[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4577227B2 - Vehicle power generation control device - Google Patents

Vehicle power generation control device Download PDF

Info

Publication number
JP4577227B2
JP4577227B2 JP2006030348A JP2006030348A JP4577227B2 JP 4577227 B2 JP4577227 B2 JP 4577227B2 JP 2006030348 A JP2006030348 A JP 2006030348A JP 2006030348 A JP2006030348 A JP 2006030348A JP 4577227 B2 JP4577227 B2 JP 4577227B2
Authority
JP
Japan
Prior art keywords
power generation
value
suppression
temperature
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006030348A
Other languages
Japanese (ja)
Other versions
JP2007215277A5 (en
JP2007215277A (en
Inventor
健二 大島
敏典 丸山
信人 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006030348A priority Critical patent/JP4577227B2/en
Priority to DE102007005926A priority patent/DE102007005926A1/en
Priority to US11/703,145 priority patent/US7602152B2/en
Publication of JP2007215277A publication Critical patent/JP2007215277A/en
Publication of JP2007215277A5 publication Critical patent/JP2007215277A5/ja
Application granted granted Critical
Publication of JP4577227B2 publication Critical patent/JP4577227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明は、車両用発電機の発電状態を制御する車両用発電制御装置に関する。   The present invention relates to a vehicular power generation control device that controls a power generation state of a vehicular generator.

近年、エンジンルーム内の温度が上がり、車両用発電機の耐熱性向上が求められている。特に、整流器、固定子巻線、軸受けの温度が高く、高温使用環境下でこれらの部品の温度上昇を抑制する車両用発電機の発電制御方法が車両用発電制御装置に求められている。   In recent years, the temperature in the engine room has risen, and improvement in heat resistance of a vehicular generator has been demanded. In particular, a power generation control method for a vehicle generator that suppresses the temperature rise of these components in a high-temperature use environment is required for a vehicle power generation control device in which the temperature of the rectifier, the stator winding, and the bearing is high.

このような温度上昇を抑制する従来技術として、車両用発電制御装置の温度が所定値を超えた場合に励磁電流値を抑制して車両用発電機の発電量を低下させることにより、部品温度を抑制する制御方法が知られている(例えば、特許文献1、2参照。)。
特開昭60−51421号公報(第2−3頁、図1−4) 特開平4−229100号公報(第3−6頁、図1−6)
As a conventional technique for suppressing such a temperature rise, when the temperature of the vehicle power generation control device exceeds a predetermined value, the excitation current value is suppressed to reduce the power generation amount of the vehicle generator, thereby reducing the component temperature. A control method to suppress is known (for example, refer to Patent Documents 1 and 2).
JP-A-60-51421 (page 2-3, FIG. 1-4) Japanese Unexamined Patent Publication No. 4-229100 (page 3-6, FIG. 1-6)

ところで、特許文献1に開示された制御方法では、車両の走行状態に応じて変化する車両用発電機の回転数や車両用発電機周囲温度の環境の中で、車両用発電機の各部品と車両用発電制御装置の温度との温度差が変化し、的確な温度抑制ができず、過度に発電を抑制するおそれがあるという問題があった。特に、市街地走行では、頻繁に温度変化を繰り返すため、過度の発電抑制による充放電収支の悪化や電圧変動が懸念され、これらの悪影響を最小限にとどめる制御方法が求められている。   By the way, in the control method disclosed in Patent Document 1, in the environment of the rotational speed of the vehicular generator and the ambient temperature of the vehicular generator that changes according to the running state of the vehicle, There has been a problem that the temperature difference with the temperature of the vehicle power generation control device changes, the temperature cannot be accurately controlled, and power generation may be excessively suppressed. In particular, in urban areas, since temperature changes are frequently repeated, there is concern about deterioration of the charge / discharge balance and voltage fluctuation due to excessive power generation suppression, and a control method that minimizes these adverse effects is demanded.

本発明は、このような点に鑑みて創作されたものであり、その目的は、過度の発電抑制を防止することができる車両用発電制御装置を提供することにある。   The present invention has been created in view of such a point, and an object thereof is to provide a vehicle power generation control device capable of preventing excessive power generation suppression.

上述した課題を解決するために、本発明の車両用発電制御装置は、所定の測定箇所の温
度を検出する温度検出手段と、温度検出手段によって検出された温度が所定値を超えた場合に、所定の変化速度で可変される抑制値を決定し、この抑制値に基づいて車両用発電機の発電量を抑制する発電抑制手段と、車両用発電機の励磁巻線に励磁電流の供給、停止を行うスイッチング素子とを備え、発電抑制手段は、車両用発電機の発電電圧を設定する調整電圧設定値から前記抑制値を減じた値を前記発電電圧が超えないように、および/または、励磁巻線に供給する励磁電流の上限を設定する励磁電流制限値から抑制値を減じた値を励磁電流が超えないように、励磁デューティを増減させてスイッチング素子をオンオフ制御することにより発電量を変化させている。検出温度が所定値を超えたときに所定の変化速度で発電量を減少させる発電抑制を行うことにより、瞬間的な温度上昇によって過度の発電抑制が行われることを防止することができる。また、調整電圧設定値、励磁電流制限値を可変することにより、容易かつ確実に発電量を増加あるいは減少させることができる。
In order to solve the above-described problem, the vehicle power generation control device of the present invention includes a temperature detection unit that detects a temperature of a predetermined measurement location, and a temperature detected by the temperature detection unit exceeds a predetermined value. A suppression value that is variable at a predetermined change rate is determined, and based on this suppression value, power generation suppression means that suppresses the amount of power generated by the vehicle generator, and excitation current supply to the excitation winding of the vehicle generator is stopped. The power generation suppression means is configured so that the power generation voltage does not exceed a value obtained by subtracting the suppression value from an adjustment voltage setting value for setting the power generation voltage of the vehicle generator and / or excitation. the value obtained by subtracting the suppression value from the excitation current limit value so that the excitation current does not exceed the set upper limit of the excitation current supplied to the winding, varying the power generation amount by increasing or decreasing the excitation duty for turning on and off the switching elements It is made to. By performing power generation suppression that reduces the power generation amount at a predetermined change rate when the detected temperature exceeds a predetermined value, it is possible to prevent excessive power generation suppression due to an instantaneous temperature rise. Further, by changing the adjustment voltage set value and the excitation current limit value, the amount of power generation can be easily or reliably increased or decreased.

また、上述した発電抑制手段は、発電量を抑制後に温度検出手段によって検出された温度が所定値以下に低下した場合に、車両用発電機の発電量の抑制を停止し、所定の変化速度で発電量を増加させることが望ましい。これにより、温度が正常範囲に戻った際に急激に発電量が増加することを防止することができるため、発電トルクの急激な上昇を抑えてエンジン回転の安定化を図ることが可能になる。   Further, the power generation suppression means described above stops the power generation amount suppression of the vehicular generator when the temperature detected by the temperature detection means falls below a predetermined value after suppressing the power generation amount, and at a predetermined change speed. It is desirable to increase the amount of power generation. As a result, it is possible to prevent the amount of power generation from rapidly increasing when the temperature returns to the normal range, and thus it is possible to stabilize engine rotation by suppressing a rapid increase in power generation torque.

また、上述した発電抑制手段は、発電量を抑制する速度変化量を、温度検出手段によって検出された温度と所定値との差に応じて設定することが望ましい。 Moreover, it is desirable that the power generation suppression unit described above sets the speed change amount for suppressing the power generation amount according to the difference between the temperature detected by the temperature detection unit and a predetermined value.

また、上述した発電抑制手段は、発電量を抑制する速度変化量を、温度検出手段によって検出された温度と所定値との差の値に比例するように設定することが望ましい。これにより、温度上昇の程度に応じて発電抑制量を変えることができ、車両用発電機の部品温度を速やかに下げることができる。   In addition, it is desirable that the power generation suppression unit described above sets the speed change amount for suppressing the power generation amount so as to be proportional to the difference value between the temperature detected by the temperature detection unit and the predetermined value. Thereby, the amount of power generation suppression can be changed according to the degree of temperature rise, and the component temperature of the vehicular generator can be quickly lowered.

以下、本発明を適用した一実施形態の車両用発電制御装置を含む発電システムについて、図面を参照しながら説明する。   Hereinafter, a power generation system including a vehicle power generation control device according to an embodiment to which the present invention is applied will be described with reference to the drawings.

参考実施形態〕
図1は、参考実施形態の車両用発電制御装置が内蔵された車両用発電機の構成を示す図であり、あわせてこの車両用発電機とバッテリや電気負荷との接続状態が示されている。
[ Reference embodiment]
FIG. 1 is a diagram showing a configuration of a vehicle generator in which a vehicle power generation control device of a reference embodiment is built, and also shows a connection state between the vehicle generator and a battery or an electric load. .

図1に示すように、本実施形態の車両用発電機1は、励磁巻線21、固定子巻線22、整流器23、車両用発電制御装置2を含んで構成されている。この車両用発電機1は、エンジンによりベルトおよびプーリを介して駆動されている。励磁巻線21は、通電されて磁界を発生する。この励磁巻線21は、界磁極(図示せず)に巻装されて回転子を構成している。固定子巻線22は、多相巻線(例えば三相巻線)であって、固定子鉄心に巻装されて固定子を構成している。この固定子巻線22は、励磁巻線21の発生する磁界の変化によって起電力を発生する。固定子巻線22に誘起される交流出力が整流器23に供給される。整流器23は、固定子巻線22の交流出力を全波整流する。整流器23の出力が、車両用発電機1の出力として外部に取り出され、バッテリ3や電気負荷4に供給される。車両用発電機1の出力(発電量)は、回転子の回転数や励磁巻線21に流れる励磁電流の通電量に応じて変化し、その励磁電流は車両用発電制御装置2によって制御される。   As shown in FIG. 1, the vehicular generator 1 according to the present embodiment includes an excitation winding 21, a stator winding 22, a rectifier 23, and a vehicular power generation control device 2. The vehicle generator 1 is driven by an engine via a belt and a pulley. The exciting winding 21 is energized to generate a magnetic field. The excitation winding 21 is wound around a field pole (not shown) to form a rotor. The stator winding 22 is a multiphase winding (for example, a three-phase winding), and is wound around a stator core to constitute a stator. The stator winding 22 generates an electromotive force due to a change in the magnetic field generated by the excitation winding 21. An AC output induced in the stator winding 22 is supplied to the rectifier 23. The rectifier 23 performs full-wave rectification on the AC output of the stator winding 22. The output of the rectifier 23 is taken out as the output of the vehicle generator 1 and supplied to the battery 3 and the electric load 4. The output (power generation amount) of the vehicle generator 1 changes according to the number of rotations of the rotor and the energization amount of the excitation current flowing in the excitation winding 21, and the excitation current is controlled by the vehicle power generation control device 2. .

次に、車両用発電制御装置2の詳細について説明する。車両用発電制御装置2は、励磁駆動トランジスタ11、環流ダイオード12、発電電圧検出回路13、Fデューティ検出回路14、発電制御回路15、温度検出回路16を含んで構成されている。   Next, details of the vehicle power generation control device 2 will be described. The vehicle power generation control device 2 includes an excitation drive transistor 11, a freewheeling diode 12, a power generation voltage detection circuit 13, an F duty detection circuit 14, a power generation control circuit 15, and a temperature detection circuit 16.

励磁駆動トランジスタ11は、ゲートが発電制御回路15に接続され、ドレインが還流ダイオード12を介して車両用発電機1の出力端子(B端子)に接続され、ソースが接地されたMOS−FETからなるスイッチング素子である。また、励磁駆動トランジスタ11のドレインはF端子を介して励磁巻線21に接続されており、励磁駆動トランジスタ11がオンされると励磁巻線21に励磁電流が流れ、オフされるとこの通電が停止される。還流ダイオード12は、励磁巻線21と並列に接続されており、励磁駆動トランジスタ11がオフされたときに、励磁巻線21に流れる励磁電流を還流させる。発電電圧検出回路13は、B端子に現れる車両用発電機1の出力電圧(発電電圧)を検出する。Fデューティ検出回路14は、励磁駆動トランジスタ11の励磁デューティ(Fデューティ)、すなわち、オンオフ制御される励磁駆動トランジスタ11がオンされた期間の割合(オンデューティ比)を検出する。この検出は、励磁駆動トランジスタ11が接続されたF端子の電圧を監視することにより行われる。発電制御回路15は、励磁駆動トランジスタ11をオンオフ制御するとともに、温度検出回路16による温度検出結果に基づく発電量の抑制制御を行う。温度検出回路16は、車両用発電制御装置2の所定の測定箇所の温度を検出する。例えば、測定箇所に温度検出用のセンサが取り付けられており、このセンサ出力(出力電圧あるいは出力電流)に基づいて温度検出が行われる。なお、温度検出を行う測定箇所は、必ずしも車両用発電制御装置2の特定箇所でなくてもよく、他の部品(例えば整流器23や固定子巻線22の近傍)であってもよい。発電抑制に伴って温度低減を行いたい特定部品の近傍に温度検出用のセンサを取り付けるようにしてもよい。   The excitation drive transistor 11 is composed of a MOS-FET whose gate is connected to the power generation control circuit 15, whose drain is connected to the output terminal (B terminal) of the vehicle generator 1 via the freewheeling diode 12, and whose source is grounded. It is a switching element. The drain of the excitation drive transistor 11 is connected to the excitation winding 21 via the F terminal. When the excitation drive transistor 11 is turned on, an excitation current flows through the excitation winding 21. Stopped. The freewheeling diode 12 is connected in parallel with the exciting winding 21 and recirculates the exciting current flowing through the exciting winding 21 when the exciting drive transistor 11 is turned off. The generated voltage detection circuit 13 detects the output voltage (generated voltage) of the vehicle generator 1 that appears at the B terminal. The F duty detection circuit 14 detects the excitation duty (F duty) of the excitation drive transistor 11, that is, the ratio of the period during which the excitation drive transistor 11 that is on / off controlled is turned on (on duty ratio). This detection is performed by monitoring the voltage at the F terminal to which the excitation drive transistor 11 is connected. The power generation control circuit 15 performs on / off control of the excitation drive transistor 11 and performs power generation amount suppression control based on the temperature detection result by the temperature detection circuit 16. The temperature detection circuit 16 detects the temperature at a predetermined measurement location of the vehicle power generation control device 2. For example, a temperature detection sensor is attached to the measurement location, and temperature detection is performed based on the sensor output (output voltage or output current). Note that the measurement location where temperature detection is performed does not necessarily have to be a specific location of the vehicle power generation control device 2, and may be another component (for example, in the vicinity of the rectifier 23 or the stator winding 22). A sensor for temperature detection may be attached in the vicinity of a specific part for which temperature reduction is desired in accordance with power generation suppression.

図2は、発電制御回路15の詳細構成を示す図である。図2に示すように、発電制御回路15は、温度偏差検出回路51、U/Dカウンタ52、抑制限界値設定回路53、デジタル−アナログ変換器(D/A)54、セレクタ55、Fデューティ制限基準値設定回路56、減算器57、電圧比較器58、60、調整電圧基準値設定回路59、PWM回路61を備えている。   FIG. 2 is a diagram illustrating a detailed configuration of the power generation control circuit 15. As shown in FIG. 2, the power generation control circuit 15 includes a temperature deviation detection circuit 51, a U / D counter 52, a suppression limit value setting circuit 53, a digital-analog converter (D / A) 54, a selector 55, and an F duty limit. A reference value setting circuit 56, a subtractor 57, voltage comparators 58 and 60, an adjustment voltage reference value setting circuit 59, and a PWM circuit 61 are provided.

温度偏差検出回路51は、温度検出回路16で検出した車両用発電制御装置2自身の温度と所定温度(所定値)との差(偏差量)を検出して出力する。U/Dカウンタ52は、温度偏差検出回路51から出力される偏差量に応じた速度のアップ/ダウンカウント動作を行う。出力されるカウント値は、発電量の抑制値に対応している。例えば、温度検出回路16で検出した温度から所定温度を引いた値を偏差量とすると、偏差量がプラス、すなわち検出温度の方が所定温度よりも高い場合には、U/Dカウンタ52は、偏差量の絶対値に比例した速度でアップカウント動作を行う。反対に、偏差量がマイナス、すなわち検出温度の方が所定温度よりも低い場合には、U/Dカウンタ52は、偏差量の絶対値に比例した速度でダウンカウント動作を行う。偏差量に対応するカウント動作の速度は、予め車両用発電制御装置2の温度と整流器23等の温度との相対的な関係を考慮して決めれている。また、発電開始直後は偏差量はマイナスであり、U/Dカウンタ52のカウント値は0に固定されている。その後、偏差量がプラスになるとU/Dカウンタ52によるカウント動作が開始される。   The temperature deviation detection circuit 51 detects and outputs the difference (deviation amount) between the temperature of the vehicle power generation control device 2 itself detected by the temperature detection circuit 16 and a predetermined temperature (predetermined value). The U / D counter 52 performs a speed up / down count operation in accordance with the deviation amount output from the temperature deviation detection circuit 51. The output count value corresponds to the power generation amount suppression value. For example, assuming that a value obtained by subtracting a predetermined temperature from the temperature detected by the temperature detection circuit 16 is a deviation amount, if the deviation amount is positive, that is, if the detected temperature is higher than the predetermined temperature, the U / D counter 52 Up-counting is performed at a speed proportional to the absolute value of the deviation amount. On the contrary, when the deviation amount is negative, that is, when the detected temperature is lower than the predetermined temperature, the U / D counter 52 performs a down-count operation at a speed proportional to the absolute value of the deviation amount. The speed of the count operation corresponding to the deviation amount is determined in advance in consideration of the relative relationship between the temperature of the vehicle power generation control device 2 and the temperature of the rectifier 23 and the like. Further, the deviation amount is negative immediately after the start of power generation, and the count value of the U / D counter 52 is fixed to zero. Thereafter, when the deviation amount becomes positive, the count operation by the U / D counter 52 is started.

デジタル−アナログ変換器54は、U/Dカウンタ52のカウント値に対応する電圧値を発生する。セレクタ55は、デジタル−アナログ変換器54の出力値と、抑制限界値設定回路53の出力値とをいずれか小さい値を選択して出力する。抑制限界値設定回路53は、発電量を抑制する際の抑制限界値を設定する。検出温度の方が高い状態が続くとU/Dカウンタ52のカウント値は上昇を続けるため、発電量の抑制値も上昇を続けて発電量が零になる場合が想定される。温度低減のためには発電量は少ない方が望ましいが、電力収支の上からはある程度の発電量を確保することが望ましい。そこで、本実施形態では、これらを両立させるべく、発電量の抑制限界値が抑制限界値設定回路53によって設定されている。U/Dカウンタ52のカウント値がこの抑制限界値に相当する値(カウント値を電圧値に変換した値と抑制限界値とが比較される)を超える場合には、セレクタ55によってこの抑制限界値が選択されるため、抑制限界値以上には発電量の抑制が行われないようになっている。   The digital-analog converter 54 generates a voltage value corresponding to the count value of the U / D counter 52. The selector 55 selects and outputs the smaller one of the output value of the digital-analog converter 54 and the output value of the suppression limit value setting circuit 53. The suppression limit value setting circuit 53 sets a suppression limit value for suppressing the power generation amount. If the detected temperature continues to be higher, the count value of the U / D counter 52 continues to increase. Therefore, it is assumed that the power generation amount suppression value continues to increase and the power generation amount becomes zero. Although it is desirable that the amount of power generation is small in order to reduce the temperature, it is desirable to secure a certain amount of power generation from the viewpoint of the power balance. Therefore, in the present embodiment, the suppression limit value of the power generation amount is set by the suppression limit value setting circuit 53 in order to achieve both of them. When the count value of the U / D counter 52 exceeds a value corresponding to the suppression limit value (a value obtained by converting the count value into a voltage value is compared with the suppression limit value), the selector 55 causes the suppression limit value to be compared. Therefore, the power generation amount is not suppressed beyond the suppression limit value.

Fデューティ制限基準値設定回路56は、励磁駆動トランジスタ11の励磁デューティの上限値をFデューティ制限基準値として設定する。減算器57は、Fデューティ制限基準値設定回路56の出力値(Fデューティ制限基準値)からセレクタ55の出力値(発電量の抑制値)を減算した値をFデューティ制限値として出力する。電圧比較器58は、プラス入力端子に減算器57の出力値が、マイナス入力端子にFデューティ検出回路14の出力値がそれぞれ入力されており、減算器57の出力値の方が大きい場合にハイレベルの信号を出力し、反対にFデューティ検出回路14の出力値の方が大きい場合にローレベルの信号を出力する。   The F duty limit reference value setting circuit 56 sets the upper limit value of the excitation duty of the excitation drive transistor 11 as the F duty limit reference value. The subtractor 57 outputs a value obtained by subtracting the output value (the power generation amount suppression value) of the selector 55 from the output value of the F duty limit reference value setting circuit 56 (F duty limit reference value) as the F duty limit value. The voltage comparator 58 is high when the output value of the subtractor 57 is input to the plus input terminal and the output value of the F duty detection circuit 14 is input to the minus input terminal, and the output value of the subtractor 57 is larger. A level signal is output. Conversely, when the output value of the F duty detection circuit 14 is larger, a low level signal is output.

調整電圧基準値設定回路59は、車両用発電機1の調整電圧基準値に相当する電圧を出力する。例えば、発電電圧検出回路13によって車両用発電機1の出力電圧を分圧回路で分圧した電圧を検出するものとすると、調整電圧基準値にこの分圧回路の分圧比を乗じた電圧値が調整電圧基準値設定回路59から出力される。電圧比較器60は、プラス入力端子に調整電圧基準値設定回路59の出力値が、マイナス入力端子に発電電圧検出回路13の出力値がそれぞれ入力されており、発電電圧が調整電圧基準値よりも低い場合にはハイレベルの信号を出力し、反対に発電電圧が調整電圧基準値よりも高い場合にはローレベルの信号を出力する。   The adjustment voltage reference value setting circuit 59 outputs a voltage corresponding to the adjustment voltage reference value of the vehicle generator 1. For example, when a voltage obtained by dividing the output voltage of the vehicular generator 1 by the voltage dividing circuit is detected by the generated voltage detecting circuit 13, a voltage value obtained by multiplying the adjustment voltage reference value by the voltage dividing ratio of the voltage dividing circuit is obtained. Output from the adjustment voltage reference value setting circuit 59. In the voltage comparator 60, the output value of the adjustment voltage reference value setting circuit 59 is input to the plus input terminal, and the output value of the generated voltage detection circuit 13 is input to the minus input terminal, and the generated voltage is higher than the adjustment voltage reference value. When it is low, a high level signal is output, and when the generated voltage is higher than the adjustment voltage reference value, a low level signal is output.

PWM回路61は、所定のデューティ比を有するPWM(パルス幅変調)信号を出力しており、2つの電圧比較器58、60の出力信号がともにハイレベルのときにこのPWM信号のデューティ比を増加させ、2つの電圧比較器58、60の出力信号の少なくとも一方がローレベルのときにこのPWM信号のデューティ比を減少させる。   The PWM circuit 61 outputs a PWM (pulse width modulation) signal having a predetermined duty ratio. When both output signals of the two voltage comparators 58 and 60 are at a high level, the duty ratio of the PWM signal is increased. The duty ratio of the PWM signal is decreased when at least one of the output signals of the two voltage comparators 58 and 60 is at a low level.

本実施形態の車両用発電制御装置1はこのような構成を有しており、次にその動作を説明する。上述したように、温度検出回路16によって検出された温度が所定温度を超えると、その偏差量(温度差)に応じた速度でU/Dカウンタ52のカウント値が増加する。このため、U/Dカウンタ52のカウント値を電圧値に変換したデジタル−アナログ変換器54の出力値が増加し、Fデューティ制限基準値設定回路56から出力されるFデューティ制限基準値から減算される発電量の抑制値が大きくなる。検出温度が所定温度より高い状態が維持された場合には、抑制限界値設定回路53で設定された抑制限界値に達するまで、発電量の抑制値が大きくなる。また、抑制限界値に達するまでの速度は、検出温度と所定温度の差である偏差量が大きいほど速くなる。このような発電量の抑制値の設定動作に伴って、減算器57から出力されるFデューティ制限値が次第に小さくなる。この次第に小さくなるFデューティ制限値がFデューティ検出回路14によって検出された励磁駆動トランジスタ11の励磁デューティよりも小さくなると電圧比較器58の出力がハイレベルからローレベルに変化するため、PWM回路61は、電圧比較器60の出力の電圧レベルに関係なく、出力するPWM信号のデューティ比を減少させる。これにより、励磁巻線21に流れる励磁電流が減少して発電量の抑制が実施される。   The vehicle power generation control device 1 of the present embodiment has such a configuration, and the operation thereof will be described next. As described above, when the temperature detected by the temperature detection circuit 16 exceeds a predetermined temperature, the count value of the U / D counter 52 increases at a speed corresponding to the deviation amount (temperature difference). Therefore, the output value of the digital-analog converter 54 obtained by converting the count value of the U / D counter 52 into a voltage value increases and is subtracted from the F duty limit reference value output from the F duty limit reference value setting circuit 56. The power generation amount suppression value increases. When the state where the detected temperature is higher than the predetermined temperature is maintained, the suppression value of the power generation amount is increased until the suppression limit value set by the suppression limit value setting circuit 53 is reached. Further, the speed until reaching the suppression limit value increases as the deviation amount, which is the difference between the detected temperature and the predetermined temperature, increases. The F duty limit value output from the subtractor 57 gradually decreases with the setting operation of the power generation amount suppression value. When the gradually decreasing F duty limit value becomes smaller than the excitation duty of the excitation drive transistor 11 detected by the F duty detection circuit 14, the output of the voltage comparator 58 changes from high level to low level. Regardless of the output voltage level of the voltage comparator 60, the duty ratio of the output PWM signal is reduced. As a result, the excitation current flowing through the excitation winding 21 is reduced, and the amount of power generation is suppressed.

このように、本実施形態では、検出温度が所定温度を超えたときに所定の変化速度で発電量を減少させる発電抑制を行うことにより、瞬間的な温度上昇によって過度の発電抑制が行われることを防止することができる。また、検出温度が所定温度以下に低下した場合には発電量の抑制が停止されるが、所定の変化速度で発電量を増加させているため、温度が正常範囲に戻った際に急激に発電量が増加することを防止することができ、発電トルクの急激な上昇を抑えてエンジン回転の安定化を図ることが可能になる。   Thus, in this embodiment, excessive power generation suppression is performed due to an instantaneous temperature rise by performing power generation suppression that reduces the power generation amount at a predetermined change rate when the detected temperature exceeds the predetermined temperature. Can be prevented. Also, when the detected temperature falls below the specified temperature, the suppression of power generation is stopped, but since the power generation is increased at a predetermined rate of change, power generation is abrupt when the temperature returns to the normal range. It is possible to prevent the amount from increasing, and it is possible to stabilize engine rotation by suppressing a rapid increase in power generation torque.

また、発電量の抑制(減少)および増加を励磁駆動トランジスタ11の励磁デューティの上限を設定するFデューティ制限値を可変することで実現しており、容易かつ確実に発電量を増加あるいは減少させることができる。なお、図2に示した発電制御回路15では、PWM回路61によって生成されるPWM信号のデューティ比を徐々に減少させる徐励制御が行われるため、Fデューティ制限値が検出温度と所定温度の差である偏差量に応じた変化速度で速やかに減少しても、励磁巻線21に流れる励磁電流の値は徐々に減少する。   Further, suppression (decrease) and increase of the power generation amount are realized by changing the F duty limit value for setting the upper limit of the excitation duty of the excitation drive transistor 11, and the power generation amount can be easily or surely increased or decreased. Can do. In the power generation control circuit 15 shown in FIG. 2, since the gradual excitation control for gradually decreasing the duty ratio of the PWM signal generated by the PWM circuit 61 is performed, the F duty limit value is the difference between the detected temperature and the predetermined temperature. Even if it rapidly decreases at a change speed corresponding to the deviation amount, the value of the excitation current flowing in the excitation winding 21 gradually decreases.

また、発電量を抑制する速度変化量としてのU/Dカウンタ52のカウント動作の速度を、検出温度と所定温度との差である偏差量の絶対値に比例するように設定しているため、温度上昇の程度に応じて発電抑制量を変えることができ、車両用発電機1の部品温度(整流器23や固定子巻線22等の温度)を速やかに下げることができる。   Further, since the speed of the count operation of the U / D counter 52 as the speed change amount for suppressing the power generation amount is set to be proportional to the absolute value of the deviation amount that is the difference between the detected temperature and the predetermined temperature, The amount of power generation suppression can be changed according to the degree of temperature rise, and the component temperature of the vehicular generator 1 (the temperature of the rectifier 23, the stator winding 22 and the like) can be quickly lowered.

図3は、発電量を抑制する場合のFデューティ制限値の時間変化を示す図である。例えば、Fデューティ制限基準値設定回路56によって設定されたFデューティ制限基準値が100%(フル励磁)に設定されており、抑制限界値設定回路53によって設定される抑制限界値が50%に設定されている場合が示されている。また、時間T0において検出温度が所定温度を超えてこれらの差である偏差量がプラスに転じたものとする。図3に示すように、時間T0において偏差量がプラスに転じると、Fデューティ制限値(減算器57の出力値)が次第に小さくなって発電量の抑制が実施される。また、Fデューティ制限値が50%に達するまでの時間ΔT(発電量を抑制する速度変化量)は、U/Dカウンタ52のカウント動作の速度、すなわち、検出温度と所定温度との差に応じて設定されており、検出温度が高いほど速やかにFデューティ制限値が減少して大きな発電抑制が行われるようになっている。   FIG. 3 is a diagram illustrating a time change of the F duty limit value when the power generation amount is suppressed. For example, the F duty limit reference value set by the F duty limit reference value setting circuit 56 is set to 100% (full excitation), and the suppression limit value set by the suppression limit value setting circuit 53 is set to 50%. The case has been shown. Further, it is assumed that the detected temperature exceeds the predetermined temperature at time T0 and the deviation amount, which is the difference between them, has turned to a plus. As shown in FIG. 3, when the deviation amount becomes positive at time T0, the F duty limit value (the output value of the subtractor 57) gradually decreases, and the power generation amount is suppressed. The time ΔT (speed change amount for suppressing the power generation amount) until the F duty limit value reaches 50% depends on the count operation speed of the U / D counter 52, that is, the difference between the detected temperature and the predetermined temperature. The F duty limit value decreases more rapidly as the detected temperature is higher, and large power generation suppression is performed.

実施形態
図4は、実施形態の車両用発電制御装置が内蔵された車両用発電機の構成を示す図であり、あわせてこの車両用発電機とバッテリや電気負荷との接続状態が示されている。図4に示す車両用発電機1Aは、図1に示した参考実施形態の車両用発電機1に含まれる車両用発電制御装置2を車両用発電制御装置2Aに置き換えたものである。この車両用発電制御装置2Aは、図1に示した車両用発電制御装置2に対して、Fデューティ検出回路14がない代わりに励磁電流検出用の励磁電流検出回路17とセンス抵抗18が追加されている点と、発電制御回路15が発電制御回路15Aに変更されている点とが異なっている。発電制御回路15Aは、励磁駆動トランジスタ11をオンオフ制御するとともに、車両用発電機1Aの発電電圧を設定する調整電圧設定値と、励磁巻線21に供給する励磁電流の上限を設定する励磁電流制限値とを可変することにより、温度検出回路16による温度検出結果に基づく発電量の抑制制御を行う。センス抵抗18は、励磁駆動トランジスタ11とE端子(アース端子)との間に挿入されており、励磁巻線21に流れる励磁電流に比例した端子電圧を発生する。励磁電流検出回路17は、センス抵抗18の端子電圧を取り込んで励磁巻線21に流れる励磁電流を検出する。
Embodiment
FIG. 4 is a diagram showing a configuration of a vehicle generator in which the vehicle power generation control device of one embodiment is built, and also shows a connection state between the vehicle generator and a battery or an electric load. . A vehicle generator 1A shown in FIG. 4 is obtained by replacing the vehicle power generation control device 2 included in the vehicle generator 1 of the reference embodiment shown in FIG. 1 with a vehicle power generation control device 2A. The vehicle power generation control device 2A is different from the vehicle power generation control device 2 shown in FIG. 1 in that an excitation current detection excitation circuit 17 and a sense resistor 18 are added instead of the F duty detection circuit. And the point where the power generation control circuit 15 is changed to the power generation control circuit 15A is different. The power generation control circuit 15A performs on / off control of the excitation drive transistor 11, and also sets an adjustment voltage setting value for setting the power generation voltage of the vehicle generator 1A and an excitation current limit for setting an upper limit of the excitation current supplied to the excitation winding 21. By changing the value, power generation amount suppression control based on the temperature detection result by the temperature detection circuit 16 is performed. The sense resistor 18 is inserted between the excitation drive transistor 11 and the E terminal (earth terminal), and generates a terminal voltage proportional to the excitation current flowing through the excitation winding 21. The excitation current detection circuit 17 takes in the terminal voltage of the sense resistor 18 and detects the excitation current flowing through the excitation winding 21.

図5は、発電制御回路15Aの詳細構成を示す図である。図5に示すように、発電制御回路15Aは、温度偏差検出回路51、U/Dカウンタ52、抑制限界値設定回路53、デジタル−アナログ変換器(D/A)54、セレクタ55、調整電圧基準値設定回路59、電圧比較器60、84、PWM回路61、減算器81、83、励磁電流制限基準値設定回路82を備えている。これらの構成において、図2に示した発電制御回路15と基本的に同じ動作を行うものについては同じ符号が付されており、詳細な説明は省略する。   FIG. 5 is a diagram showing a detailed configuration of the power generation control circuit 15A. As shown in FIG. 5, the power generation control circuit 15A includes a temperature deviation detection circuit 51, a U / D counter 52, a suppression limit value setting circuit 53, a digital-analog converter (D / A) 54, a selector 55, and an adjustment voltage reference. A value setting circuit 59, voltage comparators 60 and 84, a PWM circuit 61, subtracters 81 and 83, and an excitation current limit reference value setting circuit 82 are provided. In these configurations, components that perform basically the same operations as those of the power generation control circuit 15 illustrated in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

温度偏差検出回路51、U/Dカウンタ52、抑制限界値設定回路53、デジタル−アナログ変換器(D/A)54、セレクタ55は、図2に示した発電制御回路15ではFデューティ制限値を出力するために用いられたが、本実施形態では基本動作は同じであるが調整電圧設定値と励磁電流制限値を出力するために用いられる。図5に示す構成では、一組のこれらの構成によって共通の調整電圧設定値と励磁電流制限値を出力しているが、調整電圧設定値と励磁電流制限値のそれぞれの値を異ならせたい場合にはこれらの構成を二組用意すればよい。   The temperature deviation detecting circuit 51, the U / D counter 52, the suppression limit value setting circuit 53, the digital-analog converter (D / A) 54, and the selector 55 are set to the F duty limit value in the power generation control circuit 15 shown in FIG. Although the basic operation is the same in this embodiment, it is used to output the adjustment voltage set value and the excitation current limit value. In the configuration shown in FIG. 5, a common adjustment voltage setting value and excitation current limit value are output by a set of these configurations, but the adjustment voltage setting value and the excitation current limit value are different. It is sufficient to prepare two sets of these configurations.

励磁電流制限基準値設定回路82は、励磁駆動トランジスタ11を介して励磁巻線21に流す励磁電流の上限値を励磁電流制限基準値として設定する。減算器83は、励磁電流制限基準値設定回路82の出力値(励磁電流制限基準値)からセレクタ55の出力値(発電量の抑制値)を減算した値を励磁電流制限値として出力する。電圧比較器84は、プラス入力端子に減算器83の出力値が、マイナス入力端子に励磁電流検出回路17の出力値がそれぞれ入力されており、減算器83の出力値の方が大きい場合にハイレベルの信号を出力し、反対に励磁電流検出回路17の出力値の方が大きい場合にローレベルの信号を出力する。   The excitation current limit reference value setting circuit 82 sets the upper limit value of the excitation current flowing through the excitation winding 21 via the excitation drive transistor 11 as the excitation current limit reference value. The subtractor 83 outputs a value obtained by subtracting the output value of the selector 55 (the power generation amount suppression value) from the output value of the excitation current limit reference value setting circuit 82 (excitation current limit reference value) as the excitation current limit value. The voltage comparator 84 is high when the output value of the subtractor 83 is input to the plus input terminal and the output value of the excitation current detection circuit 17 is input to the minus input terminal, and the output value of the subtractor 83 is larger. A level signal is output. Conversely, when the output value of the excitation current detection circuit 17 is larger, a low level signal is output.

同様に、減算器81は、調整電圧基準値設定回路59の出力値(調整電圧基準値)からセレクタ55の出力値(発電量の抑制値)を減算した値を調整電圧設定値として出力する。電圧比較器60は、プラス入力端子に減算器81の出力値が、マイナス入力端子に発電電圧検出回路13の出力値がそれぞれ入力されており、減算器81の出力値の方が大きい場合にハイレベルの信号を出力し、反対に発電電圧検出回路13の出力値の方が大きい場合にローレベルの信号を出力する。   Similarly, the subtracter 81 outputs a value obtained by subtracting the output value of the selector 55 (suppressed value of power generation amount) from the output value of the adjustment voltage reference value setting circuit 59 (adjustment voltage reference value) as the adjustment voltage setting value. The voltage comparator 60 is high when the output value of the subtractor 81 is input to the plus input terminal and the output value of the generated voltage detection circuit 13 is input to the minus input terminal, and the output value of the subtractor 81 is larger. A level signal is output. Conversely, when the output value of the generated voltage detection circuit 13 is larger, a low level signal is output.

本実施形態の車両用発電制御装置1Aはこのような構成を有しており、次にその動作を説明する。温度検出回路16によって検出された温度が所定温度を超えると、その偏差量(温度差)に応じた速度でU/Dカウンタ52のカウント値が増加する。このため、U/Dカウンタ52のカウント値を電圧値に変換したデジタル−アナログ変換器54の出力値が増加し、励磁電流制限基準値設定回路82から出力される励磁電流制限基準値と調整電圧基準値設定回路59から出力される調整電圧基準値のそれぞれから減算される発電量の抑制値が大きくなる。検出温度が所定温度より高い状態が維持された場合には、抑制限界値設定回路53で設定された抑制限界値に達するまで、発電量の抑制値が大きくなる。また、抑制限界値に達するまでの速度は、検出温度と所定温度の差である偏差量が大きいほど速くなる。このような発電量の抑制値の設定動作に伴って、減算器83から出力される励磁電流制限値や減算器81から出力される調整電圧設定値が次第に小さくなる。次第に小さくなる励磁電流制限値が励磁電流検出回路17によって検出された励磁巻線21の励磁電流値よりも小さくなると電圧比較器84の出力がハイレベルからローレベルに変化するため、PWM回路61は、電圧比較器60の出力の電圧レベルに関係なく、出力するPWM信号のデューティ比を減少させる。これにより、励磁巻線21に流れる励磁電流が減少して発電量の抑制が実施される。一方、次第に小さくなる調整電圧設定値が発電電圧検出回路13によって検出された発電電圧(車両用発電機1の出力電圧)よりも小さくなると電圧比較器60の出力がハイレベルからローレベルに変化するため、PWM回路61は、電圧比較器84の出力の電圧レベルに関係なく、出力するPWM信号のデューティ比を減少させる。これにより、励磁巻線21に流れる励磁電流が減少して発電量の抑制が実施される。   The vehicle power generation control device 1A of the present embodiment has such a configuration, and the operation thereof will be described next. When the temperature detected by the temperature detection circuit 16 exceeds a predetermined temperature, the count value of the U / D counter 52 increases at a speed corresponding to the deviation amount (temperature difference). Therefore, the output value of the digital-analog converter 54 obtained by converting the count value of the U / D counter 52 into a voltage value increases, and the excitation current limit reference value and adjustment voltage output from the excitation current limit reference value setting circuit 82 are increased. The suppression value of the power generation amount subtracted from each of the adjustment voltage reference values output from the reference value setting circuit 59 becomes large. When the state where the detected temperature is higher than the predetermined temperature is maintained, the suppression value of the power generation amount is increased until the suppression limit value set by the suppression limit value setting circuit 53 is reached. Further, the speed until reaching the suppression limit value increases as the deviation amount, which is the difference between the detected temperature and the predetermined temperature, increases. Along with the setting operation of the power generation amount suppression value, the excitation current limit value output from the subtractor 83 and the adjustment voltage set value output from the subtractor 81 are gradually reduced. Since the output of the voltage comparator 84 changes from the high level to the low level when the gradually decreasing excitation current limit value becomes smaller than the excitation current value of the excitation winding 21 detected by the excitation current detection circuit 17, the PWM circuit 61 Regardless of the output voltage level of the voltage comparator 60, the duty ratio of the output PWM signal is reduced. As a result, the excitation current flowing through the excitation winding 21 is reduced, and the amount of power generation is suppressed. On the other hand, when the adjustment voltage setting value that gradually decreases becomes smaller than the generated voltage (the output voltage of the vehicular generator 1) detected by the generated voltage detection circuit 13, the output of the voltage comparator 60 changes from the high level to the low level. Therefore, the PWM circuit 61 decreases the duty ratio of the output PWM signal regardless of the voltage level of the output of the voltage comparator 84. As a result, the excitation current flowing through the excitation winding 21 is reduced, and the amount of power generation is suppressed.

このように、本実施形態では、検出温度が所定温度を超えたときに所定の変化速度で発電量を減少させるように励磁電流制限値あるいは調整電圧設定値を制御することにより、瞬間的な温度上昇によって過度の発電抑制が行われることを防止することができる。特に、発電量の抑制(減少)および増加を励磁電流制限値や調整電圧設定値を可変することで実現しており、容易かつ確実に発電量を増加あるいは減少させることができる。   As described above, in this embodiment, the instantaneous current temperature is controlled by controlling the excitation current limit value or the adjustment voltage setting value so as to decrease the power generation amount at a predetermined change rate when the detected temperature exceeds the predetermined temperature. It is possible to prevent excessive power generation suppression due to the rise. In particular, suppression (decrease) and increase of the power generation amount are realized by varying the exciting current limit value and the adjustment voltage setting value, and the power generation amount can be increased or decreased easily and reliably.

図6は、発電量を抑制する場合の調整電圧設定値の時間変化を示す図である。例えば、調整電圧基準値設定回路59によって設定された調整電圧基準値が14Vに相当する値に設定されており、抑制限界値設定回路53によって設定される抑制限界値が4V相当の値に設定されている場合が示されている。また、時間T0において検出温度が所定温度を超えてこれらの差である偏差量がプラスに転じたものとする。図6に示すように、時間T0において偏差量がプラスに転じると、調整電圧設定値(減算器81の出力値)が次第に小さくなって発電量の抑制が実施される。また、調整電圧設定値が10V(14V−4V)に達するまでの時間ΔT(発電量を抑制する速度変化量)は、U/Dカウンタ52のカウント動作の速度、すなわち、検出温度と所定温度との差に応じて設定されており、検出温度が高いほど速やかに調整電圧設定値が低下して大きな発電抑制が行われるようになっている。   FIG. 6 is a diagram illustrating a change over time in the adjustment voltage setting value when the power generation amount is suppressed. For example, the adjustment voltage reference value set by the adjustment voltage reference value setting circuit 59 is set to a value corresponding to 14V, and the suppression limit value set by the suppression limit value setting circuit 53 is set to a value corresponding to 4V. The case is shown. Further, it is assumed that the detected temperature exceeds the predetermined temperature at time T0 and the deviation amount, which is the difference between them, has turned to a plus. As shown in FIG. 6, when the deviation amount becomes positive at time T0, the adjustment voltage set value (the output value of the subtractor 81) gradually decreases, and the power generation amount is suppressed. Further, the time ΔT (speed change amount for suppressing the power generation amount) until the adjustment voltage set value reaches 10 V (14V-4V) is the speed of the count operation of the U / D counter 52, that is, the detected temperature and the predetermined temperature. The adjustment voltage set value decreases more rapidly as the detected temperature is higher, and large power generation suppression is performed.

図7は、発電量を抑制する場合の励磁電流制限値の時間変化を示す図である。例えば、励磁電流制限基準値設定回路82によって設定された励磁電流制限基準値が8Aに相当する値に設定されており、抑制限界値設定回路53によって設定される抑制限界値も8Aに相当する値に設定されている場合が示されている。また、時間T0において検出温度が所定温度を超えてこれらの差である偏差量がプラスに転じたものとする。図7に示すように、時間T0において偏差量がプラスに転じると、励磁電流制限値(減算器83の出力値)が次第に小さくなって発電量の抑制が実施される。また、励磁電流制限値が0A(8A−8A)に達するまでの時間ΔT(発電量を抑制する速度変化量)は、U/Dカウンタ52のカウント動作の速度、すなわち、検出温度と所定温度との差に応じて設定されており、検出温度が高いほど速やかに励磁電流制限値が減少して大きな発電抑制が行われるようになっている。   FIG. 7 is a diagram illustrating a change over time of the excitation current limit value when the power generation amount is suppressed. For example, the excitation current limit reference value set by the excitation current limit reference value setting circuit 82 is set to a value corresponding to 8A, and the suppression limit value set by the suppression limit value setting circuit 53 is also a value corresponding to 8A. The case where it is set to is shown. Further, it is assumed that the detected temperature exceeds the predetermined temperature at time T0 and the deviation amount, which is the difference between them, has turned to a plus. As shown in FIG. 7, when the deviation amount becomes positive at time T0, the excitation current limit value (the output value of the subtractor 83) is gradually reduced, and the power generation amount is suppressed. The time ΔT (speed change amount for suppressing the power generation amount) until the exciting current limit value reaches 0A (8A-8A) is the speed of the count operation of the U / D counter 52, that is, the detected temperature and the predetermined temperature. The excitation current limit value decreases more rapidly as the detected temperature is higher, and large power generation suppression is performed.

なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。上述した実施形態では、調整電圧設定値と励磁電流制限値の両方を可変して発電量を抑制したが、いずれか一方のみを実施するようにしてもよい。 In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible within the range of the summary of this invention. In one embodiment described above, has been inhibited variable to the power generation amount of both of the adjustment voltage setting value and the excitation current limit value may be carried out only one.

また、上述した各実施形態では、励磁巻線21に流す励磁電流を徐々に変化させる徐励制御を行うためにPWM回路61を用いているが、徐励制御を行わない場合にはこのPWM回路61を2入力のアンド回路に置き換えるようにしてもよい。このアンド回路は、2入力がともにハイレベルのときに励磁駆動トランジスタ11をオンして励磁巻線21に励磁電流を流すように動作する。   In each of the above-described embodiments, the PWM circuit 61 is used to perform the gradual excitation control for gradually changing the excitation current flowing through the excitation winding 21, but this PWM circuit is used when the gradual excitation control is not performed. 61 may be replaced with a 2-input AND circuit. This AND circuit operates to turn on the excitation drive transistor 11 and cause an excitation current to flow through the excitation winding 21 when both inputs are at a high level.

参考実施形態の車両用発電制御装置が内蔵された車両用発電機の構成を示す図である。It is a figure which shows the structure of the generator for vehicles with which the power generation control apparatus for vehicles of reference embodiment was incorporated. 発電制御回路の詳細構成を示す図である。It is a figure which shows the detailed structure of a power generation control circuit. 発電量を抑制する場合のFデューティ制限値の時間変化を示す図である。It is a figure which shows the time change of F duty limit value in the case of suppressing electric power generation amount. 実施形態の車両用発電制御装置が内蔵された車両用発電機の構成を示す図である。It is a figure which shows the structure of the generator for vehicles with which the power generation control apparatus for vehicles of one Embodiment was incorporated. 発電制御回路の詳細構成を示す図である。It is a figure which shows the detailed structure of a power generation control circuit. 発電量を抑制する場合の調整電圧設定値の時間変化を示す図である。It is a figure which shows the time change of the adjustment voltage setting value in the case of suppressing electric power generation amount. 発電量を抑制する場合の励磁電流制限値の時間変化を示す図である。It is a figure which shows the time change of the exciting current limiting value in the case of suppressing electric power generation amount.

符号の説明Explanation of symbols

1、1A 車両用発電機
2、2A 車両用発電制御装置
3 バッテリ
4 電気負荷
11 励磁駆動トランジスタ
12 環流ダイオード
13 発電電圧検出回路
14 Fデューティ検出回路
15、15A 発電制御回路
16 温度検出回路
17 励磁電流検出回路
18 センス抵抗
51 温度偏差検出回路
52 U/Dカウンタ
53 抑制限界値設定回路
54 デジタル−アナログ変換器(D/A)
55 セレクタ
56 Fデューティ制限基準値設定回路
57、81、83 減算器
58、60、84 電圧比較器
59 調整電圧基準値設定回路
61 PWM回路
82 励磁電流制限基準値設定回路
DESCRIPTION OF SYMBOLS 1, 1A Vehicle generator 2, 2A Vehicle power generation control device 3 Battery 4 Electric load 11 Excitation drive transistor 12 Freewheeling diode 13 Power generation voltage detection circuit 14 F duty detection circuit 15, 15A Power generation control circuit 16 Temperature detection circuit 17 Excitation current Detection circuit 18 Sense resistor 51 Temperature deviation detection circuit 52 U / D counter 53 Inhibition limit value setting circuit 54 Digital-analog converter (D / A)
55 selector 56 F duty limit reference value setting circuit 57, 81, 83 subtractor 58, 60, 84 voltage comparator 59 adjustment voltage reference value setting circuit 61 PWM circuit 82 exciting current limit reference value setting circuit

Claims (3)

所定の測定箇所の温度を検出する温度検出手段と、
前記温度検出手段によって検出された温度が所定値を超えた場合に、前記温度検出手段によって検出された温度と前記所定値との差に応じた変化速度で可変される抑制値を決定し、この抑制値に基づいて車両用発電機の発電量を抑制する発電抑制手段と、
前記車両用発電機の励磁巻線に励磁電流の供給、停止を行うスイッチング素子と、
を備え、前記発電抑制手段は、前記車両用発電機の発電電圧を設定する調整電圧設定値から前記抑制値を減じた値を前記発電電圧が超えないように、および/または、前記励磁巻線に供給する励磁電流の上限を設定する励磁電流制限値から前記抑制値を減じた値を前記励磁電流が超えないように、励磁デューティを増減させて前記スイッチング素子をオンオフ制御することにより発電量を変化させることを特徴とする車両用発電制御装置。
Temperature detecting means for detecting the temperature of a predetermined measurement location;
When a temperature detected by the temperature detection unit exceeds a predetermined value, a suppression value that is variable at a change rate according to a difference between the temperature detected by the temperature detection unit and the predetermined value is determined. Power generation suppression means for suppressing the power generation amount of the vehicle generator based on the suppression value ;
A switching element for supplying and stopping excitation current to the excitation winding of the vehicle generator;
The power generation suppression means includes the excitation winding so that the power generation voltage does not exceed a value obtained by subtracting the suppression value from an adjustment voltage setting value for setting the power generation voltage of the vehicular generator. The on- off control of the switching element is performed by increasing or decreasing the excitation duty so that the excitation current does not exceed the value obtained by subtracting the suppression value from the excitation current limit value that sets the upper limit of the excitation current to be supplied to A power generation control device for a vehicle characterized by being changed.
請求項1において、
前記発電抑制手段は、発電量を抑制後に前記温度検出手段によって検出された温度が前記所定値以下に低下した場合に、前記車両用発電機の発電量の抑制を停止し、所定の変化速度で発電量を増加させることを特徴とする車両用発電制御装置。
In claim 1,
The power generation suppression means stops the power generation amount suppression of the vehicular generator when the temperature detected by the temperature detection means drops below the predetermined value after the power generation amount is suppressed, at a predetermined change rate. A power generation control device for a vehicle characterized by increasing a power generation amount.
請求項1において、
前記発電抑制手段は、発電量を抑制する速度変化量を、前記温度検出手段によって検出された温度と前記所定値との差の値に比例するように設定することを特徴とする車両用発電制御装置。
In claim 1,
The power generation suppression means sets the speed change amount for suppressing the power generation amount so as to be proportional to the difference between the temperature detected by the temperature detection means and the predetermined value. apparatus.
JP2006030348A 2006-02-07 2006-02-07 Vehicle power generation control device Expired - Fee Related JP4577227B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006030348A JP4577227B2 (en) 2006-02-07 2006-02-07 Vehicle power generation control device
DE102007005926A DE102007005926A1 (en) 2006-02-07 2007-02-06 Heat treatment jig for semiconductor silicon substrates, comprises cristobalitized oxide film formed in region functioning to support and contact with semiconductor silicon substrates
US11/703,145 US7602152B2 (en) 2006-02-07 2007-02-07 Vehicle-use power generation control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030348A JP4577227B2 (en) 2006-02-07 2006-02-07 Vehicle power generation control device

Publications (3)

Publication Number Publication Date
JP2007215277A JP2007215277A (en) 2007-08-23
JP2007215277A5 JP2007215277A5 (en) 2008-06-05
JP4577227B2 true JP4577227B2 (en) 2010-11-10

Family

ID=38329432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030348A Expired - Fee Related JP4577227B2 (en) 2006-02-07 2006-02-07 Vehicle power generation control device

Country Status (3)

Country Link
US (1) US7602152B2 (en)
JP (1) JP4577227B2 (en)
DE (1) DE102007005926A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577227B2 (en) * 2006-02-07 2010-11-10 株式会社デンソー Vehicle power generation control device
JP4735481B2 (en) * 2006-09-01 2011-07-27 株式会社デンソー Temperature protection device for vehicle alternator control device
DE102007030411B4 (en) 2007-06-29 2022-11-17 Siemens Energy Global GmbH & Co. KG Electric machine and method for determining the axial position of bearings for a rotor of the machine
JP4488056B2 (en) 2007-11-09 2010-06-23 株式会社デンソー Vehicle power generation control device
WO2009093101A1 (en) * 2008-01-21 2009-07-30 Freescale Semiconductor, Inc. Method and apparatus for regulating a field current for an alternator device
JP4977106B2 (en) 2008-09-30 2012-07-18 トヨタ自動車株式会社 Vehicle power generation device
DE102009047172A1 (en) * 2009-11-26 2011-06-01 Robert Bosch Gmbh Method for temperature-dependent controlling power output of motor vehicle generator, involves detecting temperature of generator, and supplying temperature to control unit to change output power of generator
JP2011160542A (en) * 2010-01-29 2011-08-18 Denso Corp Generator for vehicles
JP4965686B2 (en) * 2010-04-22 2012-07-04 三菱電機株式会社 Control device for vehicle alternator
JP4965687B2 (en) * 2010-04-23 2012-07-04 三菱電機株式会社 Control device for vehicle alternator
JP5367008B2 (en) 2011-04-14 2013-12-11 三菱電機株式会社 Control device for power converter
JP5708468B2 (en) * 2011-12-16 2015-04-30 トヨタ自動車株式会社 Control device and control method
US9899943B2 (en) * 2014-07-11 2018-02-20 Mitsubishi Electric Corporation Power generation control device of vehicle alternating current generator
JP6443268B2 (en) * 2015-08-31 2018-12-26 株式会社デンソー Control device for rotating electrical machine
EP3703244B1 (en) * 2019-02-26 2023-09-13 Mahle International GmbH Method of operating an electrical generator
JP6995156B2 (en) * 2020-03-19 2022-01-14 三菱電機株式会社 Rotating machine control device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898439A (en) * 1970-10-20 1975-08-05 Westinghouse Electric Corp System for operating industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system
CA961920A (en) * 1970-10-20 1975-01-28 John F. Reuther System and method for operating industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system
US4536126A (en) * 1970-12-18 1985-08-20 Westinghouse Electric Corp. System and method employing a digital computer for automatically synchronizing a gas turbine or other electric power plant generator with a power system
US4031407A (en) * 1970-12-18 1977-06-21 Westinghouse Electric Corporation System and method employing a digital computer with improved programmed operation for automatically synchronizing a gas turbine or other electric power plant generator with a power system
US4283634A (en) * 1971-06-23 1981-08-11 Westinghouse Electric Corp. System and method for monitoring and controlling operation of industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system
JPS5288712A (en) * 1976-01-21 1977-07-25 Hitachi Ltd Overexcitation limiting apparatus for generating system
US4380146A (en) * 1977-01-12 1983-04-19 Westinghouse Electric Corp. System and method for accelerating and sequencing industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system
JPS6051421A (en) 1983-08-29 1985-03-22 株式会社デンソー Controller for automotive charging generator
JPS6135126A (en) 1984-07-24 1986-02-19 株式会社日立製作所 Controller of generator
US4686446A (en) * 1985-03-14 1987-08-11 Mitsubishi Denki Kabushiki Kaisha Power generation control apparatus for alternating current generator
JPS6223400A (en) * 1985-07-23 1987-01-31 Mitsubishi Electric Corp Controller of vehicle generator
JPS6223398A (en) * 1985-07-19 1987-01-31 Mitsubishi Electric Corp Controller of vehicle generator
JP2661613B2 (en) * 1985-07-23 1997-10-08 三菱電機株式会社 Control device for vehicle generator
JPH01185198A (en) * 1988-01-12 1989-07-24 Nippon Sharyo Seizo Kaisha Ltd Automatic voltage regulator
JPH01186200A (en) * 1988-01-20 1989-07-25 Mitsubishi Electric Corp Controller of ac generator for car
DE4102335A1 (en) 1990-06-21 1992-01-02 Bosch Gmbh Robert DEVICE AND METHOD FOR CONTROLLING A GENERATOR
US5321308A (en) * 1993-07-14 1994-06-14 Tri-Sen Systems Inc. Control method and apparatus for a turbine generator
FR2747859B1 (en) * 1996-04-18 1998-05-22 Valeo Equip Electr Moteur METHOD FOR REGULATING THE EXCITATION CURRENT OF A MOTOR VEHICLE ALTERNATOR BY DIGITAL PROCESSING AND REGULATOR DEVICE IMPLEMENTING SUCH A METHOD
CN1222104C (en) 1998-08-31 2005-10-05 西门子公司 Method for limiting an electric current passing through an electrical component and limiting device
DE10106944B4 (en) 2001-02-15 2010-08-05 Robert Bosch Gmbh Method for controlling the temperature of an electrical machine
JP4577227B2 (en) * 2006-02-07 2010-11-10 株式会社デンソー Vehicle power generation control device
US7535786B1 (en) * 2006-04-19 2009-05-19 Darryl Walker Semiconductor device having variable parameter selection based on temperature and test method
JP4737030B2 (en) * 2006-10-24 2011-07-27 株式会社デンソー Vehicle power generation control device
JP4596185B2 (en) * 2007-08-29 2010-12-08 株式会社デンソー Voltage control device for vehicle
JP4488056B2 (en) * 2007-11-09 2010-06-23 株式会社デンソー Vehicle power generation control device
JP2009147999A (en) * 2007-12-11 2009-07-02 Denso Corp Power generation control device for vehicle

Also Published As

Publication number Publication date
DE102007005926A1 (en) 2007-09-06
US7602152B2 (en) 2009-10-13
US20080074087A1 (en) 2008-03-27
JP2007215277A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4577227B2 (en) Vehicle power generation control device
KR100498733B1 (en) Hybrid vehicle and control method therefor
JP4622758B2 (en) Voltage control device for vehicle
JP2009044911A (en) Device for controlling vehicular power generation
EP2317643B1 (en) Output control apparatus of generator
JP4433149B2 (en) Engine-driven inverter power generator and control method thereof
US8339074B2 (en) Power converter control apparatus
WO2013088552A1 (en) Power converter and control method for power converter
EP1566881B1 (en) Controller of ac generator for vehicle
JP2009198139A (en) Brushless motor driving device for compressor of air conditioner
JP2005137164A5 (en)
US7612520B2 (en) Method for operating a delta wound three-phase permanent magnet brushless motor
JP2006141198A (en) Automatic adjusting method and adjusting device for commutation angles of brushless electric motor
JP4675299B2 (en) Control device for rotating electrical machine for vehicle
JP5201196B2 (en) Vehicle power generation control device
JP4548469B2 (en) Vehicle power generation control device
US20110260696A1 (en) Control device for vehicle ac generator
EP1926205B1 (en) Controller of ac generator for vehicles
JP5471929B2 (en) Vehicle generator
JP3942378B2 (en) Compressor preheating controller
JP4577393B2 (en) Vehicle power generation control device
JP2005295626A (en) Drive controller of generator
US8878498B2 (en) Method for reducing a voltage ripple due to rotational nonuniformity of a generator driven by an internal combustion engine
JP3975126B2 (en) Control device for rotating electrical machine for vehicle
JP4450085B2 (en) Vehicle power generation control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4577227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees