JP4579705B2 - Clad material and manufacturing method thereof - Google Patents
Clad material and manufacturing method thereof Download PDFInfo
- Publication number
- JP4579705B2 JP4579705B2 JP2005026535A JP2005026535A JP4579705B2 JP 4579705 B2 JP4579705 B2 JP 4579705B2 JP 2005026535 A JP2005026535 A JP 2005026535A JP 2005026535 A JP2005026535 A JP 2005026535A JP 4579705 B2 JP4579705 B2 JP 4579705B2
- Authority
- JP
- Japan
- Prior art keywords
- foil
- clad material
- copper foil
- copper
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Rolling (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Electroplating Methods And Accessories (AREA)
Description
本発明はクラッド材とその製造方法に関し、更に詳しくは、銅箔とアルミニウム箔のクラッド材であって、両箔間の接合強度が従来の銅−アルミニウムクラッド材に比べて大きい新規な銅−アルミニウムクラッド材と、それを製造する方法に関する。 The present invention relates to a clad material and a method for manufacturing the clad material, and more particularly, a clad material of copper foil and aluminum foil, and a novel copper-aluminum whose bonding strength between both foils is larger than that of a conventional copper-aluminum clad material. The present invention relates to a clad material and a method for manufacturing the same.
銅箔とアルミニウム箔のクラッド材は回路基板の配線材として使用されている。また例えば熱交換器の放熱板としての用途も検討されている。
この銅−アルミニウムクラッド材の製造に関しては、大別して、冷間圧延のみで製造する場合と、冷間圧延後に更に熱処理を施すか、または温間圧延で製造する場合とがある。そして、両者のいずれの場合においても、製造されたクラッド材における接合面の接合強度が高いことをもって好適とされている。
The clad material of copper foil and aluminum foil is used as a wiring material for circuit boards. For example, the use as a heat sink of a heat exchanger is also examined.
Regarding the production of this copper-aluminum clad material, it is roughly classified into a case where it is produced only by cold rolling, and a case where heat treatment is further performed after cold rolling, or a case where it is produced by warm rolling. In both cases, it is preferable that the joint strength of the manufactured clad material is high.
ところで、銅箔とアルミニウム箔のクラッド材に熱処理を施すと、その接合面における接合強度は向上するが、他方では、熱処理温度にもよるが、Cu−Alの合金が接合面に層状に生成することが知られている。そして、接合面におけるこの合金層が介在するクラッド材を例えば回路基板の配線材として使用すると、次のような不都合が生ずる。
すなわち、このCu−Al系合金はエッチング性が非常に悪いので、配線材に対するエッチング処理時に目的パターンの導体回路を形成することが困難になることである。
By the way, when heat treatment is applied to the clad material of copper foil and aluminum foil, the bonding strength at the bonding surface is improved. On the other hand, although depending on the heat treatment temperature, an alloy of Cu-Al is formed in a layered manner on the bonding surface. It is known. When the clad material in which the alloy layer is interposed on the joint surface is used as a wiring material for a circuit board, for example, the following inconvenience occurs.
That is, since this Cu—Al-based alloy has a very poor etching property, it is difficult to form a conductor circuit having a target pattern during the etching process for the wiring material.
このようなことから、銅−アルミニウムクラッド材の製造に関しては、接合面の接合強度を向上させることと、同時に接合面におけるCu−Al系合金層の生成を抑制することが検討されている。
このような観点に立って開発された前者の製造方法としては、回路基板の配線材の製造を目的として、例えば、圧延アルミニウム箔と銅箔を50%以上の圧下率で冷間圧延する方法が知られている(特許文献1を参照)。
For this reason, with respect to the production of the copper-aluminum clad material, it has been studied to improve the bonding strength of the bonding surface and at the same time suppress the formation of the Cu—Al-based alloy layer on the bonding surface.
As the former manufacturing method developed from such a viewpoint, for example, a method of cold rolling a rolled aluminum foil and a copper foil at a reduction rate of 50% or more for the purpose of manufacturing a wiring material of a circuit board. It is known (see Patent Document 1).
また片面にニッケルめっきが施されている銅箔の当該ニッケルめっき層の表面に対して、一旦、スパッタエッチングを施してその表面を活性化し、ついでその活性表面にアルミニウム箔を0.1〜3%の圧下率で冷間圧接して3層構造のクラッド材を製造する方法が知られている(特許文献2を参照)。
後者の方法としては、例えば、銅系部材にアルミニウム系のインサート材を加工率30%以上の冷間圧延で接合し、ついで温度200〜400℃で熱処理を施したのち、そのインサート材と別のアルミニウム系部材を加工率40%以上で圧延して接合する銅−アルミニウムクラッド材の製造方法が知られている(特許文献3を参照)。
In addition, the surface of the nickel plating layer of the copper foil on which one side is plated with nickel is once subjected to sputter etching to activate the surface, and then 0.1 to 3% of aluminum foil is formed on the active surface. There is known a method of manufacturing a clad material having a three-layer structure by cold-welding at a rolling reduction ratio (see Patent Document 2).
As the latter method, for example, an aluminum-based insert material is joined to a copper-based member by cold rolling with a processing rate of 30% or more, and then heat-treated at a temperature of 200 to 400 ° C. A manufacturing method of a copper-aluminum clad material in which an aluminum-based member is rolled and joined at a processing rate of 40% or more is known (see Patent Document 3).
これらの先行技術は、いずれも、クラッド材の接合面におけるCu−Al系合金層の生成を皆無にするか抑制する方法である。
これら先行技術のうち、特許文献1と特許文献2の方法は、いずれも、冷間でクラッディングが行われるため、その接合面にCu−Al合金層が生成する虞れはない。
しかしながら、特許文献1の方法では50%以上の圧下率で冷間圧延が行われているので次のような問題がある。
Each of these prior arts is a method of eliminating or suppressing the generation of a Cu—Al-based alloy layer on the joint surface of the clad material.
Among these prior arts, both the methods of Patent Document 1 and
However, the method of Patent Document 1 has the following problems because cold rolling is performed at a reduction rate of 50% or more.
まず、圧下率が非常に高いので、接合面の接合強度は高くなるであろうが、他方では接合面の平坦性が悪化して、当該接合面が不規則な凹曲面になることである。これは、このクラッド材を回路基板の配線材として使用してエッチング処理したときに、ファインパターンの導体回路の形成を著しく困難にする。
また、このような高い圧下率を実現するためには、多段ロールの圧延装置を用いることが必要となるが、それは設備の大規模化、その維持作業の負担など現実には多くの問題が発生してくる。
First, since the rolling reduction is very high, the joint strength of the joint surface will be high, but on the other hand, the flatness of the joint surface deteriorates and the joint surface becomes an irregular concave curved surface. This makes it extremely difficult to form a fine pattern conductor circuit when this clad material is used as a wiring material for a circuit board and etched.
In order to realize such a high rolling reduction, it is necessary to use a multi-stage roll rolling device, which causes many problems in reality, such as an increase in the scale of equipment and the burden of maintenance work. Come on.
このような点からすると、特許文献2の方法は、圧下率が0.1〜3%であるため、例えば2段圧延装置などで実施することができ、また接合面の平坦性も確保されるという点で、特許文献1の方法に比べると有利である。
しかしながら、この方法の場合、クラッディングに先立ち接合面に長時間のスパッタエッチング処理を施すことが必要であるため、高価な設備装置を設置しなければならず、やはり経済的に問題がある。
From this point of view, the method of
However, in the case of this method, it is necessary to perform a sputter etching process for a long time on the joint surface prior to the cladding, so that an expensive equipment device must be installed, which is also economically problematic.
一方、特許文献3の方法の場合は、熱処理がCu−Al系合金層を生成しない温度域で行われているとはいえ、冷間圧延時の圧下率は30%以上に設定することが必要であり、特許文献1の方法と同様の問題点を含んでいる。
このように、従来のCu−Alクラッド材の製造方法には上記した一長一短があり、その解決が求められている。
As described above, the conventional method for producing a Cu—Al clad material has the advantages and disadvantages described above, and a solution to this is required.
本発明は、銅箔とアルミニウム箔の接合面の接合強度が高く、接合面は平坦面であり、また接合面にCu−Al系合金層は介在していない新規構造の銅−アルミニウムクラッド材と、それを、低い圧下率で、したがって簡単な圧延装置を用いて製造する方法の提供を目的とする。 The present invention provides a copper-aluminum clad material having a novel structure in which the bonding strength of the bonding surface between the copper foil and the aluminum foil is high, the bonding surface is a flat surface, and no Cu-Al alloy layer is interposed on the bonding surface. The object is to provide a method for producing it with a low rolling reduction and therefore using a simple rolling device.
上記した目的を達成するために、本発明の請求項1においては、アルミニウム箔と、銅箔とが重ね合わされて一体化されてなるクラッド材において、前記アルミニウム箔は、アルミニウム母材の表面を覆う自然酸化膜を含み、前記銅箔は、前記アルミニウム箔側の表面に純銅粒子を析出させてなるめっき析出組織を含み、前記めっき析出組織の前記純銅粒子は、粒径が0.1〜10μmであるとともに、前記銅箔の表面の単位面積(1mm 2 )当たりの分布密度が1×10 4 〜1×10 8 個であって、前記純銅粒子が、前記自然酸化膜を突き破って、前記アルミニウム母材に直接的に接合して前記アルミニウム箔と前記銅箔とが一体化されていることを特徴とするクラッド材が提供される。
また、本発明においては、少なくとも一方の表面に請求項1に記載のめっき析出組織を含む銅箔と、アルミニウム母材の表面が自然酸化膜で覆われたアルミニウム箔とを準備し、この後、前記銅箔の前記表面に前記めっき析出組織を挟み込むようにして前記アルミニウム箔を重ね合わせて、これら銅箔及びアルミニウム箔に対して圧延加工を行い、前記純銅粒子が前記自然酸化膜を突き破って、前記アルミニウム母材と直接的に接合することにより、前記銅箔と前記アルミニウム箔とを一体化させることを特徴とするクラッド材の製造方法が提供される。
また、本発明においては、前記圧延加工は、圧下率0.1〜10%の冷間圧延加工であることを特徴とするクラッド材の製造方法(以下、第1の製造方法という)が提供される。
また、本発明においては、前記圧延加工後、銅箔及びアルミニウム箔の全体に対し熱処理を施すことを特徴とするクラッド材の製造方法(以下、第2の製造方法という)が提供される。
In order to achieve the above object, in claim 1 of the present invention , in the clad material in which the aluminum foil and the copper foil are overlapped and integrated, the aluminum foil covers the surface of the aluminum base material. A natural oxide film is included, and the copper foil includes a plating precipitation structure in which pure copper particles are deposited on the surface of the aluminum foil, and the pure copper particles of the plating precipitation structure have a particle size of 0.1 to 10 μm. And the distribution density per unit area (1 mm 2 ) of the surface of the copper foil is 1 × 10 4 to 1 × 10 8 , and the pure copper particles break through the natural oxide film, and the aluminum mother A clad material is provided in which the aluminum foil and the copper foil are integrated by directly joining to a material.
Further, in the present invention, a copper foil containing the plating deposition structure according to claim 1 on at least one surface and an aluminum foil in which the surface of the aluminum base material is covered with a natural oxide film are prepared, The aluminum foil is superimposed on the surface of the copper foil so as to sandwich the plating precipitation structure, and the copper foil and the aluminum foil are rolled, and the pure copper particles break through the natural oxide film, By directly joining the aluminum base material, a method for producing a clad material is provided, in which the copper foil and the aluminum foil are integrated.
In the present invention, there is also provided a method for producing a clad material (hereinafter referred to as a first production method), wherein the rolling is cold rolling with a rolling reduction of 0.1 to 10%. The
Moreover, in this invention, after the said rolling process, the manufacturing method (henceforth a 2nd manufacturing method) characterized by heat-processing with respect to the whole copper foil and aluminum foil is provided.
本発明のクラッド材の製造に用いる銅箔は、表面に純銅粒子のめっき析出組織を有し、いわゆる表面が粗面化された銅箔である。そして、クラッディングの対象であるアルミニウム箔は、その表面が厚み1〜3nm程度の極薄の自然酸化膜で被覆されている。
この銅箔とアルミニウム箔を重ね合わせて冷間で圧延すると、アルミニウム箔の自然酸化膜は極薄であるため、圧延時の印加圧力が小さく、したがってその圧下率が低くても、銅箔表面に析出している純銅粒子の突起が自然酸化膜を突き破り、アルミニウム箔本体の中に埋め込まれて、銅とアルミニウムが直接的に接合する。
The copper foil used for the production of the clad material of the present invention is a copper foil having a plating precipitation structure of pure copper particles on the surface and a so-called roughened surface. And the surface of the aluminum foil which is the object of the cladding is covered with an ultrathin natural oxide film having a thickness of about 1 to 3 nm.
When this copper foil and aluminum foil are overlapped and rolled cold, the natural oxide film on the aluminum foil is extremely thin, so the applied pressure during rolling is small, so even if the rolling reduction is low, The protrusions of the pure copper particles that are deposited break through the natural oxide film and are embedded in the aluminum foil body, so that copper and aluminum are directly joined.
その結果、低い圧下率の冷間圧延で製造されたにもかかわらず、得られたクラッド材の接合面では、銅とアルミニウム間の金属結合やまた埋め込まれた純銅粒子のアンカー効果などの作用効果を受けてその接合強度が高くなる。そして、低い圧延率でクラッディングされているので、接合面の平坦性は確保されている。
また、得られたクラッド材に対し、銅とアルミニウムの合金が生成しない温度域で熱処理することにより、2枚の箔の接合面における両金属の相互拡散が進み、接合面の接合強度を更に高めることができる。
As a result, despite the fact that it was manufactured by cold rolling with a low rolling reduction, the resulting clad material joints had effects such as metal bonding between copper and aluminum and the anchor effect of embedded pure copper particles. As a result, the bonding strength increases. And since it is clad with the low rolling rate, the flatness of a joint surface is ensured.
In addition, by heat-treating the obtained clad material in a temperature range in which an alloy of copper and aluminum is not generated, the mutual diffusion of both metals at the joint surface of the two foils proceeds, and the joint strength of the joint surface is further increased. be able to.
図1に、本発明のクラッド材の1例Aを示す。このクラッド材Aは、後述する銅箔1とアルミニウム箔2を、後述する第1の製造方法または第2の製造方法を実施することによって製造される。
銅箔1は、図2で示したように、銅箔本体1aの表面(片面)に純銅粒子1bのめっき析出組織を有していて、当該表面が粗化面になっている銅箔である。
FIG. 1 shows an example A of the clad material of the present invention. The clad material A is manufactured by performing a copper foil 1 and an
As shown in FIG. 2, the copper foil 1 is a copper foil having a plated precipitate structure of
このような銅箔は、回路基板の製造時に樹脂基板に接着する導体回路形成用の銅箔として公知の材料である。具体的には、電解銅箔や圧延銅箔の平滑な表面に、電解めっき法によって銅粒子を析出させ、付着させることによって製造される。
このときの電解めっきの条件を適宜に選定することにより、析出する銅粒子の粒径とその分布などを変化させて、得られた銅箔の表面を所望する粗化面にしている。
Such a copper foil is a known material as a copper foil for forming a conductor circuit that adheres to a resin substrate at the time of manufacturing a circuit board. Specifically, it is manufactured by depositing and attaching copper particles to the smooth surface of an electrolytic copper foil or a rolled copper foil by an electrolytic plating method.
By appropriately selecting the conditions for electrolytic plating at this time, the particle diameter of the deposited copper particles and the distribution thereof are changed to make the surface of the obtained copper foil the desired roughened surface.
本発明では、製造するクラッド材の一方の材料として上記したような純銅粒子のめっき析出組織を有する銅箔を使用する。
その場合、純銅粒子の粒径や銅箔本体の表面における分布密度は次のように設定される。
まず、純銅粒子の粒径は、0.1〜10μmの大きさに調整される。この粒径を0.1μmより小さくすると、後述するアルミニウム箔との冷間圧延時に純銅粒子がアルミニウム箔の自然酸化膜を突き破って埋め込まれる深さが浅くなるので、接合面での接合強度をあまり高くすることができないからである。
In the present invention, a copper foil having a plated precipitation structure of pure copper particles as described above is used as one material of the clad material to be produced.
In that case, the distribution density on the surface of the particle size and copper body of pure copper particles Ru is set as follows.
First, the particle size of the pure copper particles is adjusted to a size of 0.1 to 10 μm. If this particle size is smaller than 0.1 μm, the depth at which the pure copper particles penetrate through the natural oxide film of the aluminum foil during cold rolling with the aluminum foil described later becomes shallow, so that the bonding strength at the bonding surface is too small. Because it cannot be made high.
粒径を10μmより大きくすると、接合面の接合強度は高くなるが、圧下率が後述するように低いので、接合面は両箔の完全な密着面とはならずに、接合面に微小空隙の発生することがあるからである。また、製造したクラッド材を回路基板の配線材として使用した場合、導体回路を形成するときのエッチング処理時に、導体回路にシャープなエッジを形成することに難が生ずるからである。 When the particle size is larger than 10 μm, the bonding strength of the bonding surface is increased, but the rolling reduction is low as described later. Therefore, the bonding surface does not become a complete adhesion surface of both foils, and a small gap is formed in the bonding surface. This is because it may occur. Further, when the manufactured clad material is used as a wiring material for a circuit board, it is difficult to form a sharp edge in the conductor circuit during the etching process when the conductor circuit is formed.
なお、純銅粒子の粒径調整は、電解銅箔や圧延銅箔に対する電解めっき時に、電流密度などの条件を選定することによって実現可能である。例えば通電時の電気量を大きくすると大きな粒径の純銅粒子を析出させることができる。
このめっき析出組織における純銅粒子の分布密度は1×104〜1×108個/mm2に調整される。
The particle size adjustment of the pure copper particles can be realized by selecting conditions such as current density at the time of electrolytic plating on the electrolytic copper foil or the rolled copper foil. For example, when the amount of electricity during energization is increased, pure copper particles having a large particle size can be deposited.
Distribution density of pure copper particles in the plating deposition tissue Ru is adjusted to 1 × 10 4 ~1 × 10 8 pieces / mm 2.
この分布密度が1×104個/mm2より小さい場合は、接合面の接合強度の向上が期待できない。逆に、分布密度が1×108個/mm2より大きくなると、純銅粒子のめっき析出組織は膜状を呈する傾向を示して粒子による突起が少なくなるので、全体としてアルミニウム箔の自然酸化膜を突き破る能力が低下して、やはり接合面の接合強度を高めることが期待できなくなるからである。 When this distribution density is smaller than 1 × 10 4 pieces / mm 2, it is not expected to improve the joint strength of the joint surface. Conversely, when the distribution density is greater than 1 × 10 8 particles / mm 2 , the plated precipitate structure of the pure copper particles tends to exhibit a film shape and the number of protrusions due to the particles decreases, so that the natural oxide film of the aluminum foil as a whole is formed. This is because the ability to break through is reduced and it is no longer possible to increase the joint strength of the joint surface.
この分布密度は、電解めっき時に電解液の濃度などの条件を適宜に選定することによって変化させることができる。例えば、硫酸銅の濃度を高くすると、分布密度を高めることができる。
本発明のクラッド材は、第1の製造方法の場合、上記した銅箔のめっき析出組織側の表面にアルミニウム箔を重ね合わせ、例えば室温下で冷間のロール圧延を行うことによって製造される。第1の製造方法では、冷間圧延の前後で熱処理は施されない。
This distribution density can be changed by appropriately selecting conditions such as the concentration of the electrolytic solution during electrolytic plating. For example, if the concentration of copper sulfate is increased, the distribution density can be increased.
In the case of the first production method, the clad material of the present invention is produced by superposing an aluminum foil on the surface of the copper foil on the plating deposition structure side and performing, for example, cold rolling at room temperature. In the first manufacturing method, heat treatment is not performed before and after cold rolling.
冷間圧延時における圧下率は0.1〜10%に設定される。この圧下率が0.1%より低い場合は、めっき析出組織の純銅粒子がアルミニウム箔の自然酸化膜を完全に突き破らないため、接合面の接合強度は高くならない。そのため、圧延処理後のハンドリング時に両箔が剥離することもある。
また、圧下率を10%より高くすると、接合面の接合強度は高くなるが、他方では接合面の平坦性が悪化して、例えばクラッド材を回路基板の配線材として用いたときに、エッチング性の悪化を引き起こす。
The rolling reduction during cold rolling is set to 0.1 to 10%. When the rolling reduction is lower than 0.1%, the pure copper particles in the plating deposit structure do not completely penetrate the natural oxide film of the aluminum foil, and thus the bonding strength of the bonding surface does not increase. Therefore, both foils may peel off during handling after the rolling process.
Further, when the rolling reduction is higher than 10%, the bonding strength of the bonding surface is increased, but on the other hand, the flatness of the bonding surface is deteriorated. For example, when a clad material is used as a wiring material of a circuit board, the etching property is reduced. Cause deterioration.
なお、ここでいう圧下率(%)とは、圧延前の箔の厚みをTo、圧延後の箔の厚みをTとしたとき、次式:100×(To−T)/Toで示される値のことをいう。
更に、接合面の接合強度を高めようとする場合は、第2の製造方法を適用することが好適である。
第2の製造方法は、第1の製造方法で得られたクラッド材に対して熱処理を施す方法である。熱処理を施すことにより、接合面では、銅とアルミニウムの拡散接合が進行して、接合面の接合強度は一層向上する。
The rolling reduction (%) here is a value represented by the following formula: 100 × (To−T) / To, where To is the thickness of the foil before rolling and T is the thickness of the foil after rolling. I mean.
Furthermore, when it is going to raise the joint strength of a joint surface, it is suitable to apply the 2nd manufacturing method.
The second manufacturing method is a method in which heat treatment is performed on the clad material obtained by the first manufacturing method. By performing the heat treatment, diffusion bonding between copper and aluminum proceeds on the bonding surface, and the bonding strength of the bonding surface is further improved.
しかしながら、その場合に採用する熱処理温度は200〜400℃に規制される。温度が200℃より低い場合には、接合面の接合強度は第1の製造方法の場合とほとんど変わらず、消費する熱エネルギーが無駄になるからであり、また、温度を400℃より高くすると、接合面に銅とアルミニウムの合金や金属間化合物が生成するようになり、例えば回路基板の配線材として使用したときのエッチング性の悪化を招くようになるからである。 However, the heat treatment temperature employed in that case is restricted to 200 to 400 ° C. When the temperature is lower than 200 ° C., the bonding strength of the bonding surface is almost the same as in the case of the first manufacturing method, and the consumed heat energy is wasted. When the temperature is higher than 400 ° C., This is because an alloy of copper and aluminum or an intermetallic compound is generated on the joint surface, and for example, the etching property is deteriorated when used as a wiring material of a circuit board.
なお、クラッド材に熱処理を施すと、熱処理後のクラッド材は軟化してその機械的強度の低下を招くこともあるので、熱処理に続けて圧下率10%程度の冷間圧延を行うことにより、クラッド材全体の強度アップを企ることもできる。
図3に、本発明の別のクラッド材の1例Bを示す。
このクラッド材Bは、銅箔本体1aの表面にニッケルめっき層3が積層され、このニッケルめっき層3の表面に純銅粒子のめっき析出組織が形成され、このめっき析出組織とアルミニウム箔2がクラッディングされた構造になっている。
In addition, when the clad material is heat-treated, the clad material after the heat treatment may be softened and the mechanical strength of the clad material may be lowered, so by performing cold rolling at a reduction rate of about 10% following the heat treatment, It is also possible to increase the strength of the entire clad material.
FIG. 3 shows an example B of another clad material of the present invention.
In this clad material B, a
このクラッド材Bを回路基板の配線材として使用すると、ニッケルは銅とアルミニウムのエッチャントの双方に対して非溶解であるため、このニッケルめっき層3をエッチング処理時のエッチングストップ層として機能させることができる。
このクラッド材Bの製造に用いる銅箔例を図4に示す。この銅箔は、銅箔本体の平滑面に、一旦ニッケルめっきを施して薄いニッケルめっき層3を成膜し、ついで、このニッケルめっき層3の表面に、電解めっき法によって既に説明した純銅粒子のめっき析出組織を形成して製造することができる。
When this clad material B is used as a wiring material for a circuit board, nickel is not dissolved in both copper and aluminum etchants, so that this
An example of a copper foil used for manufacturing the clad material B is shown in FIG. In this copper foil, nickel plating is performed once on the smooth surface of the copper foil body to form a thin
なお、以上の説明は銅箔の片面とアルミニウム箔の片面を接合した2層構造のクラッド材に関するものであるが、本発明のクラッド材はこれに限定されるものでははく、例えば、両面に純銅粒子のめっき析出組織が形成されている銅箔の当該両面にアルミニウム箔を接合したアルミニウム箔/銅箔/アルミニウム箔の3層構造のクラッド材や、片面にめっき析出組織を有する銅箔をアルミニウム箔の両面に接合した銅箔/アルミニウム箔/銅箔の3層構造のクラッド材、更には多層構造のクラッド材であってもよい。 Although the above description relates to a clad material having a two-layer structure in which one side of a copper foil and one side of an aluminum foil are joined, the clad material of the present invention is not limited to this, for example, on both sides. Aluminum foil / copper foil / aluminum foil clad material in which aluminum foil is bonded to both sides of a copper foil on which a pure copper particle plating precipitation structure is formed, or a copper foil having a plating precipitation structure on one side is aluminum. A clad material having a three-layer structure of copper foil / aluminum foil / copper foil bonded to both surfaces of the foil, or a clad material having a multilayer structure may be used.
また、本発明では、銅箔としては銅合金箔、アルミニウム箔としてはアルミニウム合金箔を使用することもできる。 In the present invention, a copper alloy foil can be used as the copper foil, and an aluminum alloy foil can be used as the aluminum foil.
銅箔本体として、幅600mm、長さ600mm、厚み35μmのタフピッチ銅箔を用意した。そして、このタフピッチ銅箔の片面に電解銅めっきを施した。この時、電流密度と電解液の濃度を変化させて、析出する銅粒子の粒径とその分布密度を表1で示したように変化させた。
なお、銅粒子の粒径は、めっき面を顕微鏡で観察し、1視野内に存在する全ての銅粒子の粒径を実測し、その実測値の平均値であり、またその分布密度は、1視野内に存在する銅粒子の個数を実測し、その実測値を単位面積(1mm2)内の個数に換算した値である。
A tough pitch copper foil having a width of 600 mm, a length of 600 mm, and a thickness of 35 μm was prepared as a copper foil body. And the electrolytic copper plating was given to the single side | surface of this tough pitch copper foil. At this time, the current density and the concentration of the electrolytic solution were changed, and the particle diameter and distribution density of the precipitated copper particles were changed as shown in Table 1.
The particle size of the copper particles is the average value of the actual measured values obtained by observing the plated surface with a microscope and measuring the particle sizes of all the copper particles present in one field of view. This is a value obtained by actually measuring the number of copper particles present in the field of view and converting the measured value into a number within a unit area (1 mm 2 ).
ついで、得られた銅箔における銅粒子のめっき析出組織側の表面に、純度99.90%で幅600mm、長さ600mm、厚み100μmのアルミニウム箔を重ね合わせ、全体を室温下においてロール圧延した。このとき、ロール間隔を変化させて圧下率を調整した。
得られたクラッド材につき、下記の仕様で特性を測定した。
Next, an aluminum foil having a purity of 99.90%, a width of 600 mm, a length of 600 mm, and a thickness of 100 μm was superposed on the surface of the copper foil in the obtained copper foil on the plating deposition structure side, and the whole was roll-rolled at room temperature. At this time, the rolling reduction was adjusted by changing the roll interval.
About the obtained clad material, the characteristic was measured by the following specification.
接合面の接合強度:クラッド材を1.5mの高さから鉄製の床上に20回自由落下させ、そのときの剥離や破壊の状態を観察。剥離や破壊が起こらなかった場合を○印、剥離した場合を×印として評価した。
接合面の平坦性:各クラッド材を厚み方向に切断して表出した接合面を顕微鏡で観察し、接合面が一直線の線状に視認される場合を○印、接合面がうねった曲線に視認される場合を×印として評価した。
結果を表1に示す。
Bonding strength of the bonding surface: The clad material was freely dropped 20 times onto a steel floor from a height of 1.5 m, and the state of peeling or breaking at that time was observed. The case where peeling or destruction did not occur was evaluated as “◯”, and the case where peeling occurred as “×”.
Flatness of the bonding surface: Observe the bonding surface exposed by cutting each clad material in the thickness direction with a microscope. If the bonding surface is visually recognized as a straight line, a circle mark indicates that the bonding surface is a wavy curve. The case where it was visually recognized was evaluated as x mark.
The results are shown in Table 1.
また、試験片2のクラッド材につき、更に表2で示した各種の温度で熱処理を施した。そして、熱処理後の接合面の接合強度を測定し、同時に接合面の状態も顕微鏡観察した。その結果を表2に示した。
Further, the clad material of the
表1と表2から次のことが明らかである。
(1)比較例1〜3と試験片1〜4のクラッド材は、いずれも、接合面は平坦である。しかしながら、表面に銅粒子のめっき析出組織を有する銅箔を用いて製造した試験片1〜4と比較例2、3のクラッド材は、タフピッチ銅箔をそのまま用いた比較例1のクラッド材よりも接合面の接合強度は高くなっていて、表面に銅粒子を析出させることの有用性が明らかである。
そして、試験片1〜4、比較例1〜3において、銅粒子の粒径が大きくなるにつれて接合面の接合強度も高くなっていくが、しかし、銅粒子の粒径が0.1μmより小さいと比較例1の接合強度と大差なく、また銅粒子の粒径が10.0μmより大きい比較例3は、接合面に大きな銅粒子が視認され、エッチング性の悪化を予想させる。
From Tables 1 and 2, the following is clear.
(1) As for the clad materials of Comparative Examples 1 to 3 and Test Samples 1 to 4 , the joint surfaces are flat. However, the test pieces 1 to 4 and the clad materials of Comparative Examples 2 and 3 manufactured using a copper foil having a copper particle plating deposition structure on the surface are more than the clad material of Comparative Example 1 using the tough pitch copper foil as it is. The bonding strength of the bonding surface is high, and the usefulness of depositing copper particles on the surface is clear.
And in the test pieces 1 to 4 and Comparative Examples 1 to 3 , as the particle size of the copper particles increases, the bonding strength of the bonding surface also increases, but when the particle size of the copper particles is smaller than 0.1 μm. In Comparative Example 3, which is not much different from the bonding strength of Comparative Example 1 and the particle size of the copper particles is larger than 10.0 μm, large copper particles are visually recognized on the bonding surface, and the etching property is expected to deteriorate.
このようなことから、析出させる銅粒子の粒径は0.1〜10.0μmにする。
(2)銅粒子の粒径と圧下率が同じで、銅粒子の分布密度が異なっている比較例4と比較例5において、分布密度が1×104個/μm2より低い比較例4と、逆に分布密度が1×108個/μm2より高い比較例5は、いずれも、接合面の接合強度が低くなっている。
For this reason, the particle size of the copper particles to be precipitated you to 0.1~10.0Myuemu.
(2) the particle size and reduction of the copper particles are the same, in Comparative Example 5 and Comparative Example 4 in which the distribution density of the copper particles are different, the distribution density of the 1 × 10 4 cells / [mu] m 2 low Comparative Example 4 than Conversely, in Comparative Example 5 in which the distribution density is higher than 1 × 10 8 pieces / μm 2 , the bonding strength of the bonding surface is low.
このようなことから、銅粒子の分布密度は1×104〜1×108個/μm2に設定する。
(3)銅粒子の粒径と分布密度は同じであるが、圧下率を変化させて製造した試験片5〜8のグループにおいて、圧下率が0.05%と非常に低い試験片5の場合、圧延後のクラッド材に部分的な剥離が認められた。また逆に、圧下率を20%と高くした試験片8の場合、接合面の接合強度は確かに高くなっているが、他方では接合面の変形が激しくなり、例えば回路基板の配線材としては不適である。
For this reason, the distribution density of the copper particles to set to 1 × 10 4 ~1 × 10 8 cells / [mu] m 2.
(3) In the case of the test piece 5 in which the particle size and distribution density of the copper particles are the same, but in the group of test pieces 5 to 8 manufactured by changing the reduction rate, the reduction rate is as low as 0.05%. Partial peeling was observed in the clad material after rolling. On the other hand, in the case of the test piece 8 having a reduction ratio as high as 20%, the bonding strength of the bonding surface is certainly high, but on the other hand, the deformation of the bonding surface becomes severe, for example, as a wiring material for a circuit board. Unsuitable.
このようなことから、圧下率は0.1〜10%を採用すべきである。
(4)試験片9〜11のグループから明らかなように、同じクラッド材に熱処理を施した場合、温度が400℃以下であれば、接合強度はベースになっている試験片2よりも高くなり、また接合面の状態は同等であるが、しかし、温度を400℃より高くすると、接合面の接合強度は高まるとはいえ、接合面に介在物が生成し、エッチング性の悪化を引き起こすようになる。
For this reason, the rolling reduction should be 0.1 to 10%.
(4) As is apparent from the group of test pieces 9 to 11 , when the same clad material is heat-treated, if the temperature is 400 ° C. or lower, the bonding strength is higher than that of the
このようなことから接合面の接合強度を高めるために熱処理を行う場合には、その熱処理温度は200〜400℃に設定すべきであることがわかる。 For this reason, it is understood that the heat treatment temperature should be set to 200 to 400 ° C. when heat treatment is performed in order to increase the joint strength of the joint surface.
本発明のクラッド材は、銅箔とアルミニウム箔の接合面における接合強度が高く、また接合面は平坦であり、更に接合面に合金層が生成していないので、回路基板の配線材や、各種電気・電子機器における放熱板などに使用することができる。 The clad material of the present invention has a high bonding strength at the bonding surface between the copper foil and the aluminum foil, the bonding surface is flat, and no alloy layer is formed on the bonding surface. It can be used for heat sinks in electrical and electronic equipment.
1 銅箔
1a 銅箔本体
1b 銅粒子のめっき析出組織
2 アルミニウム箔
3 ニッケルめっき層
DESCRIPTION OF SYMBOLS 1 Copper foil 1a Copper foil
Claims (6)
前記アルミニウム箔は、アルミニウム母材の表面を覆う自然酸化膜を含み、
前記銅箔は、前記アルミニウム箔側の表面に純銅粒子を析出させてなるめっき析出組織を含み、
前記めっき析出組織の前記純銅粒子は、粒径が0.1〜10μmであるとともに、前記銅箔の表面の単位面積(1mm 2 )当たりの分布密度が1×10 4 〜1×10 8 個であって、
前記純銅粒子が、前記自然酸化膜を突き破って、前記アルミニウム母材に直接的に接合して前記アルミニウム箔と前記銅箔とが一体化されていることを特徴とするクラッド材。 In a clad material in which an aluminum foil and a copper foil are overlapped and integrated,
The aluminum foil includes a natural oxide film covering the surface of the aluminum base material,
The copper foil includes a plating deposit structure formed by depositing pure copper particles on the surface of the aluminum foil side,
The pure copper particles of the plating deposition structure have a particle size of 0.1 to 10 μm and a distribution density per unit area (1 mm 2 ) of the surface of the copper foil of 1 × 10 4 to 1 × 10 8 . There,
A clad material in which the pure copper particles break through the natural oxide film and are directly joined to the aluminum base material so that the aluminum foil and the copper foil are integrated.
アルミニウム母材の表面が自然酸化膜で覆われたアルミニウム箔とを準備し、
この後、前記銅箔の前記表面に前記めっき析出組織を挟み込むようにして前記アルミニウム箔を重ね合わせて、これら銅箔及びアルミニウム箔に対して圧延加工を行い、前記純銅粒子が前記自然酸化膜を突き破って、前記アルミニウム母材と直接的に接合することにより、前記銅箔と前記アルミニウム箔とを一体化させることを特徴とするクラッド材の製造方法。 A copper foil containing the plating deposition structure according to claim 1 on at least one surface;
Prepare an aluminum foil whose surface of the aluminum base material is covered with a natural oxide film,
Thereafter, the aluminum foil is superimposed on the surface of the copper foil so as to sandwich the plating deposition structure, and the copper foil and the aluminum foil are rolled, and the pure copper particles form the natural oxide film. A method for producing a clad material, wherein the copper foil and the aluminum foil are integrated by piercing and directly joining the aluminum base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005026535A JP4579705B2 (en) | 2005-02-02 | 2005-02-02 | Clad material and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005026535A JP4579705B2 (en) | 2005-02-02 | 2005-02-02 | Clad material and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006212659A JP2006212659A (en) | 2006-08-17 |
JP4579705B2 true JP4579705B2 (en) | 2010-11-10 |
Family
ID=36976296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005026535A Expired - Fee Related JP4579705B2 (en) | 2005-02-02 | 2005-02-02 | Clad material and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4579705B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100793644B1 (en) * | 2007-05-02 | 2008-01-10 | (주)알오호일 | Method of manufacturing thin metal strip |
KR101909352B1 (en) * | 2013-07-24 | 2018-10-17 | 제이엑스금속주식회사 | Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board |
JP6593979B2 (en) * | 2013-07-24 | 2019-10-23 | Jx金属株式会社 | Surface treated copper foil, copper foil with carrier, base material, copper clad laminate manufacturing method, electronic device manufacturing method, and printed wiring board manufacturing method |
KR20160093555A (en) * | 2015-01-29 | 2016-08-08 | 제이엑스금속주식회사 | Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, laminate, printed circuit board, electronic device and method of manufacturing printed circuit board |
JP6428327B2 (en) * | 2015-02-04 | 2018-11-28 | 三菱マテリアル株式会社 | Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink |
CN106784445A (en) | 2017-02-13 | 2017-05-31 | 宁德时代新能源科技股份有限公司 | Power battery top cover structure, power battery and battery module |
EP3361524B1 (en) * | 2017-02-13 | 2020-07-08 | Contemporary Amperex Technology Co., Limited | Power battery top cap structure, power battery and battery module |
CN108912535A (en) * | 2018-06-19 | 2018-11-30 | 佛山腾鲤新能源科技有限公司 | A kind of preparation method of cold-resistant stretch-proof wind energy cable sheath material |
JP2023149861A (en) * | 2022-03-31 | 2023-10-16 | 東洋鋼鈑株式会社 | Roll-bonded body and method for producing the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02121786A (en) * | 1988-10-28 | 1990-05-09 | Sumitomo Chem Co Ltd | Manufacture of copper-aluminum clad plate |
JP2000141542A (en) * | 1998-09-09 | 2000-05-23 | Furukawa Electric Co Ltd:The | Copper foil fitted with resin film and resin applied copper foil using the same |
JP2001011689A (en) * | 1999-06-30 | 2001-01-16 | Fukuda Metal Foil & Powder Co Ltd | Method for surface treating copper foil |
JP2001073188A (en) * | 1999-08-31 | 2001-03-21 | Mitsui Mining & Smelting Co Ltd | Face-regulated electrolytic copper foil, its production and its use |
WO2002024444A1 (en) * | 2000-09-22 | 2002-03-28 | Circuit Foil Japan Co., Ltd. | Copper foil for high-density ultrafine wiring board |
JP2002127298A (en) * | 2000-10-18 | 2002-05-08 | Toyo Kohan Co Ltd | Multilayered metal laminated sheet and method for manufacturing the same |
JP2002178165A (en) * | 2000-12-19 | 2002-06-25 | Hitachi Metals Ltd | Laminated metallic foil for printed wiring circuit board and manufacturing method therefor |
-
2005
- 2005-02-02 JP JP2005026535A patent/JP4579705B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02121786A (en) * | 1988-10-28 | 1990-05-09 | Sumitomo Chem Co Ltd | Manufacture of copper-aluminum clad plate |
JP2000141542A (en) * | 1998-09-09 | 2000-05-23 | Furukawa Electric Co Ltd:The | Copper foil fitted with resin film and resin applied copper foil using the same |
JP2001011689A (en) * | 1999-06-30 | 2001-01-16 | Fukuda Metal Foil & Powder Co Ltd | Method for surface treating copper foil |
JP2001073188A (en) * | 1999-08-31 | 2001-03-21 | Mitsui Mining & Smelting Co Ltd | Face-regulated electrolytic copper foil, its production and its use |
WO2002024444A1 (en) * | 2000-09-22 | 2002-03-28 | Circuit Foil Japan Co., Ltd. | Copper foil for high-density ultrafine wiring board |
JP2002127298A (en) * | 2000-10-18 | 2002-05-08 | Toyo Kohan Co Ltd | Multilayered metal laminated sheet and method for manufacturing the same |
JP2002178165A (en) * | 2000-12-19 | 2002-06-25 | Hitachi Metals Ltd | Laminated metallic foil for printed wiring circuit board and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2006212659A (en) | 2006-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4961512B2 (en) | Aluminum copper clad material | |
TWI408241B (en) | Copper alloy for electronic machinery and tools and method of producing the same | |
US20110079418A1 (en) | Ceramic wiring board and method of manufacturing thereof | |
CN108136729A (en) | Metallic laminate and its manufacturing method | |
JP6279170B1 (en) | Surface treatment material, method for producing the same, and component formed using the surface treatment material | |
JP4197718B2 (en) | High strength copper alloy sheet with excellent oxide film adhesion | |
JP4579705B2 (en) | Clad material and manufacturing method thereof | |
TW202116119A (en) | Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board | |
JP5400416B2 (en) | Superconducting wire | |
CN106414811B (en) | Electric contact material, the manufacturing method of electric contact material and terminal | |
WO2020255836A1 (en) | Copper composite plate material, vapor chamber in which copper composite plate material is used, and method for manufacturing vapor chamber | |
KR101776151B1 (en) | Bonding method for cemented carbide material using metal coating layer with exothermic and amorphous characteristics | |
JP2007203351A (en) | Clad plate and its production method | |
JP5728118B1 (en) | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil | |
TW201245499A (en) | Rolled copper or copper-alloy foil provided with roughened surface | |
WO2020079904A1 (en) | Electroconductive material, molded article, and electronic component | |
JP5247929B1 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board and printed circuit board | |
JP2011192840A (en) | Flat aluminum coated copper ribbon for semiconductor element | |
JP2010218905A (en) | Metal material for substrate, surface roughening treatment of metal material for substrate, and manufacturing method of metal material for substrate | |
JP2014152343A (en) | Composite copper foil and production method thereof | |
TW201238751A (en) | Copper foil with copper carrier, method for producing the same, copper foil for electronic circuit, method for producing the same, and method for forming electronic circuit | |
TW201238752A (en) | Copper foil with copper carrier, method for producing said copper foil, copper foil for electronic circuit, method for producing said copper foil, and method for forming electronic circuit | |
JP2005225063A (en) | Metal multilayered material and its manufacturing method | |
JP4588621B2 (en) | Laminated body for flexible printed wiring board and Cu alloy sputtering target used for forming copper alloy layer of the laminated body | |
JP3066952B2 (en) | Lead frame material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100826 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4579705 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |