとともに、冷媒ガスの吸入量を増加させ、気筒容積に対して高い冷凍能力を得ることができるという作用を有する。さらに外郭壁と誘導壁からなる区画構造により効果的に受熱損失を低減することができる。 In addition, a compression element driven by an electric element is accommodated in an airtight container, the compression element includes a suction valve disposed at an opening end of the compression chamber, and a suction muffler, and the suction muffler forms a muffler space. body and a first communication passage communicating with said muffling space and the suction valve, the closed and container with said muffling space and a second communication passage communicating said said first communication passage second The opening end in the silencing space of the communication path opens in the same direction, and the first communication path passes through a predetermined distance from the wall surface facing the opening end in the silencing space of the first communication path and the second communication path. And a guide wall that guides the refrigerant gas opened from the second communication path to the muffling space to the first communication path. Rectifying refrigerant gas to be sucked With improved efficiency reduces the more the pressure loss, has the effect of increasing the intake amount of the refrigerant gas, it is possible to obtain a high refrigerating capacity for cylinder volume. Furthermore, the heat receiving loss can be effectively reduced by the partition structure composed of the outer wall and the guide wall .

本発明の密閉型圧縮機によれば、吸入マフラー内に導かれた吸入ガスの加熱を小さいスペースで効果的に防止することで吸入効率を高めることができると共に、吸入マフラーの外郭壁が吸入ガスによって直接加振されることを抑制し、二重壁ゆえ透過音が少ないため、騒音を低減することができるという効果がある。   According to the hermetic compressor of the present invention, it is possible to improve the suction efficiency by effectively preventing the heating of the suction gas introduced into the suction muffler in a small space, and the outer wall of the suction muffler is provided with the suction gas. Since there is little transmitted sound due to the double wall, there is an effect that noise can be reduced.

また、吸入マフラー内の吸入ガス流れをスムーズにすることで、吸入マフラー内での加熱を低減し、更に吸入ガスの流動慣性力を利用して吸入ガスを圧縮室に導くため、吸入ガスの質量流量が向上し吸入効率を高めることができると共に、吸入マフラーの外郭壁が吸入ガスによって直接加振されることを抑制し、二重壁ゆえ透過音が少ないため、騒音を低減することができるという効果がある。   In addition, by smoothing the suction gas flow in the suction muffler, heating in the suction muffler is reduced, and the suction gas is guided to the compression chamber using the flow inertia force of the suction gas. The flow rate can be improved and the suction efficiency can be increased, and the outer wall of the suction muffler can be prevented from being directly vibrated by the suction gas, and the noise can be reduced because there is little transmitted sound due to the double wall. effective.

請求項1に記載の発明は、密閉容器内に電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は圧縮室開口端に配設する吸入バルブと、吸入マフラーとを備え、前記吸入マフラーは消音空間を形成するマフラー本体と、前記吸入バルブと前記消音空間とを連通する第1連通路と、前記密閉容器内と前記前記消音空間とを連通する第2連通路とを有し、前記第1連通路と前記第2連通路の前記消音空間内開口端が同一方向に向いて開口するとともに、前記消音空間を形成する外殻壁のうち少なくとも前記第1連通路と前記第2連通路の前記消音空間内開口端が開口する対向面の壁面を、内部に区画空間が形成される二重壁としたものであり、第2連通路から吸引された低温の冷媒ガスの受熱損失を低減すると共に、二重壁ゆえ透過音が少なく、吸入マフラーの加振を抑制することで騒音を低減することができるという作用を有する。 According to a first aspect of the present invention, a compression element driven by an electric element is accommodated in an airtight container, and the compression element includes a suction valve disposed at an opening end of a compression chamber, and a suction muffler, and the suction muffler Has a muffler body that forms a silencing space, a first communication passage that communicates the suction valve and the silencing space, and a second communication passage that communicates the inside of the sealed container and the silencing space, The opening end in the silencing space of the first communicating path and the second communicating path opens in the same direction, and at least the first communicating path and the second communicating path among the outer shell walls forming the silencing space. The wall surface of the facing surface where the opening end in the silencing space opens is a double wall in which a partition space is formed inside, and the heat receiving loss of the low-temperature refrigerant gas sucked from the second communication path is reduced And transmitted sound due to the double wall. Without an effect that it is possible to reduce the noise by suppressing the excitation of the suction muffler.

請求項2に記載の発明は、密閉容器内に電動要素によって駆動される圧縮要素を収容し
、前記圧縮要素は圧縮室開口端に配設する吸入バルブと、吸入マフラーとを備え、前記吸入マフラーは消音空間を形成するマフラー本体と、前記吸入バルブと前記消音空間とを連通する第1連通路と、前記密閉容器内と前記消音空間とを連通する第2連通路とを有し、前記第1連通路と前記第2連通路の前記消音空間内開口端が同一方向に向いて開口するとともに、前記消音空間内に、一面が開口したU字型に形成され、かつ前記U字型を形成する開口に前記第1連通路と前記第2連通路の前記消音空間内開口端を対向させることにより、前記第2連通路から前記消音空間へ開放された冷媒ガスを前記第1連通路に誘導する誘導壁を設け、前記誘導壁を、前記マフラー本体における前記第1連通路と前記第2連通路の前記消音空間内開口端が開口する対向面の壁面と所定間隔を介して設けたものであり、吸入される冷媒ガスを整流することにより圧力損失を低減し効率が向上するとともに、冷媒ガスの吸入量を増加させ、気筒容積に対して高い冷凍能力を得ることができるという作用を有する。さらに外郭壁と誘導壁からなる区画構造により効果的に受熱損失を低減すると共に、吸入マフラーの加振を抑制することで騒音を低減することができるという作用を有する。
According to a second aspect of the present invention, a compression element driven by an electric element is accommodated in a sealed container, and the compression element includes a suction valve disposed at an opening end of a compression chamber, and a suction muffler, and the suction muffler Has a muffler body that forms a silencing space, a first communication path that communicates the suction valve and the silencing space, and a second communication path that communicates the inside of the sealed container and the silencing space, The opening end in the silencing space of the first communicating path and the second communicating path opens in the same direction , and is formed in a U-shape with one surface opened in the silencing space, and forms the U-shape. The opening in the silencing space of the first communicating path and the second communicating path is opposed to the opening to be guided to guide the refrigerant gas released from the second communicating path to the silencing space to the first communicating path. the guide wall which is provided, said guide wall, Are those wherein silencing space open end of the second communication path and the first communication passage in the serial muffler body is provided through the wall surface with a predetermined distance of the opposing surfaces of the opening, that rectifies the refrigerant gas sucked As a result, the pressure loss is reduced and the efficiency is improved, and the refrigerant gas suction amount is increased, so that a high refrigeration capacity can be obtained with respect to the cylinder volume. Furthermore, it has the effect | action that it can reduce noise by suppressing the vibration of a suction muffler while reducing heat receiving loss effectively by the division structure which consists of an outer wall and a guidance wall.

請求項3に記載の発明は、請求項1或いは2のいずれか1項に記載の発明において、吸入マフラーは合成樹脂材料からなり、少なくとも2つの部品から構成されるとともに、二重壁或いは誘導壁が組立て時の接合面に対して垂直に配設されているものであり、前述した請求項1或いは請求項2の作用に加えて、吸入マフラー本体成形時の金型抜き方向と二重壁或いは誘導壁の金型抜き方向を一致させることができ、金型抜き方向の複雑化や別部品化による部品点数増加に起因した金型費の増加を招くことなく容易に製造することができるという作用を有する。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the suction muffler is made of a synthetic resin material and is composed of at least two parts. Are arranged perpendicularly to the joining surface at the time of assembly. In addition to the operation of claim 1 or 2 described above, the die removal direction and double wall or The action of being able to match the die-cutting direction of the guide wall and easily manufacturing without increasing the mold cost due to the complicated die-cutting direction and the increase in the number of parts due to separate parts Have

以下、本発明による密閉型圧縮機の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of a hermetic compressor according to the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1による密閉型圧縮機の断面図である。図2は同実施の形態の密閉型圧縮機の吸入マフラーの断面図である。図3は同実施の形態の密閉型圧縮機の吸入マフラーの分解斜視図である。
(Embodiment 1)
1 is a cross-sectional view of a hermetic compressor according to a first embodiment of the present invention. FIG. 2 is a sectional view of the suction muffler of the hermetic compressor according to the embodiment. FIG. 3 is an exploded perspective view of the suction muffler of the hermetic compressor according to the embodiment.

図1において、密閉容器101内に、巻線部102を保有する固定子103と回転子104からなる電動要素105と、電動要素105によって駆動される圧縮要素106を収容し、オイル108は密閉容器101内に貯留している。   In FIG. 1, an airtight container 101 accommodates an electric element 105 including a stator 103 and a rotor 104 having a winding portion 102, and a compression element 106 driven by the electric element 105, and oil 108 is an airtight container. 101 is stored.

次に、圧縮要素106の概略構成について以下に説明する。クランクシャフト110は、回転子104を圧入固定した主軸部111および主軸部111に対して偏心して形成された偏心部112を有すると共に、主軸部111の内部にはオイルポンプ113がオイル108中に開口するように設けてある。電動要素105の上方に形成されているシリンダーブロック120は、略円筒形の圧縮室122を有すると共に主軸部111を軸支する軸受け部123を備えている。ピストン130は、シリンダーブロック120の圧縮室122に往復摺動自在に挿入され、偏心部112との間を連結手段131によって連結されている。   Next, a schematic configuration of the compression element 106 will be described below. The crankshaft 110 has a main shaft portion 111 in which the rotor 104 is press-fitted and fixed, and an eccentric portion 112 formed eccentrically with respect to the main shaft portion 111, and an oil pump 113 is opened in the oil 108 inside the main shaft portion 111. It is provided to do. The cylinder block 120 formed above the electric element 105 includes a substantially cylindrical compression chamber 122 and a bearing portion 123 that supports the main shaft portion 111. The piston 130 is inserted into the compression chamber 122 of the cylinder block 120 so as to be slidable back and forth, and is connected to the eccentric portion 112 by a connecting means 131.

圧縮室122の開口端面を封止するバルブプレート135は、吸入バルブ134の開閉により圧縮室122と連通する吸入孔138を備えている。シリンダーヘッド136は、バルブプレート135を介して圧縮室122の反対側に固定されている。吸入管137は、密閉容器101に固定されると共に冷凍サイクルの低圧側(図示せず)に接続され、冷媒ガス(図示せず)を密閉容器101内に導く。吸入マフラー140は、バルブプレート135とシリンダーヘッド136に挟持されることで固定され、主にガラス繊維を添加したポリブチレンテレフタレートなどの合成樹脂で形成されている。   The valve plate 135 that seals the opening end surface of the compression chamber 122 includes a suction hole 138 that communicates with the compression chamber 122 by opening and closing the suction valve 134. The cylinder head 136 is fixed to the opposite side of the compression chamber 122 via the valve plate 135. The suction pipe 137 is fixed to the sealed container 101 and connected to the low pressure side (not shown) of the refrigeration cycle, and guides a refrigerant gas (not shown) into the sealed container 101. The suction muffler 140 is fixed by being sandwiched between the valve plate 135 and the cylinder head 136, and is mainly formed of a synthetic resin such as polybutylene terephthalate to which glass fiber is added.

図2および図3において、吸入マフラー140は、吸入マフラー本体141、吸入マフラー蓋142、第1連通路145、第2連通路146を有し、消音空間143を形成している。また、区画空間150は、第1連通路145の開口端145aおよび第2連通路146の開口端146aに近接対向する吸入マフラー140の外郭壁に設けており、二重壁151は区画空間150と消音空間143とを区画する壁である。   2 and 3, the suction muffler 140 has a suction muffler main body 141, a suction muffler lid 142, a first communication path 145, and a second communication path 146, and forms a sound deadening space 143. The partition space 150 is provided on the outer wall of the suction muffler 140 that is close to and opposed to the opening end 145a of the first communication passage 145 and the opening end 146a of the second communication passage 146. The double wall 151 is connected to the partition space 150. It is a wall that partitions the silencing space 143.

また、二重壁151は図3に示すように合成樹脂の成形時の型割面(開口面)に対して垂直に配設されている。吸入マフラー本体141には第1連通路145を挿入組み付けした後、溶着突起145bを吸入マフラー蓋142の孔142bに位置合わせする。その後、吸入マフラー本体141と吸入マフラー蓋142を超音波溶着などの方法により接合し、吸入マフラー140を完成させる。   Further, as shown in FIG. 3, the double wall 151 is disposed perpendicular to the mold dividing surface (opening surface) at the time of molding the synthetic resin. After the first communication passage 145 is inserted and assembled in the suction muffler main body 141, the welding projection 145b is aligned with the hole 142b of the suction muffler lid 142. Thereafter, the suction muffler main body 141 and the suction muffler lid 142 are joined by a method such as ultrasonic welding to complete the suction muffler 140.

以上のように構成された本実施の形態の密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor of the present embodiment configured as described above will be described below.

従来例の吸入マフラー40では、密閉容器1内に吐出した第2連通路46の開口端46bから第1連通路45の開口端45bまでの間で冷媒ガスの温度は約10Kも上昇し、最終的に圧縮室22へ吸入される。また、第2連通路46の開口端46aから消音空間43に開放された後第1連通路45の開口端45aに流れ込む間に、約4Kの温度上昇を生じる。   In the suction muffler 40 of the conventional example, the temperature of the refrigerant gas rises by about 10K between the opening end 46b of the second communication path 46 discharged into the sealed container 1 and the opening end 45b of the first communication path 45, and finally Thus, the air is sucked into the compression chamber 22. In addition, a temperature rise of about 4K occurs while flowing from the opening end 46a of the second communication passage 46 into the sound deadening space 43 and then flowing into the opening end 45a of the first communication passage 45.

しかしながら本実施例では、第2連通路146の開口端146aから第1連通路145の開口端145aに流れ込む冷媒ガスの主たる流れが形成される吸入マフラー140の外郭壁のみの断熱効果を部分的に向上させることで、吸入マフラー140全体を二重壁で覆う場合に比べて小さなスペースで効果的な断熱効果を得ることができる。この結果、冷媒ガスを低温で密度の高い状態に維持する作用を効果的に高めることができ、吸入ガスの質量流量を増加させることができる。   However, in this embodiment, the heat insulation effect of only the outer wall of the suction muffler 140 in which the main flow of the refrigerant gas flowing from the opening end 146a of the second communication path 146 to the opening end 145a of the first communication path 145 is formed is partially achieved. By improving, it is possible to obtain an effective heat insulation effect in a small space as compared with the case where the entire suction muffler 140 is covered with a double wall. As a result, the action of maintaining the refrigerant gas at a low temperature and high density can be effectively enhanced, and the mass flow rate of the intake gas can be increased.

以上の冷媒ガスの加熱低減により、開口端146aと開口端145a間での温度上昇を2K以下に抑えることができ、冷凍能力が従来の吸入マフラー仕様に比べて1.5%向上し、効率(以降COPと称す)は1.0%以上向上することが確認できた。   By reducing the heating of the refrigerant gas as described above, the temperature rise between the opening end 146a and the opening end 145a can be suppressed to 2K or less, and the refrigerating capacity is improved by 1.5% compared to the conventional suction muffler specification, and the efficiency ( (Hereinafter referred to as COP) was confirmed to be improved by 1.0% or more.

一方、吸入マフラー140内の冷媒ガスは、ピストン130の往復運動に応じた間欠流となる。このとき、第1連通路145の開口端145aに向かって冷媒ガスの流れと逆方向に圧力脈動が伝播していき、第1連通路145の開口端145aに近接対向する外郭壁に向かって反射波が生じる。この反射波に対して、二重壁151により形成される区画空間150が有する吸音効果により反射波が吸入マフラー140外に透過することを抑制すると共に、二重壁151により吸入マフラー140の外郭強度が高まるため反射波による吸入マフラー140の加振を回避できる。特に、可聴域の高周波成分の透過音低減に対して効果があることを確認している。   On the other hand, the refrigerant gas in the suction muffler 140 becomes an intermittent flow according to the reciprocating motion of the piston 130. At this time, the pressure pulsation propagates in the direction opposite to the flow of the refrigerant gas toward the opening end 145a of the first communication path 145, and is reflected toward the outer wall facing and close to the opening end 145a of the first communication path 145. A wave is generated. The reflected wave is prevented from being transmitted outside the suction muffler 140 by the sound absorption effect of the partitioned space 150 formed by the double wall 151, and the outer wall strength of the suction muffler 140 is reduced by the double wall 151. Therefore, the vibration of the suction muffler 140 due to the reflected wave can be avoided. In particular, it has been confirmed that it is effective for reducing transmitted sound of high frequency components in the audible range.

一方、合成樹脂からなる吸入マフラー140の成形時の型割面(開口面)に対して垂直に二重壁151を設けることにより、吸入マフラー本体141成形時の金型抜き方向と二重壁151の金型抜き方向を一致させることができ、金型抜き方向の複雑化や別部品化による部品点数増加に起因した金型費の増加を招くことなく容易に製造することができる。   On the other hand, by providing the double wall 151 perpendicular to the mold splitting surface (opening surface) at the time of molding the suction muffler 140 made of synthetic resin, the mold drawing direction and the double wall 151 at the time of molding the suction muffler main body 141 are provided. Therefore, it is possible to easily manufacture the mold without increasing the cost of the mold due to an increase in the number of parts due to the complexity of the mold drawing direction and the use of separate parts.

なお、本実施例では、二重壁151により形成される区画空間150と消音空間143は完全に遮断されているが、二重壁151の一部に連通孔を設けて区画空間150を共鳴室として利用することにより、吸入マフラーの遮音効果を更に高めることができる。   In the present embodiment, the partition space 150 and the sound deadening space 143 formed by the double wall 151 are completely blocked, but a communication hole is provided in a part of the double wall 151 to make the partition space 150 a resonance chamber. As a result, the sound insulation effect of the suction muffler can be further enhanced.

また、本実施例では区画空間を設ける手段として吸入マフラー140内部に二重壁151を配設したが、吸入マフラー140とは別部品からなる構造体を吸入マフラー140外部に設けることにより区画空間150を形成することでも本実施例と同様の効果を得ることが出来る。   In the present embodiment, the double wall 151 is disposed inside the suction muffler 140 as means for providing the partition space. However, by providing a structure that is a separate part from the suction muffler 140 outside the suction muffler 140, the partition space 150 is provided. The same effects as in this embodiment can also be obtained by forming.

また、第2連通路146は吸入マフラー本体141側に一体成形されているが、吸入マフラー蓋142側に一体成形することにより、吸入マフラー本体141背面に位置する電動要素105からの受熱影響を小さく抑えることができる。   The second communication path 146 is integrally formed on the suction muffler main body 141 side. However, by integrally forming on the suction muffler lid 142 side, the influence of heat reception from the electric element 105 located on the back of the suction muffler main body 141 is reduced. Can be suppressed.

(実施の形態2)
図4は、本発明の実施の形態2による密閉型圧縮機の吸入マフラーの断面図である。図5は、本発明の実施の形態2による吸入マフラー内の冷媒ガスの挙動を示す流速ベクトル
図である。なお、本実施例における密閉型圧縮機の構成は吸入マフラーを除いて図1で示した構成と同様であるため説明を省略する。
(Embodiment 2)
FIG. 4 is a cross-sectional view of the suction muffler of the hermetic compressor according to the second embodiment of the present invention. FIG. 5 is a flow velocity vector diagram showing the behavior of the refrigerant gas in the suction muffler according to the second embodiment of the present invention. The configuration of the hermetic compressor in the present embodiment is the same as the configuration shown in FIG. 1 except for the suction muffler, and thus the description thereof is omitted.

図4において、吸入マフラー140は、吸入マフラー本体141、吸入マフラー蓋(図示せず)、第1連通路145、第2連通路146を備え、消音空間143を形成している。誘導壁152は、第1連通路145の開口端145aと第2連通路146の開口端146aがそれぞれ対向する壁面と所定間隔介して各開口端145a、146a側に位置して形成され、第2連通路146から開放される冷媒ガスを第1連通路145の開口端145aに誘導する。 In FIG. 4, the suction muffler 140 includes a suction muffler main body 141, a suction muffler lid (not shown), a first communication path 145, and a second communication path 146, and forms a sound deadening space 143. The guide wall 152 is formed such that the opening end 145a of the first communication path 145 and the opening end 146a of the second communication path 146 are positioned on the side of each opening end 145a, 146a with a predetermined distance from the wall surface facing each other. The refrigerant gas released from the communication path 146 is guided to the opening end 145 a of the first communication path 145.

また図5において、流速ベクトル160は、コンピュータシミュレーションにより得られた吸入マフラー140内の冷媒ガスの挙動を示し、各ベクトルの長さが流速の大きさ、ベクトルの向きが冷媒ガスの流れ方向を示している。また、第2連通路146の開口端146aから開放される冷媒ガスによって形成される上方流161を矢印で示している。   In FIG. 5, a flow velocity vector 160 indicates the behavior of the refrigerant gas in the suction muffler 140 obtained by computer simulation. The length of each vector indicates the magnitude of the flow velocity, and the vector direction indicates the flow direction of the refrigerant gas. ing. Further, an upward flow 161 formed by the refrigerant gas released from the opening end 146a of the second communication path 146 is indicated by an arrow.

以上のように構成された密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

本実施例では、第2連通路146の開口端146aにて開放される冷媒ガスを第1連通路145の開口端145aに誘導する誘導壁152を設けたことにより、図5に示すように第2連通路146の開口端146aにて開放される冷媒ガスの大部分が上方流161を形成し第1連通路145に吸入される。この時、密閉容器101内の高温の冷媒ガスなどによって加熱された吸入マフラー140外郭壁により、消音空間143内に滞留している冷媒ガスは加熱され、第2連通路146から消音空間143内に流入したばかりの冷媒ガスより温度が高くなっている。   In this embodiment, the guide wall 152 that guides the refrigerant gas that is opened at the opening end 146a of the second communication path 146 to the opening end 145a of the first communication path 145 is provided, so that as shown in FIG. Most of the refrigerant gas opened at the open end 146 a of the two communication passages 146 forms an upward flow 161 and is sucked into the first communication passage 145. At this time, the refrigerant gas staying in the silencing space 143 is heated by the outer wall of the suction muffler 140 heated by the high-temperature refrigerant gas or the like in the sealed container 101, and is heated from the second communication path 146 into the silencing space 143. The temperature is higher than the refrigerant gas that has just flowed in.

そのため、第2連通路146の開口端146aにて開放される冷媒ガスの大部分を第1連通路145にできるだけ速やかに吸入し、消音空間143内に滞留する加熱された高温の冷媒ガスとできるだけ隔絶することにより、上方流161で表される低温の冷媒ガスの受熱を低減することができるため、冷媒ガスの密度を低く維持し吸入される冷媒ガスの質量流量を向上させることができる。   Therefore, most of the refrigerant gas opened at the opening end 146a of the second communication path 146 is sucked into the first communication path 145 as quickly as possible, and as much as possible with the heated high-temperature refrigerant gas staying in the sound deadening space 143. By isolating, the heat reception of the low-temperature refrigerant gas represented by the upward flow 161 can be reduced, so that the density of the refrigerant gas can be improved while maintaining the density of the refrigerant gas low.

また、誘導壁152は管路とせずにU字型の形状からなる誘導路として形成しているため圧力損失が小さいことを特徴としている。このため、誘導壁152を設けたことにより開口端146aから吸入される冷媒ガスをスムーズに流すように整流し、かつ第1連通路145の開口端145aに直接誘導することにより、圧力損失が小さくすることができ効率が向上する。さらに、消音空間143内に対流している冷媒ガスをほとんど巻き込むことなく、吸入ガスの流動慣性力を利用して、吸入ガスを圧縮室122に導くことができ、吸入ガスの質量流量を向上させることができる。   Further, since the guide wall 152 is not a pipe but is formed as a guide path having a U-shape, the pressure loss is small. For this reason, by providing the guide wall 152, the refrigerant gas sucked from the opening end 146 a is rectified so as to flow smoothly and directly guided to the opening end 145 a of the first communication path 145, thereby reducing pressure loss. Can improve efficiency. Furthermore, the suction gas can be guided to the compression chamber 122 by utilizing the flow inertia force of the suction gas with almost no convection of the refrigerant gas convection in the silencing space 143, thereby improving the mass flow rate of the suction gas. be able to.

以上の結果、冷媒ガスの受熱損失の低減および吸入ガス流量の増大により吸入効率を高めることができ、冷凍能力が従来例に比べて2.5%向上し、COPは2.0%以上向上することを確認した。   As a result, it is possible to increase the suction efficiency by reducing the heat loss of refrigerant gas and increasing the flow rate of the suction gas, the refrigeration capacity is improved by 2.5% compared to the conventional example, and the COP is improved by 2.0% or more. It was confirmed.

一方、第1連通路145の開口端145aから近接対向する外郭壁に向かって放射される反射波に対しては、誘導壁152で開口端145aを覆うことにより反射波が吸入マフラー140の外郭壁を透過することを抑制すると共に、誘導壁152により反射波が吸入マフラー140外郭壁を加振することを回避できる。特に、可聴域の高周波成分の透過音低減に対して効果があることを確認している。   On the other hand, with respect to the reflected wave radiated from the opening end 145 a of the first communication path 145 toward the outer wall that is close to and facing, the guiding wall 152 covers the opening end 145 a so that the reflected wave is surrounded by the outer wall of the suction muffler 140. In addition, it is possible to prevent the reflected wave from vibrating the outer wall of the suction muffler 140 by the guide wall 152. In particular, it has been confirmed that it is effective for reducing transmitted sound of high frequency components in the audible range.

更に、本実施例では、第1連通路145の開口端145aから発生する反射波の減衰効
果を維持するため、第1連通路145の開口端145aと誘導壁152の端部との間に約5mm程度の隙間を設けたが、誘導壁152の外周部を第1連通路145の開口端145aと接続することで更に冷媒ガスの流れ抵抗を低減し吸入効率を高めることができる。
Further, in the present embodiment, in order to maintain the attenuation effect of the reflected wave generated from the opening end 145a of the first communication path 145, the gap between the opening end 145a of the first communication path 145 and the end of the guide wall 152 is approximately. Although a clearance of about 5 mm is provided, the refrigerant gas flow resistance can be further reduced and the suction efficiency can be increased by connecting the outer peripheral portion of the guide wall 152 to the opening end 145a of the first communication path 145.

なお、本実施例では、実施例1と重複する仕様の説明は省略したが、合成樹脂成形時の型割面(開口面)に対する誘導壁152の配設方向の効果は実施例2においても同様に得ることができる。   In the present embodiment, the description of the specifications overlapping with those in the first embodiment is omitted, but the effect of the arrangement direction of the guide wall 152 with respect to the mold dividing surface (opening surface) at the time of synthetic resin molding is the same as in the second embodiment. Can get to.

以上のように、本発明にかかる密閉型圧縮機は、吸入効率を高めることができると共に、吸入マフラーの外郭壁が吸入ガスによって直接加振されることを抑制し、二重壁ゆえ透過音が少ないため、騒音を低減することができ、冷蔵庫、エアーコンディショナー、冷凍冷蔵装置等に使用される、高効率、低騒音型の密閉型圧縮機として幅広く適用できる。   As described above, the hermetic compressor according to the present invention can increase the suction efficiency and suppress the direct excitation of the outer wall of the suction muffler by the suction gas. Therefore, it can reduce noise and can be widely applied as a high-efficiency, low-noise hermetic compressor used in a refrigerator, an air conditioner, a freezer / refrigerator and the like.

本発明の実施の形態1による密閉型圧縮機の断面図Sectional drawing of the hermetic compressor by Embodiment 1 of the present invention. 本発明の実施の形態1による吸入マフラーの断面図Sectional drawing of the inhalation muffler by Embodiment 1 of this invention 本発明の実施の形態1による吸入マフラーの分解斜視図1 is an exploded perspective view of an inhalation muffler according to Embodiment 1 of the present invention. 本発明の実施の形態2による吸入マフラーの断面図Sectional drawing of the inhalation muffler by Embodiment 2 of this invention 本発明の実施の形態2による吸入マフラー内の流速ベクトル図Flow velocity vector diagram in the suction muffler according to the second embodiment of the present invention 従来の密閉型圧縮機の断面図Cross section of a conventional hermetic compressor 従来の密閉型圧縮機の吸入マフラーの断面図Cross-sectional view of a suction muffler of a conventional hermetic compressor 従来の密閉型圧縮機の吸入マフラー内の流速ベクトル図Flow velocity vector diagram in the suction muffler of a conventional hermetic compressor 従来の密閉型圧縮機の吸入マフラーの断面図Cross-sectional view of a suction muffler of a conventional hermetic compressor

101 密閉容器
105 電動要素
106 圧縮要素
122 圧縮室
134 吸入バルブ
140 吸入マフラー
141 吸入マフラー本体
143 消音空間
145 第1連通路
146 第2連通路
151 二重壁
152 誘導壁
DESCRIPTION OF SYMBOLS 101 Sealed container 105 Electric element 106 Compression element 122 Compression chamber 134 Suction valve 140 Suction muffler 141 Suction muffler main body 143 Silent space 145 First communication path 146 Second communication path 151 Double wall 152 Guide wall

Claims (3)

密閉容器内に電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は圧縮室開口端に配設する吸入バルブと、吸入マフラーとを備え、前記吸入マフラーは消音空間を形成するマフラー本体と、前記吸入バルブと前記消音空間とを連通する第1連通路と、前記密閉容器内と前記消音空間とを連通する第2連通路とを有し、前記第1連通路と前記第2連通路の前記消音空間内開口端が同一方向に向いて開口するとともに、前記消音空間を形成する外殻壁のうち少なくとも前記第1連通路と前記第2連通路の前記消音空間内開口端が開口する対向面の壁面を、内部に区画空間が形成される二重壁とした密閉型圧縮機。 A compression element driven by an electric element is accommodated in an airtight container, the compression element includes a suction valve disposed at an opening end of the compression chamber, and a suction muffler, and the suction muffler includes a muffler body that forms a silencing space; A first communication path that communicates the suction valve and the silencing space, and a second communication path that communicates the inside of the sealed container and the silencing space, and the first communication path and the second communication path. The opening end in the silencing space opens in the same direction, and at least the opening end in the silencing space of the first communication path and the second communication path of the outer shell wall forming the silencing space opens. A hermetic compressor in which the opposite wall surface is a double wall in which a partition space is formed. 密閉容器内に電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は圧縮室開口端に配設する吸入バルブと、吸入マフラーとを備え、前記吸入マフラーは消音空間を形成するマフラー本体と、前記吸入バルブと前記消音空間とを連通する第1連通路と、前記密閉容器内と前記消音空間とを連通する第2連通路とを有し、前記第1連通路と前記第2連通路の前記消音空間内開口端が同一方向に向いて開口するとともに、前記消音空間内に、一面が開口したU字型に形成され、かつ前記U字型を形成する開口に前記第1連通路と前記第2連通路の前記消音空間内開口端を対向させることにより、前記第2連通路から前記消音空間へ開放された冷媒ガスを前記第1連通路に誘導する誘導壁を設け、前記誘導壁を、前記マフラー本体における前記第1連通路と前記第2連通路の前記消音空間内開口端が開口する対向面の壁面と所定間隔を介して設けた密閉型圧縮機。 A compression element driven by an electric element is accommodated in an airtight container, the compression element includes a suction valve disposed at an opening end of the compression chamber, and a suction muffler, and the suction muffler includes a muffler body that forms a silencing space; A first communication path that communicates the suction valve and the silencing space, and a second communication path that communicates the inside of the sealed container and the silencing space, and the first communication path and the second communication path. The opening end in the silencing space opens in the same direction , and is formed in a U-shape with one surface opened in the silencing space, and the first communication path is formed in the opening forming the U-shape. A guide wall is provided for guiding the refrigerant gas released from the second communication path to the muffler space to the first communication path by facing the opening end in the noise reduction space of the second communication path, and the guide wall In the muffler body Serial hermetic compressor said muffling space open end of the first communication passage second communication passage is provided through the wall surface with a predetermined distance of the opposing surfaces of the opening. 吸入マフラーは合成樹脂材料からなり、少なくとも2つの部品から構成されるとともに、消音空間を形成する壁或いは誘導壁が組立て時の接合面に対して垂直に配設されている請求項1または2いずれか1項に記載の密閉型圧縮機。 3. The suction muffler is made of a synthetic resin material, is composed of at least two parts, and a wall or a guide wall forming a sound deadening space is disposed perpendicular to a joint surface at the time of assembly. The hermetic compressor according to claim 1.
JP2003300869A 2003-08-26 2003-08-26 Hermetic compressor Expired - Fee Related JP4581354B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003300869A JP4581354B2 (en) 2003-08-26 2003-08-26 Hermetic compressor
KR1020057003013A KR100653669B1 (en) 2003-08-26 2004-07-27 Hermetic compressor
US10/525,262 US20060039803A1 (en) 2003-08-26 2004-07-27 Hermetic compressor
PCT/JP2004/011012 WO2005019645A1 (en) 2003-08-26 2004-07-27 Hermetic compressor
EP04748168A EP1697637A1 (en) 2003-08-26 2004-07-27 Hermetic compressor
CNA2004800007240A CN1701179A (en) 2003-08-26 2004-07-27 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300869A JP4581354B2 (en) 2003-08-26 2003-08-26 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2005069121A JP2005069121A (en) 2005-03-17
JP4581354B2 true JP4581354B2 (en) 2010-11-17

Family

ID=34213853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300869A Expired - Fee Related JP4581354B2 (en) 2003-08-26 2003-08-26 Hermetic compressor

Country Status (6)

Country Link
US (1) US20060039803A1 (en)
EP (1) EP1697637A1 (en)
JP (1) JP4581354B2 (en)
KR (1) KR100653669B1 (en)
CN (1) CN1701179A (en)
WO (1) WO2005019645A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735084B2 (en) * 2005-07-06 2011-07-27 パナソニック株式会社 Hermetic compressor
KR100778485B1 (en) 2006-04-26 2007-11-21 엘지전자 주식회사 Muffler and compressor having the same
US9105673B2 (en) 2007-05-09 2015-08-11 Brooks Automation, Inc. Side opening unified pod
CN101889140B (en) * 2007-12-06 2013-03-20 松下电器产业株式会社 Hermetic compressor
JP5386906B2 (en) * 2008-09-25 2014-01-15 パナソニック株式会社 Refrigerant compressor
JP5560580B2 (en) * 2009-04-10 2014-07-30 パナソニック株式会社 Hermetic compressor
BRPI1105162B1 (en) 2011-12-15 2021-08-24 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda. ACOUSTIC FILTER FOR ALTERNATIVE COMPRESSOR
US20150369526A1 (en) * 2013-02-07 2015-12-24 Panasonic Intellectual Property Management Co., Ltd. Sealed compressor and refrigeration device
BR102013019311B1 (en) * 2013-07-30 2021-10-13 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda ACOUSTIC ATTENUATOR DEVICE FOR COMPRESSORS
CN106014920A (en) * 2016-06-29 2016-10-12 安徽美芝制冷设备有限公司 Compressor, assembly method for compressor and refrigerator
CN110678650B (en) 2017-05-30 2021-08-06 株式会社爱发科 Vacuum pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117372A (en) * 1992-10-02 1994-04-26 Matsushita Refrig Co Ltd Closed type electrically-driven compressor
JPH07133772A (en) * 1993-11-09 1995-05-23 Toyota Autom Loom Works Ltd Scroll type compressor
JPH11311179A (en) * 1998-04-28 1999-11-09 Matsushita Refrig Co Ltd Enclosed type electric compressor
JP2001304118A (en) * 2000-04-24 2001-10-31 Matsushita Refrig Co Ltd Hermetic compressor
JP2003042064A (en) * 2001-07-31 2003-02-13 Matsushita Refrig Co Ltd Hermetically closed compressor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109751A (en) * 1976-08-26 1978-08-29 Deere & Company Noise silencer
BR8602173A (en) * 1986-05-02 1987-12-22 Brasil Compressores Sa IMPROVEMENT IN A HERMETIC COOLING COMPRESSOR SUCTION SYSTEM
KR200141490Y1 (en) * 1993-04-24 1999-05-15 김광호 Noise-reducing apparatus of a compressor
BR9604126A (en) * 1996-08-21 1998-05-26 Brasil Compressores Sa Suction damper for hermetic compressor
JP3725294B2 (en) * 1997-05-21 2005-12-07 松下冷機株式会社 Hermetic compressor
KR100378803B1 (en) * 2000-06-12 2003-04-07 엘지전자 주식회사 Muffler for compressor
KR100390492B1 (en) * 2000-07-13 2003-07-04 엘지전자 주식회사 Apparatus for reducing noise of suction muffler in compressor
KR100364741B1 (en) * 2000-09-28 2002-12-16 엘지전자 주식회사 Suction muffler of compressor
US6390132B1 (en) * 2000-12-07 2002-05-21 Caterpillar Inc. Fluid stream pulse damper
KR100373455B1 (en) * 2000-12-21 2003-02-25 삼성광주전자 주식회사 Suc-muffler of compressor
KR100386269B1 (en) * 2001-01-11 2003-06-02 엘지전자 주식회사 Muffler of compressor
KR100504983B1 (en) * 2003-03-12 2005-08-01 삼성광주전자 주식회사 A suction muffler for compressor, A compressor and A apparatus having refrigerant cycle circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117372A (en) * 1992-10-02 1994-04-26 Matsushita Refrig Co Ltd Closed type electrically-driven compressor
JPH07133772A (en) * 1993-11-09 1995-05-23 Toyota Autom Loom Works Ltd Scroll type compressor
JPH11311179A (en) * 1998-04-28 1999-11-09 Matsushita Refrig Co Ltd Enclosed type electric compressor
JP2001304118A (en) * 2000-04-24 2001-10-31 Matsushita Refrig Co Ltd Hermetic compressor
JP2003042064A (en) * 2001-07-31 2003-02-13 Matsushita Refrig Co Ltd Hermetically closed compressor

Also Published As

Publication number Publication date
WO2005019645A1 (en) 2005-03-03
EP1697637A1 (en) 2006-09-06
KR20050084808A (en) 2005-08-29
JP2005069121A (en) 2005-03-17
KR100653669B1 (en) 2006-12-05
US20060039803A1 (en) 2006-02-23
CN1701179A (en) 2005-11-23

Similar Documents

Publication Publication Date Title
US9587634B2 (en) Muffler for compressor and compressor having the same
JPS62271974A (en) Refrigerating compressor
JP4883179B2 (en) Hermetic compressor
JP4581354B2 (en) Hermetic compressor
KR100277283B1 (en) Hermetic compressor
JP2008540891A (en) Suction muffler for cooling compressor
JP4101505B2 (en) Hermetic compressor
JP4752255B2 (en) Hermetic compressor
JP5249422B2 (en) Compressor
JP5120186B2 (en) Hermetic compressor
JP2006144729A (en) Hermetically-sealed compressor
JP2003042064A (en) Hermetically closed compressor
JP2002122072A (en) Vibration-type compressor
JP5315178B2 (en) Hermetic compressor and refrigerator using the same
JP4747478B2 (en) Hermetic compressor
JP5793649B2 (en) Hermetic compressor
JP6552218B2 (en) Hermetic compressor and refrigeration apparatus equipped with the same
JP2000274363A (en) Hermetic compressor
US20240102459A1 (en) Linear compressor
US11555490B2 (en) Linear compressor
KR20180077774A (en) Reciprocating compressor
JP2004092660A (en) Sealed electric compressor
JP2004138074A (en) Hermetic electrically-driven compressor
JP2005113926A (en) Sealed compressor
JPH11107917A (en) Sealed compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060913

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees