[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4576027B2 - AF system - Google Patents

AF system Download PDF

Info

Publication number
JP4576027B2
JP4576027B2 JP2000197519A JP2000197519A JP4576027B2 JP 4576027 B2 JP4576027 B2 JP 4576027B2 JP 2000197519 A JP2000197519 A JP 2000197519A JP 2000197519 A JP2000197519 A JP 2000197519A JP 4576027 B2 JP4576027 B2 JP 4576027B2
Authority
JP
Japan
Prior art keywords
change
data
amount
determined
determination level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000197519A
Other languages
Japanese (ja)
Other versions
JP2002014278A (en
Inventor
伸也 田水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000197519A priority Critical patent/JP4576027B2/en
Publication of JP2002014278A publication Critical patent/JP2002014278A/en
Application granted granted Critical
Publication of JP4576027B2 publication Critical patent/JP4576027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、山登り方式により合焦動作を行い、ピント位置を検出した後も継続的に合焦動作を行うAFシステムに関する。
【0002】
【従来の技術】
継続的にAFを行うシステムにおいて、山登り方式でピントを検出した後、被写体に変化が生じるまでレンズを止めておき、変化が生じたときにスキャンを行なう処理が一般的である。
【0003】
【発明が解決しようとする課題】
上記スキャン処理において、得られるレベル変化の中にノイズ,フリッカー,手ブレ等による成分が含まれているため、被写体位置の変化の有無の判定ではそれらと区別するのは困難である。
また、システムは被写体の移動とシーンチェンジ等の区別がつけられない。そのため被写体が僅かに移動したにもかかわらず、シーンチェンジとして不要な距離範囲までスキャンする場合がある。
継続的にAFを追うシステムにおいては、被写体位置が変わった場合、速やかにしかも確実にそのピント位置に達することが要請される。
【0004】
本発明は上記要請に応えるもので、ピント位置を検出した後、被写体の変化に対応して再度ピント位置検出処理を行うか否かの的確な判断をし、ピント位置検出処理を実行すると判断した場合、最適なスキャン処理を行って効率の良い合焦動作を行うことができるAFシステムを提供することにある。
【0005】
【課題を解決するための手段】
前記目的を達成するために本発明によるAFシステムは、映像信号からAF制御に必要な信号帯域のみをパスさせるフィルタを通した輝度信号をAFデータとして用いる山登り方式により合焦動作を行い、ピント位置を検出した後も継続的にピントを追うAFシステムにおいて、合焦後、合焦位置近傍の前記AFデータの時間的平均値を取り、その合焦位置近傍の平均値とその合焦位置近傍の前記AFデータ最大値の差分量が第1の変化判定レベルより小さい場合には変化無しと判断し、前記差分量が第1の変化判定レベルより大きく第2の変化判定レベルより小さい場合には変化量が小と判断し、前記差分量が第2の変化判定レベルより大きいと判断した場合には変化量が大きいと判断し、前記変化量が大きい場合には広い範囲を間引いた荒いスキャンを行い、前記変化量が小さい場合には狭い範囲を細かくスキャンするように構成されている。
前記変化判定レベルは、δ×kで規定し、前記δは被写体のコントラスト,明るさによって変化するように構成できる。
但し k:倍率
δ:単位判定レベル(ピント検出を行った際のスキャン結果のピークと隣の
AFデータの差分)
【0006】
【発明の実施の形態】
以下、図面を参照して本発明をさらに詳しく説明する。
図1は、本発明によるAFシステムの回路の実施の形態を示すブロック図である。
被写体光3は、ズームレンズ1およびフォーカスレンズ2を通ってCCD4に入射する。CCD4が出力した映像信号は、カメラプロセス回路5で処理され、輝度信号および色信号が生成される。図1にはAF制御に必要な輝度信号のみが示されている。輝度信号は、AFウインドウ回路6に入力され、AF制御に必要なエリアの輝度信号のみが抽出される。
【0007】
この後、AF制御に必要な信号帯域のみをパスさせるバンドパスフィルタ(BPF)7に入力される。バンドパスフィルタ7を出力した輝度信号は、絶対値回路8,積分器9を介してCPU10に入力される。積分器9は、1フィールド分の輝度信号を積分した後、CPU10から送られる積分クリア信号CRによって積分データをクリアする。
CPU10は、入力される垂直同期信号(VD),水平同期信号(HD)から1フィールドの開始を判断し、1フィールドの開始時に積分器9に対し積分クリア信号CRを送り、1フィールドの終了時にCPU10に積分データFDを取り込む。CPU10はこの動作の繰り返しによって焦点電圧を得ることができる。
CPU10は、焦点電圧に基づきレンズドライバ11を駆動制御する。
【0008】
図2は、本発明によるAFシステムの合焦動作を説明するためのフローチャートである。
図示しない電源が投入され、CPU10がAF処理を開始すると、AFスキャン処理がなされる(S201)。つぎに変化判定レベルを設定する(S202)。そしてAFデータを取込み平均化する(S203)。
取り込んだ平均化されたAFデータと変化レベルとを比較し、その差分量が第1変化判定レベル(n×δ),第2変化判定レベル(m×δ)に対し大きいか否かの判定を行う(S204)。第1および第2変化判定レベルより大きい場合には粗い再スキャン設定を行う(S206)。第1変化判定レベルより大きく第2変化判定レベルより小さい場合には細かい再スキャン設定を行う(S205)。
平均化されたAFデータとその合焦位置近傍のデータ最大値の差分量が第1の変化判定レベルより小さい場合には変化無しと判断する。
【0009】
つぎに判定基準値(変化判定レベル)について説明する。
山登り方式のピント検出を行う場合、図3に示すように被写体が暗いより明るい場合、被写体のコントラストは低いより高い場合の方がAFデータの変化率は大きくなる。
したがってピントの再検出を行うか否かの判断に用いる閾値を固定値にしてしまうと、低コントラストや暗い被写体で被写体に変化があるにもかかわらずピントの再検出処理を行わなかったり、明るくコントラストのある被写体で被写界深度内であるにもかかわらず僅かの変化やノイズで必要のないピントの再検出を行うことになる。被写体条件によるAFデータ変化率の違いに影響をされないようにするため、実際にピント検出を行った際のAFデータの変化を元につぎのような判定基準値を設定している。
【0010】
・ピント再検出(再スキャン)用の変化判定レベルの基準値設定
図4に示すようにスキャン結果のピークと両隣でAFデータの差分を取り、大きい方をδとして以下のように変化の有無、大きさの判定基準を設けている。δは、明るさ,コントラストにより変化する。
・変化量検出
AFデータを周期的に取り込みながらノイズや手ぶれ等の影響を極力排除するために複数個のデータの平均化(時間的)を図っている。すなわち変化判断に用いるデータは単独での使用を避け、時間経過にしたがったデータを複数個取り入れている。AFデータは、例えば、30〜40msec間隔でデータを取込み、4〜5個のデータ毎に平均化される。
変化量は取り込み平均データと合焦位置近傍のデータ最大値の差をとっている。
変化量=取り込み平均データ−DMAX
【0011】
この変化量と変化判定基準値(第1および第2の変化判定レベル)を元に再スキャン判定を行う。
・再スキャン判定
小さいウィンドウのAFデータと、大きいウィンドウのAFデータの両方に対し変化判定を行い、その組み合わせで判定する。
(小さいウィンドウのAFデータの変化判定)
変化無し: |変化量|≦n×δ ・・・(1)
変化量小: n×δ<|変化量|≦m×δ ・・・(2)
変化量大: m×δ<|変化量| ・・・(3)
(大きいウィンドウのAFデータの変化判定)
大きいウィンドウのAFデータの変化判定も同様に以下のように判定を行う。
変化無し: |変化量|≦n×Δ ・・・(4)
変化量小: n×Δ<|変化量|≦m×Δ ・・・(5)
変化量大: m×Δ<|変化量| ・・・(6)
なお、n,mは、n<mの関係にある。
【0012】
上記判定結果を併せて表1に照らして処理内容を決定する。
【表1】

Figure 0004576027
【0013】
小さいウィンドウのAFデータによりδより大きい変化が生じなければ再スキャンの必要性はない(主要被写体に変化がないと判断する)。
変化が生じた場合、大きいウィンドウのAFデータの変化判定も併せ選択を行う。スキャンを行う判定が示された場合は、その条件にしたがった再スキャン処理を行う。
【0014】
【発明の効果】
以上、説明したように本発明は、山登り方式により合焦動作を行い、ピント位置を検出した後も継続的にピントを追い、合焦した後、合焦位置近傍のデータの時間的平均値を算出し、その合焦位置近傍の平均値とその合焦位置近傍のデータ最大値の差分量が第1の変化判定レベルより小さい場合には変化無しと判断し、差分量が第1の変化判定レベルより大きく第2の変化判定レベルより小さい場合には変化量が小と判断し、差分量が第2の変化判定レベルより大きいと判断した場合には変化量が大きいと判断し、その結果、変化量が大きい場合には広い範囲を間引いた荒いスキャンを行い、変化量が小さい場合には狭い範囲を細かくスキャンするものである。
したがって、継続的にピント位置を追うAFシステムにおいて、効率の良い再スキャン処理を実現することができるという効果がある。
【図面の簡単な説明】
【図1】本発明によるAFシステムの回路の実施の形態を示すブロック図である。
【図2】本発明によるAFシステムの動作を説明するためのフローチャートである。
【図3】被写体条件によるAFデータ変化率の差を説明するための概略図である。
【図4】ピント再検出用の変化判定基準値の設定を説明するための図である。
【符号の説明】
1…ズームレンズ
2…フォーカスレンズ
3…被写体光
4…CCD
5…プロセス回路
6…AFウインドウ
7…BPF
8…絶対値回路
9…積分器
10…CPU
11,12…レンズドライバ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an AF system that performs a focusing operation by a hill-climbing method and continuously performs a focusing operation even after a focus position is detected.
[0002]
[Prior art]
In a system that continuously performs AF, after a focus is detected by a hill-climbing method, the lens is stopped until a change occurs in a subject, and scanning is performed when the change occurs.
[0003]
[Problems to be solved by the invention]
In the above scanning process, components due to noise, flicker, camera shake, and the like are included in the obtained level change, so it is difficult to distinguish them from the determination of whether or not the subject position has changed.
In addition, the system cannot distinguish between movement of a subject and scene change. For this reason, even though the subject has moved slightly, scanning may be performed up to a distance range that is unnecessary as a scene change.
In a system that continuously follows AF, when the subject position changes, it is required to quickly and surely reach the focus position.
[0004]
The present invention responds to the above request, and after detecting the focus position, it is determined whether or not the focus position detection process is performed again in response to the change of the subject, and the focus position detection process is determined to be executed. In such a case, an AF system capable of performing an optimum scanning process and performing an efficient focusing operation is provided.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the AF system according to the present invention performs a focusing operation by a hill-climbing method using a luminance signal that has passed through a filter that passes only a signal band necessary for AF control from an image signal as AF data , and is in focus position. In an AF system that continuously tracks the focus even after detection, after focusing, the temporal average value of the AF data in the vicinity of the in-focus position is taken, and the average value in the vicinity of the in-focus position and the in-focus position When the difference amount of the AF data maximum value is smaller than the first change determination level, it is determined that there is no change, and when the difference amount is larger than the first change determination level and smaller than the second change determination level, it changes. When it is determined that the amount is small and it is determined that the difference amount is larger than the second change determination level, it is determined that the amount of change is large, and when the amount of change is large, a wide range is thinned out. Performed have scan, it is configured to finely scan a narrow range when the amount of change is small.
The change determination level is defined by δ × k, and the δ can be configured to change depending on the contrast and brightness of the subject.
Where k: magnification
δ: Unit judgment level (adjacent to the peak of the scan result when focus detection is performed)
AF data difference)
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of a circuit of an AF system according to the present invention.
The subject light 3 enters the CCD 4 through the zoom lens 1 and the focus lens 2. The video signal output from the CCD 4 is processed by the camera process circuit 5 to generate a luminance signal and a color signal. FIG. 1 shows only luminance signals necessary for AF control. The luminance signal is input to the AF window circuit 6 and only the luminance signal of the area necessary for AF control is extracted.
[0007]
Thereafter, the signal is input to a band pass filter (BPF) 7 that passes only a signal band necessary for AF control. The luminance signal output from the band pass filter 7 is input to the CPU 10 via the absolute value circuit 8 and the integrator 9. The integrator 9 integrates the luminance signal for one field, and then clears the integration data by an integration clear signal CR sent from the CPU 10.
The CPU 10 determines the start of one field from the input vertical synchronizing signal (VD) and horizontal synchronizing signal (HD), sends an integration clear signal CR to the integrator 9 at the start of one field, and at the end of one field. The integration data FD is taken into the CPU 10. The CPU 10 can obtain the focus voltage by repeating this operation.
The CPU 10 drives and controls the lens driver 11 based on the focus voltage.
[0008]
FIG. 2 is a flowchart for explaining the focusing operation of the AF system according to the present invention.
When power (not shown) is turned on and the CPU 10 starts AF processing, AF scanning processing is performed (S201). Next, a change determination level is set (S202). Then, the AF data is taken and averaged (S203).
The fetched averaged AF data is compared with the change level, and it is determined whether or not the difference is larger than the first change determination level (n × δ) and the second change determination level (m × δ). Perform (S204). If it is greater than the first and second change determination levels, a coarse rescan setting is performed (S206). If it is larger than the first change determination level and smaller than the second change determination level, fine rescan setting is performed (S205).
If the difference between the averaged AF data and the maximum data value near the in-focus position is smaller than the first change determination level, it is determined that there is no change.
[0009]
Next, the determination reference value (change determination level) will be described.
When hill-climbing focus detection is performed, as shown in FIG. 3, the change rate of AF data increases when the subject is brighter than dark and when the subject has a higher contrast than low.
Therefore, if the threshold used to determine whether or not to re-detect the focus is set to a fixed value, the focus re-detection process will not be performed even if there is a change in the subject in a low-contrast or dark subject. Even if the subject is within the depth of field, a focus change that is not necessary due to slight changes or noise is performed. In order not to be affected by the difference in the AF data change rate depending on the subject condition, the following determination reference value is set based on the change in the AF data when the focus is actually detected.
[0010]
Reference value setting of change judgment level for focus re-detection (re-scan) As shown in FIG. 4, the difference between the AF data is taken on both sides of the scan result, and the larger one is set as δ as shown below. A size criterion is provided. δ varies depending on brightness and contrast.
In order to eliminate the influence of noise, camera shake, etc. as much as possible while periodically taking in the change amount detection AF data, a plurality of data are averaged (in time). That is, the data used for the change judgment is avoided by using it alone, and a plurality of data according to the passage of time are taken. For example, AF data is taken at intervals of 30 to 40 msec and averaged every 4 to 5 data.
The amount of change is the difference between the captured average data and the maximum data value near the in-focus position.
Amount of change = taken average data−DMAX
[0011]
The rescan determination is performed based on the change amount and the change determination reference value (first and second change determination levels).
Rescan determination A change determination is performed on both the AF data of a small window and the AF data of a large window, and the combination is determined.
(Judgment of change of AF data of small window)
No change: | Change amount | ≦ n × δ (1)
Small change amount: n × δ <| change amount | ≦ m × δ (2)
Large change amount: m × δ <| Change amount | (3)
(Judgment of change in AF data of large window)
The change determination of AF data of a large window is similarly performed as follows.
No change: | Change amount | ≦ n × Δ (4)
Small change amount: n × Δ <| change amount | ≦ m × Δ (5)
Large change amount: m × Δ <| Change amount | (6)
Note that n and m have a relationship of n <m.
[0012]
The processing content is determined in accordance with Table 1 together with the determination result.
[Table 1]
Figure 0004576027
[0013]
If there is no change larger than δ due to AF data of a small window, there is no need for rescanning (determining that there is no change in the main subject).
When a change occurs, selection is also performed for determining a change in AF data of a large window. If it is determined that scanning is to be performed, rescan processing is performed in accordance with the conditions.
[0014]
【The invention's effect】
As described above, the present invention performs the focusing operation by the hill-climbing method, continuously follows the focus after detecting the focus position, and after focusing, the temporal average value of the data in the vicinity of the focus position is obtained. When the difference amount between the average value in the vicinity of the in-focus position and the maximum data value in the vicinity of the in-focus position is smaller than the first change determination level, it is determined that there is no change, and the difference amount is the first change determination. If it is greater than the level and smaller than the second change determination level, it is determined that the change amount is small, and if it is determined that the difference amount is greater than the second change determination level, it is determined that the change amount is large. When the amount of change is large, a rough scan is performed by thinning out a wide range, and when the amount of change is small, a narrow range is finely scanned.
Accordingly, there is an effect that an efficient rescan process can be realized in an AF system that continuously tracks the focus position.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a circuit of an AF system according to the present invention.
FIG. 2 is a flowchart for explaining the operation of the AF system according to the present invention.
FIG. 3 is a schematic diagram for explaining a difference in an AF data change rate depending on a subject condition.
FIG. 4 is a diagram for explaining setting of a change determination reference value for focus re-detection.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Zoom lens 2 ... Focus lens 3 ... Subject light 4 ... CCD
5 ... Process circuit 6 ... AF window 7 ... BPF
8 ... Absolute value circuit 9 ... Integrator 10 ... CPU
11, 12 ... Lens driver

Claims (2)

映像信号からAF制御に必要な信号帯域のみをパスさせるフィルタを通した輝度信号をAFデータとして用いる山登り方式により合焦動作を行い、ピント位置を検出した後も継続的にピントを追うAFシステムにおいて、
合焦後、合焦位置近傍の前記AFデータの時間的平均値を取り、
その合焦位置近傍の平均値とその合焦位置近傍の前記AFデータ最大値の差分量が第1の変化判定レベルより小さい場合には変化無しと判断し、
前記差分量が第1の変化判定レベルより大きく第2の変化判定レベルより小さい場合には変化量が小と判断し、
前記差分量が第2の変化判定レベルより大きいと判断した場合には変化量が大きいと判断し、
前記変化量が大きい場合には広い範囲を間引いた荒いスキャンを行い、
前記変化量が小さい場合には狭い範囲を細かくスキャンすることを特徴とするAFシステム。
In an AF system that performs focusing operation by a hill-climbing method using a luminance signal that passes through a filter that passes only a signal band necessary for AF control from an image signal as AF data , and continuously follows the focus after detecting the focus position ,
After focusing, take the time average value of the AF data near the focus position,
If the difference between the average value in the vicinity of the in-focus position and the AF data maximum value in the vicinity of the in-focus position is smaller than the first change determination level, it is determined that there is no change,
When the difference amount is larger than the first change determination level and smaller than the second change determination level, it is determined that the change amount is small;
If it is determined that the difference amount is greater than the second change determination level, it is determined that the change amount is large;
If the amount of change is large, perform a rough scan with a wide range thinned out,
An AF system that scans a narrow range finely when the change amount is small.
前記変化判定レベルは、δ×kで規定し、
前記δは被写体のコントラスト,明るさによって変化することを特徴とする請求項1記載のAFシステム。
但し k:倍率
δ:単位判定レベル(ピント検出を行った際のスキャン結果のピークと隣の
AFデータの差分)
The change determination level is defined by δ × k,
2. The AF system according to claim 1, wherein δ varies depending on a contrast and brightness of a subject.
Where k: magnification
δ: Unit judgment level (adjacent to the peak of the scan result when focus detection is performed)
AF data difference)
JP2000197519A 2000-06-30 2000-06-30 AF system Expired - Fee Related JP4576027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197519A JP4576027B2 (en) 2000-06-30 2000-06-30 AF system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197519A JP4576027B2 (en) 2000-06-30 2000-06-30 AF system

Publications (2)

Publication Number Publication Date
JP2002014278A JP2002014278A (en) 2002-01-18
JP4576027B2 true JP4576027B2 (en) 2010-11-04

Family

ID=18695841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197519A Expired - Fee Related JP4576027B2 (en) 2000-06-30 2000-06-30 AF system

Country Status (1)

Country Link
JP (1) JP4576027B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004334072A (en) * 2003-05-12 2004-11-25 Fuji Photo Film Co Ltd Imaging apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318783A (en) * 1994-05-19 1995-12-08 Nikon Corp Device and method for automatic focusing
JPH1010630A (en) * 1996-06-20 1998-01-16 Canon Inc Image pickup device
JPH10257377A (en) * 1997-03-06 1998-09-25 Canon Inc Image-pickup unit
JPH1169225A (en) * 1997-08-21 1999-03-09 Toa Corp Automatic focusing device
JP2000047094A (en) * 1998-07-30 2000-02-18 Kyocera Corp Autofocus control method for digital camera

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354478A (en) * 1991-05-31 1992-12-08 Sanyo Electric Co Ltd Automatic focus video camera
JP3218408B2 (en) * 1992-05-13 2001-10-15 京セラ株式会社 Automatic focus detection device
JPH07154669A (en) * 1993-11-25 1995-06-16 Canon Inc Automatic focus adjustment device
JP3380627B2 (en) * 1994-10-21 2003-02-24 株式会社リコー Auto focus device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318783A (en) * 1994-05-19 1995-12-08 Nikon Corp Device and method for automatic focusing
JPH1010630A (en) * 1996-06-20 1998-01-16 Canon Inc Image pickup device
JPH10257377A (en) * 1997-03-06 1998-09-25 Canon Inc Image-pickup unit
JPH1169225A (en) * 1997-08-21 1999-03-09 Toa Corp Automatic focusing device
JP2000047094A (en) * 1998-07-30 2000-02-18 Kyocera Corp Autofocus control method for digital camera

Also Published As

Publication number Publication date
JP2002014278A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US7916182B2 (en) Imaging device and method which performs face recognition during a timer delay
US7847855B2 (en) Image capturing apparatus and focusing method with focus evaluation
US5751354A (en) Image sensing apparatus and method with exposure performed based on focus evaluation values
JP5780756B2 (en) Focus adjustment apparatus and method
JPH09200597A (en) Automatic focusing detector
JP2010147925A (en) Imaging apparatus
JP2007108412A (en) Autofocus device and its program
JP2005338352A (en) Autofocus system
US8928799B2 (en) Imaging device and imaging method to perform autofocus operation to a subject
JP2006267221A (en) Auto focus system
KR20100079832A (en) Digital camera supporting an intelligent self-timer mode and controlling method for the same
US8488048B2 (en) Image pickup apparatus for finding in-focus direction based on focus signal and control method for the image pickup apparatus
US5798793A (en) Automatic focusing device capable of detecting panning
JP4576027B2 (en) AF system
US20100254691A1 (en) Electronic camera
JP2007052061A (en) Imaging device, focusing operation control method, and electronic information apparatus
US20060132617A1 (en) Image pickup apparatus
JPH0915482A (en) Automatic in-focus device
JP2001343581A (en) Af system
JP2742741B2 (en) Auto focus device
JP3213443B2 (en) Auto focus camera
EP2091233A2 (en) Imaging apparatus
JP2006162943A (en) Automatic focusing control method and automatic focusing controller
JP2005156971A (en) Autofocusing device, camera provided with the same, and camera body
JPH08160283A (en) Automatic focusing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees