[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4579111B2 - Phase transition functional material between sol-gel and method for controlling phase transition - Google Patents

Phase transition functional material between sol-gel and method for controlling phase transition Download PDF

Info

Publication number
JP4579111B2
JP4579111B2 JP2005259846A JP2005259846A JP4579111B2 JP 4579111 B2 JP4579111 B2 JP 4579111B2 JP 2005259846 A JP2005259846 A JP 2005259846A JP 2005259846 A JP2005259846 A JP 2005259846A JP 4579111 B2 JP4579111 B2 JP 4579111B2
Authority
JP
Japan
Prior art keywords
sol
gel
phase transition
light
natural number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005259846A
Other languages
Japanese (ja)
Other versions
JP2007070490A (en
Inventor
徹 中村
洋子 松澤
克彦 植木
秀樹 酒井
正彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005259846A priority Critical patent/JP4579111B2/en
Publication of JP2007070490A publication Critical patent/JP2007070490A/en
Application granted granted Critical
Publication of JP4579111B2 publication Critical patent/JP4579111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Colloid Chemistry (AREA)

Description

本発明は、相転移性機能材及びそれに対し光を用いてゾル−ゲル相互間の相転移の制御を行わせる方法に関するものである。   The present invention relates to a phase transition functional material and a method for controlling the phase transition between sol and gel using light.

近年ゾル−ゲル制御方法の発展に伴って様々な分野で新材料を用いた開発が行われてきており、物体の接着性の制御、ガラスの透明度の制御、製造物の成形、口腔用組成物の制御、液晶表示素子の製造手法に応用されている。
ゾル−ゲル制御方法としては、熱による制御が主流であり、これまで多数の提案がなされている(特許文献1〜7参照)。これらは熱による分子間相互作用の変化を利用した手法によるものである。また、周りの環境、例えばイオン濃度やpH変化を利用したゾル−ゲル制御方法も利用されている(特許文献8参照)。
しかし、これらの手法は、マクロ領域のゾル−ゲル制御については簡便で有用であるものの、温度変化に敏感な微細領域のゾル−ゲル制御に利用するには難がある。
In recent years, with the development of sol-gel control methods, development using new materials has been carried out in various fields. Control of adhesion of objects, control of transparency of glass, molding of products, composition for oral cavity It is applied to the control of the LCD and the manufacturing method of the liquid crystal display element.
As a sol-gel control method, control by heat is mainstream, and many proposals have been made so far (see Patent Documents 1 to 7). These are due to the technique utilizing the change of intermolecular interaction due to heat. In addition, a sol-gel control method using ambient environment such as ion concentration and pH change is also used (see Patent Document 8).
However, these techniques are simple and useful for sol-gel control in the macro region, but are difficult to use for sol-gel control in a fine region sensitive to temperature change.

特開2005−87128号公報(特許請求の範囲その他)JP 2005-87128 A (Claims and others) 特開2003−337325号公報(特許請求の範囲その他)JP 2003-337325 A (Claims and others) 特開2003−327520号公報(特許請求の範囲その他)JP 2003-327520 A (Claims and others) 特開2003−221320号公報(特許請求の範囲その他)JP 2003-221320 A (Claims and others) 特開2003−185155号公報(特許請求の範囲その他)JP 2003-185155 A (Claims and others) 特開2001−290062号公報(特許請求の範囲その他)JP 2001-290062 A (Claims and others) 特開平05−181169号公報(特許請求の範囲その他)JP 05-181169 A (Claims and others) 特開平11−253792号公報(特許請求の範囲その他)JP-A-11-253792 (Claims and others)

本発明の課題は、このような事情のもとで、微細な領域のゾル−ゲル転移制御が可能であるゾル−ゲル相互間の相転移性機能材や、微細な領域のゾル−ゲル相互間の相転移の制御方法を提供すること、特に工業的操作性を考慮して水溶液系においてもかかる課題を達成しうるハイドロゾルゲル材料およびその制御方法を提供することにある。   Under such circumstances, the object of the present invention is to provide a sol-gel phase-shifting functional material capable of controlling the sol-gel transition in a fine region, and between the sol-gel in a fine region. It is an object of the present invention to provide a hydrosol gel material capable of achieving such a problem even in an aqueous solution system in consideration of industrial operability, and a control method thereof.

本発明者らは、前記した好ましい相転移性機能材について鋭意研究を重ねた結果、分子系の有望なものとしてアゾベンゼン誘導体に着目し、その構造と化学的及び物理的特性を検討していったところ、特定の非対称型のものが適切な条件下で自己組織化し、ゾル−ゲル化を可逆的に行わせるのが可能であることを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive studies on the above-described preferred phase transition functional materials, the present inventors have focused on azobenzene derivatives as promising molecular systems, and studied their structures, chemical and physical properties. However, it has been found that a specific asymmetric type can self-assemble under appropriate conditions and reversibly perform sol-gelation, and the present invention has been made based on this finding.

すなわち、本発明によれば、以下の発明が提供される。
(1) 一般式(I)
[式中、R1は炭素数4以下のアルキル基、R2及びR3は水素原子又はアルキル基、mは0又は1〜10の自然数、nは2〜10の自然数、*はその炭素がRもしくはS体(該炭素がアミノ酸残基に属する場合にはLもしくはD体)に対応する光学活性エナンチオマーを示す]
で表わされる化合物及びその塩の中から選ばれた少なくとも1種の非対称型アゾベンゼン誘導体を有効成分とする、ゾル−ゲル相互間の相転移性機能材。
(2) 一般式(I)
[式中、R1は炭素数4以下のアルキル基、R2及びR3は水素原子又はアルキル基、mは0又は1〜10の自然数、nは2〜10の自然数、*はその炭素がRもしくはS体(該炭素がアミノ酸残基に属する場合にはLもしくはD体)に対応する光学活性エナンチオマーを示す]
で表わされる化合物及びその塩の中から選ばれた少なくとも1種の非対称型アゾベンゼン誘導体を溶媒に溶解させた溶液由来のゲル又はゾルに光を照射することを特徴とするゾル−ゲル相互間の相転移の制御方法。
(3) 光に紫外線を用いてゲルからゾルへの相転移を行わせる前記(2)記載の方法。
(4) 光に可視光を用いてゾルからゲルへの相転移を行わせる前記(2)又は(3)記載の方法。
(5) 溶媒が水、有機溶媒、それらの混合溶媒である前記(2)ないし(4)のいずれかに記載の方法。
That is, according to the present invention, the following inventions are provided.
(1) General formula (I)
[Wherein R 1 is an alkyl group having 4 or less carbon atoms, R 2 and R 3 are hydrogen atoms or alkyl groups, m is a natural number of 0 or 1 to 10, n is a natural number of 2 to 10, and * is a carbon number Shows optically active enantiomer corresponding to R or S form (or L or D form when the carbon belongs to an amino acid residue)]
A sol-gel phase-shifting functional material comprising as an active ingredient at least one asymmetric azobenzene derivative selected from a compound represented by the formula:
(2) General formula (I)
[Wherein R 1 is an alkyl group having 4 or less carbon atoms, R 2 and R 3 are hydrogen atoms or alkyl groups, m is a natural number of 0 or 1 to 10, n is a natural number of 2 to 10, and * is a carbon number Shows optically active enantiomer corresponding to R or S form (or L or D form when the carbon belongs to an amino acid residue)]
A sol-gel phase characterized by irradiating light to a gel or sol derived from a solution in which at least one asymmetric type azobenzene derivative selected from the compound represented by the formula: How to control metastasis.
(3) The method according to (2), wherein the phase transition from gel to sol is performed using ultraviolet rays as light.
(4) The method according to (2) or (3), wherein the phase transition from sol to gel is performed using visible light as light.
(5) The method according to any one of (2) to (4), wherein the solvent is water, an organic solvent, or a mixed solvent thereof.

本発明の相転移性機能材は、上記一般式(I)で表わされる化合物及びその塩の中から選ばれた少なくとも1種の非対称型アゾベンゼン誘導体を有効成分とし、この誘導体は光応答性の分子骨格としてアゾベンゼン構造を有し、ゾル−ゲル相互間の転移、すなわちゾルからゲルへの転移や、ゲルからゾルへの転移を可能ならしめ、特に該構造を特異なものとする、アゾベンゼンの片側に結合するペプチド残基による非対称性が、これらの転移を一層助長させる要因となっている。
一般式(I)の化合物において、該式中のR1は、アルキル基、シクロアルキル基、アリール基又はアラルキル基等であり、アルキル基としては低級アルキル基、さらには炭素数4以下のものが好ましく、シクロアルキル基としてはシクロヘキシル基やシクロペンチル基等が挙げられ、アリール基としてはフェニル基やナフチル基等が挙げられ、アラルキル基としてはベンジル基やフェネチル基等が挙げられ、中でも特に入手しやすいアミノ酸の構成員をなすものがよい。
2やR3における炭化水素基としては、例えばアルキル基、シクロアルキル基、アリール基又はアラルキル基等が挙げられ、中でもアルキル基が好ましい。
mは0であるか、あるいは1〜10の範囲の自然数であるのが好ましい。
nは2〜10の範囲の自然数であるのが好ましい。
*は、それを付した炭素がRもしくはS体に対応するか、あるいは該炭素がアミノ酸残基に属する場合にはLもしくはD体に対応する光学活性エナンチオマーであることを示す。
一般式(I)の化合物の塩としては、例えばアルカリ金属塩、アンモニウム塩等が挙げられる。
The phase-transition functional material of the present invention comprises at least one asymmetric azobenzene derivative selected from the compound represented by the above general formula (I) and a salt thereof as an active ingredient, and this derivative is a photoresponsive molecule. It has an azobenzene structure as a skeleton, and enables sol-gel transition, that is, sol-to-gel transition and gel-to-sol transition, especially on one side of azobenzene, which makes this structure unique. Asymmetry due to the peptide residues to be bound is a factor that further promotes these transitions.
In the compound of the general formula (I), R 1 in the formula is an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or the like, and the alkyl group includes a lower alkyl group, and further those having 4 or less carbon atoms. Preferred examples of the cycloalkyl group include a cyclohexyl group and a cyclopentyl group, examples of the aryl group include a phenyl group and a naphthyl group, and examples of the aralkyl group include a benzyl group and a phenethyl group. What constitutes a member of an amino acid is good.
Examples of the hydrocarbon group for R 2 and R 3 include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, and the like, and among them, an alkyl group is preferable.
m is preferably 0 or a natural number in the range of 1-10.
n is preferably a natural number ranging from 2 to 10.
* Indicates that the carbon attached thereto corresponds to the R or S isomer, or, when the carbon belongs to an amino acid residue, is an optically active enantiomer corresponding to the L or D isomer.
Examples of the salt of the compound of the general formula (I) include alkali metal salts and ammonium salts.

上記非対称型アゾベンゼン誘導体は、それとともに溶媒を用いることによってゾルやゲルの形態を発現させることができるようになる。   The asymmetric azobenzene derivative can express a sol or gel form by using a solvent together with the asymmetric azobenzene derivative.

このように、ゾル−ゲル相互間の相転移、すなわちゾルからゲルへの相転移(これをゲル化転移ともいう)やゲルからゾルへの相転移(これをゾル化転移ともいう)は、溶媒の存在下で行われる。
この溶媒は非対称型アゾベンゼン誘導体を溶解しうるものであればよく、このようなものとしては、例えば水、アルコール、アセトニトリル、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルスルホキシド、メチルピロリジノンなどが挙げられる。
これらの溶媒は、1種用いてもよいし、また、2種以上を組み合わせて用いてもよく、特に2種又は3種を組み合わせた混合溶媒として用いるのがよい。この混合溶媒としては、水と上記各種有機溶媒とからなるもの、中でも水とジメチルルスルホキシドとからなる水溶液系のものが好ましい。
この水と上記各種有機溶媒とからなる混合溶媒の体積比は、好ましくは1:100〜100:1、中でも1:2〜2:1の範囲で選ばれる。
Thus, the phase transition between sol-gel, that is, the phase transition from sol to gel (also referred to as gelation transition) and the phase transition from gel to sol (also referred to as solation transition) Done in the presence of
The solvent may be any solvent that can dissolve the asymmetric azobenzene derivative, and examples thereof include water, alcohol, acetonitrile, tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide, and methylpyrrolidinone.
One of these solvents may be used, or two or more may be used in combination, and in particular, it may be used as a mixed solvent in which two or three are combined. As this mixed solvent, a solvent composed of water and the above-mentioned various organic solvents, particularly an aqueous solution composed of water and dimethyl sulfoxide is preferable.
The volume ratio of the mixed solvent consisting of this water and the above-mentioned various organic solvents is preferably selected in the range of 1: 100 to 100: 1, particularly 1: 2 to 2: 1.

ゾル−ゲル相互間の相転移、すなわちゲル化転移やゾル化転移は、光照射により有効に制御することが可能であり、照射光としては紫外〜可視光領域のものが好ましい。
照射光の強度は、通常1μW〜1W、好ましくは20μW〜100mW、中でも1〜30mWの範囲で選ばれる。
照射時間は、通常、数秒〜30分の範囲である。
The phase transition between sol-gel, that is, gelation transition or sol transition can be effectively controlled by light irradiation, and the irradiation light is preferably in the ultraviolet to visible light region.
The intensity of irradiation light is usually selected in the range of 1 μW to 1 W, preferably 20 μW to 100 mW, and more preferably 1 to 30 mW.
The irradiation time is usually in the range of several seconds to 30 minutes.

本発明によれば、従来の熱制御等の制御方法では困難な、微細領域のゾル−ゲル転移制御を、光により効率よく行えるようになる。光制御は、波長を適宜選択することができるため、精密な制御が可能になる。   According to the present invention, sol-gel transition control in a fine region, which is difficult with a conventional control method such as thermal control, can be efficiently performed with light. In the light control, the wavelength can be appropriately selected, so that precise control is possible.

次に、実施例により本発明を実施するための最良の形態を説明するが、本発明はこれらの例により何ら限定されるものではない。本発明の技術思想の範囲内で変更及び他の態様又は実施例はすべて本発明に含まれる。
なお、実施例中の単位Lはリットルを意味する。
Next, the best mode for carrying out the present invention will be described by way of examples, but the present invention is not limited to these examples. All modifications and other embodiments or examples within the scope of the technical idea of the present invention are included in the present invention.
In addition, the unit L in an Example means a liter.

次の式
Φ−N=N−Φ−[(CO)−NH−CH(iPr)]2−COOH
(式中のiPrはイソプロピル基であり、アゾ基と−(CO)−基とは互いにp位に位置する)
で表わされる非対称アゾベンゼン誘導体1mgをジメチルスルホキシド100μlに溶解し、さらに水100μlを加えた。得られた溶液は若干濁っているので、濁りを50℃で10分間加熱して溶解させた。その結果、1/1体積比の水/ジメチルスルホキシド混合溶媒に非対称アゾベンゼン誘導体の分子が(1.2)×10-3mol/Lの濃度で溶解したことになる。
このようにして調製された溶液を25℃で放置すると、ゲルが形成された(図1中の(a)参照)。
次いで、得られたゲルを厚さ1cmのセル中に導入し、その光異性化を以下のとおり行った。
光源として超高圧水銀灯(USHIO社製、型式:USH−500D、500W)を用い、先ず紫外透過・可視吸収フィルターで365nm(約3mW)紫外線を30分照射してゲルからゾル(流動状態)へ転移させた(図1中の(b)参照)。さらに紫外透過・可視吸収フィルターで436nmの光(約3mW)を5分照射してゾルからゲル(固形状態)へ転移させた(図1中の(c)参照)。
The following formula [Phi] -N = N- [Phi]-[(CO) -NH-CH (iPr)] 2- COOH
(Wherein iPr is an isopropyl group, the azo group and the — (CO) — group are located at the p-position relative to each other).
1 mg of the asymmetric azobenzene derivative represented by the formula (1) was dissolved in 100 μl of dimethyl sulfoxide, and 100 μl of water was further added. Since the obtained solution was slightly turbid, the turbidity was dissolved by heating at 50 ° C. for 10 minutes. As a result, the molecule of the asymmetric azobenzene derivative was dissolved in a 1/1 volume ratio water / dimethyl sulfoxide mixed solvent at a concentration of (1.2) × 10 −3 mol / L.
When the solution thus prepared was left at 25 ° C., a gel was formed (see (a) in FIG. 1).
Subsequently, the obtained gel was introduced into a cell having a thickness of 1 cm, and the photoisomerization was performed as follows.
Using an ultra-high pressure mercury lamp (USHIO, model: USH-500D, 500W) as a light source, first irradiates 365 nm (about 3 mW) ultraviolet rays with an ultraviolet transmission / visible absorption filter for 30 minutes to transfer from gel to sol (fluid state) (See (b) in FIG. 1). Further, 436 nm light (about 3 mW) was irradiated for 5 minutes with an ultraviolet transmission / visible absorption filter to transfer from sol to gel (solid state) (see (c) in FIG. 1).

本発明は、光学材料、粘性材料、マイクロ流路、マイクロカプセル、インクジェットプリンター、センサー、分子バルブ、分子潤滑剤、分散剤、医療技術、電気製品、測定機器等の技術分野に応用可能である。   The present invention can be applied to technical fields such as optical materials, viscous materials, microchannels, microcapsules, ink jet printers, sensors, molecular valves, molecular lubricants, dispersants, medical techniques, electrical products, and measuring instruments.

実施例1の非対称アゾベンゼン誘導体の光ゾルゲル転移の模式図。FIG. 3 is a schematic diagram of the photosol-gel transition of the asymmetric azobenzene derivative of Example 1.

Claims (5)

一般式
[式中、R1炭素数4以下のアルキル基2及びR3は水素原子又はアルキル基、mは0又は1〜10の自然数、nは2〜10の自然数、*はその炭素がRもしくはS体(該炭素がアミノ酸残基に属する場合にはLもしくはD体)に対応する光学活性エナンチオマーを示す]
で表わされる化合物及びその塩の中から選ばれた少なくとも1種の非対称型アゾベンゼン誘導体を有効成分とするゾル−ゲル相互間の相転移性機能材。
General formula
[Wherein R 1 is an alkyl group having 4 or less carbon atoms , R 2 and R 3 are hydrogen atoms or alkyl groups, m is a natural number of 0 or 1 to 10 , n is a natural number of 2 to 10, and * is a carbon number Shows optically active enantiomer corresponding to R or S form (or L or D form when the carbon belongs to an amino acid residue)]
A sol-gel phase-transition functional material containing as an active ingredient at least one asymmetric azobenzene derivative selected from the compounds represented by formula (I) and salts thereof.
一般式
[式中、R1炭素数4以下のアルキル基2及びR3は水素原子又はアルキル基、mは0又は1〜10の自然数、nは2〜10の自然数、*はその炭素がRもしくはS体(該炭素がアミノ酸残基に属する場合にはLもしくはD体)に対応する光学活性エナンチオマーを示す]
で表わされる化合物及びその塩の中から選ばれた少なくとも1種の非対称型アゾベンゼン誘導体を溶媒に溶解させた溶液由来のゲル又はゾルに光を照射することを特徴とするゾル−ゲル相互間の相転移の制御方法。
General formula
[In the formula, R 1 is an alkyl group having 4 or less carbon atoms , R 2 and R 3 are hydrogen atoms or alkyl groups, m is a natural number of 0 or 1 to 10 , n is a natural number of 2 to 10 , and * is a carbon number. Shows optically active enantiomer corresponding to R or S form (or L or D form when the carbon belongs to an amino acid residue)]
A sol-gel phase characterized by irradiating light to a gel or sol derived from a solution in which at least one asymmetric type azobenzene derivative selected from the compound represented by the formula: How to control metastasis.
光に紫外線を用いてゲルからゾルへの相転移を行わせる請求項2記載の方法。   The method according to claim 2, wherein a phase transition from gel to sol is performed using ultraviolet rays as light. 光に可視光を用いてゾルからゲルへの相転移を行わせる請求項2又は3記載の方法。   4. The method according to claim 2, wherein the phase transition from sol to gel is performed using visible light as light. 溶媒が水、有機溶媒、それらの混合溶媒である請求項2ないし4のいずれかに記載の方法。   The method according to any one of claims 2 to 4, wherein the solvent is water, an organic solvent, or a mixed solvent thereof.
JP2005259846A 2005-09-07 2005-09-07 Phase transition functional material between sol-gel and method for controlling phase transition Expired - Fee Related JP4579111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259846A JP4579111B2 (en) 2005-09-07 2005-09-07 Phase transition functional material between sol-gel and method for controlling phase transition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259846A JP4579111B2 (en) 2005-09-07 2005-09-07 Phase transition functional material between sol-gel and method for controlling phase transition

Publications (2)

Publication Number Publication Date
JP2007070490A JP2007070490A (en) 2007-03-22
JP4579111B2 true JP4579111B2 (en) 2010-11-10

Family

ID=37932233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259846A Expired - Fee Related JP4579111B2 (en) 2005-09-07 2005-09-07 Phase transition functional material between sol-gel and method for controlling phase transition

Country Status (1)

Country Link
JP (1) JP4579111B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918645B1 (en) 2007-12-14 2009-09-25 포항공과대학교 산학협력단 Method for remotely controlling a sol-gel transition of hydrogel and method for delivering a drug using the same
JP2011126806A (en) * 2009-12-16 2011-06-30 Kyushu Univ Sugar lactone-azobenzene compound, and use thereof
JP6004433B2 (en) * 2012-11-22 2016-10-05 国立研究開発法人産業技術総合研究所 Method for producing gel-forming compound and molecular assembly thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238962A (en) * 2002-02-21 2003-08-27 Takashi Kato Photoresponsive liquid crystal composition, information recording medium and information recording method
JP2005314261A (en) * 2004-04-28 2005-11-10 National Institute Of Advanced Industrial & Technology Azobenzene compound and gelatinizer comprising the same and method for producing the gelatinizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238962A (en) * 2002-02-21 2003-08-27 Takashi Kato Photoresponsive liquid crystal composition, information recording medium and information recording method
JP2005314261A (en) * 2004-04-28 2005-11-10 National Institute Of Advanced Industrial & Technology Azobenzene compound and gelatinizer comprising the same and method for producing the gelatinizer

Also Published As

Publication number Publication date
JP2007070490A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
Bisoyi et al. Liquid crystals: versatile self-organized smart soft materials
Leistner et al. Smart photochromic materials triggered with visible light
del Monte et al. Formation of fluorescent rhodamine B J-dimers in sol− gel glasses induced by the adsorption geometry on the silica surface
Shin et al. Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants
Price et al. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface
Geiger et al. Organogels resulting from competing self-assembly units in the gelator: structure, dynamics, and photophysical behavior of gels formed from cholesterol− stilbene and cholesterol− squaraine gelators
Nicoletta et al. Light responsive polymer membranes: A review
Kubo et al. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic− isotropic phase transition
Zavitsas Aqueous solutions of calcium ions: hydration numbers and the effect of temperature
Buscher et al. Understanding the relationship between surface coverage and molecular orientation in polar self-assembled monolayers
Eimura et al. Self-assembly of bioconjugated amphiphilic mesogens having specific binding moieties at aqueous–liquid crystal interfaces
Ji et al. Binary supramolecular gel of achiral azobenzene with a chaperone gelator: chirality transfer, tuned morphology, and chiroptical property
Dhiman et al. Redox-mediated, transient supramolecular charge-transfer gel and ink
Shumburo et al. Stabilization of an organic photochromic material by incorporation in an organogel
Bennett et al. Dispensing surfactants from electrodes: Marangoni phenomenon at the surface of aqueous solutions of (11-ferrocenylundecyl) trimethylammonium bromide
Zhang et al. Molecular Orientation and Aggregation in Langmuir− Blodgett Films of 5-(4-N-Octadecylpyridyl)-10, 15, 20-tri-p-tolylporphyrin Studied by Ultraviolet− Visible and Infrared Spectroscopies
Berson et al. Mechanically induced switching of molecular layers
Sortino et al. Novel Self-Assembled Monolayers of Dipolar Ruthenium (III/II) Pentaammine (4, 4 ‘-bipyridinium) Complexes on Ultrathin Platinum Films as Redox Molecular Switches
Morigaki et al. Photolithographic polymerization of diacetylene-containing phospholipid bilayers studied by multimode atomic force microscopy
JP4183950B2 (en) Photoresponsive liquid crystal composition, information recording medium, and information recording method
Nardecchia et al. Phase behavior of elastin-like synthetic recombinamers in deep eutectic solvents
Gollapelli et al. Carbon quantum dots doped cholesteric liquid crystal films and microdroplets for anti-counterfeiting
Tong et al. Photoresponsive multilayer spiral nanotubes: intercalation of polyfluorinated cationic azobenzene surfactant into potassium niobate
CN107209450A (en) The photocatalysis color switching of the redox imaging nano material of rewritable media
Purkait et al. Photoresponsive membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees