JP4568866B2 - Visible Light Responsive Titanium Dioxide Photocatalyst Thin Film and Preparation Method - Google Patents
Visible Light Responsive Titanium Dioxide Photocatalyst Thin Film and Preparation Method Download PDFInfo
- Publication number
- JP4568866B2 JP4568866B2 JP2004029331A JP2004029331A JP4568866B2 JP 4568866 B2 JP4568866 B2 JP 4568866B2 JP 2004029331 A JP2004029331 A JP 2004029331A JP 2004029331 A JP2004029331 A JP 2004029331A JP 4568866 B2 JP4568866 B2 JP 4568866B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium dioxide
- sulfur
- visible light
- thin film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 98
- 239000004408 titanium dioxide Substances 0.000 title claims description 46
- 239000010409 thin film Substances 0.000 title claims description 20
- 239000011941 photocatalyst Substances 0.000 title description 4
- 238000002360 preparation method Methods 0.000 title 1
- 239000000758 substrate Substances 0.000 claims description 23
- 239000013077 target material Substances 0.000 claims description 23
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 22
- 229910052717 sulfur Inorganic materials 0.000 claims description 22
- 239000011593 sulfur Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 13
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 claims description 13
- 230000001699 photocatalysis Effects 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000007740 vapor deposition Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 239000010408 film Substances 0.000 description 37
- 238000000151 deposition Methods 0.000 description 13
- 230000031700 light absorption Effects 0.000 description 12
- 238000010304 firing Methods 0.000 description 11
- 230000008021 deposition Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000748 compression moulding Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 4
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Physical Vapour Deposition (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、硫黄(S)を不純物として添加した二酸化チタン光触媒薄膜、及びその作製法に関するものである。さらに詳しくは、空気中で二硫化チタンを高温で焼成することによって得られるターゲット材を用いて、レーザー蒸着法により作製した硫黄添加二酸化チタン薄膜、及びその形成方法に関するものであり、厚さが数百nm(ナノメータ)で均一な膜厚に調整された光触媒二酸化チタン膜が得られ、窒素酸化物等の有害ガスの分解、除去などの環境浄化への応用が図れる。 The present invention relates to a titanium dioxide photocatalytic thin film to which sulfur (S) is added as an impurity, and a method for producing the same. More specifically, the present invention relates to a sulfur-added titanium dioxide thin film produced by laser vapor deposition using a target material obtained by firing titanium disulfide at high temperature in air, and a method for forming the same. A photocatalytic titanium dioxide film adjusted to a uniform film thickness of 100 nm (nanometer) can be obtained, and can be applied to environmental purification such as decomposition and removal of harmful gases such as nitrogen oxides.
クリーンな光エネルギーを利用する二酸化チタン光触媒材料は、空気及び水の浄化、脱臭、殺菌、抗菌などに関する技術に幅広く応用されている。一方で、光触媒反応の更なる効率化、また太陽光を利用できる可視光応答型光触媒材料の開発に向けた研究も盛んに行われている。二酸化チタンへの可視光応答性の付与に関しては、金属イオン添加による電子構造改質によって実現させようという試みが大半を占めてきた。しかし、ほとんどの場合、添加された不純物イオンがキャリアの再結合中心として働くため可視域において触媒能は見られず、さらに紫外域における二酸化チタン本来の光触媒能さえも低下させてしまう。 Titanium dioxide photocatalytic materials that utilize clean light energy have been widely applied to technologies related to purification, deodorization, sterilization, antibacterial, and the like of air and water. On the other hand, researches for further efficiency of the photocatalytic reaction and development of a visible light responsive photocatalytic material that can use sunlight have been actively conducted. With regard to imparting visible light responsiveness to titanium dioxide, most attempts have been made to achieve it by modifying the electronic structure by adding metal ions. However, in most cases, the added impurity ions act as carrier recombination centers, so that no catalytic ability is observed in the visible region, and even the intrinsic photocatalytic ability of titanium dioxide in the ultraviolet region is reduced.
これに対して、非金属イオンの窒素(N)やフッ素(F)を添加し、二酸化チタンの酸素(O)サイトに置換した場合には光触媒能が向上することが知られている。この理由としては、N添加によっては可視光応答性が付与されるためであり、またFを添加した二酸化チタンでは紫外域における光応答性が向上するためだとされている。さらに、NとFよりも大きなイオン半径を持つSをOと置換した場合は、二酸化チタンの電子構造がより大幅に改質されることが報告されている(例えば、非特許文献1,2および3)。 On the other hand, it is known that the photocatalytic performance is improved when nitrogen (N) or fluorine (F), which is a nonmetallic ion, is added and substituted with an oxygen (O) site of titanium dioxide. The reason for this is that visible light responsiveness is imparted by adding N, and that titanium dioxide to which F is added improves the photoresponsiveness in the ultraviolet region. Furthermore, it has been reported that when S having a larger ionic radius than N and F is replaced with O, the electronic structure of titanium dioxide is significantly modified (for example, Non-Patent Documents 1, 2 and 3).
しかしながら、硫黄添加により可視光応答性を有した二酸化チタンで数百nmの均一な膜厚の薄膜作製に関する報告例はない。
本発明の課題は、厚さが数百nm程度の非常に薄い膜状で、可視光下で光触媒性を有する硫黄添加二酸化チタン膜の形成方法を提供することである。 An object of the present invention is to provide a method for forming a sulfur-added titanium dioxide film having a very thin film thickness of about several hundred nm and having photocatalytic properties under visible light.
本発明は、上記の課題を解決するものとして、二硫化チタン粉末を圧縮成形及び焼成することによりターゲット材を形成し、レーザー蒸着法により硫黄添加した二酸化チタン薄膜の作製を可能とするものである。
本発明は、硫黄を不純物として添加した可視光応答型二酸化チタン光触媒薄膜に関するものである。その薄膜は、二硫化チタン粉末を成形し、その成形体を温度350〜450℃の空気中で焼成してターゲット材を得、このターゲット材に真空中でレーザーを照射して
硫黄を少し含んだ二酸化チタンを蒸発させ、350〜450℃に温度制御された蒸着基板上に硫黄添加二酸化チタン薄膜を蒸着させることにより作製される。
The present invention, as to solve the above problems, those that enable the production of titanium dioxide thin films to form a target material, was sulfur addition by a laser deposition method by compression molding and sintering a two vulcanization titanium powder is there.
The present invention relates to a visible light responsive titanium dioxide photocatalyst thin film to which sulfur is added as an impurity. The thin film was formed from titanium disulfide powder, and the molded body was fired in air at a temperature of 350 to 450 ° C. to obtain a target material. The target material was irradiated with a laser in vacuum and contained a little sulfur. It is produced by evaporating titanium dioxide and depositing a sulfur-added titanium dioxide thin film on a deposition substrate temperature-controlled at 350 to 450 ° C.
即ち、本発明においては、ターゲット材は二硫化チタン粉末の圧縮成形体であり、それが空気中で焼成されると、その焼成中に硫黄が蒸発し、その組成としては硫黄を少し含んだ二酸化チタンが形成される。そのレーザー蒸着では、ターゲット材の組成をほぼ保ったまま蒸着膜が形成されるので、蒸着した膜の組成は硫黄を少し含んだ二酸化チタンになる。 That is, in the present invention, the target material is a compression-molded body of titanium disulfide powder, and when it is fired in air, sulfur evaporates during the firing, and its composition is a small amount of sulfur dioxide. Titanium is formed. In the laser deposition, a deposited film is formed while maintaining the composition of the target material substantially, so the composition of the deposited film is titanium dioxide containing a little sulfur.
本発明により、硫黄添加二酸化チタン薄膜の作製が可能となる。また硫黄が酸素の格子位置に置換することによってバンドギャップエネルギー(Eg)が減少し、元の3.2eV よりも低エネルギー側での光応答性が実現できる。以上により、本発明は、可視光応答性を持った新規光触媒薄膜とその形成方法として極めて有効である。 According to the present invention, a sulfur-added titanium dioxide thin film can be produced. In addition, substitution of sulfur to the lattice position of oxygen reduces the band gap energy (Eg), and can realize photoresponsiveness on the lower energy side than the original 3.2 eV. As described above, the present invention is extremely effective as a novel photocatalytic thin film having visible light responsiveness and a method for forming the same.
本発明に係わる光触媒薄膜は、上記のとおり、二硫化チタンを焼成して作製したターゲット材を用いてレーザー蒸着を行うことによって得られるものである。この作製条件としては、二硫化チタン粉末を圧縮成形及び焼成したターゲット材を用いることとレーザー蒸着における基板温度が重要な項目である。 As described above, the photocatalytic thin film according to the present invention is obtained by performing laser vapor deposition using a target material prepared by firing titanium disulfide. As production conditions, the use of a target material obtained by compression-molding and firing titanium disulfide powder and the substrate temperature in laser deposition are important items.
ターゲット材は二硫化チタン粉末を圧縮成形し、空気中で焼成して作製する。二硫化チタン粉末の合成法には特別な制限はなく、粉末であれば高純度なものが市販されている。ターゲット材に成形する方法は特に制限がなく、一般的には、20MPa(メガパスカル)程度の圧力で圧縮成形を行いターゲット材とする。ターゲット材の焼成の方法には特に制限はなく、一般的には、電圧電源、温度コントローラが取り付けられた電気炉を用いて空気中で行うが、酸素を含む不活性ガス中の焼成でもかまわない。通常、焼成温度は350〜450℃、好ましくは400℃前後、時間は2〜10時間、好ましくは5時間前後である。 The target material is produced by compression-molding titanium disulfide powder and firing in air. There is no particular limitation on the method for synthesizing the titanium disulfide powder, and a high-purity powder is commercially available. The method for forming the target material is not particularly limited, and generally, the target material is formed by compression molding at a pressure of about 20 MPa (megapascal). There are no particular limitations on the method of firing the target material, and generally the firing is performed in air using an electric furnace equipped with a voltage power source and a temperature controller, but firing in an inert gas containing oxygen may also be used. . Usually, the firing temperature is 350 to 450 ° C., preferably around 400 ° C., and the time is 2 to 10 hours, preferably around 5 hours.
レーザー蒸着によりガラスなどの基板上に硫黄が添加された二酸化チタン膜を形成させる基板温度は350〜450℃、好ましくは400℃に制限され、真空中で蒸着を行う。レーザー蒸着法において用いるレーザーは、ターゲット物質を蒸発することができるものであればいずれでもよいが、好ましくはエキシマレーザー(波長248nm)である。 以下、実施例を示して、さらに詳しく本発明について説明する。 The substrate temperature for forming a titanium dioxide film to which sulfur is added on a substrate such as glass by laser deposition is limited to 350 to 450 ° C., preferably 400 ° C., and deposition is performed in a vacuum. The laser used in the laser deposition method may be any laser that can evaporate the target material, but is preferably an excimer laser (wavelength 248 nm). Hereinafter, the present invention will be described in more detail with reference to examples.
(実施例1)
二硫化チタン粉末(99.9%)を20MPaの圧力で圧縮成形し、厚さ3mm、直径20mmの円板状のターゲット材を作製した。さらに、作製した円板状ターゲット材を電気炉で焼成した。焼成温度は400℃とし、焼成時間は5時間とした。
Example 1
Titanium disulfide powder (99.9%) was compression-molded at a pressure of 20 MPa to produce a disk-shaped target material having a thickness of 3 mm and a diameter of 20 mm. Furthermore, the produced disk-shaped target material was baked with the electric furnace. The firing temperature was 400 ° C. and the firing time was 5 hours.
レーザー蒸着は、上記の方法で作製した円板状のターゲット材に、1パルス当たり150mJ、繰り返し周波数10Hzのエキシマレーザー(波長248nm)を約1×2mm2の面積に集光させ、真空中(〜10-5Torr) で照射した。ターゲット材より7cmの距離に蒸着用基板を設置し、基板温度を400℃で薄膜を作製した。蒸着基板には、鏡面研磨した厚さ1mmの石英ガラス基板を用いた。3時間の蒸着で得られた硫黄添加二酸化チタン膜の厚さは0.2μm程度であった。作製した膜の結晶構造をX線回折法により評価した結果を図1に示す。このX線回折測定の結果から、石英ガラス基板上に蒸着した二酸化チタン膜がアナターゼ構造の多結晶体で構成されていることがわかる。各ピークはアナターゼ型の二酸化チタンからのピークであり、石英ガラス基板上に多結晶体からなるアナターゼ型の二酸化チタン膜が形成していることが確認できる。
また、同様の作製条件でシリコン基板上に作製した二酸化チタン膜中の含まれる硫黄濃度をラザフォード後方散乱法(RBS)により評価した結果、2at.%(原子数濃度)程度であった。
Laser deposition is performed by concentrating an excimer laser (wavelength 248 nm) of 150 mJ per pulse and a repetition frequency of 10 Hz on an area of about 1 × 2 mm 2 on a disk-shaped target material prepared by the above method in a vacuum (˜ 10 −5 Torr). A deposition substrate was placed at a distance of 7 cm from the target material, and a thin film was produced at a substrate temperature of 400 ° C. As the vapor deposition substrate, a mirror-polished quartz glass substrate having a thickness of 1 mm was used. The thickness of the sulfur-added titanium dioxide film obtained by vapor deposition for 3 hours was about 0.2 μm. The result of evaluating the crystal structure of the produced film by X-ray diffraction is shown in FIG. From the result of this X-ray diffraction measurement, it is understood that the titanium dioxide film deposited on the quartz glass substrate is composed of a polycrystal having anatase structure. Each peak is a peak from anatase-type titanium dioxide, and it can be confirmed that an anatase-type titanium dioxide film made of a polycrystal is formed on a quartz glass substrate.
Moreover, as a result of evaluating the sulfur concentration contained in the titanium dioxide film produced on the silicon substrate under the same production conditions by Rutherford backscattering method (RBS), 2 at. % (Atomic number concentration).
作製した膜の光吸収特性を光吸収測定により調べた。図2に(a)石英ガラス基板上に作製した硫黄添加二酸化チタン膜、(b)硫黄を添加していない二酸化チタン膜、および(c)比較例1で作製した硫黄添加チタン膜の光吸収スペクトルを示す。(a)に示した光吸収スペクトルのように上記の方法で作製した硫黄添加二酸化チタン膜では、硫黄を添加していない二酸化チタン膜に比べて光吸収帯が長波長側に移動していることがわかる。この測定結果から、この薄膜試料のバンドギャップエネルギー(Eg)を評価した結果、約3.05eV(エレクトロンボルト)であった。この値はおよそ波長410nmに相当し、通常のアナターゼ型二酸化チタンのバンドギャップエネルギー(Eg=3.2eV)よりも減少しており、可視光側の光吸収が確認できる。 The light absorption characteristics of the produced film were examined by light absorption measurement. FIG. 2 shows light absorption spectra of (a) a sulfur-added titanium dioxide film produced on a quartz glass substrate, (b) a titanium dioxide film not containing sulfur, and (c) a sulfur-added titanium film produced in Comparative Example 1. Indicates. In the sulfur-added titanium dioxide film produced by the above method as in the light absorption spectrum shown in (a), the light absorption band is shifted to the long wavelength side compared to the titanium dioxide film not containing sulfur. I understand. As a result of evaluating the band gap energy (Eg) of this thin film sample from this measurement result, it was about 3.05 eV (electron volts). This value corresponds to a wavelength of approximately 410 nm, which is smaller than the band gap energy (Eg = 3.2 eV) of normal anatase titanium dioxide, and light absorption on the visible light side can be confirmed.
(比較例1)
本発明では、レーザー蒸着には、二硫化チタン粉末を圧縮成形及び焼成したターゲット材を用いることが重要である。実施例1の比較例として、焼成をしない二硫化チタンターゲット材を用いて薄膜試料の作製を行った。
(Comparative Example 1)
In the present invention, it is important to use a target material obtained by compression molding and baking titanium disulfide powder for laser deposition. As a comparative example of Example 1, a thin film sample was prepared using a titanium disulfide target material that was not fired.
実施例1と同様に二硫化チタンを圧縮成形した二硫化チタンターゲット材を真空中(〜10-5Torr)で蒸発させ、基板温度400℃で石英ガラス基板に厚さ0.2μm程度の堆積し、その後、空気中で400℃の熱処理(5時間保持)を行い、硫黄添加二酸化チタン膜を作製した。作製した膜の結晶構造をX線回折法により評価した結果、アナターゼ構造の二酸化チタンの多結晶体であった。また、実施例1と同様に二酸化チタン膜中に含まれる硫黄濃度をラザフォード後方散乱法(RBS)により評価した結果、実施例1で作製した薄膜試料とほぼ同等の硫黄濃度(3at.%程度)であった。 The titanium disulfide target material obtained by compression-molding titanium disulfide in the same manner as in Example 1 was evaporated in a vacuum (−10 −5 Torr) and deposited on a quartz glass substrate at a substrate temperature of 400 ° C. to a thickness of about 0.2 μm. Thereafter, heat treatment at 400 ° C. (held for 5 hours) was performed in air to produce a sulfur-added titanium dioxide film. As a result of evaluating the crystal structure of the produced film by an X-ray diffraction method, it was a polycrystal of titanium dioxide having an anatase structure. Moreover, as a result of evaluating the sulfur concentration contained in the titanium dioxide film by Rutherford backscattering method (RBS) in the same manner as in Example 1, the sulfur concentration (about 3 at.%) Almost equal to that of the thin film sample produced in Example 1 Met.
この薄膜の光吸収測定の結果を図2(c)に示した。実施例1で作製した試料(a)に比べて光吸収帯が短波長側に移動し、可視光側での光吸収が実現できないことがわかる。即ち、実施例1に記載したターゲット材を用いて薄膜を作製することにより、可視光側に光吸収を有した二酸化チタン膜が得られることがわかる。 The result of light absorption measurement of this thin film is shown in FIG. It can be seen that the light absorption band moves to the short wavelength side as compared with the sample (a) prepared in Example 1, and light absorption on the visible light side cannot be realized. That is, it can be seen that a titanium dioxide film having light absorption on the visible light side can be obtained by producing a thin film using the target material described in Example 1.
(比較例2)
本発明では、レーザー蒸着における基板温度が重要である。実施例1の比較例として、実施例1と同様な条件で、レーザー蒸着における基板温度を変えて薄膜試料の作製を行い、膜の結晶構造をX線回折法により評価した。
(Comparative Example 2)
In the present invention, the substrate temperature in laser deposition is important. As a comparative example of Example 1, a thin film sample was prepared under the same conditions as in Example 1 by changing the substrate temperature in laser deposition, and the crystal structure of the film was evaluated by an X-ray diffraction method.
基板温度300℃で作製した膜は、膜からのX線回折ピークは観測されないことから非結晶状態であることがわかった。基板温度500℃で作製した膜では、アナターゼ型二酸化チタンに対応したX線回折ピークが観測され、アナターゼ型二酸化チタンの多結晶体であることが確認できた。 The film produced at the substrate temperature of 300 ° C. was found to be in an amorphous state since no X-ray diffraction peak was observed from the film. In the film prepared at a substrate temperature of 500 ° C., an X-ray diffraction peak corresponding to anatase-type titanium dioxide was observed, and it was confirmed that the film was a polycrystal of anatase-type titanium dioxide.
しかしながら、実施例1と同様に膜の評価を行った結果、膜試料中の硫黄濃度は、
1at.%以下となり、実施例1に示した膜試料ほど光吸収帯の長波長側への移動は確認できなかった。
(実施例2)
光触媒の特性の一つである光誘起親水性を水の接触角の測定により評価した。接触角の測定は純水の液滴2.0μl(マイクロリットル)を試料表面に滴下し、接触角を計測した。本実験には、ハロゲンランプからの光の波長400nm以下の成分を光学フィルターによりカットした可視光光源を用いた。(●)実施例1で石英ガラス基板上に蒸着した硫黄添加二酸化チタン膜と(○)硫黄を添加していないアナターゼ型二酸化チタン膜の親水性を調べた結果を図3に示した。横軸に可視光の照射時間、縦軸に水の接触角を示している。この図3により、実施例1で作製した二酸化チタン膜の方が、可視光の照射時間とともに水の接触角が減少していることから、可視光下で光誘起親水性が増大している、即ち、可視光下で光触媒性を有していることがわかる。
However, as a result of evaluating the membrane in the same manner as in Example 1, the sulfur concentration in the membrane sample was
1 at. %, The movement of the light absorption band toward the longer wavelength side could not be confirmed in the film sample shown in Example 1.
(Example 2)
The photoinduced hydrophilicity, one of the characteristics of the photocatalyst, was evaluated by measuring the contact angle of water. The contact angle was measured by dropping 2.0 μl (microliter) of pure water droplets onto the sample surface and measuring the contact angle. In this experiment, a visible light source in which a component having a wavelength of 400 nm or less of light from a halogen lamp was cut with an optical filter was used. (●) The results of examining the hydrophilicity of the sulfur-added titanium dioxide film deposited on the quartz glass substrate in Example 1 and the (◯) anatase-type titanium dioxide film not containing sulfur are shown in FIG. The horizontal axis indicates the irradiation time of visible light, and the vertical axis indicates the contact angle of water. According to FIG. 3, the titanium dioxide film produced in Example 1 has a light contact hydrophilicity increased under visible light since the contact angle of water decreases with the irradiation time of visible light. That is, it can be seen that it has photocatalytic properties under visible light.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004029331A JP4568866B2 (en) | 2004-02-05 | 2004-02-05 | Visible Light Responsive Titanium Dioxide Photocatalyst Thin Film and Preparation Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004029331A JP4568866B2 (en) | 2004-02-05 | 2004-02-05 | Visible Light Responsive Titanium Dioxide Photocatalyst Thin Film and Preparation Method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005218957A JP2005218957A (en) | 2005-08-18 |
JP4568866B2 true JP4568866B2 (en) | 2010-10-27 |
Family
ID=34995020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004029331A Expired - Fee Related JP4568866B2 (en) | 2004-02-05 | 2004-02-05 | Visible Light Responsive Titanium Dioxide Photocatalyst Thin Film and Preparation Method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4568866B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4789085B2 (en) * | 2005-02-07 | 2011-10-05 | 独立行政法人日本原子力研究開発機構 | Preparation of crystal-oriented sulfur-doped titanium dioxide film |
CN100342784C (en) * | 2006-03-15 | 2007-10-17 | 厦门大学 | Method for organochlorine pesticide photocatalytic degradation on nano titania |
JP5273700B2 (en) * | 2007-06-04 | 2013-08-28 | 国立大学法人豊橋技術科学大学 | Photocatalytic titanium oxide film and method for producing the same |
TR200804513A1 (en) | 2008-06-19 | 2010-01-21 | Durmu� Ya�Ar Ve O�Ullari Boya, Vern�K Ve Re��Ne Fabr�Kalari | TiO2-ZnO nanocomposite film. |
JP6291823B2 (en) * | 2013-12-10 | 2018-03-14 | 大日本印刷株式会社 | Method for producing photocatalytic functional material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410378A (en) * | 1990-04-27 | 1992-01-14 | Toshiba Lighting & Technol Corp | infrared heater |
WO2001010553A1 (en) * | 1999-08-05 | 2001-02-15 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Photocatalytic material and photocatalytic article |
JP2001205103A (en) * | 2000-01-27 | 2001-07-31 | Toyota Central Res & Dev Lab Inc | Photocatalyst |
JP2002028998A (en) * | 2000-07-13 | 2002-01-29 | Toyota Central Res & Dev Lab Inc | Antifouling material and touch panel |
JP2004000863A (en) * | 2002-06-03 | 2004-01-08 | Japan Atom Energy Res Inst | Method for producing visible light responsive photocatalyst material |
-
2004
- 2004-02-05 JP JP2004029331A patent/JP4568866B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410378A (en) * | 1990-04-27 | 1992-01-14 | Toshiba Lighting & Technol Corp | infrared heater |
WO2001010553A1 (en) * | 1999-08-05 | 2001-02-15 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Photocatalytic material and photocatalytic article |
JP2001205103A (en) * | 2000-01-27 | 2001-07-31 | Toyota Central Res & Dev Lab Inc | Photocatalyst |
JP2002028998A (en) * | 2000-07-13 | 2002-01-29 | Toyota Central Res & Dev Lab Inc | Antifouling material and touch panel |
JP2004000863A (en) * | 2002-06-03 | 2004-01-08 | Japan Atom Energy Res Inst | Method for producing visible light responsive photocatalyst material |
Also Published As
Publication number | Publication date |
---|---|
JP2005218957A (en) | 2005-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method | |
Carneiro et al. | Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering | |
US6794065B1 (en) | Photocatalytic material and photocatalytic article | |
KR100620076B1 (en) | Thin film type titanium dioxide photocatalyst and magnetic material doped with C and N and manufacturing method | |
KR20150141168A (en) | A visible light responsive photocatalyst by hydrophilic modification using polymer material and a method for preparing the same | |
Rawat et al. | Nano-phase titanium dioxide thin film deposited by repetitive plasma focus: Ion irradiation and annealing based phase transformation and agglomeration | |
US20060105911A1 (en) | Photocatalyst material and process for producing the same | |
Ren et al. | Study on the superhydrophilicity of the SiO 2-TiO 2 thin films prepared by sol-gel method at room temperature | |
JP4568866B2 (en) | Visible Light Responsive Titanium Dioxide Photocatalyst Thin Film and Preparation Method | |
Chen et al. | Photocatalytic TiO2 thin films deposited on flexible substrates by radio frequency (RF) reactive magnetron sputtering | |
Cesaria et al. | Pulsed-laser deposition and photocatalytic activity of pure rutile and anatase TiO2 films: Impact of single-phased target and deposition conditions | |
Arias et al. | Effect of annealing treatment on the photocatalytic activity of TiO2 thin films deposited by dc reactive magnetron sputtering | |
Tomaszewski et al. | Effect of substrate sodium content on crystallization and photocatalytic activity of TiO2 films prepared by DC magnetron sputtering | |
JP2008189947A (en) | Perovskite thin film and method for producing the same | |
JP4590579B2 (en) | Highly efficient photocatalytic thin film and method for producing the same | |
Lin et al. | Fabricating TiO 2 photocatalysts by rf reactive magnetron sputtering at varied oxygen partial pressures | |
KR101430285B1 (en) | Method for preparing of TiON photocatalyst | |
JP2003040621A (en) | Visible light respondable titanium oxide and its producing method | |
Domaradzki et al. | Photocatalytic properties of Ti–V oxides thin films | |
KR20060133681A (en) | Photocatalyst titanium dioxide thin film sensitive to visible light and manufacturing method thereof | |
JP4789085B2 (en) | Preparation of crystal-oriented sulfur-doped titanium dioxide film | |
JP2004195439A (en) | Photocatalyst and its production method | |
RU2447190C2 (en) | Method for production of photocatalytically active coating | |
JP2004255332A (en) | Visible light response type photocatalyst | |
Thorat et al. | Photocatalytic activity of nanostructured TiO2 and N-TiO2 thin films deposited onto glass using CA-PVD technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060223 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100720 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |