JP4570280B2 - Building ventilation and temperature prediction system - Google Patents
Building ventilation and temperature prediction system Download PDFInfo
- Publication number
- JP4570280B2 JP4570280B2 JP2001155239A JP2001155239A JP4570280B2 JP 4570280 B2 JP4570280 B2 JP 4570280B2 JP 2001155239 A JP2001155239 A JP 2001155239A JP 2001155239 A JP2001155239 A JP 2001155239A JP 4570280 B2 JP4570280 B2 JP 4570280B2
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- room
- amount
- temperature
- ventilation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、建物内部の換気状況及び熱の移動による温度状況を計算により予測するための予測システムに関するものである。
【0002】
【従来の技術】
従来において、建物内部の換気状況を予測するには、換気回路網計算が使用されている。図10に従来の換気回路網計算の概念図を示す。図10(a)は建物の間取りのレイアウト図であり、各室を1点としてネットワークモデルとしたものを図10(b)に示している。
【0003】
図においてネットワークは室と通気経路のみからなり、換気量は外気の温度、風速と室内各部温度を仮定し、各室間の圧力差と通気経路の抵抗から、1室ごとに算出する。各室の圧力差は外気風、室間又は内外温度差によって生じる。ここで換気回路網計算は、内外温度差の効果を簡易に取り扱うため、外気温度と室内の代表的温度一定で計算を行うのが一般的である。
【0004】
また同様に、建物内部の温度状況を算出する熱負荷計算プログラムも従来から使用されている。かかる計算にあって室内気流が熱の伝達要素として考慮されるが、初期条件として設定しているに過ぎず、換気状況の把握をすることはできない。
【0005】
【発明が解決しようとする課題】
しかし、建物の中では暖房機、電気器具、日照などの発熱により空気温が上昇し、室間の温度差から気流を生じるなど、換気状況には熱的な影響が大きいにもかかわらず、そのような建物内部の温度分布や発熱などの熱的影響を考慮したものがない。
【0006】
また、より詳細な計算を行おうとした場合、室内の換気状況と温度状況は本来相互に影響するため、両者を関連づけながら解くことが望ましい。しかし従来において換気量と温度の計算を同時に予測することは行われておらず、換気状況を予測するときは温度状況を条件として与え、逆に温度状況を予測するときは換気状況を条件として与えていた。
【0007】
特に、換気量の比較的小さい24時間計画換気の状況を計算する場合には、上記のような建物内部の発熱などによる温度ムラは換気の動力として無視できないレベルである。なお、窓開放など通風による掃気であれば、換気量が大きく、内部発熱が問題となる場合は少ない。
【0008】
そこで本発明は、換気回路網計算に熱移動、熱発生の影響を考慮することにより、建物内の換気状況及び温度状況を高い精度で予測し、合わせて室内空気質の状況を的確に予測するシステムを提供することを目的としている。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明にかかる建物の温度及び換気予測システムの第1の構成は、任意の時間の、建物の各室の温度及び室間若しくは建物内外間の換気量を予測するシステムであって、各室の形状及び壁、床、開口部など室相互の接続関係を含む邸別データと、風速と、外気温度と、日射と夜間放射とを備える放射量とを含む気象データとを入力する入力手段と、所定時間間隔毎に各室毎の温度および換気量を計算する計算手段と、計算結果を出力する出力手段とを有し、前記計算手段は、前記気象データから得られる放射量を用いて、前記建物の外側に放射される屋外の放射の算定と、建物の開口部を通じて直接室内に侵入する放射の算定とに分けて各室の熱量を算定し、これらの算定から得られる熱量を用いて各室の熱の授受を考慮すると共に、温度による空気の密度の違いによる浮力を考慮して、室間相互の圧力差と開口部の流量の関係から各室における空気の換気量を求め、かつ各室における空気の流出入の総和を0に維持することにより各開口部毎の換気量を計算し、換気による空気に伴う熱の移動を考慮して各室相互の熱の入出量により各室毎の温度を計算し、所定時間間隔毎に、毎回、上記換気量と温度とを交互に複数回計算して収束させることにより、換気量及び温度を計算することを特徴とする建物の換気量及び温度予測システムである。
【0010】
第2の構成は、任意の時間の、建物の各室の温度及び室間若しくは建物内外間の換気量を予測するシステムであって、各室の形状及び開口部を含む邸別データと、風速と、外気温度と、日射と夜間放射とを備える放射量とを含む気象データとを入力する入力手段と、所定時間間隔毎に各室毎の温度および換気量を計算する計算手段と、計算結果を出力する出力手段とを有し、前記気象データは日射量と夜間放射量とを備える放射量のデータを含み、前記計算手段は、前記気象データから得られる放射量を用いて、前記建物の外側に放射される屋外の放射の算定と、建物の開口部を通じて直接室内に侵入する放射の算定とに分けて各室の熱量を算定し、これらの算定から得られる熱量を用いて各室の熱の授受を考慮すると共に、温度による空気の密度の違いによる浮力を考慮して、室間相互の圧力差と開口部の流量の関係から各室における空気の換気量を求め、かつ各室における空気の流出入の総和を0に維持することにより各開口部毎の換気量を計算し、換気による空気に伴う熱の移動を考慮して各室相互の熱の入出量により各室毎の温度を計算し、所定時間間隔毎に、前時間で算出した温度を用いて換気量を先に計算し、その換気量の計算結果を用いて温度を計算することを特徴とする建物の換気量及び温度予測システムである。
【0011】
第3の構成は、前記気象データは、放射量として法線面直達日射量と、水平面天空日射量と、夜間放射量を備え、前記計算手段は、前記屋外の放射を、前記気象データから得られる法線面直達日射量と、水平面天空日射量と、夜間放射量とに基づいて定義することを特徴とする第1の構成又は第2の構成の建物の換気量及び温度予測システムである。
【0012】
第4の構成は、前記計算手段は、前記屋内の放射を、前記屋外から室内に侵入する放射量と、室内で発生する放射量とを合算し、該合算したこれら放射量を当該室を構成する壁、床、天井などに按分することで算出することを特徴とする第1の構成又は第2の構成の建物の換気量及び温度予測システムである。
【0013】
第5の構成は、前記気象データは、放射量として法線面直達日射量と、水平面天空日射量と、夜間放射量を備え、前記計算手段は、前記屋外から室内に侵入する放射量を、法線面直達日射量と、水平面天空日射量と、夜間放射量と、当該窓の日射侵入率とに基づいて定義することを特徴とする第1の構成又は第2の構成に記載の建物の換気量及び温度予測システムである。
【0014】
第6の構成は、前記計算手段は、各室での放射量の按分にて、各室を構成する壁、床、天井への按分は、前記算出された放射量を先ず床に按分し、残りの放射量を壁と天井で按分することを特徴とする第4の構成に記載の建物の換気量及び温度予測システムである。
【0015】
第7の構成は、前記計算手段は、各室での放射量の按分にて、窓に当たる放射については0として室内放射量として加味しないことを特徴とする第4の構成に記載の建物の換気量及び温度予測システムである。
【0016】
第8の構成は、前記邸別データにはあらかじめ指定した条件で作動する空調装置を含み、その条件に基づいて与えられた温度条件を維持するために必要な熱負荷を計算する
ことを特徴とする第1の構成乃至第7の構成のいずれかに記載の建物の換気量及び温度予測システムである。
【0017】
第9の構成は、前記気象データには外気湿度のデータを含み、前記計算手段は、得られた換気量及び温度を用いて、所定時間間隔毎に、各室毎の湿度を各室相互の水蒸気の移動を考慮して計算することを特徴とすることを特徴とする第1の構成乃至第7の構成のいずれかに記載の建物の換気量及び温度予測システムである。
【0018】
第10の構成は、前記邸別データには任意の化学物質発生源、吸湿材、あるいは拡散物質吸着剤を含み、前記計算手段は、得られた換気量及び温度を用いて、所定時間間隔毎に、各室毎の化学物質の濃度を各室相互の化学物質の移動を考慮して計算することを特徴とする第1の構成乃至第7の構成のいずれかに記載の建物の換気量及び温度予測システムである。
【0019】
第11の構成は、前記邸別データには、あらかじめ指定した条件で作動する調湿装置を含み、その条件に基づいて与えられた温度条件を維持するために必要な潜熱負荷を計算することを特徴とする第1の構成乃至第7の構成のいずれかに記載の建物の換気量及び温度予測システムである。
【0020】
【発明の実施の形態】
[第一実施形態]
本発明に係る建物の換気量及び温度予測システムの第一実施形態について、図を用いて説明する。本実施形態にかかる建物の換気量及び温度予測システムは具体的にはコンピュータ上で動作するソフトウェアであり、入力手段とはキーボードや入出力装置、ネットワーク回線などを意味し、計算手段とはCPU及びRAMを意味し、また出力手段とはモニタやプリンタ又は記録装置などを意味している。
【0021】
(全体構成)
図1は熱及び換気回路網計算の概念を示す図であって、図1(a)は建物の間取りのレイアウト図であり、各室を1点としてネットワークモデルとしたものを図1(b)に示している。通気経路においては室内外及び各室間の扉や隙間などの開口部、及び換気扇などによる強制換気の通路を考慮する。熱の移動経路においては壁や床天井等から伝達される熱量、及び換気に乗って移動する熱量を考慮する。また図に示すように、各部屋には定量的な発熱源若しくは吸熱源、及び湿度や化学物質の発生源も考慮することにより、室内空気質の予測も行う。
【0022】
図2に熱及び換気回路網計算のフローチャートを示している。なお、具体的な個々の計算については後述する。図2に示すように、対象とする建物の邸別データと気象データを入力手段より読み込み(S1、S2)、これらを用いて以下の計算を行う。邸別データとは図1(a)に示した如く建物の間取りや各室の形状及び壁、床、開口部など室相互の接続関係、更に建物を構成する部材若しくは部位の熱容量、室内に配置された任意の発熱源を含むものである。気象データとは市販のデータを用いることができ、風速及び外気温度、外気湿度、日射又は放射量の情報を利用する。なお風速のデータがなくとも、無風状態として計算することは可能である。
【0023】
邸別データと気象データを読み込んだ後に、まず計算すべき時刻の気象条件を取得し(S3)、日射から建物に与えられる放射量を計算する(S4)。次に換気回路網計算を行って各室毎の換気量を計算し、各室間の換気量を算出する(S5)。次にS5で算出された換気量を用いて、熱回路網計算による各室毎の温度(S6)を計算する。そしてS6で算出した温度を用いて、換気回路網計算(S5)に戻り、さらに換気量を算出する。これらの換気回路網計算(S5)と熱回路網計算(S6)は、収束するまで繰り返し計算を行う。それから湿度等回路網計算による湿度や化学物質の濃度(S7)を算出し、あわせて得られた温度から熱負荷計算をも行った後に(S8)、算出結果を出力する(S9)。
【0024】
これら一連の計算(S3〜S8)は、所定時間間隔毎に繰り返し行い、各回毎に出力(S9)を行う。所定時間間隔とは、たとえば30分ごと、1時間ごとなど、適宜設定することができる。ここで、換気回路網計算(S5)と温度計算(S6)は相互に強い影響を与えるので、安定するまで複数回繰り返し計算する。
【0025】
このように各回ごとに温度状況と換気状況を繰り返し解いて収束させることにより、換気量と温度の相関をとってバランスのとれた結果を得ることができ、精度の高い有意義な予測を行うことができる。
【0026】
繰り返し計算の初回には利用すべき前回の算出結果がないため、各室の温度は適切な初期値を与えて計算する。従って結果の欲しい時刻よりもある程度前の時刻(例えば1月半前)から計算を開始し、繰り返し計算をすることにより、実際の値に近づけることができる。
【0027】
また、室内の湿度や化学物質の発生速度は温度、湿度、周辺の化学物質濃度の影響を受けるため、換気状況に加えて温度情報は重要である。従ってかかる発生速度に換気による化学物質の排除能力(移動速度及び拡散速度)を合わせて予測計算を行うことにより、精度の高い空気質の予測をすることができる。
【0028】
また建物内の熱回路網計算をするにあたっては、建物各部位の断熱性能を考慮し、内外温度差、室内温度差から熱流量を求めるなど、冷暖房負荷を算出するに等しい計算を行う必要がある。従って発熱源による投入熱量の積算を行うことにより、暖冷房負荷を求めることができる。
【0029】
次に、各部計算について説明する。
【0030】
(放射量の計算)
放射量とは日射を含む輻射を意味し、本実施形態においては直達日射量と天空日射量並びに夜間放射量を使用している。使用する市販の気象データに水平面全天日射量しか含まれていない場合には、太陽高度を元に計算により直達日射量と天空日射量に分離して計算に使用する。また太陽高度は対象となる都市の緯度、経度及び日時より算出する。放射量は、屋外の放射と屋内の放射について考慮する。
【0031】
屋外の放射について、使用する記号の意味を次表に掲げる。
【0032】
【表1】
【0033】
気象データより各時刻の法線面直達日射量Ib[W/m2]、水平面天空日射量Id[W/m2]、夜間放射量Ix[W/m2]及び太陽高度の正弦(sin h)、余弦(cos h)、太陽方位の正弦(sin A)、余弦(cos A)を得ることができる。太陽の方向を示す単位ベクトルnsは以下のように定義できる。
【0034】
【数1】
【0035】
室iと屋外jをつなぐ接続面ijの外向きの法線ベクトルをneijとおくと、接続面ijのk番目の熱的に厚い部位Hijkが受ける放射量JHjik[W/m2]は以下のように表される。
【0036】
【数2】
【0037】
熱的に薄い部位であるドアの場合も同様に計算できる。窓については全てが反射又は透過すると考え、ガラスで吸収する放射量は常に0と考える。
【0038】
屋内の放射について、使用する記号の意味を次表に掲げる。
【0039】
【表2】
【0040】
屋内の放射は、(1)室内に進入する放射量(窓からの日射の侵入)を積算し、(2)電灯などの室内で発生する放射量を加え、(3)積算した放射量を室を構成する壁、床、天井などに按分することで算出する。
【0041】
(1)室内に侵入する放射量は、基本的に外壁の場合と同じ考え方をする。室iと室jをつなぐ接続面ijのk番目の窓Gijkを通して室iに侵入する日射量IGijk[W]は、次式で表される。
【0042】
【数3】
【0043】
放射遮蔽係数SCR、対流遮蔽係数SCCは、物性値としてあらかじめ与える。η*は標準板ガラスの日射侵入率であり、日射角度の関数となっている。窓の面積AGijk[m2]は窓のうち日の当たっている部分(陰になっていない部分)の面積であり、その面積は窓及び庇の形状から幾何学的に算出できる。
【0044】
(2)室内で発生する放射量Ii0[W]は境界条件として与えられており、その値をそのまま加える。以上から室内の全放射量Ii[W]は下記の式のようになる。
【0045】
【数4】
【0046】
(3)室内放射量の積算と按分は、たとえば上記で求まった室内に存在する放射量の合計Iiの按分にあたっては、放射量の50%が床に、残りの50%がそれ以外の面に、面積に比例して配分される。配分された放射は実際には一部が反射するが、最終的にはいずれかの壁に吸収されると考え、吸収係数にかかわらず全てが吸収されるものとする。ただし、窓に当たった放射はそのまま屋外にでていく。すなわち、次式で表すことができる。
【0047】
【数5】
【0048】
ただし、AFi[m2]は室iを構成している床の面積であり、Ai[m2]はAFiを含む室iを構成する全表面積である。
【0049】
(換気回路網計算)
換気回路網計算において、使用する記号の意味を次表に掲げる。
【0050】
【表3】
【0051】
本実施形態においては、室を出入りする空気量を(1)換気設備による機械換気に合わせた設定値、(2)屋外との自然換気として設定した値、(3)すきま風を考慮して算出した値としている。(1)強制的な換気とは、換気扇などの機械的なものや、使用者による室間若しくは建物内外間の換気をいい、流量を明示的に指定する。(2)屋外との自然換気は、部屋の換気回数を指定することにより換気回数に応じて空気が交換されるとする。(3)すきま風は、屋外風速と、室内外、室間温度差を機動力として開口部を流れるものであり、この項目には各室の温度が影響するものである。換気回路網においては、空気の非圧縮性から換気量は瞬時に平衡に達するものと考え、擬似的に定常計算を行う。
【0052】
室iと室jに存在するk番目の開口部(隙間)Mijkを流れる換気流量Vijk[m3/s]と圧力差△pijk[Pa]は次式の関係にある。
【0053】
【数6】
【0054】
nは通常1〜2であるが、単純な開口の場合はn=2であり、本実施形態においてもn=2としている。一方、空気密度ρA及び開口部面積AMijk[m3]は、開いている扉のような場合は大きな開口部として取り扱い、小さい隙間は相当隙間面積を代入する。
【0055】
一方、圧力差△pijkは次の式から計算される。
【0056】
【数7】
【0057】
ただし、p* ijk、p* jikは開口部のi側及びj側の浮力を考慮した圧力[Pa]、hi、hijkは室i及び開口部Mijkの高さ[m]である。δρiは標準温度(θ0=20℃)の時と密度差[kg/m3]であり、以下の式で表される。
【0058】
【数8】
【0059】
kρ=0.00411kg/m3℃であり、室iの温度θi[℃]は後述する熱回路網から求められる。この式を式7に代入すると、次式のようになる。
【0060】
【数9】
【0061】
圧力piは室iが文字通り屋内の「室」であるときは未知数であるが、外部空間である場合は外気温度と風速から境界条件として与える。風による外圧は次式に示す動圧として表現される。
【0062】
【数10】
【0063】
これが式9のpiに相当すると考え、壁の圧力は次式となる。
【0064】
【数11】
【0065】
ここでhiは屋外の中心高さであり、どこに定義しても相対的に全ての圧力が平衡移動するだけなので、hi=0としている。
【0066】
一方α*は風圧係数(変数であり、形状により入力する)であり、壁と風向きとの位置関係の関数となる。一例として文献によれば風上で+0.8、風下で-0.4なので、それを滑らかに繋ぐと、単位風向ベクトルをv/|v|、壁の単位法線ベクトルをneとして、次式で表すことができる。
【0067】
【数12】
【0068】
また、各室についての質量保存の式、すなわち次式が室の数だけできる。
【0069】
【数13】
【0070】
上記説明した式6が各開口部について1つづつ、式13が室の数だけ作成され、未知数は各開口部の流量Vijkが開口部の数だけ、圧力piが室数だけ存在する。従って、式の数と未知数の数が一致するので、この連立方程式は原理的に解くことができる。
【0071】
式6から明らかなように、換気回路網は二次の連立方程式となり、熱回路網や湿気回路網のように線形でない。そこで本回路網は繰り返し解法による収束計算を行っている。最終的に解を求められるならどのような方法を用いてもよいが、本実施形態においてはNewton法を基礎にMarquardt法の考え方を応用している。
【0072】
(熱回路網計算)
熱回路網計算において、使用する記号の意味を次表に掲げる。
【0073】
【表4】
【0074】
本実施形態においては、室iに伝わってくる熱量として(1)熱的に厚い部位から伝わる熱量、(2)熱的に薄い部位から伝わる熱量、(3)土間床を通って地中から伝わる熱量、(4)換気によって移動する熱量、(5)発熱源から発せられる熱量を考慮して算出する。(1)熱的に厚い部位とは壁や床天井などをいい、熱容量を考慮して計算するものであり、熱緩衝となって熱伝達の経時変化を追うことができる。(2)熱的に薄い部位とはドアやガラスなどをいい、熱容量を考慮せずに計算を行うものである。(3)土間床とは地盤に接している床から伝達される熱である。(4)換気によって移動する熱量には、上記換気回路網によって算出される空気の流量を用いて計算する。(5)発熱源とは暖冷房機器や人などを意味し、熱量を明示的に指定する。
【0075】
(1)熱的に厚い部位の算出にあたっては、熱的に厚い部位の有効熱容量Rijkについて、部位の熱伝導抵抗の中心を熱的な境界として、部位を分割する。室iとjを結ぶk番目の厚い部位Hijkのi側及びj側の熱容量CHijk[J/m2℃]は以下のように定義される。
【0076】
【数14】
【0077】
ここで、pは部位Hijkの幅d以内の値であって、
【数15】
【0078】
となるような値である。分割した部位の両側について、それぞれ表面温度THijk、THjikをその代表温度とする(図3参照)。
【0079】
Hijkのi側及びj側の熱収支式は次式となる。
【0080】
【数16】
【0081】
ここでJHijk等は放射により部位Hijkのi側表面に得られる熱量であり、上記放射量の計算によって得られた値を用いる。この式を後退差分
【数17】
【0082】
を用いて離散化すると、次式となる。
【0083】
【数18】
【0084】
式18が熱的に厚い部位の数だけできるため、室iに流入する熱量qHijkは次式となる。
【0085】
【数19】
【0086】
(2)熱的に薄い部位の算出にあたっては、室iとjをつなぐ接合面ijのk番目の熱的に薄い部位(ドア、ガラスなど)Lijkについての壁の左半分と右半分の収支式は、熱的に薄い部位の熱容量はゼロと見なせることから、次式のようになる。
【0087】
【数20】
【0088】
従って室iに流入する熱量qLijは、次式となる。
【0089】
【数21】
【0090】
(3)土間床を伝って地中から伝わる熱量も壁の場合と同じく熱回路網で計算するが、壁の場合は両面空気層であるのに対し、土間床は地盤に接している点が異なっている。土間床は図4に示す如きイメージでモデル化している。壁の内側半分だけを取り出して直接地盤にくっつけたようなモデルを考え、さらに外周部分と中央部分に分けて計算している。
【0091】
内側半分だけなので、壁の場合の屋外側の境界層熱抵抗γHjikや、CHjik、THijkに相当するものがない。計算手法上は、γHjik=CHjik=0、THijk=θjとなった壁と考えると壁と同じ計算となる。θjは土間床の場合は地盤温度(θG)で表され、γHjik、CHjik、THijkはそれぞれγGik、CGik、TGik等に置き換えられる。
【0092】
従って土間床Gikの熱収支式は、以下のようになる。
【0093】
【数22】
【0094】
従って室iに流入する熱量qGijkは
【数23】
【0095】
以上2式に使われた変数のうち、γGik、AGikは条件として入力され、JGikは上記(1)と同様にして算出される。γGikには土間床の境膜抵抗の他に内装材の熱抵抗も含まれているため、TGikの定義点は内装材の裏側になる。結果として床への放射は現実と異なり内装材の裏側に当てられていることになる。
【0096】
(4)換気によって移動する熱量は、開口部Mijkを室jからiに通過する流量をVijk[m3/s]とすると、次式となる。
【0097】
【数24】
【0098】
室間の流量Vijkは換気回路網により計算されるか、又は境界条件として与えられる。
【0099】
(5)発熱源とは暖冷房機器や人などの発する定量的な熱源をいい、発熱量Qを条件として入力する。
【0100】
以上で定まった熱流速の式を用いた室iにおける熱収支式は、次式のようになる。
【0101】
【数25】
【0102】
この式25に式19、21、23、24を代入することにより、Tとθに関する式ができる。更に式18、20を用いることによりθ={θ1,θ2,…θN}を変数とする以下のような連立一次方程式ができる。
【0103】
【数26】
【0104】
ここでAはNxNの行列、b、θは長さNのベクトルである。これを解けば時刻ステップnにおける室温θiが求められる。本実施形態ではこの解法として直接法(ガウス消去法)を用いている。
【0105】
(湿度等回路網計算)
湿度等回路網計算において、使用する記号の意味を次表に掲げる。
【0106】
【表5】
【0107】
湿度等回路網は湿度や化学物質の濃度を算出するものであるが、本質的には熱回路網と同じである。ただし壁を通しての移動がないため、その分簡単になる。水蒸気濃度についての室iの保存式は次式のようになる。
【0108】
【数27】
【0109】
式27において、Ci/R=1、ρA=1、Li/R=0とすると化学物質の保存式となる。
【0110】
ここでVijkは室jからiへのk番目の開口部からの換気量[m3/s]である。上記の式は部屋の数Nだけ作ることができ、N元の連立一次方程式を解いて、室湿度または潜熱負荷を計算することができる。
【0111】
(熱負荷計算)
熱負荷を求めるときは、上記熱回路網計算の式26において室温θに維持したい温度を与え、同式の残差(H=Aθ-b)[W]として求められる。すなわち設定温度、室内温度、熱容量が設定されることにより、負荷量=室熱容量[J/m3]*(設定温度−室内温度)で求められる。なお、冷房の場合は−1倍となる。
【0112】
[第二実施形態]次に、本発明に係る建物の換気量及び温度予測システムの第二実施形態について、図5を用いて説明する。図5は本実施形態に係る熱及び換気回路網計算のフローチャートであって、上記第一実施形態と説明の重複する部分については、同一の符号を付して説明を省略する。
【0113】
上記第一実施形態においては所定時間間隔毎の各回の計算においては、換気回路網計算(S5)及び熱回路網計算(S6)は各回において収束するまで複数回繰り返すよう説明した。
【0114】
しかし本実施形態においては、図5に示すように、換気回路網計算(S5)と熱回路網計算(S6)を各回において1回のみ行い、結果を出力し、次の時刻の計算に進む。
【0115】
上記の如く構成することにより、第一実施形態に示したよりも若干の精度低下にはなるものの、より短い期間で計算結果を得ることができる。換気回路網は時間とともに刻々と変化する風向風速の影響によって時間間隔毎の変化が激しいため、前の時刻の換気量を用いて温度計算を行うことは大きな誤差を招く可能性が高いのに対し、温度の変化は時間に対して比較的穏やかであり、前の時刻の温度を用いて換気量を計算してもそれほど大きな誤差はおきないと考えられ、実際の計算でも第一実施形態と第二実施形態では殆ど差はなかった。
【0116】
[計算例]図6は図で示されているようなレイアウトにおける建物内の温度分布を計算した例である。屋外の条件は東京地方の寒い時期の気候であり、前日の22時までエアコンをつけて各部屋の温度を20℃にし、その後エアコンを切って成り行きに任せ、翌朝6時における温度分布を示している。なおドアや窓などは閉めた状態とし、換気扇などの強制換気は考慮する(以下において、これを標準状態とする)。
【0117】
図6に示すように、1階よりも2階の方が冷えていることがシミュレーションによって示され(または予測され)ている。これは単なる伝熱による熱移動のほかに、暖かい空気が浮力により上昇するために、1階は外気に比べて負圧、2階は正圧になる傾向をもっていることによる影響が考慮されている。また便所など機械的な排気を行っている部屋は負圧になるためそれを補うために隣の廊下から空気の流入があり、さらにこの影響で、廊下も負圧になりそれを補うために居間などの比較的高温の部屋から気流が入ってきていて、このため他の部屋と比べて室温が高くなっていることがシミュレーションによって示されている。
【0118】
このような気流やその連鎖による熱の移動の影響は熱の計算のために伝熱による熱回路網だけでなく換気回路網の計算を行ったことにより初めて計算できることであり、一方換気回路網の、特に浮力の影響の計算のためには熱回路網の計算が必要である。すなわち両方の回路網を交互に解いた事により初めて可能となるシミュレーション結果である。
【0119】
図7は、上記レイアウトにおける建物内の換気回数の分布を表している。ここで換気回数とは、所定時間の間に流通する空気の量を部屋等の容積で割った値であり、室内の空気が入れ替わった回数を示している。図7はドアなどを閉めた状態(標準状態)において、自然に発生する風向、風量の風に対応した内部換気程度の分布を示している。
【0120】
図8は、上記標準状態に対して、二階階段ホールに接する窓を少し開けた場合であって、いずれも適当な一日分の平均値を表示している。図に示すように、閉め切った場合に比して、建物のすきま面積が拡大した場合を想定し、二階階段ホールに接する窓を開けた方が、当該ホールに隣接する部分の換気が増えていることがわかる。
【0121】
図9は、二階階段ホールに接する窓を少し開けた場合における建物内の温度分布を計算した例である。このように、隙間を変化させた場合の換気性状が異なることにより、これを考慮して計算を行った結果、建物内の温度分布もその影響を受けて変わることがわかる。すなわち、図9に示すように、二階階段ホール及びこれに隣接する廊下、及びこれに連結している一階の階段部分は、換気量が増加すると共に、温度が下がっていることがわかる。
【0122】
【発明の効果】
上記説明した如く、本発明に係る建物の換気量及び温度予測システムは、換気回路網計算に熱移動、熱発生の影響を考慮することにより、建物内の換気状況及び温度状況を高い精度で予測し、合わせて室内空気質の状況を的確に予測することができる。
【図面の簡単な説明】
【図1】 本願にかかる予測システムの概念図である。
【図2】 第一実施形態にかかる熱及び換気回路網計算のフローチャートである。
【図3】 熱的に厚い部位周辺の変数定義を説明する図である。
【図4】 土間床のモデルを説明する図である。
【図5】 第二実施形態にかかる熱及び換気回路網計算のフローチャートである。
【図6】 建物内の標準状態における温度分布の計算例を示す図である。
【図7】 建物内の標準状態における換気回数分布の計算例を示す図である。
【図8】 すきま面積が拡大した場合の換気回数分布の計算例を示す図である。
【図9】 すきま面積が拡大した場合の温度分布の計算例を示す図である。
【図10】 従来の換気回路網計算の概念図である。
【符号の説明】
C …熱容量
H …厚い部位
J …表面に得られる熱量
R …有効熱容量
T …表面温度
d …幅
γ …境界層熱抵抗
θ …温度[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a prediction system for predicting a ventilation situation inside a building and a temperature situation due to heat transfer by calculation.
[0002]
[Prior art]
Conventionally, ventilation network calculation is used to predict the ventilation situation inside a building. Fig. 10 shows a conceptual diagram of conventional ventilation network calculation. FIG. 10 (a) is a layout diagram of a building, and FIG. 10 (b) shows a network model with each room as one point.
[0003]
In the figure, the network consists of only a room and a ventilation path, and the ventilation volume is calculated for each room from the pressure difference between the rooms and the resistance of the ventilation path, assuming the temperature of the outside air, the wind speed, and the temperature of each part of the room. The pressure difference between the chambers is caused by the outside air flow, the chamber-to-chamber or the temperature difference between the inside and outside. Here, the ventilation network calculation is generally performed with the outside air temperature and the typical indoor temperature constant in order to easily handle the effect of the temperature difference between the inside and outside.
[0004]
Similarly, a heat load calculation program for calculating a temperature condition inside a building has been used conventionally. In this calculation, the indoor airflow is considered as a heat transfer element, but it is only set as an initial condition, and it is impossible to grasp the ventilation situation.
[0005]
[Problems to be solved by the invention]
However, in buildings, the air temperature rises due to heat generated by heaters, appliances, and sunshine, and airflow is generated due to the temperature difference between the rooms. There is no such thing that considers thermal effects such as temperature distribution and heat generation inside the building.
[0006]
In addition, when a more detailed calculation is to be performed, the indoor ventilation and temperature conditions inherently affect each other. However, the calculation of ventilation volume and temperature has not been predicted at the same time in the past, and when predicting the ventilation situation, the temperature situation is given as a condition, and conversely, when predicting the temperature situation, the ventilation situation is given as a condition. It was.
[0007]
In particular, when calculating the status of 24-hour planned ventilation with a relatively small ventilation amount, the temperature unevenness due to heat generation inside the building as described above is a level that cannot be ignored as the power of ventilation. In the case of scavenging by ventilation such as opening a window, the amount of ventilation is large and there are few cases where internal heat generation becomes a problem.
[0008]
Therefore, the present invention predicts the ventilation and temperature conditions in the building with high accuracy by taking into account the effects of heat transfer and heat generation in the calculation of the ventilation network, and also accurately predicts the indoor air quality. The purpose is to provide a system.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the first configuration of the building temperature and ventilation prediction system according to the present invention predicts the temperature of each room of the building and the ventilation volume between rooms or between buildings inside and outside the building at an arbitrary time. Meteorological data, which is a system and includes house shape data including the shape of each room and the connection between rooms such as walls, floors, openings, etc., and the amount of radiation including wind speed, outside air temperature, solar radiation and night radiation Input means for inputting, a calculation means for calculating the temperature and the ventilation volume for each room at predetermined time intervals, and an output means for outputting the calculation result, wherein the calculation means is obtained from the weather data. The amount of heat generated in each room is calculated separately by calculating the amount of radiation emitted outside the building and the amount of radiation directly entering the room through the opening of the building. Heat transfer from each room using the amount of heat obtained from Taking into account the buoyancy caused by the difference in air density due to temperature, the air volume in each chamber is calculated from the relationship between the pressure difference between the chambers and the flow rate of the opening, and the outflow of air in each chamber Calculate the ventilation volume for each opening by keeping the sum of the input at 0, and calculate the temperature for each room by the amount of heat input / output between the rooms, taking into account the movement of heat accompanying the air due to ventilation. A system for predicting ventilation volume and temperature of a building, wherein the ventilation volume and temperature are calculated by calculating and converging the ventilation volume and temperature alternately several times every predetermined time interval. .
[0010]
The second configuration is a system for predicting the temperature of each room of a building and the ventilation amount between rooms or inside and outside the building at an arbitrary time, and includes the house-specific data including the shape and opening of each room, and the wind speed. Input means for inputting the outside air temperature and meteorological data including radiation amounts including solar radiation and night radiation, calculation means for calculating the temperature and the ventilation amount for each room at predetermined time intervals, and the calculation result The weather data includes radiation data including a solar radiation amount and a night radiation amount, and the calculation means uses the radiation amount obtained from the weather data to The amount of heat in each room is calculated separately for the calculation of the outdoor radiation radiated to the outside and the calculation of the radiation that directly enters the room through the opening of the building. Considering heat transfer, air by temperature Taking into account the buoyancy due to the difference in density, obtain the air ventilation volume in each chamber from the relationship between the pressure difference between the chambers and the flow rate of the opening, and maintain the sum of the inflow and outflow of air in each chamber to 0 Calculate the ventilation volume for each opening, calculate the temperature for each room based on the amount of heat input / output between each room, taking into account the heat transfer due to air by ventilation, and at the predetermined time interval, the previous time It is the ventilation amount and temperature prediction system of a building characterized by calculating the ventilation amount first using the temperature calculated in
[0011]
According to a third configuration, the weather data includes a normal surface direct solar radiation amount, a horizontal sky solar radiation amount, and a nighttime radiation amount as radiation amounts, and the calculation means obtains the outdoor radiation from the weather data. It is the ventilation amount and temperature prediction system of the building of the 1st composition or the 2nd composition characterized by defining based on the normal surface direct solar radiation amount, horizontal plane solar radiation amount, and nighttime radiation amount .
[0012]
In a fourth configuration, the calculation means adds up the indoor radiation, the amount of radiation that enters the room from the outside, and the amount of radiation generated indoors, and the combined amount of radiation forms the room. It is the ventilation amount and temperature prediction system of the building of the 1st composition or the 2nd composition characterized by calculating by allocating to the wall, floor, ceiling, etc. which do .
[0013]
According to a fifth configuration, the meteorological data includes a normal surface direct solar radiation amount, a horizontal sky solar radiation amount, and a nighttime radiation amount as a radiation amount, and the calculation means calculates the radiation amount entering the room from the outdoors, It is defined on the basis of the normal solar radiation amount, the horizontal sky solar radiation amount, the nighttime radiation amount, and the solar radiation intrusion rate of the window. A ventilation and temperature prediction system .
[0014]
In a sixth configuration, the calculating means is proportional to the amount of radiation in each room, and the distribution to the walls, floors, and ceilings constituting each room is first proportional to the calculated radiation amount on the floor, The building ventilation amount and temperature prediction system according to the fourth configuration, wherein the remaining radiation amount is apportioned between the wall and the ceiling .
[0015]
According to a seventh configuration, the calculation means is a proportional distribution of the radiation amount in each room, and the radiation hitting the window is not considered as the indoor radiation amount as 0, and ventilation of the building according to the fourth configuration is characterized in that Quantity and temperature prediction system .
[0016]
In an eighth configuration, the house-specific data includes an air conditioner that operates under a condition specified in advance, and calculates a heat load necessary to maintain a given temperature condition based on the condition.
The building ventilation amount and temperature prediction system according to any one of the first to seventh configurations .
[0017]
In a ninth configuration, the weather data includes outside air humidity data, and the calculation means calculates the humidity of each room between each room at predetermined time intervals using the obtained ventilation volume and temperature. The building ventilation amount and temperature prediction system according to any one of the first to seventh configurations, wherein the calculation is performed in consideration of movement of water vapor .
[0018]
In the tenth configuration, the house-specific data includes an arbitrary chemical source, a hygroscopic material, or a diffusing material adsorbent, and the calculation means uses the obtained ventilation volume and temperature at predetermined time intervals. Further, the ventilation amount of the building according to any one of the first to seventh configurations, wherein the concentration of the chemical substance for each room is calculated in consideration of the movement of the chemical substances between the rooms. This is a temperature prediction system .
[0019]
In the eleventh configuration, the house-specific data includes a humidity control device that operates under a condition specified in advance, and calculates a latent heat load necessary to maintain a given temperature condition based on the condition. It is the ventilation volume and temperature prediction system of the building in any one of the 1st composition thru / or the 7th composition characterized .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
[First embodiment]
A first embodiment of a building ventilation and temperature prediction system according to the present invention will be described with reference to the drawings. The building ventilation amount and temperature prediction system according to the present embodiment is specifically software that operates on a computer, the input means means a keyboard, an input / output device, a network line, etc., and the calculation means means a CPU and RAM means output means means a monitor, a printer or a recording device.
[0021]
(overall structure)
Fig. 1 is a diagram showing the concept of heat and ventilation network calculation. Fig. 1 (a) is a layout diagram of the building. Fig. 1 (b) shows a network model with each room as one point. It shows. In the ventilation path, openings such as doors and gaps between the rooms and between the rooms, and a passage for forced ventilation by a ventilation fan are considered. In the heat transfer path, the amount of heat transferred from the walls, floor and ceiling, etc. and the amount of heat transferred by ventilation are considered. Further, as shown in the figure, indoor air quality is also predicted by taking into consideration the quantitative heat generation source or heat absorption source and the generation source of humidity and chemical substances in each room.
[0022]
FIG. 2 shows a flowchart of heat and ventilation network calculation. Specific individual calculations will be described later. As shown in FIG. 2, the house-specific data and weather data of the target building are read from the input means (S1, S2), and the following calculation is performed using them. As shown in Fig. 1 (a), the data for each residence is the layout of the building, the shape of each room, the connection between rooms such as walls, floors, openings, etc., the heat capacity of the members or parts that make up the building, and the indoor arrangement It includes any heat source that is Commercial data can be used as meteorological data, and information on wind speed and outside air temperature, outside air humidity, solar radiation, or radiation amount is used. Even if there is no wind speed data, it is possible to calculate as no wind condition.
[0023]
After reading the house data and the meteorological data, the meteorological conditions at the time to be calculated are first acquired (S3), and the amount of radiation given to the building from solar radiation is calculated (S4). Next, the ventilation network calculation is performed to calculate the ventilation amount for each room, and the ventilation amount between the rooms is calculated (S5). Next, the temperature (S6) for each room by the thermal network calculation is calculated using the ventilation volume calculated in S5. And using the temperature calculated by S6, it returns to ventilation network calculation (S5), and also calculates a ventilation quantity. These ventilation network calculation (S5) and thermal network calculation (S6) are repeated until convergence. Then, the humidity and chemical substance concentration (S7) are calculated by calculating the circuit network such as humidity, and after calculating the heat load from the obtained temperature (S8), the calculation result is output (S9).
[0024]
These series of calculations (S3 to S8) are repeatedly performed at predetermined time intervals, and output (S9) is performed each time. The predetermined time interval can be set as appropriate, for example, every 30 minutes or every hour. Here, since the ventilation network calculation (S5) and the temperature calculation (S6) have a strong influence on each other, they are repeatedly calculated a plurality of times until they are stabilized.
[0025]
By resolving and converging the temperature and ventilation conditions each time in this way, it is possible to obtain a balanced result by correlating ventilation volume and temperature, and to make meaningful predictions with high accuracy. it can.
[0026]
Since there is no previous calculation result to be used at the first iteration, the room temperature is calculated by giving an appropriate initial value. Accordingly, the calculation can be made closer to the actual value by starting the calculation from a certain time before the desired time (for example, one and a half months before) and repeating the calculation.
[0027]
In addition, the humidity information in the room and the generation rate of chemical substances are affected by the temperature, humidity, and concentration of chemical substances in the surroundings, so temperature information is important in addition to ventilation conditions. Therefore, it is possible to predict the air quality with high accuracy by performing prediction calculation by combining the generation rate of chemical substances by ventilation (movement speed and diffusion speed) with such generation speed.
[0028]
In addition, when calculating the thermal network in a building, it is necessary to consider the heat insulation performance of each part of the building and calculate the air conditioning load, such as calculating the heat flow from the internal / external temperature difference and the indoor temperature difference. . Therefore, the heating / cooling load can be obtained by integrating the amount of input heat by the heat source.
[0029]
Next, each part calculation is demonstrated.
[0030]
(Calculation of radiation)
The radiation amount means radiation including solar radiation, and in this embodiment, direct solar radiation amount, sky solar radiation amount and night radiation amount are used. When the commercial weather data to be used contains only the horizontal solar radiation amount, it is divided into the direct solar radiation amount and the sky solar radiation amount by calculation based on the solar altitude. The solar altitude is calculated from the latitude, longitude and date / time of the target city. The amount of radiation is taken into account for outdoor radiation and indoor radiation.
[0031]
The meanings of symbols used for outdoor radiation are listed in the following table.
[0032]
[Table 1]
[0033]
Normal surface direct solar radiation I b [W / m 2 ], horizontal sky solar radiation I d [W / m 2 ], nighttime radiation I x [W / m 2 ], and sine of solar altitude from weather data (sin h), cosine (cos h), solar sine (sin A), and cosine (cos A) can be obtained. Unit vector n s that indicates the direction of the sun can be defined as follows.
[0034]
[Expression 1]
[0035]
The radiation vector J Hjik [W / m 2 ] received by the kth thermally thick part H ijk of the connection surface ij is denoted by n eij as the outward normal vector of the connection surface ij connecting the room i and the outdoor j. Is expressed as follows.
[0036]
[Expression 2]
[0037]
The same can be calculated for a door that is a thermally thin part. All windows are considered to be reflected or transmitted, and the amount of radiation absorbed by the glass is always considered to be zero.
[0038]
The following table shows the meanings of the symbols used for indoor radiation.
[0039]
[Table 2]
[0040]
Indoor radiation (1) Accumulate the amount of radiation entering the room (intrusion of solar radiation from windows), (2) Add the amount of radiation generated in the room, such as an electric lamp, and (3) Calculate the accumulated amount of radiation in the room. It is calculated by apportioning the walls, floors, ceilings, etc.
[0041]
(1) The amount of radiation entering the room is basically the same as in the case of the outer wall. The amount of solar radiation I Gijk [W] that enters the room i through the k-th window G ijk of the connection surface ij that connects the room i and the room j is expressed by the following equation.
[0042]
[Equation 3]
[0043]
The radiation shielding coefficient SCR and the convection shielding coefficient SCC are given in advance as physical property values. η * is the solar radiation penetration rate of the standard plate glass and is a function of the solar radiation angle. The area of the window AGijk [m 2 ] is the area of the window that is exposed to the sun (the part that is not shaded), and the area can be calculated geometrically from the shapes of the window and the eyelid.
[0044]
(2) The radiation amount I i0 [W] generated in the room is given as a boundary condition, and the value is added as it is. From the above, the total amount of radiation I i [W] in the room is given by the following equation.
[0045]
[Expression 4]
[0046]
(3) For the summation and apportionment of indoor radiation, for example, when apportioning the total amount of radiation Ii present in the room as described above, 50% of the radiation is on the floor and the remaining 50% is on the other surface. , Distributed in proportion to the area. The distributed radiation is actually partly reflected, but it is assumed that it will eventually be absorbed by any wall, and all will be absorbed regardless of the absorption coefficient. However, the radiation that hits the window goes outside as it is. That is, it can be expressed by the following formula.
[0047]
[Equation 5]
[0048]
However, A Fi [m 2 ] is the area of the floor constituting the room i, and A i [m 2 ] is the total surface area constituting the room i including A Fi .
[0049]
(Ventilation network calculation)
In the ventilation network calculation, the meaning of the symbols used is listed in the following table.
[0050]
[Table 3]
[0051]
In the present embodiment, the amount of air entering and exiting the room was calculated in consideration of (1) a set value according to mechanical ventilation by the ventilation equipment, (2) a value set as natural ventilation with the outdoors, and (3) a draft. Value. (1) Forced ventilation refers to mechanical ventilation such as a ventilation fan, or ventilation between rooms or inside and outside the building by the user, and explicitly specifies the flow rate. (2) For natural ventilation with the outside, air is exchanged according to the number of ventilations by specifying the number of ventilations in the room. (3) The clearance air flows through the opening using the outdoor wind speed and the indoor / outdoor / room temperature difference as the motive power, and the temperature of each room affects this item. In the ventilation network, it is considered that the ventilation volume instantaneously reaches equilibrium due to the incompressibility of air, and pseudo steady calculation is performed.
[0052]
The ventilation flow rate V ijk [m 3 / s] flowing through the k-th opening (gap) M ijk existing in the chamber i and the chamber j and the pressure difference Δp ijk [Pa] have the following relationship.
[0053]
[Formula 6]
[0054]
n is usually 1 to 2, but n = 2 in the case of a simple opening, and n = 2 in this embodiment. On the other hand, the air density ρ A and the opening area A Mijk [m 3 ] are handled as a large opening in the case of an open door, and the corresponding gap area is substituted for a small gap.
[0055]
On the other hand, the pressure difference Δp ijk is calculated from the following equation.
[0056]
[Expression 7]
[0057]
Here, p * ijk and p * jik are pressures [Pa] in consideration of the buoyancy on the i side and j side of the opening, and h i and h ijk are the heights [m] of the chamber i and the opening M ijk . Δρ i is the density difference [kg / m 3 ] from the standard temperature (θ 0 = 20 ° C.), and is expressed by the following equation.
[0058]
[Equation 8]
[0059]
k ρ = 0.00411 kg / m 3 ° C, and the temperature θ i [° C] of the chamber i is obtained from a thermal circuit network described later. Substituting this equation into equation 7, the following equation is obtained.
[0060]
[Equation 9]
[0061]
The pressure p i is unknown when the chamber i is literally an indoor “chamber”, but is given as a boundary condition from the outside air temperature and the wind speed when it is an external space. The external pressure due to wind is expressed as a dynamic pressure expressed by the following equation.
[0062]
[Expression 10]
[0063]
Assuming that this corresponds to p i in Equation 9, the wall pressure is as follows.
[0064]
[Expression 11]
[0065]
Here, h i is the height of the center of the outdoors, and all pressures move relatively in equilibrium no matter where they are defined, so h i = 0.
[0066]
On the other hand, α * is a wind pressure coefficient (which is a variable and is input according to the shape) and is a function of the positional relationship between the wall and the wind direction. As an example, according to the literature, it is +0.8 on the windward side and -0.4 on the leeward side. When smoothly connected, the unit wind direction vector is v / | v | and the unit normal vector of the wall is ne. Can do.
[0067]
[Expression 12]
[0068]
Moreover, the mass conservation formula for each chamber, that is, the following formula, can be created for the number of chambers.
[0069]
[Formula 13]
[0070]
Formula 6 described above is created for each opening, Formula 13 is created for the number of chambers, and the unknowns are the flow rate V ijk for each opening for the number of openings and the pressure p i for the number of chambers. Therefore, since the number of equations coincides with the number of unknowns, this simultaneous equation can be solved in principle.
[0071]
As is clear from Equation 6, the ventilation network is a quadratic simultaneous equation and is not linear like the thermal network or the moisture network. Therefore, this network performs convergence calculation by iterative solution. Any method can be used as long as a solution can be finally obtained. In this embodiment, the concept of the Marquardt method is applied based on the Newton method.
[0072]
(Thermal network calculation)
The meanings of the symbols used in the thermal network calculation are listed in the following table.
[0073]
[Table 4]
[0074]
In the present embodiment, the amount of heat transmitted to the chamber i is (1) the amount of heat transmitted from a thermally thick portion, (2) the amount of heat transmitted from a thermally thin portion, and (3) transmitted from the ground through the dirt floor. It is calculated taking into account the amount of heat, (4) the amount of heat transferred by ventilation, and (5) the amount of heat generated from the heat source. (1) A thermally thick portion refers to a wall or floor / ceiling, and is calculated in consideration of the heat capacity, and can serve as a thermal buffer to follow changes over time in heat transfer. (2) A thermally thin part means a door, glass, etc., and performs calculation without considering heat capacity. (3) Soil floor is heat transmitted from the floor in contact with the ground. (4) The amount of heat transferred by ventilation is calculated using the air flow rate calculated by the ventilation network. (5) The heat source means a heating / cooling device or a person, and explicitly specifies the amount of heat.
[0075]
(1) In calculating the thermally thick portion, the effective heat capacity R ijk of the thermally thick portion is divided by using the center of the heat conduction resistance of the portion as a thermal boundary. The heat capacities C Hijk [J /
[0076]
[Expression 14]
[0077]
Here, p is a value within the width d of the part H ijk ,
[Expression 15]
[0078]
Is such a value. The surface temperatures T Hijk and T Hjik are used as representative temperatures for both sides of the divided parts (see FIG. 3).
[0079]
The heat balance equation of i side and j side of Hijk is as follows.
[0080]
[Expression 16]
[0081]
Here, J Hijk or the like is the amount of heat obtained on the i-side surface of the site Hijk by radiation, and the value obtained by the calculation of the amount of radiation is used. This formula can be used as a backward difference.
[0082]
When discretized using, the following equation is obtained.
[0083]
[Formula 18]
[0084]
Since Equation 18 can be created by the number of parts that are thermally thick, the amount of heat qHijk flowing into the chamber i is given by the following equation.
[0085]
[Equation 19]
[0086]
(2) When calculating the thermally thin part, the balance of the left half and right half of the wall for the kth thermally thin part (door, glass, etc.) L ijk of the joint surface ij connecting the chambers i and j. Since the heat capacity of the thermally thin portion can be regarded as zero, the equation becomes as follows.
[0087]
[Expression 20]
[0088]
Accordingly, the amount of heat q Lij flowing into the chamber i is expressed by the following equation.
[0089]
[Expression 21]
[0090]
(3) The amount of heat transmitted from the ground through the dirt floor is also calculated by the thermal network as in the case of the wall. In the case of the wall, the double-layer air layer is used, whereas the dirt floor is in contact with the ground. Is different. The clay floor is modeled with the image shown in FIG. Considering a model in which only the inner half of the wall is taken out and attached directly to the ground, the calculation is divided into the outer peripheral part and the central part.
[0091]
Since there is only the inner half, there is nothing equivalent to the boundary layer thermal resistance γ Hjik , C Hjik , or T Hijk on the outdoor side in the case of walls. In terms of the calculation method, the calculation is the same as that of the wall when it is considered that γ Hjik = C Hjik = 0 and T Hijk = θ j . θ j is represented by the ground temperature (θ G ) in the case of a soil floor, and γ Hjik , C Hjik , and T Hijk are replaced with γ Gik , C Gik , T Gik, etc., respectively.
[0092]
Therefore, the heat balance equation of the dirt floor Gik is as follows.
[0093]
[Expression 22]
[0094]
Therefore, the amount of heat q Gijk flowing into the chamber i is given by
[0095]
Of the variables used in the above two equations, γ Gik and A Gik are input as conditions, and J Gik is calculated in the same manner as (1) above. Since γ Gik includes the thermal resistance of the interior material in addition to the film resistance of the floor, the definition point of T Gik is on the back side of the interior material. As a result, the radiation to the floor is applied to the back side of the interior material unlike the actual situation.
[0096]
(4) The amount of heat transferred by ventilation is given by the following equation, where V ijk [m 3 / s] is the flow rate passing through the opening M ijk from the chamber j to i.
[0097]
[Expression 24]
[0098]
The flow rate V ijk between the rooms is calculated by the ventilation network or given as a boundary condition.
[0099]
(5) The heat source is a quantitative heat source generated by a heating / cooling device or a person, and the heat generation amount Q is input as a condition.
[0100]
The heat balance equation in the chamber i using the equation of the heat flow rate determined above is as follows.
[0101]
[Expression 25]
[0102]
By substituting Equations 19, 21, 23, and 24 into Equation 25, equations relating to T and θ can be obtained. Furthermore, the following simultaneous linear equations with θ = {θ 1 , θ 2 ,... Θ N } as variables can be obtained by using equations 18 and 20.
[0103]
[Equation 26]
[0104]
Here, A is an N × N matrix, and b and θ are vectors of length N. Room temperature theta i at time step n is determined by solving them. In this embodiment, the direct method (Gaussian elimination method) is used as this solution.
[0105]
(Humidity network calculation)
The following table shows the meanings of the symbols used in calculating the network such as humidity.
[0106]
[Table 5]
[0107]
A circuit network such as humidity is used to calculate humidity and chemical substance concentration, but is essentially the same as a thermal circuit network. However, since there is no movement through the wall, it is easier. The conservation formula of the chamber i with respect to the water vapor concentration is as follows.
[0108]
[Expression 27]
[0109]
In Formula 27, if Ci / R = 1, ρA = 1, and Li / R = 0, the chemical substance conservation formula is obtained.
[0110]
Here, V ijk is a ventilation amount [m 3 / s] from the k-th opening from room j to i. The above formula can be created for the number N of rooms, and the room humidity or latent heat load can be calculated by solving simultaneous linear equations of N elements.
[0111]
(Heat load calculation)
When obtaining the thermal load, the temperature to be maintained at room temperature θ is given in Equation 26 of the above thermal network calculation, and is obtained as a residual (H = Aθ−b) [W] in the equation. That is, by setting the set temperature, the room temperature, and the heat capacity, the load amount = the room heat capacity [J / m 3 ] * (set temperature−room temperature) is obtained. In the case of cooling, it is -1.
[0112]
[Second Embodiment] Next, a second embodiment of a building ventilation and temperature prediction system according to the present invention will be described with reference to FIG. FIG. 5 is a flowchart of heat and ventilation network calculation according to the present embodiment, and the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
[0113]
In the first embodiment described above, in each calculation at every predetermined time interval, the ventilation network calculation (S5) and the thermal network calculation (S6) are described to be repeated a plurality of times until they converge at each time.
[0114]
However, in this embodiment, as shown in FIG. 5, the ventilation network calculation (S5) and the thermal network calculation (S6) are performed only once each time, the result is output, and the process proceeds to the next time calculation.
[0115]
By configuring as described above, the calculation result can be obtained in a shorter period, although the accuracy is slightly lower than that shown in the first embodiment. Ventilation network changes drastically at each time interval due to the influence of wind direction and wind speed that changes with time, so calculating temperature using the ventilation volume at the previous time is likely to cause a large error. The change in temperature is relatively gentle with respect to time, and even if the ventilation volume is calculated using the temperature at the previous time, it is considered that there will be no significant error. There was little difference between the two embodiments.
[0116]
[Calculation Example] FIG. 6 shows an example of calculating the temperature distribution in the building in the layout as shown in the figure. The outdoor conditions are the cold weather in the Tokyo region. Turn on the air conditioner until 22:00 on the previous day and set the temperature of each room to 20 ° C. Yes. Note that doors and windows are closed, and forced ventilation such as a ventilation fan is considered (hereinafter, this is the standard state).
[0117]
As shown in FIG. 6, it is shown (or predicted) by simulation that the second floor is colder than the first floor. In addition to heat transfer due to simple heat transfer, warm air rises due to buoyancy, so the influence of the first floor tends to be negative and the second is positive compared to outside air is taken into account. . In addition, rooms that are mechanically exhausted, such as toilets, have negative pressure, so there is an inflow of air from the adjacent corridor to compensate for this, and due to this effect, the corridor also becomes negative pressure and the living room The simulation shows that airflow has entered from a relatively hot room such as that the room temperature is higher than in other rooms.
[0118]
The effect of heat transfer due to such airflow and its chain can only be calculated by calculating the ventilation network as well as the heat network by heat transfer for the calculation of heat. Especially for the calculation of the influence of buoyancy, the calculation of the thermal network is necessary. In other words, it is a simulation result that is possible only by solving both networks alternately.
[0119]
FIG. 7 shows the distribution of the ventilation frequency in the building in the above layout. Here, the ventilation frequency is a value obtained by dividing the amount of air circulated during a predetermined time by the volume of the room or the like, and indicates the number of times the room air has been replaced. FIG. 7 shows the distribution of the degree of internal ventilation corresponding to the naturally occurring wind direction and air volume when the door is closed (standard state).
[0120]
FIG. 8 shows a case where a window that is in contact with the second-level staircase is slightly opened with respect to the above-described standard state. As shown in the figure, it is assumed that the clearance area of the building has expanded compared to when it is closed. I understand that.
[0121]
FIG. 9 is an example in which the temperature distribution in the building is calculated when a few windows in contact with the second floor staircase are opened. As described above, since the ventilation characteristics when the gap is changed are different, it is understood that the temperature distribution in the building changes due to the influence as a result of calculation taking this into consideration. That is, as shown in FIG. 9, it can be seen that the second floor staircase hall, the corridor adjacent to the second floor staircase, and the first floor staircase connected to the second floor staircase increase the ventilation amount and the temperature decreases.
[0122]
【The invention's effect】
As described above, the ventilation amount and temperature prediction system for a building according to the present invention predicts the ventilation and temperature conditions in the building with high accuracy by taking into account the effects of heat transfer and heat generation in the ventilation network calculation. In addition, the indoor air quality can be accurately predicted.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a prediction system according to the present application.
FIG. 2 is a flowchart of heat and ventilation network calculation according to the first embodiment.
FIG. 3 is a diagram for explaining variable definitions around a thermally thick part.
FIG. 4 is a diagram for explaining a model of a floor between floors.
FIG. 5 is a flowchart of heat and ventilation network calculation according to the second embodiment.
FIG. 6 is a diagram illustrating a calculation example of a temperature distribution in a standard state in a building.
FIG. 7 is a diagram illustrating a calculation example of a ventilation frequency distribution in a standard state in a building.
FIG. 8 is a diagram showing a calculation example of the ventilation frequency distribution when the clearance area is enlarged.
FIG. 9 is a diagram showing a calculation example of a temperature distribution when the clearance area is enlarged.
FIG. 10 is a conceptual diagram of conventional ventilation network calculation.
[Explanation of symbols]
C ... heat capacity
H ... thick part
J ... The amount of heat obtained on the surface
R: Effective heat capacity
T ... surface temperature
d… Width γ… Boundary layer thermal resistance θ… Temperature
Claims (11)
各室の形状及び壁、床、開口部など室相互の接続関係を含む邸別データと、風速と、外気温度と、日射と夜間放射とを備える放射量とを含む気象データとを入力する入力手段と、
所定時間間隔毎に各室毎の温度および換気量を計算する計算手段と、
計算結果を出力する出力手段とを有し、
前記計算手段は、前記気象データから得られる放射量を用いて、前記建物の外側に放射される屋外の放射の算定と、建物の開口部を通じて直接室内に侵入する放射の算定とに分けて各室の熱量を算定し、これらの算定から得られる熱量を用いて各室の熱の授受を考慮すると共に、温度による空気の密度の違いによる浮力を考慮して、室間相互の圧力差と開口部の流量の関係から各室における空気の換気量を求め、かつ各室における空気の流出入の総和を0に維持することにより各開口部毎の換気量を計算し、換気による空気に伴う熱の移動を考慮して各室相互の熱の入出量により各室毎の温度を計算し、所定時間間隔毎に、毎回、上記換気量と温度とを交互に複数回計算して収束させることにより、換気量及び温度を計算する
ことを特徴とする建物の換気量及び温度予測システム。A system for predicting the temperature of each room of a building and the ventilation between rooms or inside and outside the building at any time,
Input to input data for each house, including the shape of each room and connection between rooms such as walls, floors, openings, etc. , and weather data including wind speed , outside air temperature, and radiation amount including solar radiation and night radiation. Means,
Calculation means for calculating the temperature and ventilation volume for each room at predetermined time intervals;
Output means for outputting the calculation result,
The calculation means uses the radiation amount obtained from the meteorological data, and divides into calculation of outdoor radiation radiated outside the building and calculation of radiation directly entering the room through the opening of the building. Calculate the amount of heat in the room, and use the amount of heat obtained from these calculations to consider the transfer of heat in each room, and consider the buoyancy due to the difference in air density due to temperature, and the mutual pressure difference between the rooms and the opening Calculate the ventilation volume for each opening by calculating the ventilation volume of air in each room from the relationship of the flow rate of each section, and maintaining the sum of the inflow and outflow of air in each room to 0, and the heat associated with the air by ventilation By calculating the temperature of each room based on the amount of heat input / output between each room in consideration of the movement of the air flow, and calculating and converging the ventilation volume and temperature alternately several times each time at predetermined time intervals. Characterized by calculating ventilation volume and temperature Ventilation and temperature prediction system of the building.
各室の形状及び開口部を含む邸別データと、風速と、外気温度と、日射と夜間放射とを備える放射量とを含む気象データとを入力する入力手段と、
所定時間間隔毎に各室毎の温度および換気量を計算する計算手段と、
計算結果を出力する出力手段とを有し、
前記気象データは日射量と夜間放射量とを備える放射量のデータを含み、
前記計算手段は、前記気象データから得られる放射量を用いて、前記建物の外側に放射される屋外の放射の算定と、建物の開口部を通じて直接室内に侵入する放射の算定とに分けて各室の熱量を算定し、これらの算定から得られる熱量を用いて各室の熱の授受を考慮すると共に、温度による空気の密度の違いによる浮力を考慮して、室間相互の圧力差と開口部の流量の関係から各室における空気の換気量を求め、かつ各室における空気の流出入の総和を0に維持することにより各開口部毎の換気量を計算し、換気による空気に伴う熱の移動を考慮して各室相互の熱の入出量により各室毎の温度を計算し、所定時間間隔毎に、前時間で算出した温度を用いて換気量を先に計算し、その換気量の計算結果を用いて温度を計算する
ことを特徴とする建物の換気量及び温度予測システム。A system for predicting the temperature of each room of a building and the ventilation between rooms or inside and outside the building at any time,
Input means for inputting data for each house including the shape and opening of each room, meteorological data including wind speed , outside air temperature, and radiation amount including solar radiation and night radiation ,
Calculation means for calculating the temperature and ventilation volume for each room at predetermined time intervals;
Output means for outputting the calculation result,
The weather data includes radiation data comprising solar radiation and night radiation,
The calculation means uses the radiation amount obtained from the meteorological data, and divides into calculation of outdoor radiation radiated outside the building and calculation of radiation directly entering the room through the opening of the building. Calculate the amount of heat in the room, and use the amount of heat obtained from these calculations to consider the transfer of heat in each room, and consider the buoyancy due to the difference in air density due to temperature, and the mutual pressure difference between the rooms and the opening Calculate the ventilation volume for each opening by calculating the ventilation volume of air in each room from the relationship of the flow rate of each section, and maintaining the sum of the inflow and outflow of air in each room to 0, and the heat associated with the air by ventilation The temperature of each room is calculated based on the amount of heat input / output between each room, taking into account the movement of the room, and the ventilation volume is calculated first using the temperature calculated in the previous time at every predetermined time interval. The temperature is calculated using the calculation result of Ventilation and temperature predicting system of the object.
前記計算手段は、前記屋外の放射を、前記気象データから得られる法線面直達日射量と、水平面天空日射量と、夜間放射量とに基づいて定義する
ことを特徴とする請求項1又は2の建物の換気量及び温度予測システム。 The meteorological data includes normal surface direct solar radiation, horizontal sky solar radiation, and night radiation as radiation .
The calculation means defines the outdoor radiation based on a normal surface direct radiation amount obtained from the weather data, a horizontal sky solar radiation amount, and a nighttime radiation amount.
The ventilation amount and temperature prediction system for a building according to claim 1 or 2 .
ことを特徴とする請求項1又は請求項2の建物の換気量及び温度予測システム。 The calculation means adds up the indoor radiation, the amount of radiation that enters the room from the outdoors, and the amount of radiation generated indoors, and the combined amount of radiation is a wall, floor, or ceiling that constitutes the room. Calculate by apportioning
The building ventilation amount and temperature prediction system according to claim 1 or 2, characterized in that
前記計算手段は、前記屋外から室内に侵入する放射量を、法線面直達日射量と、水平面天空日射量と、夜間放射量と、当該窓の日射侵入率とに基づいて定義する
ことを特徴とする請求項1又は2に記載の建物の換気量及び温度予測システム。 The meteorological data includes normal surface direct solar radiation, horizontal sky solar radiation, and night radiation as radiation.
The calculation means defines the amount of radiation entering the room from the outside based on normal surface direct solar radiation, horizontal sky solar radiation, nighttime radiation, and solar radiation intrusion rate of the window.
The building ventilation amount and temperature prediction system according to claim 1 or 2, characterized in that
ことを特徴とする請求項4に記載の建物の換気量及び温度予測システム。 The calculation means apportions the amount of radiation in each room, and the apportionment to the walls, floors, and ceilings constituting each room is performed by first distributing the calculated amount of radiation to the floor and the remaining amount of radiation on the wall. Apportion at the ceiling
The building ventilation volume and temperature prediction system according to claim 4 .
ことを特徴とする請求項4に記載の建物の換気量及び温度予測システム。 The calculation means apportions the amount of radiation in each room, and does not take into account the amount of radiation that hits the window as 0 for room radiation.
The building ventilation volume and temperature prediction system according to claim 4 .
ことを特徴とする請求項1乃至請求項7のいずれかに記載の建物の換気量及び温度予測システム。The said house-specific data comprises an air conditioning apparatus operating at conditions specified in advance, according to claim 1 or claims, characterized in that calculating the heat load required to maintain the temperature conditions given on the basis of the conditions Item 8. The ventilation volume and temperature prediction system for a building according to any one of items 7 to 9 .
前記計算手段は、得られた換気量及び温度を用いて、所定時間間隔毎に、各室毎の湿度を各室相互の水蒸気の移動を考慮して計算する
ことを特徴とする請求項1乃至請求項7のいずれかに記載の建物の換気量及び温度予測システム。The weather data includes outside air humidity data,
Said calculating means uses the obtained ventilation and temperature, at predetermined time intervals, to claim 1, characterized in that the humidity of each chambers are calculated taking into account the movement of the chambers mutual steam The ventilation amount and temperature prediction system of the building in any one of Claims 7 .
前記計算手段は、得られた換気量及び温度を用いて、所定時間間隔毎に、各室毎の化学物質の濃度を各室相互の化学物質の移動を考慮して計算する
ことを特徴とする請求項1乃至請求項7のいずれかに記載の建物の換気量及び温度予測システム。The house data includes any chemical source, hygroscopic material, or diffusing material adsorbent,
The calculating means calculates the concentration of the chemical substance for each room in consideration of the movement of the chemical substance between the rooms at predetermined time intervals using the obtained ventilation volume and temperature. The building ventilation amount and temperature prediction system according to any one of claims 1 to 7 .
ことを特徴とする請求項1乃至請求項7のいずれかに記載の建物の換気量及び温度予測システム。2. The house-specific data includes a humidity control device that operates under a predesignated condition, and calculates a latent heat load necessary to maintain a given temperature condition based on the condition. The building ventilation amount and temperature prediction system according to claim 7 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001155239A JP4570280B2 (en) | 2001-05-24 | 2001-05-24 | Building ventilation and temperature prediction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001155239A JP4570280B2 (en) | 2001-05-24 | 2001-05-24 | Building ventilation and temperature prediction system |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010074452A Division JP5008740B2 (en) | 2010-03-29 | 2010-03-29 | Building ventilation and temperature prediction system |
JP2010074450A Division JP5008738B2 (en) | 2010-03-29 | 2010-03-29 | Building ventilation and temperature prediction system |
JP2010074451A Division JP5008739B2 (en) | 2010-03-29 | 2010-03-29 | Building ventilation and temperature prediction system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002349937A JP2002349937A (en) | 2002-12-04 |
JP4570280B2 true JP4570280B2 (en) | 2010-10-27 |
Family
ID=18999468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001155239A Expired - Lifetime JP4570280B2 (en) | 2001-05-24 | 2001-05-24 | Building ventilation and temperature prediction system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4570280B2 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4713105B2 (en) * | 2004-08-17 | 2011-06-29 | フクビ化学工業株式会社 | Ventilation system automatic design system, ventilation system design method, program |
JP4761787B2 (en) * | 2005-02-24 | 2011-08-31 | 旭化成ホームズ株式会社 | Acquired solar radiation energy evaluation system |
JP4727365B2 (en) * | 2005-09-27 | 2011-07-20 | 新日鉄エンジニアリング株式会社 | Ventilation system design method and building ventilation system |
JP4758192B2 (en) * | 2005-10-11 | 2011-08-24 | 三菱電機株式会社 | Ventilation plan creation support system |
JP4856454B2 (en) * | 2006-03-16 | 2012-01-18 | 株式会社竹中工務店 | Solar cell installation evaluation device, solar cell installation evaluation program, and solar cell installation evaluation calculation method |
JP4699957B2 (en) * | 2006-07-31 | 2011-06-15 | 三菱電機株式会社 | Ventilation equipment plan creation system |
JP2008090828A (en) * | 2006-09-08 | 2008-04-17 | Sanyo Electric Co Ltd | Modeling device, simulator device, modeling program, simulation program, method for using thermal balance model, and system for using thermal balance model |
JP2009053749A (en) * | 2007-08-23 | 2009-03-12 | Shimizu Corp | Room temperature distribution modeling apparatus and room temperature distribution modeling method |
JP5123808B2 (en) * | 2007-10-30 | 2013-01-23 | 積水化学工業株式会社 | Building thermal environment simulation device and thermal environment display method |
JP2010276271A (en) * | 2009-05-28 | 2010-12-09 | Tostem Corp | Indoor environment evaluation system and indoor environment evaluation method |
JP2011065238A (en) * | 2009-09-15 | 2011-03-31 | Ecogold Co Ltd | In-structure temperature calculation method and program for executing the calculation method |
JP5537973B2 (en) * | 2010-01-29 | 2014-07-02 | 三洋電機株式会社 | Air supply control device |
KR101301123B1 (en) | 2012-05-31 | 2013-12-31 | 충남대학교산학협력단 | Prediction method for cooling and heating load |
CN105143780B (en) | 2013-04-15 | 2017-11-17 | 三菱电机株式会社 | Air-conditioning system control device |
JP6046074B2 (en) * | 2014-03-28 | 2016-12-14 | 大和ハウス工業株式会社 | Building simulation system and map creation method |
JP6370106B2 (en) * | 2014-05-21 | 2018-08-08 | 大成建設株式会社 | Natural ventilation system |
JP6533376B2 (en) * | 2014-09-30 | 2019-06-19 | 積水化学工業株式会社 | Humidity environmental information output device, humidity environmental information output method and program |
JP6581490B2 (en) * | 2015-12-14 | 2019-09-25 | 株式会社東芝 | Air conditioning parameter generation device, air conditioning operation evaluation device, air conditioning parameter generation method and program |
CN107883551A (en) * | 2017-10-18 | 2018-04-06 | 广东美的暖通设备有限公司 | New blower fan fresh air quantity control method, apparatus and computer-readable recording medium |
KR102538320B1 (en) * | 2020-10-30 | 2023-06-01 | 주식회사 경동나비엔 | Apparatus, application and method for guiding ventilation |
CN112611047A (en) * | 2020-12-17 | 2021-04-06 | 青岛海尔空调电子有限公司 | Fresh air ventilation method at night in winter, storage medium and control device |
JP7264359B1 (en) | 2022-03-29 | 2023-04-25 | 株式会社インテグラル | Heat loss coefficient estimation system, heat loss coefficient estimation method, and program |
CN115930373B (en) * | 2023-01-10 | 2023-07-04 | 灵汇技术股份有限公司 | Subway air conditioner energy-saving control method and system based on load prediction |
CN117975699B (en) * | 2024-03-29 | 2024-06-04 | 烟台信谊电器有限公司 | Intelligent regulator cubicle control governing system based on thing networking |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS618541A (en) * | 1984-06-21 | 1986-01-16 | Matsushita Electric Ind Co Ltd | Method for calculating thermal amount in building room |
JPH07311166A (en) * | 1994-05-16 | 1995-11-28 | Mitsubishi Electric Corp | Hot fluid cae system |
JPH08188030A (en) * | 1995-01-09 | 1996-07-23 | Nissan Motor Co Ltd | Vehicular air conditioner |
JPH08240335A (en) * | 1995-03-03 | 1996-09-17 | Toshiba Corp | Air-conditioning heat load estimating device for building |
JPH08285353A (en) * | 1995-04-07 | 1996-11-01 | Toshiba Corp | Air conditioner |
JP2788950B2 (en) * | 1990-04-06 | 1998-08-20 | 清水建設株式会社 | Thermal environment evaluation support system |
JPH1114112A (en) * | 1997-06-20 | 1999-01-22 | Sanpo Denki Kk | Method and apparatus for estimating cleanliness performance of ar in clean room, and readable record medium including program recorded therein |
JP2000291992A (en) * | 1999-02-03 | 2000-10-20 | Sekisui Chem Co Ltd | Energy evaluating device for building or heat storage tank |
JP2001108642A (en) * | 1999-10-07 | 2001-04-20 | Oki Electric Ind Co Ltd | Thermal analyzer for electronic apparatus |
-
2001
- 2001-05-24 JP JP2001155239A patent/JP4570280B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS618541A (en) * | 1984-06-21 | 1986-01-16 | Matsushita Electric Ind Co Ltd | Method for calculating thermal amount in building room |
JP2788950B2 (en) * | 1990-04-06 | 1998-08-20 | 清水建設株式会社 | Thermal environment evaluation support system |
JPH07311166A (en) * | 1994-05-16 | 1995-11-28 | Mitsubishi Electric Corp | Hot fluid cae system |
JPH08188030A (en) * | 1995-01-09 | 1996-07-23 | Nissan Motor Co Ltd | Vehicular air conditioner |
JPH08240335A (en) * | 1995-03-03 | 1996-09-17 | Toshiba Corp | Air-conditioning heat load estimating device for building |
JPH08285353A (en) * | 1995-04-07 | 1996-11-01 | Toshiba Corp | Air conditioner |
JPH1114112A (en) * | 1997-06-20 | 1999-01-22 | Sanpo Denki Kk | Method and apparatus for estimating cleanliness performance of ar in clean room, and readable record medium including program recorded therein |
JP2000291992A (en) * | 1999-02-03 | 2000-10-20 | Sekisui Chem Co Ltd | Energy evaluating device for building or heat storage tank |
JP2001108642A (en) * | 1999-10-07 | 2001-04-20 | Oki Electric Ind Co Ltd | Thermal analyzer for electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2002349937A (en) | 2002-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4570280B2 (en) | Building ventilation and temperature prediction system | |
JP5008738B2 (en) | Building ventilation and temperature prediction system | |
Homod et al. | Effect of different building envelope materials on thermal comfort and air-conditioning energy savings: A case study in Basra city, Iraq | |
Wang et al. | Simplified building model for transient thermal performance estimation using GA-based parameter identification | |
Shen et al. | Numerical study on thermal behavior of classical or composite Trombe solar walls | |
Seferis et al. | Investigation of the performance of a ventilated wall | |
Stavrakakis et al. | Development of a computational tool to quantify architectural-design effects on thermal comfort in naturally ventilated rural houses | |
Carlos et al. | Modelling and simulation of a ventilated double window | |
Karmacharya et al. | Thermal modelling of the building and its HVAC system using Matlab/Simulink | |
Tariku et al. | Determination of indoor humidity profile using a whole-building hygrothermal model | |
Rajput et al. | Heat exposure during a power outage: A simulation study of residences across the metro Phoenix area | |
Jokisalo et al. | A comparison of measured and simulated air pressure conditions of a detached house in a cold climate | |
Eguía-Oller et al. | Empirical validation of a multizone building model coupled with an air flow network under complex realistic situations | |
Dardir et al. | Development of PCM-to-air heat exchanger for integration in building envelope–modeling and validation | |
Yang | The curious case of urban heat island: A systems analysis | |
Arendt et al. | Influence of input data on airflow network accuracy in residential buildings with natural wind-and stack-driven ventilation | |
Sreshthaputra et al. | Improving building design and operation of a Thai Buddhist temple | |
Edtmayer et al. | Modelling virtual sensors for real-time indoor comfort control | |
Jayasree et al. | Assessment of air change effectiveness and thermal comfort in a naturally ventilated kitchen with insect-proof screen using CFD | |
JP5008740B2 (en) | Building ventilation and temperature prediction system | |
JP5398851B2 (en) | Building ventilation and temperature prediction system | |
JP5008739B2 (en) | Building ventilation and temperature prediction system | |
Leclere et al. | A low order envelope model for optimised predictive control of indoor temperature: development methodology and calibration with a numerical model | |
JP5383832B2 (en) | Building ventilation and temperature prediction system | |
Mharzi et al. | A thermal diagnostic method based on a new approach of wall discretization in dynamic state |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080131 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080131 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100810 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100810 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4570280 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |