JP4581113B2 - Fine pattern forming method - Google Patents
Fine pattern forming method Download PDFInfo
- Publication number
- JP4581113B2 JP4581113B2 JP2005067297A JP2005067297A JP4581113B2 JP 4581113 B2 JP4581113 B2 JP 4581113B2 JP 2005067297 A JP2005067297 A JP 2005067297A JP 2005067297 A JP2005067297 A JP 2005067297A JP 4581113 B2 JP4581113 B2 JP 4581113B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- pattern
- fine pattern
- fine
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 56
- 239000003054 catalyst Substances 0.000 claims description 122
- 239000000463 material Substances 0.000 claims description 92
- 239000000758 substrate Substances 0.000 claims description 44
- 238000010248 power generation Methods 0.000 claims description 31
- 238000006555 catalytic reaction Methods 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 24
- 239000012528 membrane Substances 0.000 claims description 23
- 239000002994 raw material Substances 0.000 claims description 20
- 238000009826 distribution Methods 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 17
- 230000004044 response Effects 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000007261 regionalization Effects 0.000 claims description 12
- 230000005611 electricity Effects 0.000 claims description 10
- 230000020169 heat generation Effects 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 230000003213 activating effect Effects 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 5
- 229910001510 metal chloride Inorganic materials 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 239000011882 ultra-fine particle Substances 0.000 claims description 5
- 230000008901 benefit Effects 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 235000011837 pasties Nutrition 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 80
- 239000004065 semiconductor Substances 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 9
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229910001887 tin oxide Inorganic materials 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 238000007650 screen-printing Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229940116411 terpineol Drugs 0.000 description 2
- 238000000427 thin-film deposition Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
本発明は、機能性材料の3次元的な微細パターン形成技術に関するものであり、更に詳しくは、可燃性ガスと触媒材との触媒反応による発熱を検出信号として検出するガスセンサ又は熱を電気に変換する熱電発電器において、その基板上に触媒又は抵抗体の微細パターンを形成する方法及び該方法で形成した微細パターンを有するガスセンサ及び熱電発電器に関するものである。本発明は、ガスセンサ及び熱電発電器の技術分野において、その基板上に機能性材料の微細パターンを形成する際に、その所定の微細構造が制御されたままの状態で微細パターンを形成することを可能とする微細パターン形成方法及びその応用製品を提供するものである。本発明は、例えば、導電性材料のパターン形成による導電配線パターンの形成、触媒材料のパターン形成によるガスセンサへの応用等、広汎な分野で利用可能な技術として有用である。 The present invention relates to a technology for forming a three-dimensional fine pattern of a functional material. More specifically, the present invention relates to a gas sensor that detects heat generated by a catalytic reaction between a combustible gas and a catalyst material as a detection signal, or converts heat into electricity. The present invention relates to a method for forming a fine pattern of a catalyst or a resistor on a substrate thereof, a gas sensor having the fine pattern formed by the method, and a thermoelectric generator. In the technical field of a gas sensor and a thermoelectric generator, the present invention is to form a fine pattern in a state in which a predetermined fine structure is controlled when forming a fine pattern of a functional material on the substrate. The present invention provides a fine pattern forming method and an application product thereof. The present invention is useful as a technique that can be used in a wide range of fields, for example, formation of a conductive wiring pattern by pattern formation of a conductive material, and application to a gas sensor by pattern formation of a catalyst material.
機能性材料の微細パターンの作製には、ゾルゲル法を用いたコーティング、又は薄膜プロセスで基板上に薄膜を作製し、必要な部分を半導体プロセスで用いて残す方法が多数提案されている。これらの方法で用いられるパターン形成手法である、所謂、フォトリソグラフィー方法は、マスクによる部分的な露光による微細なパターンを形成する方法である。しかし、これらの他にも、特にマスクを使わずに微細パターンを形成する代表的な技術があり、例えば、スクリーン印刷、又はインクジェットがあげられる。 For the production of a fine pattern of a functional material, many methods have been proposed in which a thin film is produced on a substrate by coating using a sol-gel method or a thin film process, and a necessary portion is left in a semiconductor process. A so-called photolithography method, which is a pattern forming method used in these methods, is a method of forming a fine pattern by partial exposure using a mask. However, other than these, there are typical techniques for forming a fine pattern without using a mask, for example, screen printing or ink jet.
従来、機能性材料のパターンは、粉末状の粒子を主成分とするペーストをスクリーン印刷法によって基板上に塗布し、乾燥後に焼成する手法を用いて形成されていた。この機能性材料としては、例えば、導電性の配線、半導体セラミックスであるガスセンサ材料、焼成後に基板と素子を接着した部材、プラズマディスプレイパネルの蛍光体材料等が例示される。また、インクジェット法も、近年において、微細パターン形成手法として利用され始めた新しい技術である。 Conventionally, a pattern of a functional material has been formed using a technique in which a paste mainly composed of powdered particles is applied on a substrate by a screen printing method, and is fired after drying. Examples of the functional material include conductive wiring, a gas sensor material that is a semiconductor ceramic, a member obtained by bonding a substrate and an element after firing, a phosphor material for a plasma display panel, and the like. The ink jet method is also a new technology that has begun to be used as a fine pattern forming method in recent years.
しかしながら、パターンの微細化が進むにつれ、スクリーンマスクの伸縮・位置決め誤差などの原因で高精度の塗布が困難になってきた。微細パターンの場合、スクリーンの作製が困難であり、量産の場合、耐久性問題が発生しやすい。更に、粘度が低いとパターンが難しくなるため、ペーストの粘度に制限がある。インクジェットは、使用可能な粘度範囲が約5−50mPa・sであり、非常に狭い。更に、粒子状物質を含むペーストとなると、粒子サイズの制限が多く、応用範囲が狭い。更に、スクリーン印刷法、又はインクジェット法は、平面上のパターン形成は可能であるが、3次元的な構造体へのパターン形成は困難である。 However, as the pattern becomes finer, high-precision coating has become difficult due to expansion / contraction / positioning errors of the screen mask. In the case of a fine pattern, it is difficult to produce a screen, and in the case of mass production, a durability problem is likely to occur. Further, since the pattern becomes difficult when the viscosity is low, the viscosity of the paste is limited. Inkjet has a usable viscosity range of about 5-50 mPa · s, which is very narrow. Furthermore, when it becomes a paste containing a particulate substance, there are many restrictions on particle size and the application range is narrow. Furthermore, the screen printing method or the ink jet method can form a pattern on a plane, but it is difficult to form a pattern on a three-dimensional structure.
例えば、基板表面形状に凹凸があって、その溝底の特定部分に機能性材料の微細パターン形成することは、スクリーン印刷、インクジェット印刷、薄膜蒸着方法では、何れも困難である。基板の一部をエッチングし、その溝底の特定部分に触媒薄膜を微細パターンとして形成し、その発熱から温度差を作って、熱電変換材料により発電するシステムの場合でも、薄膜蒸着方法を用いるため、その溝底に微細パターンを精度を高く形成することが難しい。更に、薄膜蒸着で触媒を形成する場合、ナノ粒子を原料とする高性能の触媒パターンを形成することが難しく、性能の悪い触媒パターンになりやすい。そのため、触媒反応を引き起こすために、ヒータ加熱を必要とする等の問題があった。 For example, there are irregularities in the substrate surface shape, and it is difficult to form a fine pattern of a functional material on a specific portion of the groove bottom by screen printing, ink jet printing, or thin film deposition. In order to use the thin film deposition method even in the case of a system that etches a part of the substrate, forms a catalyst thin film as a fine pattern at a specific part of the groove bottom, creates a temperature difference from the generated heat, and generates electricity with a thermoelectric conversion material It is difficult to form a fine pattern on the groove bottom with high accuracy. Furthermore, when a catalyst is formed by thin film deposition, it is difficult to form a high-performance catalyst pattern using nanoparticles as a raw material, and a catalyst pattern with poor performance tends to be formed. For this reason, there has been a problem that heater heating is required to cause a catalytic reaction.
一方、ディスペンサ技術を活用し、微細パターンを作製することが試みられている。従来、ディスペンサは、エポキシ系接着剤、導電性接着剤等を含む各種の接着剤、又はグリース、オイル等の各種潤滑剤等の塗布によるパターン形成方法として用いられている。最近は、ディスプレイパネルの製造において、蛍光体の塗布等にも用いられるようになっている(特許文献1)。更に、ディスペンサを用いて、誘電体材料を塗布して、その微細なパターンを形成した報告例もある(非特許文献1)。しかし、これらは、単純に材料を塗布する手段としてディスペンサを利用したものである。 On the other hand, it has been attempted to produce a fine pattern by utilizing a dispenser technique. Conventionally, a dispenser is used as a pattern forming method by applying various adhesives including epoxy adhesives, conductive adhesives, or various lubricants such as grease and oil. Recently, in the manufacture of display panels, it has also been used for phosphor coating and the like (Patent Document 1). Further, there is a report example in which a fine pattern is formed by applying a dielectric material using a dispenser (Non-patent Document 1). However, these use a dispenser as a means for simply applying a material.
このように、従来、ディスペンサは、微細加工の分野における材料の塗布手段の一つとして利用されている事例はあるものの、例えば、材料の3次元的微細構造を原理とする特定の機能性を発揮する材料を用いる場合、その機能性材料の原料ペーストの主成分である粒子の形状及び分布状態を含む所定の微細構造を制御して設計、調製し、これを、その所定の微細構造が制御されたままの状態で微細パターン化することを可能とする微細パターン形成技術として利用することは、全く考えられていなかった。 As described above, for example, dispensers have been used as one of the means for applying materials in the field of microfabrication, but for example, they exhibit specific functionality based on the principle of the three-dimensional microstructure of materials. When a material to be used is used, a predetermined microstructure including the shape and distribution state of particles that are the main components of the raw material paste of the functional material is designed and prepared, and this is controlled by the predetermined microstructure. It has not been considered at all to be used as a fine pattern forming technique that enables fine patterning in an as-is state.
このような状況の中で、本発明者らは、上記従来技術に鑑みて、ガスセンサ及び熱電発電器において、基板上に形成するための、予め設計し、調製した機能性材料の組成、粒子形状及びその分布状態を含む所定の微細構造を、その所定の微細構造が制御されたままの状態で微細パターンを形成する技術を開発することを目標として鋭意研究を重ねた結果、ディスペンサを利用した特定の構成を採用することで所期の目的が達成し得ることを見出し、本発明を完成するに至った。本発明は、ガスセンサ及び熱電発電器の基板上に触媒又は抵抗体の原料の機能性材料の3次元的な微細パターンを形成する方法及び該方法を使用して作製された微細パターンを構成要素として含むガスセンサ及び熱電発電器を提供することを目的とするものである。 Under such circumstances, the present inventors, in view of the above-mentioned conventional technology, in the gas sensor and the thermoelectric generator, the composition and particle shape of the functional material that is designed and prepared in advance for forming on the substrate. As a result of intensive research aimed at developing a technology for forming a fine pattern of a predetermined microstructure including its distribution state while the predetermined microstructure remains controlled, identification using a dispenser It has been found that the intended purpose can be achieved by adopting the configuration, and the present invention has been completed. The present invention relates to a method of forming a three-dimensional fine pattern of a functional material as a catalyst or resistor material on a substrate of a gas sensor and a thermoelectric generator, and a fine pattern produced using the method as a constituent element. An object of the present invention is to provide a gas sensor and a thermoelectric generator.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)可燃性ガスと触媒材との触媒反応による発熱を検出信号として検出するガスセンサ素子又は熱を電気に変換する熱電発電素子において、その基板上に触媒又は抵抗体の微細パターンを形成する方法であって、1)触媒又は抵抗体の原料の機能性材料を、その主成分であるナノメートルレベルの粒子の少なくとも形状及び分布状態の所定の微細構造を制御して設計、調製し、2)該原料が、ペースト状で、その粘度が0.001から100Pa・sの範囲であり、3)ディスペンサを3次元的に移動させながら、触媒又は抵抗体の原料の機能性材料を吐出させることにより、基板上の所定の位置に、所定のパターンで塗布し、4)その際に、ディスペンサの吐出部のノズル先端と基板の相対的な位置関係を調節して、機能性材料を吐出することで、基板上に微細パターンを形成し、5)それによって、上記機能性材料の主成分であるナノメートルレベルの粒子の少なくとも形状及び分布状態の所定の微細構造が制御されたままの状態で微細パターンを形成する、ことを特徴とする上記素子の基板上の触媒又は抵抗体の微細パターン形成方法。
(2)ディスペンサの吐出部のノズル先端と基板の相対的な位置関係を調節して、基板表面形状に凹凸がある基板の溝底の特定部分に、機能性材料を塗布する、前記(1)に記載の微細パターン形成方法。
(3)上記微細パターンに使われる触媒粉末の作製又は触媒ペーストの作製において、金属の塩化物と酸化物粉末を有機物分散材と混合し、150℃から300℃までの温度で加熱処理する、又は粒子径がナノメートルレベルの金属と酸化物粉末を混合することでナノメートルレベルの金属超微粒子の複合体のパターンを形成する、前記(1)に記載の微細パターン形成方法。
(4)結晶性及び微細構造が制御されたままの状態で塗布できる抵抗体パターン形成をメンブレンからなるマイクロ素子構造に集積適用することで、抵抗体材料の特性を活かして、低温動作でもガス応答速度が速い、微細パターンを形成する、前記(1)に記載の微細パターン形成方法。
(5)前記(1)から(4)のいずれかに記載の微細パターン形成方法によって作製された、可燃性ガスと触媒材との触媒反応による発熱を検出信号として検出するガスセンサ素子であって、被検出ガスと接触して触媒反応を起こす触媒材が、ディスペンサにより、基板上の所定の位置に、所定のパターンで塗布されており、それによって、機能性材料の主成分であるナノメートルレベルの粒子の少なくとも形状及び分布状態の所定の微細構造が制御されたままの状態で微細パターンとして形成されていることを特徴とするガスセンサ素子。
(6)前記(1)から4のいずれかに記載の微細パターン形成方法によって作製された、熱電変換材料からなる高温部と低温部を有する構造を複数個直列に接続されてなる、熱を電気に変換する熱電発電素子であって、その発熱部が、ディスペンサにより、基板上の所定の位置に、所定のパターンで塗布されており、それによって、機能性材料の主成分であるナノメートルレベルの粒子の少なくとも形状及び分布状態の所定の微細構造が制御されたままの状態で微細パターンとして形成されていることを特徴とする熱電発電素子。
(7)酸化物及び触媒を含む機能性材料の主成分である粒子の少なくとも形状及び分布状態の所定の微細構造が制御されたままの状態で微細パターンを形成することにより、触媒反応が活発に行われる温度を室温以下とし、触媒反応を活性化するための加熱を不要とした、前記(5)に記載のガスセンサ素子。
(8)酸化物及び触媒を含む機能性材料の主成分である粒子の少なくとも形状及び分布状態の所定の微細構造が制御されたままの状態で微細パターンを形成することにより、触媒反応が活発に行われる温度を室温以下とし、触媒反応を活性化するための加熱を不要とした、前記(6)に記載の熱電発電素子。
(9)上記微細構造が制御されたままの状態で塗布できる触媒パターン形成をメンブレンからなる熱絶縁構造に適用することで、その触媒の発熱を最大限高めることを可能とした、前記(5)に記載のガスセンサ素子。
(10)上記微細構造が制御されたままの状態で塗布できる微細パターン形成をメンブレンからなる熱絶縁構造に適用することで、その発熱を最大限高めることを可能とした、前記(6)に記載の熱電発電素子。
(11)上記ガスセンサ素子において、熱電変換原理を用いることで、ガス検出濃度範囲が0.5ppmの低濃度から5%の高濃度までの可燃性ガスを検知可能な、前記(7)に記載のガスセンサ素子。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method of forming a fine pattern of a catalyst or a resistor on a substrate in a gas sensor element that detects heat generated by a catalytic reaction between a combustible gas and a catalyst material as a detection signal or a thermoelectric power generation element that converts heat into electricity 1) Designing and preparing a functional material as a raw material for the catalyst or resistor by controlling at least a predetermined microstructure of the shape and distribution state of the nanometer-level particles as the main component, and 2) The raw material is pasty and has a viscosity in the range of 0.001 to 100 Pa · s. 3 ) By discharging the functional material of the raw material of the catalyst or resistor while moving the dispenser three-dimensionally. , at a predetermined position on the substrate, was applied in a predetermined pattern, 4) at that time, by adjusting the relative positional relationship of the nozzle tip and the substrate of the discharge portion of the dispenser, the discharge of the functional material In Rukoto, forming a fine pattern on a substrate, 5) whereby at least the shape and remains predetermined microstructure of distribution is controlled in nanometer particle which is a main component of the functional material A method for forming a fine pattern of a catalyst or a resistor on a substrate of the above element, wherein a fine pattern is formed by:
( 2 ) Adjusting the relative positional relationship between the nozzle tip of the discharge portion of the dispenser and the substrate, and applying a functional material to a specific portion of the groove bottom of the substrate having uneven substrate surface shape (1) A method for forming a fine pattern according to 1.
( 3 ) In preparation of the catalyst powder or catalyst paste used in the fine pattern, the metal chloride and oxide powder are mixed with the organic dispersion material and heat-treated at a temperature of 150 ° C. to 300 ° C., or The fine pattern forming method according to (1), wherein a composite pattern of nanometer- level metal ultrafine particles is formed by mixing a metal having a particle diameter of a nanometer level and an oxide powder.
( 4 ) Resistor pattern formation that can be applied in a state where the crystallinity and microstructure are controlled is integrated and applied to the micro-element structure consisting of a membrane, making use of the characteristics of the resistor material and gas response even at low temperature operation. The fine pattern forming method according to (1), wherein the fine pattern is formed at a high speed.
( 5 ) A gas sensor element for detecting heat generated by a catalytic reaction between a combustible gas and a catalyst material as a detection signal, produced by the fine pattern forming method according to any one of (1) to ( 4 ), A catalyst material that causes a catalytic reaction in contact with the gas to be detected is applied in a predetermined pattern by a dispenser to a predetermined position on the substrate, thereby achieving a nanometer level component that is the main component of the functional material . A gas sensor element characterized by being formed as a fine pattern in a state in which a predetermined fine structure of at least the shape and distribution state of particles is controlled.
( 6 ) Electricity generated by connecting in series a plurality of structures having a high-temperature part and a low-temperature part made of a thermoelectric conversion material produced by the method for forming a fine pattern according to any one of (1) to ( 4 ). The heat generating part is converted into a heat generating part, which is applied by a dispenser at a predetermined position on a substrate in a predetermined pattern, thereby achieving a nanometer level which is a main component of the functional material . A thermoelectric power generation element characterized in that it is formed as a fine pattern in a state where a predetermined fine structure of at least the shape and distribution state of particles is controlled.
( 7 ) By forming a fine pattern in a state where a predetermined fine structure of at least a shape and a distribution state of particles as main components of the functional material including an oxide and a catalyst is controlled, a catalytic reaction is actively performed. The gas sensor element according to ( 5 ), wherein the temperature to be performed is set to room temperature or lower, and heating for activating the catalytic reaction is unnecessary.
( 8 ) By forming a fine pattern in a state in which a predetermined fine structure of at least the shape and distribution state of particles, which are main components of a functional material containing an oxide and a catalyst, is controlled, the catalytic reaction is actively performed. The thermoelectric power generation element according to ( 6 ), wherein the temperature to be performed is set to room temperature or lower and heating for activating the catalytic reaction is unnecessary.
(9) the catalyst patterning can be applied in a state where the microstructure is controlled by applying the heat insulating structure consisting of a membrane, it made it possible to maximize the heating of the catalyst, the (5) The gas sensor element according to 1.
(10) the microstructure can be applied in the state of being controlled fine pattern formed by applying the heat insulating structure consisting of a membrane, made it possible to maximize the heat generation, according to (6) Thermoelectric power generation element.
(11) In the gas sensor element, by using the thermoelectric conversion principle, the gas detection concentration range capable of detecting the combustible gas to a high concentration of 5% low concentration of 0.5 pp m, the (7) The gas sensor element described.
次に、本発明について更に詳細に説明する。
本発明の微細パターン形成方法は、可燃性ガスと触媒材との触媒反応による発熱を検出信号として検出するガスセンサ又は熱を電気に変換する熱電発電器において、その基板上に触媒又は抵抗体の微細パターンを形成する方法であって、触媒又は抵抗体の原料の機能性材料を、その所定の微細構造を制御して設計、調製し、ディスペンサを3次元的に移動させながら、触媒又は抵抗体の原料の機能性材料を吐出させることにより、基板上の所定の位置に、所定のパターンで塗布し、それによって、機能性材料の主成分である粒子の形状及び分布状態を含む微細構造が制御されたままの状態で所定の微細パターンを形成することを特徴とするものである。
Next, the present invention will be described in more detail.
The fine pattern forming method of the present invention is a gas sensor that detects heat generated by a catalytic reaction between a combustible gas and a catalyst material as a detection signal, or a thermoelectric generator that converts heat into electricity. A method for forming a pattern, in which a functional material as a raw material of a catalyst or a resistor is designed and prepared by controlling its predetermined microstructure, and a dispenser is moved three-dimensionally while the catalyst or the resistor By discharging the functional material as a raw material, it is applied to a predetermined position on the substrate in a predetermined pattern, thereby controlling the microstructure including the shape and distribution state of the particles that are the main components of the functional material. A predetermined fine pattern is formed as it is.
本発明において、触媒又は抵抗体としては、好適には、貴金属が分散した酸化物又は結晶質の酸化物、例えば、アルミナ、酸化スズ等が例示されるが、これらに制限されるものではない。また、本発明において、機能性材料の主成分である粒子の形状及び分布状態を含む所定の微細構造が制御されたままの状態で微細パターンを形成するとは、例えば、粒子サイズがナノメートルの大きさで、貴金属が分散された酸化物、又は結晶質の酸化物の粒子からなる所定の微細構造を有する機能性材料を、その微細構造を維持して微細パターン化することを意味する。また、本発明において、ディスペンサを3次元的に移動させながら、触媒又は抵抗体を吐出させるとは、例えば、ディスペンサを用いて、触媒又は抵抗体の原料を、微細な電極の上、又はメンブレン等の特定の部分に選択的に形成することを意味する。 In the present invention, the catalyst or resistor is preferably an oxide in which a noble metal is dispersed or a crystalline oxide, such as alumina or tin oxide, but is not limited thereto. In the present invention, forming a fine pattern in a state in which a predetermined fine structure including the shape and distribution state of particles that are main components of the functional material is controlled is, for example, that the particle size is as large as nanometers. This means that a functional material having a predetermined microstructure composed of oxides of precious metal dispersed or crystalline oxides is finely patterned while maintaining the microstructure. Also, in the present invention, the catalyst or resistor is discharged while the dispenser is moved three-dimensionally, for example, using the dispenser, the catalyst or resistor raw material is placed on a fine electrode, a membrane, or the like. It is meant to be selectively formed on a specific part of.
本発明では、素子に発生した局部的な温度差を信号源、又は電力源とする素子の構成要素の一つである触媒部材の形成が、ディスペンサを用いた方法で行われ、また、触媒の性能を高めるために、触媒の原料となるペーストの粒子サイズがナノメートルレベルのものが用いられ、所定の形状、構造、及び微細構造を持つ微細パターンが形成される。本発明では、それらの具体的な構成は、素子の形状、構造、利用目的等に応じて任意に設計することができる。 In the present invention, the formation of the catalyst member, which is one of the components of the element that uses a local temperature difference generated in the element as a signal source or a power source, is performed by a method using a dispenser. In order to enhance the performance, a paste having a particle size of nanometer level is used as a catalyst raw material, and a fine pattern having a predetermined shape, structure, and fine structure is formed. In the present invention, specific configurations thereof can be arbitrarily designed according to the shape, structure, purpose of use, etc. of the element.
可燃性ガス燃料と空気の混合ガスを触媒反応によって発熱すると、熱と光が発生する。この燃焼反応の発熱によって発生する局部的な温度差を、熱電変換材料を利用して電気エネルギーに変えることができる。本発明では、触媒の形成においてディスペンサを使用することで、より高性能のガスセンサ又は熱電発電器を提供することができる。本発明では、例えば、安定した触媒反応による温度差発生を促すため、シリコン基板上に厚さ1μm以下のメンブレンに乗せた構造とし、それにより、素子の熱容量を低減するとともに、基板への熱伝達を極限まで低減し、素子の応答性を向上させることを可能である。 When a mixed gas of combustible gas fuel and air generates heat by a catalytic reaction, heat and light are generated. The local temperature difference generated by the heat generated by the combustion reaction can be converted into electric energy using a thermoelectric conversion material. In the present invention, a higher performance gas sensor or thermoelectric generator can be provided by using a dispenser in forming the catalyst. In the present invention, for example, a structure in which a membrane having a thickness of 1 μm or less is placed on a silicon substrate in order to promote a temperature difference due to a stable catalytic reaction, thereby reducing the heat capacity of the device and transferring heat to the substrate. Can be reduced to the limit, and the responsiveness of the element can be improved.
本発明では、この燃焼反応の発熱によって発生する局部的な温度差を、熱電変換材料を利用して電気エネルギーに変えて、これを動力源として利用するためのシステムである燃焼熱電発電器素子又は熱電式ガスセンサを提供することができる。近年、携帯電子機器、小型医療機器、自立ロボット技術の発達にともない、リチウム電池に代わって、数ワット級の超小型エネルギー源が必要とされ、マイクロ燃焼熱電発電器は、マイクロタービン等とは異なり駆動部がないため、小型で信頼性の高い、このマイクロ燃焼熱発電器を用いた超小型発電システムの開発が望まれている。ガスセンサの場合でも、ドリフトが少なく、簡単な電気回路で、高性能のガス検出が可能である、熱電式ガスセンサの実用化が望まれている。 In the present invention, the local temperature difference generated by the heat generated by the combustion reaction is converted into electrical energy using a thermoelectric conversion material, and the combustion thermoelectric generator element or system that is used as a power source or A thermoelectric gas sensor can be provided. In recent years, along with the development of portable electronic devices, small medical devices, and autonomous robot technology, instead of lithium batteries, ultra-small energy sources of several watts are required. Micro-combustion thermoelectric generators are different from micro-turbines, etc. Since there is no drive unit, it is desired to develop a micro power generation system using the micro combustion thermal power generator that is small and highly reliable. Even in the case of a gas sensor, there is a demand for practical application of a thermoelectric gas sensor that can detect high-performance gas with a simple electric circuit with little drift.
本発明では、ペースト状に素子表面に形成してから加熱処理して焼成することで、最終的な触媒の構造が、酸化物のナノ粒子と、更にその表面に数ナノメートル大きさの貴金属が分散された複合体となるように、原料のペーストを調製する。即ち、触媒は、ペースト状の材料を素子表面に形成してから加熱処理して焼成することで、最終的な触媒の構造が、酸化物のナノ粒子と、更に、その表面に数ナノメートルの大きさの貴金属とが分散された複合体となるように、予め原料配合及びそれらの微細構造を設計し、原料のペーストを調製する。酸化物のナノ粒子としては、例えば、アルミナ、シリカ、酸化スズ、貴金属としては、例えば、Pt、Pd、Au、微細構造としては、例えば、酸化物の表面に金属のナノ粒子が所定の分散状態で分散されている構造が例示されるが、これらに制限されるものではない。 In the present invention, the final catalyst structure is formed by forming a paste on the element surface and then heat-treating and firing to form oxide nanoparticles, and a few nanometer-sized noble metal on the surface. A raw material paste is prepared so as to form a dispersed composite. That is, the catalyst is formed by forming a paste-like material on the surface of the element, followed by heat treatment and firing, so that the final catalyst structure has oxide nanoparticles and a few nanometers on the surface. A raw material paste and a fine structure thereof are designed in advance so as to form a composite in which a noble metal having a size is dispersed, and a raw material paste is prepared. As oxide nanoparticles, for example, alumina, silica, tin oxide, noble metals, for example, Pt, Pd, Au, and fine structures, for example, metal nanoparticles on the surface of oxide are in a predetermined dispersed state. However, the structure is not limited thereto.
触媒からの発熱エネルギーが周辺に伝わらないように、熱伝導の低いメンブレインの上に触媒が形成される。本発明において、ディスペンサを用いる利点としては、種々のニードル径の選択が可能であり、格子状など複雑な形状の触媒パターンを容易に作製できること、また、機械的強度に劣る薄い膜上にも塗布することができ、基板形状に捕らわれず幅広い応用が可能であること、この新型触媒を用いることで、デバイスの室温作動が可能となること、等が挙げられる。 The catalyst is formed on the membrane having low heat conduction so that the exothermic energy from the catalyst is not transmitted to the surroundings. In the present invention, as an advantage of using a dispenser, various needle diameters can be selected, a catalyst pattern having a complicated shape such as a lattice can be easily produced, and also applied to a thin film having poor mechanical strength. It can be applied to a wide range of applications without being trapped by the substrate shape, and the device can be operated at room temperature by using this new catalyst.
本発明の方法を利用することにより、図1に示したように、凹凸のある素子表面でも、複雑な形状のパターンが形成できる。図2には、メンブレンの上部に触媒パターンを形成した模式図を示してある。燃料ガスの流れを素子の下面のエッチングされた所とすると、触媒は、メンブレンの下面に形成しなければならないが、その場合、図1のようなパターン形成が可能なディスペンサ方法が最も優れた生産性を持つと考えられる。よりきれいで細い線を塗布することで、上記のパターン以外の触媒パターンの形成も可能である。例えば、ラインを垂直に重ね書きすることで、格子状の触媒を描くことも可能と考えられる。また、線幅はノズルの内径を小さくすることと、吐出量を減らすことで達成できる。 By using the method of the present invention, as shown in FIG. 1, a pattern having a complicated shape can be formed even on an uneven element surface. FIG. 2 shows a schematic view in which a catalyst pattern is formed on the upper part of the membrane. Assuming that the flow of the fuel gas is etched on the lower surface of the element, the catalyst must be formed on the lower surface of the membrane. In that case, the dispenser method capable of pattern formation as shown in FIG. It is considered to have sex. By applying a finer and finer line, it is possible to form a catalyst pattern other than the above pattern. For example, it is considered possible to draw a lattice-like catalyst by overwriting the lines vertically. Further, the line width can be achieved by reducing the inner diameter of the nozzle and reducing the discharge amount.
従来の薄膜プロセス法、スクリーン印刷法、インクジェット法による微細パターン形成方法では、例えば、機能性材料の主成分である粒子の形状及び分布状態を含む微細構造が制御されたままの状態で微細パターンを形成することは困難であった。しかし、本発明の方法では、機能性材料のペーストの主成分である粒子の形状及び分布状態を含む所定の微細構造が制御されたままの状態で所定の微細パターンを形成することが可能であり、例えば、機能性材料として、予め微細構造を制御して調製した酸化物と触媒のペーストを用いた場合、その微細構造を完全に維持した形で所定の微細パターンを形成することが可能である。本発明は、機能性材料の高機能性化と微細パターンの高精度化とを同時的に達成することを可能とするものであり、特に、ナノ材料の機能性の発現手段として重要である。本発明は、予め設計、調製した、特定の微細構造を有する機能性材料の原料を、その微細構造を維持して微細パターン化することで、触媒反応による発熱を検出信号として検出するガスセンサ又は熱を電気に変換する熱電堆を高精度に作製することを可能にするものとして有用である。 In a conventional thin film process method, screen printing method, and ink jet method, a fine pattern is formed in a state in which the fine structure including the shape and distribution state of particles that are the main components of the functional material is controlled. It was difficult to form. However, in the method of the present invention, it is possible to form a predetermined fine pattern in a state in which a predetermined fine structure including the shape and distribution state of particles that are the main components of the paste of the functional material is controlled. For example, when an oxide-catalyst paste prepared by controlling the microstructure in advance is used as the functional material, it is possible to form a predetermined fine pattern while maintaining the microstructure completely. . The present invention makes it possible to simultaneously achieve high functionality of a functional material and high precision of a fine pattern, and is particularly important as a means for expressing the functionality of a nanomaterial. The present invention provides a gas sensor or a heat sensor that detects heat generated by a catalytic reaction as a detection signal by pre-designing and preparing a raw material of a functional material having a specific fine structure while maintaining the fine structure to form a fine pattern. It is useful as a thing that makes it possible to produce a thermopile that converts the electricity into electricity with high accuracy.
また、本発明では、微細パターンに使われる触媒粉末又は触媒ペーストの作製において、例えば、金属の塩化物及び酸化物粉末を有機物分散材と直接混合し、パターン形成した後、150℃から300℃までの温度で加熱処理することで、ナノメートルの金属超微粒子の複合体のパターン形成が可能である。通常は高い温度まで加熱しないと金属塩化物のままのものであり、高温まで加熱すると金属超微粒子が大きくなる問題があった。本発明では、例えば、塩化物と有機分散材を混合して加熱することによって、150℃程度の低い温度でも金属超微粒子として還元され、粒成長を抑えることができる。 In the present invention, in preparation of a catalyst powder or catalyst paste used for a fine pattern, for example, metal chloride and oxide powder are directly mixed with an organic dispersion material to form a pattern, and then from 150 ° C. to 300 ° C. By performing the heat treatment at the temperature of, it is possible to form a pattern of a composite of nanometer metal ultrafine particles. Usually, if it is not heated to a high temperature, it remains as a metal chloride, and if it is heated to a high temperature, the metal ultrafine particles become large. In the present invention, for example, by mixing and heating a chloride and an organic dispersion material, it is reduced as ultrafine metal particles even at a temperature as low as about 150 ° C., and grain growth can be suppressed.
ディスペンサでパターン形成が可能な応用は触媒だけに限らない。例えば、可燃性ガスと半導体材料との表面反応によって、半導体材料の抵抗変化を検出信号として検出するガスセンサであって、半導体材料の形成に本発明のパターン形成方法を適用することができる。従来の技術では、マイクロ素子への酸化物半導体材料の集積には、スパッタ蒸着のような物理的手法、又はゾルゲル溶液を塗布する化学的な手法が用いられていた。しかし、何れの手法でも、マイクロ素子に集積化した状態では結晶化に進まないため、最終的には加熱処理して結晶化する。このプロセスでは、マイクロ素子に悪影響を及ばないように極力短時間で低温加熱するため、十分な性能の半導体材料を作製することが難しかった。 Applications that allow pattern formation with a dispenser are not limited to catalysts. For example, a gas sensor that detects a change in resistance of a semiconductor material as a detection signal by a surface reaction between a combustible gas and a semiconductor material, and the pattern forming method of the present invention can be applied to the formation of the semiconductor material. In the prior art, a physical method such as sputter deposition or a chemical method of applying a sol-gel solution has been used to integrate the oxide semiconductor material into the microelement. However, in any method, since crystallization does not proceed in a state of being integrated in the microelement, the crystallization is finally performed by heat treatment. In this process, since low-temperature heating is performed in a short time as much as possible so as not to adversely affect the microelement, it is difficult to produce a semiconductor material having sufficient performance.
セラミックス触媒を用いたマイクロ素子は、例えば、0.5ppmという低濃度の水素ガスを検知することができる高感度センサ素子である。しかし、このマイクロ素子で、ppmレベルの低濃度ガスを検出する場合、その発生電圧は1マイクロボルト程度であり、信号電圧としては極めて小さい。簡単な電気回路ではノイズ同等となり、信号電圧として使用できないため、ノイズを減らす複雑な回路を必要とする。これに対し、本発明では、例えば、ディスペンサを用いて触媒の微細パターンを形成してマイクロ触媒熱電発電素子を作製した(図2、図3)。この熱電発電素子は、熱電対の直列した熱電堆となって、より電圧を大きくすることが可能であり、図4の1個の熱電対からなるセンサ素子と比較すると、この素子は、20個の熱電対からなる熱電堆(サーモパイル)であり、この熱電堆をセンサ素子に応用すると、その自発電圧信号を飛躍的に大きくすることができる。 A micro element using a ceramic catalyst is a high-sensitivity sensor element capable of detecting hydrogen gas having a low concentration of 0.5 ppm, for example. However, when a low concentration gas of ppm level is detected with this micro element, the generated voltage is about 1 microvolt, and the signal voltage is extremely small. A simple electric circuit is equivalent to noise and cannot be used as a signal voltage, so a complicated circuit that reduces noise is required. On the other hand, in the present invention, for example, a micro catalyst thermoelectric power generation element was manufactured by forming a fine pattern of a catalyst using a dispenser (FIGS. 2 and 3). This thermoelectric power generation element becomes a thermopile in which thermocouples are connected in series, and the voltage can be increased. Compared with the sensor element consisting of one thermocouple in FIG. When the thermopile is applied to a sensor element, the spontaneous voltage signal can be dramatically increased.
熱電変換原理から考えると、単純に熱電対の数分だけ電圧が大きくなるため、20対の熱電体を用いると、1対の熱電素子より20倍大きい電圧信号が得られる。実際の実験でも同じ結果が得られた。図4のセンサ素子の場合、約40℃の温度差から4mVの電圧を発生した(図6)。熱電堆の場合、約3.2℃の温度差から約13.4mVの電圧を発生した(表1)。単位温度差当たりの電圧で換算すると、それぞれ0.1mV/℃、4.2mV/℃となり、数十倍の電圧信号向上となる。理論予測の20倍と異なる倍数が得られたのは、表面温度計測の誤差によるものであると考えられる。 Considering the thermoelectric conversion principle, the voltage is simply increased by the number of thermocouples. Therefore, when 20 pairs of thermoelectric elements are used, a voltage signal 20 times larger than that of a pair of thermoelectric elements can be obtained. The same result was obtained in actual experiments. In the case of the sensor element of FIG. 4, a voltage of 4 mV was generated from a temperature difference of about 40 ° C. (FIG. 6). In the case of a thermopile, a voltage of about 13.4 mV was generated from a temperature difference of about 3.2 ° C. (Table 1). When converted in terms of voltage per unit temperature difference, they are 0.1 mV / ° C. and 4.2 mV / ° C., respectively, and the voltage signal is improved several tens of times. The reason why a multiple different from 20 times the theoretical prediction is obtained is considered to be due to an error in surface temperature measurement.
本発明により、熱電堆のパターンは、容易に形成することが可能であり、これをセンサ素子に用いることで、より高感度のガス濃度検知が可能となる。本発明は、結晶性の高い半導体粉末を直接微細パターンとして形成することが可能なため、例えば、ガスセンサの高感度検知、高速応答、等の高性能化が実現できる。 According to the present invention, a thermopile pattern can be easily formed, and by using this as a sensor element, it is possible to detect gas concentration with higher sensitivity. Since the present invention can directly form a highly crystalline semiconductor powder as a fine pattern, high performance such as high sensitivity detection and high speed response of a gas sensor can be realized.
本発明により、1)可燃性ガスと反応する機能性材料の微細パターンを、その機能性を最大に発揮させるように、形成することができる、2)幅広い粘度の原料を利用することが可能である、3)圧力及び衝撃に弱い構造の上にも微細パターンを形成できる、4)基板表面形状に凹凸があっても、特定部分に機能性材料の微細パターンを形成できる、5)この方法を用いて、可燃性ガスと触媒材との触媒反応による発熱を利用する熱電式ガスセンサ又は熱電発電器素子の触媒形成が可能である、6)優れた性能の触媒をそのまま微細パターンとして形成できることから、素子の一部としての触媒性能を画期的に向上させることができる、7)触媒反応が活発に行われる温度を室温以下とし、触媒反応を活性化するための加熱を不要とする、8)金属の塩化物と酸化物粉末を有機物分散材と混合して加熱処理することで、ナノメートルの金属超微粒子の複合体のパターン形成ができる、9)また、この微細パターンをメンブレンのような熱絶縁構造に適用することで、ガスセンサ素子又は熱電発電器においてその触媒の発熱を最大限高めることができる、10)従って、ガス検出濃度範囲が1ppm以下から、5%以上の可燃性ガスを容易に検知可能となる、11)結晶性及び/又は微細構造が制御されたままの状態で塗布できる抵抗体パターン形成をメンブレンのようなマイクロガスセンサ素子構造に集積適用することで、抵抗体材料の特性が活かされ、低温動作でもガス応答速度が速いセンサ素子が得られる、という格別の効果が奏される。 According to the present invention, 1) a fine pattern of a functional material that reacts with a combustible gas can be formed so as to maximize its functionality, and 2) it is possible to use raw materials with a wide range of viscosities. 3) A fine pattern can be formed on a structure that is vulnerable to pressure and impact. 4) A fine pattern of a functional material can be formed on a specific portion even if the substrate surface has irregularities. It is possible to form a catalyst of a thermoelectric gas sensor or thermoelectric generator element that uses heat generated by a catalytic reaction between a combustible gas and a catalyst material, and 6) because a catalyst with excellent performance can be formed as a fine pattern as it is, The catalyst performance as a part of the element can be remarkably improved. 7) The temperature at which the catalytic reaction is actively performed is set to room temperature or lower, and heating for activating the catalytic reaction is unnecessary. A metal chloride and oxide powder can be mixed with an organic dispersion material and heat-treated to form a pattern of nanometer metal ultrafine particles. 9) Also, this fine pattern can be heated like a membrane. By applying it to an insulating structure, the heat generation of the catalyst can be maximized in the gas sensor element or thermoelectric generator. 10) Therefore, a combustible gas with a gas detection concentration range of 1 ppm or less to 5% or more can be easily obtained. 11) By applying the resistor pattern formation that can be applied in a state where the crystallinity and / or fine structure is controlled to be integrated in a micro gas sensor element structure such as a membrane, the characteristics of the resistor material can be detected. A special effect is obtained that a sensor element having a high gas response speed can be obtained even when operated at a low temperature.
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
本実施例では、機能性材料の原料となるペーストの材料の探索及びその微細構造と触媒特性の関係を調べる予備実験として、種々の微細構造を有するペーストを作製し、ディスペンサを用いて基板上に触媒の微細パターンを形成した。 In this example, as a preliminary experiment to search for a paste material that is a raw material of a functional material and to examine the relationship between the microstructure and the catalyst characteristics, pastes having various microstructures were prepared and placed on a substrate using a dispenser. A fine pattern of catalyst was formed.
(1)触媒用粉末及びペースト材料の調製
市販の塩化白金、塩化パラジウムの水溶液を作り、直接、酸化物の粉末と混ぜて、これを加熱乾燥することで出発原料の触媒用粉末を調製した。この粉末を、テルピネオールとエチルセルロースで作ったビークルと混合し、ペースト状の機能性材料を調製した。
(1) Preparation of catalyst powder and paste material An aqueous solution of commercially available platinum chloride and palladium chloride was prepared, directly mixed with oxide powder, and this was heated and dried to prepare catalyst powder as a starting material. This powder was mixed with a vehicle made of terpineol and ethylcellulose to prepare a paste-like functional material.
(2)ディスペンサによる微細パターン形成
素子の所定の位置に、ディスペンサを用いて触媒を塗布し、300℃で1時間加熱して触媒を作製した。触媒の大きさは、直径約0.5〜2.0mmの円形、又は幅0.5〜1.5mmの正方形のパターンとして形成した。
(2) Fine pattern formation by dispenser A catalyst was applied to a predetermined position of the element using a dispenser and heated at 300 ° C. for 1 hour to prepare a catalyst. The size of the catalyst was formed as a circular pattern having a diameter of about 0.5 to 2.0 mm, or a square pattern having a width of 0.5 to 1.5 mm.
パターンの大きさは、吐出ノズルの内径で制限されるが、実際のパターン形成においては、吐出量、吐出圧力、基板との距離等のパラメータに大きく依存する。ディスペンサでペーストを塗布するとき、空気圧が高いほど勢いよくペーストが出てくるため、太い線ができ、終点ではより太くなる。よりきれいで細い線を塗布するためには、例えば、粘度が約3000cPのペースト原料を用いた場合、0.05MPa以下の空気圧でペーストの勢いをある程度抑えるとともに、塗布する基板と注入針の先端の間隔は0.03mm以下でペーストを塗布することで微細パターンを形成できることが分かった。 The size of the pattern is limited by the inner diameter of the discharge nozzle, but in actual pattern formation, it greatly depends on parameters such as the discharge amount, discharge pressure, and distance to the substrate. When applying the paste with a dispenser, the higher the air pressure, the more vigorous the paste will come out, so that a thick line is formed and the end point becomes thicker. In order to apply a finer and finer line, for example, when using a paste raw material having a viscosity of about 3000 cP, the air pressure of 0.05 MPa or less suppresses the momentum of the paste to some extent, and the applied substrate and the tip of the injection needle It turned out that a fine pattern can be formed by apply | coating a paste with a space | interval of 0.03 mm or less.
(3)印刷によるパターン形成
また、比較のため、更に、触媒特性の評価のために、同じペーストをシリコン基板に印刷して触媒パターンを作製し、その発熱特性を調べた。即ち、シリコン基板に、触媒ペーストを印刷し、400℃で1時間焼結することによって触媒厚膜を作製した。このセラミックス触媒と市販の貴金属触媒ペーストの性能も比較した。両方とも印刷機でシリコン基板に印刷した。更に、市販の白金触媒で、ガラス成分のフリットを含まない白金ペーストを検討した。例えば、田中貴金属製のTR707、1200℃焼成で、多孔質膜が形成可能であり、ガスセンサ、燃料電池等に適していた。
(3) Pattern formation by printing Further, for comparison and further evaluation of catalyst characteristics, the same paste was printed on a silicon substrate to produce a catalyst pattern, and the heat generation characteristics were examined. That is, a catalyst paste was printed on a silicon substrate and sintered at 400 ° C. for 1 hour to produce a catalyst thick film. The performances of this ceramic catalyst and a commercially available noble metal catalyst paste were also compared. Both were printed on a silicon substrate with a printing press. Furthermore, a platinum paste that does not contain a glass component frit was examined using a commercially available platinum catalyst. For example, a porous membrane can be formed by TR707 made by Tanaka Kikinzoku and firing at 1200 ° C., which is suitable for gas sensors, fuel cells, and the like.
印刷されたセラミックス触媒とスパッタ蒸着で作製した触媒は、100℃以上の温度ではほぼ同じ発熱特性を示したが、50℃以下からスパッタ蒸着で作製した触媒の発熱量は著しく減り、室温付近では殆ど発熱しなかった反面、セラミックス触媒は、室温付近でも効率よく触媒反応を起こし、発熱特性も良好であった。基板への熱伝導にも影響されるが、セラミックス触媒の場合、100℃と比べ、半分以上の発熱を示した。 The printed ceramic catalyst and the catalyst prepared by sputter deposition showed almost the same heat generation characteristics at temperatures above 100 ° C, but the calorific value of the catalyst prepared by sputter deposition from below 50 ° C decreased remarkably and almost at room temperature. While the ceramic catalyst did not generate heat, the ceramic catalyst efficiently caused a catalytic reaction even near room temperature and had good heat generation characteristics. Although influenced by the heat conduction to the substrate, the ceramic catalyst showed more than half the heat generation compared to 100 ° C.
熱電発電素子及び熱電式ガスセンサ素子において、触媒からの発熱エネルギーが周辺に伝わらないように、熱伝導の低いメンブレンの上にディスペンサを用いて触媒の微細パターンを形成してマイクロ素子を作製した。メンブレン構造を有する熱電発電素子及び熱電式ガスセンサ素子は、図2、図3及び図4に示したものである。熱電発電素子は、マイクロヒータ構造が無いが、基本的には、図4のセンサ素子と同じであり、作製プロセスも同じである。但し、図2、図3に示した熱電発電素子は、熱電対の直列した熱電堆となって、より電圧を大きくし、発電効率を高めた設計のものである。マイクロ熱電式ガスセンサ素子の作製プロセスは、本発明者らによる先の特許出願(特願2004−075982)で詳細に記述されているように、基本的には、基板に熱遮蔽のためのメンブレンを形成する工程、このメンブレン上に熱伝変換材料膜パターン、ヒータパターン、配線パターン、及び触媒材料パターンを形成する工程から構成した。 In the thermoelectric power generation element and the thermoelectric gas sensor element, a microelement was manufactured by forming a fine pattern of the catalyst on a membrane having low heat conduction using a dispenser so that heat generated from the catalyst was not transmitted to the periphery. The thermoelectric power generation element and thermoelectric gas sensor element having a membrane structure are those shown in FIGS. 2, 3, and 4. The thermoelectric power generation element does not have a micro heater structure, but is basically the same as the sensor element of FIG. 4 and the manufacturing process is also the same. However, the thermoelectric power generation element shown in FIGS. 2 and 3 is a thermoelectric stack in which thermocouples are connected in series, and has a design in which the voltage is increased and the power generation efficiency is increased. As described in detail in the previous patent application (Japanese Patent Application No. 2004-075982) by the present inventors, the fabrication process of the micro thermoelectric gas sensor element basically includes a membrane for heat shielding on the substrate. The step of forming was composed of a step of forming a heat transfer conversion material film pattern, a heater pattern, a wiring pattern, and a catalyst material pattern on the membrane.
本実施例では、実施例1及び実施例2で作製したガス検出センサのガス応答特性を調べた。混合ガス流量は100ml/minであった。被検出ガスとして、水素を含む空気混合ガスを使用した。60秒で混合ガスを流し始め、300秒で空気を流した。素子の上にガスが流れると、触媒の温度は上昇し始め、同時に高温部から低温部に熱流が流れ、温度勾配が発生し、ある時間が経過した後に温度差は一定になり、出力電圧は安定したDC電圧を出力した。 In this example, the gas response characteristics of the gas detection sensors produced in Example 1 and Example 2 were examined. The mixed gas flow rate was 100 ml / min. An air mixed gas containing hydrogen was used as the gas to be detected. The mixed gas started to flow in 60 seconds, and air was flowed in 300 seconds. When gas flows over the element, the temperature of the catalyst starts to rise, and at the same time, a heat flow flows from the high temperature part to the low temperature part, a temperature gradient occurs, the temperature difference becomes constant after a certain period of time, and the output voltage becomes A stable DC voltage was output.
比較のために、図5に、スパッタ蒸着で作製した白金触媒を用いたマイクロ熱電式ガスセンサの室温から120℃までの応答特性を示す。メタルマスクを用いてメンブレン上だけに薄膜触媒を蒸着するプロセスも作業効率が低いこと、また、図に示したように、温度上昇も高くなく、その結果、温度差が低くなるため、高い電圧が得られないこと、特に、室温付近の低温では、触媒活性が低く、安定した触媒燃焼特性を維持するためには、100℃付近に触媒を加熱しなければならないこと、等の問題があった。 For comparison, FIG. 5 shows response characteristics from room temperature to 120 ° C. of a micro thermoelectric gas sensor using a platinum catalyst produced by sputter deposition. The process of depositing a thin film catalyst only on the membrane using a metal mask is also low in work efficiency, and as shown in the figure, the temperature rise is not high, and as a result, the temperature difference is low, so a high voltage is applied. In particular, the catalyst activity is low at a low temperature around room temperature, and the catalyst must be heated to around 100 ° C. in order to maintain stable catalytic combustion characteristics.
図6に、ディスペンサで形成した触媒を用いたマイクロ熱電式ガスセンサの室温での応答特性を示す。室温付近の25℃において、約40℃以上の温度上昇が発生し、素子上に温度差として計測することができることが分かった。また、この温度差を、電圧信号に熱電変換した信号が、電圧出力として確認できることが分かった。 FIG. 6 shows response characteristics at room temperature of a micro thermoelectric gas sensor using a catalyst formed by a dispenser. At 25 ° C. near room temperature, a temperature increase of about 40 ° C. or more occurred, and it was found that the temperature difference could be measured on the device. Moreover, it turned out that the signal which thermoelectrically converted this temperature difference into a voltage signal can be confirmed as a voltage output.
図7に、ディスペンサで形成した触媒を用いたマイクロ素子の水素濃度と信号電圧の関係を示す。動作温度は大気中の水分等の影響を防げるため、100℃にした。ガス濃度と出力電圧は直線的な関係を示しながら0.5ppm以下の低濃度から5%以上の高濃度まで、5桁の広い範囲の濃度を正確に検知することができた。 FIG. 7 shows the relationship between the hydrogen concentration and signal voltage of a microelement using a catalyst formed by a dispenser. The operating temperature was set to 100 ° C. in order to prevent the influence of moisture in the atmosphere. While the gas concentration and the output voltage showed a linear relationship, concentrations in a wide range of 5 digits from a low concentration of 0.5 ppm or less to a high concentration of 5% or more could be accurately detected.
触媒からの発熱エネルギーが周辺に伝わらないように、熱伝導の低いメンブレインの上に触媒を形成し、その温度差を用いて熱電変換することで発電する熱電発電素子を図2−3に示した。この実施例では、ディスペンサを用いて触媒パターンを形成したマイクロ熱電発電素子の発電特性を調べた。 Figure 2-3 shows a thermoelectric power generation element that generates electricity by forming a catalyst on a membrane with low thermal conductivity and performing thermoelectric conversion using the temperature difference so that the heat generated by the catalyst is not transmitted to the surroundings. It was. In this example, the power generation characteristics of a micro thermoelectric power generation element having a catalyst pattern formed using a dispenser were examined.
図8に、ディスペンサで形成した触媒を用いたマイクロ触媒熱電発電素子の室温での発電特性を示す。触媒形状を高い精度で制御することでガス応答(燃焼)特性が大きく依存する。左は塗布精度が低く、形状が不均一なもの、右は最適構造に近い形状で形成されたものを示す。 FIG. 8 shows the power generation characteristics at room temperature of a microcatalyst thermoelectric power generation element using a catalyst formed by a dispenser. The gas response (combustion) characteristics greatly depend on controlling the catalyst shape with high accuracy. The left shows low application accuracy and non-uniform shape, and the right shows a shape close to the optimum structure.
触媒パターンをメンブレンだけに限定して形成することで、温度差を最大限にすることが重要であるが、その形状精度に寄って、その特性が大きく変わる。図8に示したように、触媒形状によって、発熱による電圧の線形成が大きく変わる。高い精度で形成した触媒パターンの素子(右)では、より低い濃度の燃料ガス濃度でも安定した電圧が得られる。 It is important to maximize the temperature difference by forming the catalyst pattern only on the membrane, but its characteristics vary greatly depending on its shape accuracy. As shown in FIG. 8, voltage line formation due to heat generation varies greatly depending on the catalyst shape. In the catalyst pattern element (right) formed with high accuracy, a stable voltage can be obtained even at a lower concentration of fuel gas.
混合ガス流量は100又は200ml/minで評価した。被検出ガスとして、水素を含む空気混合ガス、水素濃度1%、3%を使用した。図7に示したように、室温で、60秒で混合ガスを流し始め、300秒で空気流に切り替え、その応答特性を調べたところ、室温からでも安定した反応が得られた。熱電発電素子の場合、ディスペンサで微細パターンを形成した触媒を用いることで、低温での触媒活性が高く、加熱しなくても効率よく発電することができる。 The mixed gas flow rate was evaluated at 100 or 200 ml / min. As a gas to be detected, an air mixed gas containing hydrogen and a hydrogen concentration of 1% and 3% were used. As shown in FIG. 7, when a mixed gas started flowing at room temperature in 60 seconds and switched to an air flow in 300 seconds, and its response characteristics were examined, a stable reaction was obtained even at room temperature. In the case of a thermoelectric power generation element, by using a catalyst in which a fine pattern is formed by a dispenser, the catalytic activity at a low temperature is high, and it is possible to generate power efficiently without heating.
従来報告された発電素子では、ヒータで触媒を暖めて触媒反応を起こした(例えば、Schaevitz, S. B., et. al., “A MEMS Thermoelectric Generator”, in Proc. 11th International Conference on Solid State Sensors and Actuators Transducers ‘01/Eurosensors XV Vol. 1 30-33, edited by Obermeier, E., Springer, Munich, Germany, 2001)。本発明では、最適化された触媒性能を持つ触媒材料を直接マイクロ素子に集積化できるディスペンサによるパターン形成技術を活用することで、室温でも十分に触媒反応が起きる、加熱機構を必要としないマイクロ発電素子を作ることができた。 In the power generation elements reported so far, the catalyst is heated by a heater to cause a catalytic reaction (for example, Schaevitz, SB, et. Al., “A MEMS Thermoelectric Generator”, in Proc. 11th International Conference on Solid State Sensors and Actuators Transducers '01 / Eurosensors XV Vol. 1 30-33, edited by Obermeier, E., Springer, Munich, Germany, 2001). In the present invention, a micro power generation that does not require a heating mechanism, in which a catalytic reaction occurs sufficiently even at room temperature by utilizing a pattern forming technology by a dispenser that can directly integrate a catalyst material having an optimized catalytic performance into a micro device. I was able to make a device.
表1に、ディスペンサを用いて、メンブレンの裏面(下面)に触媒の微細パターンを形成した場合と、表面(上面)に形成した発電器において、触媒混合ガス流量100、200ccm、水素濃度1、3%に対して発電量を評価した結果を示す。素子は、図3のものを用いた。この素子から、水素濃度3%、流量200ccmの条件で最大発電量約0.33μWが得られた。 Table 1 shows that when a fine pattern of the catalyst is formed on the back surface (lower surface) of the membrane using a dispenser, and in the power generator formed on the front surface (upper surface), the catalyst mixed gas flow rate is 100, 200 ccm, the hydrogen concentration is 1, 3 The result of evaluating the power generation against% is shown. The element shown in FIG. 3 was used. From this element, a maximum power generation amount of about 0.33 μW was obtained under the conditions of a hydrogen concentration of 3% and a flow rate of 200 ccm.
半導体材料をディスペンサで形成することで、その材料がもつ性能を活かして、マイクロガスセンサのガス検出材として適用した。半導体材料は、市販の酸化スズ粉末(Aldrich Tin Oxide nanopowder 54967-25G)を用いた。これは、ナノサイズの微粒子で、且つその結晶性が高いことで、可燃性ガスに適していた。 By forming a semiconductor material with a dispenser, it was applied as a gas detection material for a micro gas sensor, taking advantage of the performance of the material. As the semiconductor material, a commercially available tin oxide powder (Aldrich Tin Oxide nanopowder 54967-25G) was used. This is a nano-sized fine particle and its crystallinity is high, which is suitable for a flammable gas.
(1)ペースト作製
この粉末を、テルピネオールとエチルセルロースで作ったビークルと混合し、ペースト状の機能性材料を調製した。粘度が高い場合、例えば、粉末:ビークル=1:4の比で10000cPs程度、エタノールを添加して粘度調整を行った。およそ、5%エタノール添加で、粘度は3000cpsまで減少した。10%のエタノール添加で、粘度は1000cps程度まで減少した。
(1) Paste preparation This powder was mixed with a vehicle made of terpineol and ethyl cellulose to prepare a functional material in the form of a paste. When the viscosity is high, for example, the viscosity was adjusted by adding ethanol at a ratio of powder: vehicle = 1: 4 to about 10,000 cPs. Approximately 5% ethanol addition reduced the viscosity to 3000 cps. With the addition of 10% ethanol, the viscosity decreased to about 1000 cps.
(2)マイクロセンサへの集積
センサプラットフォームは、SiGeプロセスを抜いた熱電式マイクロセンサを用いた。ディスペンサを用いて、2つの白金ラインの間にSiGeパターンの代わりに酸化スズのペーストを塗布して、酸化スズマイクロ素子を作製した。
(2) Integration into a microsensor A thermoelectric microsensor from which the SiGe process was removed was used as the sensor platform. Using a dispenser, a tin oxide paste was applied between the two platinum lines instead of the SiGe pattern to produce a tin oxide microelement.
(3)ガス応答特性評価
マイクロヒータで半導体パターンを加熱しながら、エアーと1%水素/エアーを切り替えて流した時の酸化スズパターンの抵抗変化を評価した。100℃の加熱条件で、図9に示したような結果が得られた。水素ガスに対する感度(抵抗変化)は、ドープしてない酸化スズセラミックスセンサの感度とほぼ同じであった。しかし、通常のセラミックスセンサと比べて、優れた性能としては、100℃という低温でも応答速度が速いことであった。特に、回復が1分ほどと、通常のセラミックスセンサの1時間と比べて飛躍的に改善できた。
(3) Gas response characteristic evaluation The resistance change of the tin oxide pattern when flowing by switching between air and 1% hydrogen / air was evaluated while heating the semiconductor pattern with a micro heater. The results as shown in FIG. 9 were obtained under heating conditions of 100 ° C. The sensitivity (resistance change) to hydrogen gas was almost the same as that of an undoped tin oxide ceramic sensor. However, compared with a normal ceramic sensor, the excellent performance was that the response speed was fast even at a low temperature of 100 ° C. In particular, the recovery was about 1 minute, which was a dramatic improvement compared to 1 hour for a normal ceramic sensor.
以上詳述した通り、本発明は、可燃性ガスと反応する材料の微細パターンをディスペンサにより作製する微細パターン形成方法に係るものであり、本発明により、幅広い粘度の原料を利用することが可能であり、圧力及び衝撃に弱い構造の上にも微細パターンを形成できる。基板表面形状に凹凸があっても、特定部分に機能性材料の微細パターン形成できるので、この方法を用いて、可燃性ガスと触媒材との触媒反応による発熱を利用する熱電式ガスセンサ又は熱電発電器素子の触媒形成が可能である。優れた性能の触媒をそのまま微細パターンとして形成することで、素子の一部としての触媒性能を画期的に向上させることができる。触媒反応が活発に行われる温度を室温以下とし、触媒反応を活性化するための加熱を不要とした、新しいガスセンサ素子又は熱電発電器を提供することができる。 As described above in detail, the present invention relates to a fine pattern forming method for producing a fine pattern of a material that reacts with a flammable gas with a dispenser, and according to the present invention, raw materials having a wide range of viscosity can be used. In addition, a fine pattern can be formed on a structure that is vulnerable to pressure and impact. Even if the substrate surface has irregularities, a fine pattern of a functional material can be formed on a specific part. Therefore, this method is used to make a thermoelectric gas sensor or thermoelectric generator that uses heat generated by the catalytic reaction between a combustible gas and a catalyst material. Catalyst formation of the vessel element is possible. By forming a catalyst having excellent performance as a fine pattern as it is, the catalyst performance as a part of the element can be dramatically improved. It is possible to provide a new gas sensor element or thermoelectric generator in which the temperature at which the catalytic reaction is actively performed is room temperature or lower, and heating for activating the catalytic reaction is unnecessary.
1 熱電変換材料膜
2 ヒータ
3 絶縁層
4 電極・配線
5 触媒パターン
6 シリコン基板
7a 窒化物・酸化物の多層膜
7b 窒化物・酸化物の多層膜
8 メンブレン
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion material film 2 Heater 3 Insulating layer 4 Electrode and wiring 5 Catalyst pattern 6 Silicon substrate 7a Nitride / oxide multilayer film 7b Nitride / oxide multilayer film 8 Membrane
Claims (11)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005067297A JP4581113B2 (en) | 2004-07-07 | 2005-03-10 | Fine pattern forming method |
PCT/JP2005/004657 WO2005088285A1 (en) | 2004-03-17 | 2005-03-16 | Micro thermoelectric type gas sensor |
US10/593,255 US20070212263A1 (en) | 2004-03-17 | 2005-03-16 | Micro Thermoelectric Type Gas Sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004201213 | 2004-07-07 | ||
JP2005067297A JP4581113B2 (en) | 2004-07-07 | 2005-03-10 | Fine pattern forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006047276A JP2006047276A (en) | 2006-02-16 |
JP4581113B2 true JP4581113B2 (en) | 2010-11-17 |
Family
ID=36025973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005067297A Active JP4581113B2 (en) | 2004-03-17 | 2005-03-10 | Fine pattern forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4581113B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009008258A1 (en) * | 2007-07-09 | 2009-01-15 | Murata Manufacturing Co., Ltd. | Sensor device and method for manufacturing the same |
KR101338350B1 (en) | 2007-07-16 | 2013-12-31 | 삼성전자주식회사 | Method for forming nanostructure or poly silicone using microheater, nanostructure or poly silicone formed by the method and electronic device using the same |
KR101318292B1 (en) | 2007-11-30 | 2013-10-18 | 삼성전자주식회사 | Microheater, microheater array, method for manufacturing the same and electronic device using the same |
KR20090122083A (en) | 2008-05-23 | 2009-11-26 | 삼성전자주식회사 | Microheater, microheater array, method for manufacturing the same and electronic device using the same |
KR20090128006A (en) | 2008-06-10 | 2009-12-15 | 삼성전자주식회사 | Micro-heaters, micro-heater arrays, method for manufacturing the same and method for forming patterns using the same |
KR101135400B1 (en) * | 2010-03-19 | 2012-04-17 | 전자부품연구원 | Micro gas sensor array |
JP5685467B2 (en) | 2010-09-16 | 2015-03-18 | 富士フイルム株式会社 | Pattern forming method and pattern forming apparatus |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2929789B2 (en) * | 1990-08-10 | 1999-08-03 | 三菱マテリアル株式会社 | Catalytic combustion type gas sensor |
JP2000275203A (en) * | 1999-03-26 | 2000-10-06 | Yazaki Corp | Catalytic combustion type gas sensor |
JP2001099801A (en) * | 1999-09-29 | 2001-04-13 | Yazaki Corp | Contact combustion type gas sensor |
JP2003156461A (en) * | 2001-09-07 | 2003-05-30 | National Institute Of Advanced Industrial & Technology | Combustible gas sensor |
JP2004028749A (en) * | 2002-06-25 | 2004-01-29 | National Institute Of Advanced Industrial & Technology | Method and device for measuring concentration of flammable gas |
JP2004069465A (en) * | 2002-08-06 | 2004-03-04 | Yazaki Corp | Gas detection method and device using adsorption combustion gas sensor |
JP2004163192A (en) * | 2002-11-12 | 2004-06-10 | National Institute Of Advanced Industrial & Technology | Combustible gas sensor |
JP2004179643A (en) * | 2002-11-12 | 2004-06-24 | National Institute Of Advanced Industrial & Technology | Thin film for thermoelectric conversion material, sensor device, and forming method for the thin film |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07218464A (en) * | 1994-02-04 | 1995-08-18 | Fuji Electric Co Ltd | Gas sens0r |
JP3649412B2 (en) * | 1994-10-06 | 2005-05-18 | 矢崎総業株式会社 | CO sensor |
JPH1026594A (en) * | 1996-07-11 | 1998-01-27 | Nikon Corp | Thermal analysis element and its manufacture |
JPH11183421A (en) * | 1997-12-19 | 1999-07-09 | Fuji Electric Co Ltd | Contact combustion-type gas sensor and its manufacture |
-
2005
- 2005-03-10 JP JP2005067297A patent/JP4581113B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2929789B2 (en) * | 1990-08-10 | 1999-08-03 | 三菱マテリアル株式会社 | Catalytic combustion type gas sensor |
JP2000275203A (en) * | 1999-03-26 | 2000-10-06 | Yazaki Corp | Catalytic combustion type gas sensor |
JP2001099801A (en) * | 1999-09-29 | 2001-04-13 | Yazaki Corp | Contact combustion type gas sensor |
JP2003156461A (en) * | 2001-09-07 | 2003-05-30 | National Institute Of Advanced Industrial & Technology | Combustible gas sensor |
JP2004028749A (en) * | 2002-06-25 | 2004-01-29 | National Institute Of Advanced Industrial & Technology | Method and device for measuring concentration of flammable gas |
JP2004069465A (en) * | 2002-08-06 | 2004-03-04 | Yazaki Corp | Gas detection method and device using adsorption combustion gas sensor |
JP2004163192A (en) * | 2002-11-12 | 2004-06-10 | National Institute Of Advanced Industrial & Technology | Combustible gas sensor |
JP2004179643A (en) * | 2002-11-12 | 2004-06-24 | National Institute Of Advanced Industrial & Technology | Thin film for thermoelectric conversion material, sensor device, and forming method for the thin film |
Also Published As
Publication number | Publication date |
---|---|
JP2006047276A (en) | 2006-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070212263A1 (en) | Micro Thermoelectric Type Gas Sensor | |
Zeng et al. | Printing thermoelectric inks toward next-generation energy and thermal devices | |
Shin et al. | Planar catalytic combustor film for thermoelectric hydrogen sensor | |
US8066831B2 (en) | Shock wave and power generation using on-chip nanoenergetic material | |
Isaac et al. | Characterization of tungsten oxide thin films produced by spark ablation for NO2 gas sensing | |
Chang et al. | Multilayer microheater based on glass substrate using MEMS technology | |
Santra et al. | Mask-less deposition of Au–SnO2 nanocomposites on CMOS MEMS platform for ethanol detection | |
Shao et al. | NH3 sensing with self-assembled ZnO-nanowire μHP sensors in isothermal and temperature-pulsed mode | |
JP2003059500A (en) | Bipolar plate for fuel cell | |
Vincenzi et al. | Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate | |
Khan et al. | All-printed low-power metal oxide gas sensors on polymeric substrates | |
Khan et al. | Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide membranes | |
Choi et al. | Batch-fabricated CO gas sensor in large-area (8-inch) with sub-10 mW power operation | |
JP4581113B2 (en) | Fine pattern forming method | |
Zeng et al. | Thin-film platinum resistance temperature detector with a SiCN/Yttria-stabilized zirconia protective layer by direct ink writing for high-temperature applications | |
JP4238309B2 (en) | Combustible gas sensor | |
Bellitti et al. | Resistive sensors for smart objects: Analysis on printing techniques | |
Ahmad et al. | A low-cost printed humidity sensor on cellulose substrate by EHD printing | |
JP2007255960A (en) | Gas detection method which eliminates interference of combustible gas and gas detection sensor | |
Rahman et al. | Aerosol jet 3D printing and high temperature characterization of nickel nanoparticle films | |
Vincenzi et al. | Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques | |
Mondal et al. | Fabrication and packaging of MEMS based platform for hydrogen sensor using ZnO–SnO 2 composites | |
Sui et al. | An Aerosol Jet Printed Resistance Temperature Detector‐Micro Hotplate with Temperature Coefficient of Resistance Stabilized by Electrical Sintering | |
CN103698359B (en) | Semiconductor gas sensor | |
US11761916B2 (en) | Gas sensor and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100412 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100506 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100810 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4581113 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |