[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4568387B2 - Powder flow measurement device - Google Patents

Powder flow measurement device Download PDF

Info

Publication number
JP4568387B2
JP4568387B2 JP07575399A JP7575399A JP4568387B2 JP 4568387 B2 JP4568387 B2 JP 4568387B2 JP 07575399 A JP07575399 A JP 07575399A JP 7575399 A JP7575399 A JP 7575399A JP 4568387 B2 JP4568387 B2 JP 4568387B2
Authority
JP
Japan
Prior art keywords
particles
electric field
electrostatic induction
granular material
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07575399A
Other languages
Japanese (ja)
Other versions
JP2000266772A (en
Inventor
嘉二郎 渡邊
冨士生 萱原
Original Assignee
嘉二郎 渡邊
関西オートメイション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉二郎 渡邊, 関西オートメイション株式会社 filed Critical 嘉二郎 渡邊
Priority to JP07575399A priority Critical patent/JP4568387B2/en
Publication of JP2000266772A publication Critical patent/JP2000266772A/en
Application granted granted Critical
Publication of JP4568387B2 publication Critical patent/JP4568387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導管内で空気流に混入されて搬送される煤塵、小麦粉またはセメントのような粉体、あるいは樹脂ペレットのような粒体(以下、「粉粒体」という)の流量または流速を計測する粉粒体の流動計測装置に関する。
【0002】
【従来の技術】
従来、管内固気二相流における粉粒体の流動を計測する手法には、光透過式、差圧式、帯電量式などがある(増田弘昭:粉体プロセスの計測と制御、機械設計、1997,34,No.12,pp81-pp8)。光透過式は、現在のところ、最も一般的な計測方法で、管路内に発光部と受光部を設け、粉粒体粒子に遮蔽され減衰する光の強度から流動を計測する手法である。この方法は、粉粒体の材質,種類や湿度の変化による影響を受けにくいといった利点はあるものの、発光部や受光部に粉粒体粒子が付着すると精度が著しく低下することや、光源である電球が球切れを起こすことから、メンテナンスを頻繁に行う必要があり、維持費がかさむといった問題がある。
【0003】
差圧式は、管路内に適当な絞りを挿入し、固気二相流に伴う絞りの間の圧力差から各相の流量を求める手法である。この方法は、管路内に絞りを設けることで粉流体の付着、蓄積が起こり、輸送を阻害する恐れがある。このため粉流体の流動を計測する機器としては、あまり一般的ではない。
【0004】
帯電量式は、粉流体の粒子の帯電現象を利用した方法である。導管内で摩擦帯電した粉流体の粒子が検出体に衝突することで移動する電荷量を計測する手法である。この方法は、光透過式に比べ、メンテナンスによる作業が軽減できるといった利点が挙げられる。しかし環境や運用条件の変化による影響が大きく、場所により粉流体の粒子の帯電量が異なったり、粉流体粒子が検出体に衝突しなかった場合は、計測できなくなるといった問題点があげられる。また、現在のところ固気二相流における摩擦による粉流体粒子の帯電現象を正確に予測することは難しく、それぞれの環境において、その都度、キヤリブレーションしなければならない。
【0005】
【発明が解決しようとする課題】
本発明は、上記のような課題を解決して、環境や運用条件の変化による影響が少なく、メンテナンスおよびキャリブレーションを軽減できるとともに、連続して高い計測精度でもって粉粒体の流量または流速を計測できる流動計測装置を得ることを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る粉粒体の流動計測装置は、導管に設けられて前記導管内を流れる粉粒体粒子を帯電させる電界荷電部と、前記導管における前記電界荷電部よりも下流に設けられて帯電した粉粒体粒子によって誘導される電気量を検出する静電誘導検出部と、前記検出した電気量から、前記導管内の粉粒体の少なくとも流量を算出する演算部とを備え、前記演算部は、
ρVs'=CVp eT/TL
ただし ρ:粉粒体粒子の数密度(1/m3
Vs:静電誘導検出部にできる空間の体積(m3
Vs':Vs 空間の体積流量(m3 /s)
C:定数
Vp:静電誘導検出部で観測される電圧のピーク値(V)
T:電界荷電部における帯電時刻と静電誘導検出部における
電気量検出時刻との差である遅延時間(s)
TL :再結合・拡散時定数
から粉粒体の流量を求めるものであり、上記CおよびTLは複数測定したTおよびVpから最小二乗法により決定される。
上記構成によれば、電界荷電部を通過する粉粒体粒子は、大きい電荷量に帯電されて静電誘導検出部を通過するので、検出できる電気量が大きくなり、高い計算精度を得ることができる。
【0007】
本発明の好ましい実施形態においては、前記電界荷電部は、コロナ放電によって前記粉粒体粒子に電荷を与えるものである。
上記構成によれば、電界荷電部を通過する粉粒体粒子は、大きい電荷量に一様に帯電される。
【0008】
また、本発明の好ましい他の実施形態においては、前記静電誘導検出部は、前記帯電した粉粒体粒子の移動による静電誘導によって生起される電流を検出するものである。
上記構成によれば、粉粒体粒子が、静電誘導検出部を構成する電極に衝突しないので、電極に付着しない。
【0009】
また本発明の好ましい実施形態においては、前記電界荷電部は粉粒体粒子に対して一定の周期でパルス状に電圧を印加するものである。
上記構成によれば、電界荷電部を通過する粉粒体粒子は、一定の周期で一様に帯電される。
【0011】
さらに本発明の好ましい実施形態においては、前記演算部は、
ν=L/T
ただし ν :電界荷電部における帯電時刻と静電誘導検出部における電気量検出時刻との差である遅延時間Tにおける粉粒体粒子の平均流速(m/s)
L :電界荷電部と静電誘導検出部との間隔(m)
から粉粒体の流速を求める。
【0012】
【発明の実施の形態】
この計測システムは、粉粒体粒子、例えば煙道排ガス中の煤塵やセメント粒子を人工的に帯電させ、速さνで移動するセメント粒子の電界の変化で検出電極に静電誘導させ、この検出電極に発生する微小電流をとらえるものである。
【0013】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の第1実施形態に係る煙道排ガス中の煤塵の流動を計測する固気二相流における粉粒体の流動計測装置の構成を示す図である。図1(A)において、ボイラ11からの排ガスは、送風機1により送出され、電気集塵器12で集塵されたのち、導管2を通って煙突13に送り込まれ、煙突13から大気中に排出される。排ガスは排出気体と煤塵等を含む固気二相流であり、図1(B)に示すように、導管2内で、煤塵粒子3aが排出気体内に分散された固気二相流Mとなって、矢印方向に速度νで送給される。導管2には、固気二相流M内の煤塵粒子3aを一定の時間間隔で一様に帯電させる電界荷電部5が配置され、さらにその下流に、通過する固気二相流M内の帯電した煤塵粒子3bの帯電量qを検出する静電誘導検出部6が配置されている。7は演算部で、電界荷電部5の出力信号V1(t)と静電誘導検出部6の出力信号V2(t)から相互相関による遅延時間Tを算出する遅延時間算出手段7aと、遅延時間Tから固気二相流Aの流速νを算出する流速算出手段7bと、静電誘導検出部6の出力信号V2(t )からピーク電圧Vp を抽出するピーク電圧抽出手段7cと、遅延時間Tとピーク電圧Vp から流量ρVs'を算出する流量算出手段7dと、荷電制御手段7eとを備えている。
【0014】
図2に煤塵粒子が導管2内を移動する様子を示す。導管2内の一つの煤塵粒子3aは、導管に衝突し摩擦帯電するか電気集塵器における電界で帯電している。
いま、この帯電した粒子3bは図2に示すように球状であって、その直径はDp であり、その質量をm 、速さをν、煤塵粒子数密度をρとする。ある時刻で帯電した煤塵粒子3bの帯電電荷量をq0 とする。帯電した煤塵粒子3bは多数存在し群れを作る。この帯電粒子群を帯電雲と呼び、帯電粒子数密度(煤塵粒子群中の単位体積当たりに帯電した粒子の個数)をn、注目する空間体積をVs とする。帯電した煤塵粒子3bの中には正にまた負に帯電したものがある。帯電した煤塵粒子3bは移動中に(再)結合し、帯電粒子数は減少する。この減少の時定数をTL とする。
【0015】
前記煤塵粒子3a,3bに関して、次の仮定を設ける。
(A1)煤塵粒子は同一素材から作られ、その粒子径は同じとする。
(A2)煤塵粒子数密度ρは帯電粒子数密度nに比例するものとする。
(A3)帯電した粒子雲の流れは一様である。
(A4)帯電した粒子雲の帯電粒子数密度nは一定で、再結合時定数も一定である。
(A5)注目する空間の比誘電率ε1 は一定である。
【0016】
図3(a)は、本実施形態の電界荷電部と静電誘導検出部の概略構成を示す断面図、図3(b)は電界荷電部内の煤塵粒子の帯電の態様を説明するための図、図3(c)は静電誘導検出部内における煤塵粒子の電荷量の変化を示す特性図、図3(d)は検出電極からの出力電流の特性図、図3(e)は出力電圧信号の特性図である。
【0017】
図3(a)において、電界荷電部5は、絶縁碍子5a,5aに支持されて導管2内を流れる固気二相流Mの流れに沿って配置されている線電極5bと、導管2の内面に配置されて接地されている円筒形の面電極5cと、一定の時間間隔でもって線電極5aに直流高電圧を印加する高電圧発生器5dとを備えている。また、静電誘導検出部6は、絶縁部材6aに支持されて導管2の内周面に沿って配置されている円筒形の検出電極6bと、この検出電極6bを電気的に遮蔽する遮蔽材6cと、検出器6dとを備えている。図1に示した演算部7は、その荷電制御手段7eから電界荷電部5へ制御信号pを発生し荷電のタイミングを制御する。
また演算部7は、電界荷電部5からの検出信号V1(t)と静電誘導検出部6からの検出信号V2(t)を計算機に取り込み、簡単な演算より煤塵粒子の流速と密度を推定し、そのときの瞬時流動をオンラインで計算する。
【0018】
次に、電界荷電部5の構成とその動作を説明する。これは線対平板電極であり、線電極5bは面電極5cに平行におかれている。線電極5bの半径をr 、線電極5bと面電極5cの間の距離をhとする。両電極間にVc の電圧を加えると、この間に電界が現れ、その電界強度Eは次の(1)式で与えられる。
E=Vc /2.30rlog(2h/r) ‥‥(1)
いま、真空の誘電率ε0 とし、電極間の空間の比誘電率をε1 とする。このとき、この電界荷電により図3(b)に示す直径Dp の煤塵粒子bが帯電できる飽和荷電量q∞は次の(2)式で与えられる。
q∞={1+2(ε1 −1)/(ε1 +2)}πε0 EDp2 ‥‥(2)
【0019】
また、τを荷電時定数とすると、t1 時間だけこの電界空間に存在したときの帯電電荷量q0 は次の(3)式で与えられ、
q0 =q∞×(t1 )/(t1 +τ) ‥‥(3)
t1 ≫τのとき、電荷q0 はq0 =q∞となる。q∞は電界強度Eに比例する。
煤塵粒子は、図2に示したように、衝突等により自然帯電しており、均一に帯電させるためには自然帯電が無視できるほど大きな荷電が必要である。電界強度Eを強くすると、図3(a)の線電極5bでコロナ放電が起きる。このコロナ放電はイオンを大量に生成し、イオン化した空気と煤塵粒子の接触頻度が増え、煤塵粒子の帯電量を急激に増加させる。従って、電極間電圧Vc はコロナ放電が発生する程度の電界になるような値でなければならない。
【0020】
次に、本実施形態の静電誘導検出部6の構成とその作用を図3で説明する。
図3(a)に示す静電誘導検出部6の構造はシリンダ型フアラデーゲージと同じで、検出電極6bから検出器6dに至るまで全体がシールドされている。検出電極6b内の帯電した煤塵粒子3bの移動により引き起こされる静電誘導は、検出電極6b内で平衡状態にあった自由電子に作用し、図3(c)のように検出電極6bから検出器6dの回路内で電子を移動させて、図3(d)のような電流i(t) を発生させる。検出器6dはこの電流を検出し、電流−電圧変換回路6eで図3(e)のような電圧V(t) に変換される。この電流−電圧変換回路6eは、帰還抵抗Rfの値が大きくなっても負帰還の効果により入力インピーダンスが十分に小さくなり、特別のOPアンプを選ばなくても高感度・低雑音の特性をもつている。
【0021】
次に、本実施形態の演算部7による流速の計測動作を、図4を参照して説明する。
電界荷電部5を通過した煤塵粒子3a群は、線電極5bと面電極5cの間に生成されたイオンと衝突して飽和帯電し、一定でかつ自然帯電に比較して高い電荷を帯びた帯電雲3gを形成する。この帯電雲3gを利用して流速を求める。
【0022】
演算部7は、電界荷電部5の高電圧発生器5d(図3)を制御して、線電極5bと面電極5cの間にコロナ発生電圧V1(t)を一定の周期でパルス状に加える。
これに伴い電極間に周期的でパルス状の電界Eが生じる。これに同期して導管2内には人工帯電による帯電雲3gと自然帯電による帯電雲3nが交互に現れて下流方向に流れる。電界荷電部5で人工帯電させた時刻と、Lだけ下流の静電誘導検出部6で検出した電流i(t) の立ち上がり時刻の差T(むだ時間)から、煤塵粒子の平均流速νを次の(4)式で求めることができる。
ν= L/T ……(4)
【0023】
次に、演算部7は、図5に示すように、前記仮定(A1)〜(A5)に基づき、煤塵粒子の質量流量を、静電誘導検出部6で検出した電流i(t) のパルス発生むだ時間Tと振幅ピーク値Vp から質量流量ρVs'を推定する。静電誘導検出部6で帯電粒子の影響をうける空間の体積(注目する体積)はVs である。はじめこの空間が電界荷電部5にあるとする。このとき、空間内の煤塵粒子は帯電し、粒子一つにつき(3)式(あるいは(2)式)のq0 だけ帯電される。この空間内の粒子全体の帯電量Q0 は、前記仮定(A1),(A2)より、次の(5)式で与えられる。
Q0 =nVs q0 ……(5)
【0024】
またこのとき、仮定(A2)より、煤塵粒子数密度ρが帯電粒子数密度nに比例することより、この比例定数をκとして、体積Vs の煤塵粒子の質量は、次の(6)式で与えられる。
ρVs =κnmVs ……(6)
この空間内には帯電していない粒子も存在し、比例定数κはその分を補正する無次元の補正係数である。
【0025】
前記仮定(A3)より、帯電雲3gの注目する体積Vs が形を変えずに導管2にそって流れる。帯電雲3gの電荷量は、時間の経過とともにイオンの再結合や拡散現象によって減少していく。体積Vs の帯電雲3gが電界荷電部5を離れた時刻を0とし、それ以降について帯電雲3gの電荷量qは、再結合・拡散時定数をTL とすると、
dq/dt=−(1/T)q
q(0) =Q0 ……(7)
となる。この方捏式(7)の解は
q(t) =Q0 e-t/TL ……(8)
となる。
【0026】
静電誘導検出部6の電圧変換回路6d(図3)の出力電圧V2(t)は、帯電雲3gが静電誘導検出部6に到達する時刻T=L/νでピーク電圧が現れる。その値Vp は、(5)、(6)、(8)式より、次の(9)式で与えられる。

Figure 0004568387
【0027】
仮定(A1)より煤塵粒子の質量mおよび直径Dp は一定、仮定(A3)および(A4)より比例定数κは一定、仮定(A4)より再結合時定数Tl は一定、さらに仮定(A5)より比誘電率ε1 は一定である。従って次の係数Cも一定となる。
C=κmTL /Rf q0 ……(10)
この定数Cと一定である再結合時定数TL を用いて、(9)式より単位時間当たりのセメント質量流量は、次の(11)式となる。
ρVs'=CVp eT/TL ……(11)
定数Cと時定数TL は理論的に求めにくい。キヤリブレーション実験で求める必要がある。これらの係数を一度求めておけば、セメント質量流量ρVs'は、(11)式に静電誘導検出部6で計測する電圧のピーク値Vp とむだ時間Tを代入することで求められる。
【0028】
上記実施形態の計測システムが煤塵を検出する環境モニタとして有用であるか検証するために線香の煙を用いて以下の実験を行った。
線香は燃え方が一様になるように灰を落とし、できるだけ一定量の煤塵粒子を出すようにした。線香の煙は微粒子の集合体であり、同じ環境のもとで複数の線香を同時に燃やした場合、一定の割合で灰となり同時に燃え尽きる。このことから、発生する煙の煤塵発生量はどの線香も均一であるいえる。従って、煙粒子の煤塵発生量は線香の本数によって整数倍されるものと考えられる。
【0029】
なお、線香による煤塵の発生量の精密計測は困難であったため、ここでは、線香が燃えるときに発生する二酸化炭素などのガス、煙の微粒子など灰以外のもの全てを含める。従って煤塵発生量(流動)はもとの線香の質量から燃え尽きて残った灰を差し引き、その量を燃え尽きるまでの時間で割って求めた。
【0030】
実験システムの概略構成を図6に示す。このシステムの固気二相流Mの流れる方向は、前記実施形態とは逆方向で、送風機1は線香の煙を導管内に吸引する。
実験は、あらかじめ風速計8を用いて送風機1の入力電圧と導管2内を流れる風速υとの関係を導いておき、送風機1の入力電圧を操作することで導管2内の風速υを決定できるようにしてある。煤塵は、外部に漏れないよう上戸を用いて吸引し導管2内に通す。電界荷電部5には図3に示した線対平板電極を使用する。
電極間の電圧=16000V(モジュールの絶対定格による)、電極間の距離h=29mm、線電極の半径r=0.04mm、電極の長さw=21.5cmである。従って、(1)式より電界強度はE=5.5kV/cmとなる。帯電のタイミングはファンクションジェネレータ9のパルス周波数により調整する。検出器6dの帰還抵抗Rf (図3参照)は、10MΩを使用し、検出器6dの出力V2(t)とタイミングパルスは図示していないA/Dコンバータを介して演算部7のコンピュータに取り込まれる。
【0031】
実験は、線香の本数を1 〜9 本まで増やしていき、それぞれの本数においてファン入力電圧を4〜24V まで1V間隔で変化させる。そのときの出力電圧、タイミングパルス、線香の本数、ファン入力電圧を測定し演算処理を行った。
【0032】
測定した線香の本数と検出器6dの出力電圧V2(t)と算出した遅延時間Tから、(11)式の定数Cと時定数TL を最小二乗法により決定する。このとき、実験条件より線香の本数は煤塵質量に比例することから、ρVs'は線香の本数とし、C=7.02、TL =6.05と決定した。従って、線香の本数は、次の(12)式に検出器6dの出力電圧V2(t)と遅延時間Tを代入することで理論的に求まる。
ρVs'=7.02Vp e-T/6.05 … (12)
実際に測定した線香の本数と上式により求めた線香の本数との関係を、図7に示す。図7には、測定値の平均値と標準偏差が示されている。
【0033】
この結果より、算出値は理論値に大体一致するが、線香の本数が増えるにつれ、誤差が大きくなる。また、遅延時間(流速)によっても偏りを生じる。これは、実験方法や湿度の変化などに原因があると思われる。実験を進めるときに、線香の本数1本目の場合の測定、2本目の場合の測定と本数を増やしていくとき、新しい線香と交換せず続けて燃やしていったため、線香が短くなり、上戸との距離が開いた。線香と上戸の距離が開くと、上戸に付着する煤塵が増え、静電誘導検出部6に到達する粒子数密度が減ることや、上戸の入り口付近と離れた堤所では煙の吸引力が異なり、線香の燃え方に違いをもたらした可能性がある。また、湿度の変化により測定する空間の比誘電率が変化した可能性も考えられる。
【0034】
次に、図1(B)に示した流動計測装置を、空気流によって搬送される短い円柱状の樹脂ペレットのような粒状体の搬送量を測定するパーティクルカウンタとして用いる第2実施形態について説明する。
図8は、図1に示した静電誘導検出器6を樹脂ボールを一つ通過させたときの出力信号V2(t)の波形とそのときの反応時間T(環境モニタの変数とは無関係)を示している。測定対象が樹脂ボールのような粒状体の場合は、図8のような波形がいくつも現れる。この波形を数えることで粒状体をカウントすることができる。この場合、反応時間Tが早いほどより正確に一つ一つの粒状体をカウントすることができる。そこで、検出器6の構成の工夫や信号処理を併用することで、応答速度Tを早くする方法を考案した。
【0035】
まず、信号処理について説明する。
毎回、出力波形の形状が似ていることから出力波形に類似したモデル波形を用意し、図9(a)に示すように、図8の波形と同じ形状のものが現れたときは「1」を、それ以外のところでは「0」を返す関数を作成する。検出器6dの出力波形に求めた関数を掛けることで、図9(b)のような反応時間を短縮した波形を得ることができる。その実験結果の一例を図10に示す。
図10は、信号処理を施す前の波形aと信号処理後の波形bを示している。信号処理後の波形は前の物に比べ反応時間Tが約1/3になっている。
【0036】
この実施形態によれば、固気二相流内の粉粒体粒子を上流側で人工的に帯電させ、帯電した粉粒体粒子の移動に伴う静電誘導で下流側に配置した検出電極に発生する微小電流(電圧)を下流側で検出する構成としたので、検出電極に発生する電流(電圧)の大きさから粉粒体の質量流量を計測することができ、また、上流側の人工的な帯電のタイミングと下流側での検出タイミングから流れの速さを計測することができる。また、疎な状態で流れる樹脂ペレットサイズの粒子では、個々の粒子の流れる様子を検出することができる。
【0037】
この実施形態によって次のような知見を得た。
* 検出電極の厚みは薄い方が反応時間を短縮できる。
* 上記の信号処理が有効である。
このことから、現在のところ検出電極の工夫や信号処理を施すことによって、間隔が約1cm以上の離れて搬送される粒状体を一つずつカウントすることができる。
【0038】
図11は本発明の第3実施形態を示す。この実施形態では、粉粒体の一種であるセメント粒子の流量および速度が計測される。図11において、1は送風機で、導管2内に空気Aを矢印方向に送気する。30はセメント粉末であり、ホッパー4から導管2内に供給され、気流内に分散された固気二相流Mとなって矢印方向に速度νで送給される。導管2におけるホッパー4の下流には、固気二相流M内のセメントの粒子30aを一定の時間間隔で一様に帯電させる電界荷電部5が配置され、さらにその下流に、通過する固気二相流M内の帯電したセメント粒子30bの帯電量qを検出する静電誘導検出部6が配置されている。演算部7の構成は図1に示した第1実施形態と同一である。
【0039】
この第3実施形態においても、帯電したセメント粒子30bの流速νと質量流量ρVs'は、それぞれ(4)式と(11)式から算出される。質量流量ρVs'を算出するための定数Cと再結合時定数TL は次のようなキャリブレーション実験によって求める。図12に示すように、図11と同一の導管2内に、流量の調整が可能で、調整された正確な流量のセメント粒子30aを供給できる定量供給装置15を挿入し、上記と同様の要領で、演算部7により遅れ時間Tとピーク電圧VP を測定する。流量を変更して、この測定を繰り返し、既知の質量流量ρVs'と、測定された遅れ時間Tとピーク電圧VP とを使用し、最小二乗法により、CとTL を決定する。
【0040】
なお、前記各実施形態では電界荷電部を直線対平板電極で構成したが、この構造に限られるものではなく、電気集塵機やイオナイザとして製品化されているもののなかから、設置環境や運用条件により適当なものを選ぶことができる。
【0041】
【発明の効果】
本発明によれば、導管に設けられ前記導管内を流れる粉粒体粒子を帯電させる電界荷電部と、前記電界荷電部よりも下流に設けられて帯電した粉粒体粒子によって誘導される電気量を検出する静電誘導検出部と、前記検出した電気量から前記導管内の粉粒体の流量と流速の少なくとも一方を算出する演算部とを備えているから、粉粒体の流量と流速を高精度で計測することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る煤塵の流動計測装置を示す概略側面図である。
【図2】本実施形態におけるセメント粒子が導管内を移動する様子を示す図である。
【図3】(a)は本実施形態の電界荷電部と静電誘導検出部の概略構成を示す断面図、(b)は電界荷電部内のセメント粒子の帯電の態様を説明するための図、(c)は静電誘導検出部内におけるセメント粒子の電荷量の変化を示す特性図、(d)は検出電極からの出力電流の特性図、(e)は出力電圧信号の特性図である。
【図4】本実施形態の演算部による流速の計測動作を説明するための図である。
【図5】本実施形態の演算部による流動の計測動作を説明するための図である。
【図6】本実施形態の有用性を検証する実験システムの概略構成を示す図である。
【図7】実際に測定した線香の本数と式により求めた線香の本数との関係を示す図である。
【図8】本発明の第2実施形態における測定対象物が樹脂ボールのような粒状体の場合の検出信号波形を示す図である。
【図9】同実施形態における信号処理方法の説明図である。
【図10】同実施形態における信号処理を施す前の波形aと信号処理後の波形bを示す図である。
【図11】本発明の第3実施形態に係るセメント粒子の流動計測装置を示す概略側面図である。
【図12】同実施形態におけるキャリブレーションのための実験装置を示す概略側面図である。
【符号の説明】
1…送風機、2…導管、3…粉粒体(セメント)、3a…セメント粒子、3b…帯電したセメント粒子、4…ホッパー、5…電界荷電部、5a…絶縁碍子、5b…線電極、5c…面電極、5d…高圧発生器、6…静電誘導検出部、6a… 絶縁部材、6b…検出電極、6c…遮蔽材、6d…検出器、6e…電流−電圧変換回路、7…演算部、8…風速計、9…ファンクションジェネレータ。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the flow rate or flow rate of dust particles such as dust, flour or cement, or particles such as resin pellets (hereinafter referred to as “powder particles”) conveyed in the air stream in the conduit is controlled. The present invention relates to a flow measurement device for powder particles to be measured.
[0002]
[Prior art]
Conventional methods for measuring the flow of particles in a solid-gas two-phase flow in a pipe include light transmission, differential pressure, and charge amount (Hiroaki Masuda: Measurement and control of powder processes, mechanical design, 1997) 34, No. 12, pp81-pp8). At present, the light transmission method is the most common measurement method, and is a method in which a light emitting part and a light receiving part are provided in a pipe and the flow is measured from the intensity of light that is shielded and attenuated by powder particles. Although this method has the advantage that it is not easily affected by changes in the material, type, and humidity of the granular material, if the granular particles adhere to the light emitting part or the light receiving part, the accuracy is significantly reduced, or the light source Since the bulb breaks, there is a problem that maintenance is required frequently and maintenance costs increase.
[0003]
The differential pressure type is a method for obtaining a flow rate of each phase from a pressure difference between the throttles accompanying a solid-gas two-phase flow by inserting an appropriate throttle in the pipe. In this method, by providing a throttle in the pipeline, powder fluid adheres and accumulates, which may impede transportation. For this reason, it is not very common as a device for measuring the flow of powdered fluid.
[0004]
The charge amount type is a method that utilizes the charging phenomenon of particles of powder fluid. This is a technique for measuring the amount of electric charge that moves when particles of powdered fluid frictionally charged in a conduit collide with a detection body. This method has an advantage that work by maintenance can be reduced as compared with the light transmission type. However, it is greatly affected by changes in the environment and operating conditions, and there is a problem that measurement becomes impossible when the charge amount of the powder particles varies depending on the location, or when the powder fluid particles do not collide with the detection body. At present, it is difficult to accurately predict the charging phenomenon of pulverized fluid particles due to friction in a solid-gas two-phase flow, and calibration must be performed each time in each environment.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, reduces the influence of changes in the environment and operating conditions, reduces maintenance and calibration, and continuously reduces the flow rate or flow rate of the granular material with high measurement accuracy. An object is to obtain a flow measuring device capable of measuring.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a flow measurement apparatus for a granular material according to the present invention includes an electric field charging unit provided in a conduit for charging granular particles flowing in the conduit, and the electric field charging unit in the conduit. An electrostatic induction detection unit that detects the amount of electricity that is provided downstream from the charged particle particles and that calculates the flow rate of at least the particles in the conduit from the detected amount of electricity. And the calculation unit includes:
ρVs' = CVp e T / TL
Where ρ: number density of powder particles (1 / m 3 )
Vs: Volume of space created in the electrostatic induction detection unit (m 3 )
Vs': Volume flow rate of Vs space (m 3 / s)
C: Constant
Vp: Peak value of the voltage (V) observed at the electrostatic induction detector
T: Charging time in the electric field charging unit and electrostatic induction detection unit
Delay time (s), which is the difference from the time of detection of electricity
TL: The flow rate of the granular material is obtained from the recombination / diffusion time constant, and the above C and TL are determined by the least square method from a plurality of measured T and Vp.
According to the above configuration, since the granular particles passing through the electric field charging unit are charged with a large charge amount and pass through the electrostatic induction detection unit, the amount of electricity that can be detected is increased, and high calculation accuracy can be obtained. it can.
[0007]
In preferable embodiment of this invention, the said electric field charge part gives an electric charge to the said granular material particle | grains by corona discharge.
According to the said structure, the granular material particle | grains which pass an electric field charge part are uniformly charged by the big charge amount.
[0008]
In another preferred embodiment of the present invention, the electrostatic induction detector detects a current generated by electrostatic induction caused by movement of the charged powder particles.
According to the said structure, since a granular material particle does not collide with the electrode which comprises an electrostatic induction detection part, it does not adhere to an electrode.
[0009]
Moreover, in preferable embodiment of this invention, the said electric field charge part applies a voltage in a pulse form with a fixed period with respect to a granular material particle | grain.
According to the said structure, the granular material particle | grains which pass an electric field charging part are charged uniformly by a fixed period.
[0011]
Furthermore, in preferable embodiment of this invention, the said calculating part is
ν = L / T
Where ν is the average flow velocity (m / s) of the granular particles in the delay time T, which is the difference between the charging time in the electric field charging unit and the electric quantity detection time in the electrostatic induction detection unit
L: Distance between the electric field charging unit and the electrostatic induction detection unit (m)
From this, the flow rate of the powder is obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
This measurement system artificially charges powder particles, such as dust and cement particles in flue gas, and electrostatically induces the detection electrode by changing the electric field of cement particles moving at a speed ν. It captures the minute current generated in the electrode.
[0013]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a granular material flow measurement device in a solid-gas two-phase flow for measuring the flow of soot in flue exhaust gas according to the first embodiment of the present invention. In FIG. 1A, the exhaust gas from the boiler 11 is sent out by the blower 1, collected by the electric dust collector 12, sent to the chimney 13 through the conduit 2, and discharged from the chimney 13 to the atmosphere. Is done. The exhaust gas is a solid-gas two-phase flow including exhaust gas and soot dust. As shown in FIG. 1B, the solid-gas two-phase flow M in which dust particles 3a are dispersed in the exhaust gas in the conduit 2 Then, it is fed at a speed ν in the direction of the arrow. The conduit 2 is provided with an electric field charging unit 5 for uniformly charging the dust particles 3a in the solid-gas two-phase flow M at a constant time interval, and further downstream of the electric-charge unit 5 in the solid-gas two-phase flow M passing therethrough. An electrostatic induction detector 6 for detecting the charge amount q of the charged dust particles 3b is disposed. Reference numeral 7 denotes an arithmetic unit, a delay time calculating means 7a for calculating a delay time T due to cross-correlation from the output signal V1 (t) of the electric field charging unit 5 and the output signal V2 (t) of the electrostatic induction detecting unit 6, and a delay time A flow velocity calculation means 7b for calculating the flow velocity ν of the solid-gas two-phase flow A from T; a peak voltage extraction means 7c for extracting the peak voltage Vp from the output signal V2 (t) of the electrostatic induction detection section 6; And a flow rate calculation means 7d for calculating a flow rate ρVs' from the peak voltage Vp, and a charge control means 7e.
[0014]
FIG. 2 shows how dust particles move in the conduit 2. One dust particle 3a in the conduit 2 collides with the conduit and is triboelectrically charged or charged by an electric field in the electric dust collector.
Now, this charged particle 3b is spherical as shown in FIG. 2, and its diameter is Dp, its mass is m, its speed is ν, and the dust particle number density is ρ. Let q0 be the charge amount of the dust particles 3b charged at a certain time. Many charged dust particles 3b exist and form a group. This charged particle group is called a charged cloud, and the charged particle number density (the number of charged particles per unit volume in the dust particle group) is n, and the spatial volume of interest is Vs. Some charged dust particles 3b are positively and negatively charged. The charged dust particles 3b are (re) coupled during the movement, and the number of charged particles decreases. Let TL be the time constant of this decrease.
[0015]
The following assumptions are made regarding the dust particles 3a and 3b.
(A1) The dust particles are made of the same material and have the same particle diameter.
(A2) The dust particle number density ρ is proportional to the charged particle number density n.
(A3) The flow of the charged particle cloud is uniform.
(A4) The charged particle number density n of the charged particle cloud is constant, and the recombination time constant is also constant.
(A5) The relative dielectric constant ε 1 of the space of interest is constant.
[0016]
FIG. 3A is a cross-sectional view showing a schematic configuration of the electric field charging unit and the electrostatic induction detection unit of the present embodiment, and FIG. 3B is a diagram for explaining a mode of charging dust particles in the electric field charging unit. 3 (c) is a characteristic diagram showing a change in the charge amount of the dust particles in the electrostatic induction detection unit, FIG. 3 (d) is a characteristic diagram of an output current from the detection electrode, and FIG. 3 (e) is an output voltage signal. FIG.
[0017]
In FIG. 3A, the electric field charging unit 5 includes a line electrode 5b supported by the insulators 5a and 5a and disposed along the flow of the solid-gas two-phase flow M flowing in the conduit 2; A cylindrical surface electrode 5c arranged on the inner surface and grounded, and a high voltage generator 5d for applying a DC high voltage to the line electrode 5a at a constant time interval are provided. The electrostatic induction detection unit 6 includes a cylindrical detection electrode 6b supported by the insulating member 6a and disposed along the inner peripheral surface of the conduit 2, and a shielding material that electrically shields the detection electrode 6b. 6c and a detector 6d. The arithmetic unit 7 shown in FIG. 1 generates a control signal p from the charge control means 7e to the electric field charging unit 5 to control the timing of charging.
The calculation unit 7 takes the detection signal V1 (t) from the electric field charging unit 5 and the detection signal V2 (t) from the electrostatic induction detection unit 6 into a computer, and estimates the flow velocity and density of dust particles by simple calculation. And the instantaneous flow at that time is calculated online.
[0018]
Next, the configuration and operation of the electric field charging unit 5 will be described. This is a line-to-plate electrode, and the line electrode 5b is parallel to the surface electrode 5c. Assume that the radius of the line electrode 5b is r and the distance between the line electrode 5b and the surface electrode 5c is h. When a voltage of Vc is applied between both electrodes, an electric field appears between them, and the electric field strength E is given by the following equation (1).
E = Vc / 2.30 rlog (2 h / r) (1)
Now, let the dielectric constant ε 0 of the vacuum and the relative dielectric constant of the space between the electrodes be ε 1 . At this time, a saturation charge amount q∞ that can charge the dust particles b having the diameter Dp shown in FIG. 3B by this electric field charging is given by the following equation (2).
q∞ = {1 + 2 (ε 1 −1) / (ε 1 +2)} πε 0 EDp 2 (2)
[0019]
If τ is a charge time constant, the charge amount q0 when it exists in this electric field space for t1 time is given by the following equation (3):
q0 = q∞ × (t1) / (t1 + τ) (3)
When t1 >> τ, the charge q0 is q0 = q∞. q∞ is proportional to the electric field strength E.
As shown in FIG. 2, the dust particles are naturally charged by collision or the like, and in order to uniformly charge the particles, a large charge is required so that the natural charge can be ignored. When the electric field strength E is increased, corona discharge occurs at the line electrode 5b in FIG. This corona discharge generates a large amount of ions, the contact frequency between the ionized air and the dust particles increases, and the charge amount of the dust particles increases rapidly. Therefore, the interelectrode voltage Vc must be a value that provides an electric field to the extent that corona discharge occurs.
[0020]
Next, the configuration and operation of the electrostatic induction detection unit 6 of this embodiment will be described with reference to FIG.
The structure of the electrostatic induction detection unit 6 shown in FIG. 3A is the same as that of the cylinder type Faraday gauge, and the whole is shielded from the detection electrode 6b to the detector 6d. The electrostatic induction caused by the movement of the charged dust particles 3b in the detection electrode 6b acts on free electrons that are in an equilibrium state in the detection electrode 6b, and the detector from the detection electrode 6b as shown in FIG. 3C. Electrons are moved in the circuit 6d to generate a current i (t) as shown in FIG. The detector 6d detects this current and converts it to a voltage V (t) as shown in FIG. 3 (e) by the current-voltage conversion circuit 6e. This current-voltage conversion circuit 6e has a sufficiently low input noise due to the negative feedback effect even when the value of the feedback resistor Rf is large, and has high sensitivity and low noise characteristics even if a special OP amplifier is not selected. ing.
[0021]
Next, the flow velocity measurement operation by the calculation unit 7 of this embodiment will be described with reference to FIG.
The dust particles 3a that have passed through the electric field charging unit 5 collide with ions generated between the line electrode 5b and the surface electrode 5c and are saturated and charged, and are charged with a constant and higher charge compared to natural charging. Cloud 3g is formed. The flow velocity is obtained using 3 g of the charged cloud.
[0022]
The calculation unit 7 controls the high voltage generator 5d (FIG. 3) of the electric field charging unit 5 to apply a corona generation voltage V1 (t) between the line electrode 5b and the surface electrode 5c in a pulsed manner with a constant period. .
Along with this, a periodic and pulsed electric field E is generated between the electrodes. In synchronism with this, a charged cloud 3g by artificial charging and a charged cloud 3n by natural charging appear alternately in the conduit 2 and flow downstream. From the difference T (dead time) between the time at which the electric field charging unit 5 artificially charges and the rise time of the current i (t) detected by the electrostatic induction detection unit 6 downstream by L, the average dust particle velocity ν is (4).
ν = L / T (4)
[0023]
Next, as shown in FIG. 5, the calculation unit 7 calculates the pulse of the current i (t) detected by the electrostatic induction detection unit 6 based on the assumptions (A1) to (A5). The mass flow rate ρVs ′ is estimated from the generated dead time T and the amplitude peak value Vp. The volume of the space (the volume of interest) that is affected by the charged particles in the electrostatic induction detector 6 is Vs. First, it is assumed that this space is in the electric field charging unit 5. At this time, the dust particles in the space are charged, and each particle is charged by q0 in the equation (3) (or (2)). From the assumptions (A1) and (A2), the charge amount Q0 of the entire particles in this space is given by the following equation (5).
Q0 = nVs q0 (5)
[0024]
At this time, from the assumption (A2), since the dust particle number density ρ is proportional to the charged particle number density n, the mass of the dust particles of the volume Vs is expressed by the following equation (6), where κ is the proportionality constant. Given.
ρVs = κnmVs (6)
There are also uncharged particles in this space, and the proportionality constant κ is a dimensionless correction coefficient that corrects that amount.
[0025]
From the assumption (A3), the volume Vs of interest of the charged cloud 3g flows along the conduit 2 without changing its shape. The amount of charge in the charged cloud 3g decreases with time due to ion recombination and diffusion. The time when the charged cloud 3g of the volume Vs leaves the electric field charging portion 5 is 0, and the charge amount q of the charged cloud 3g is TL when the recombination / diffusion time constant is TL.
dq / dt =-(1 / T) q
q (0) = Q0 (7)
It becomes. The solution of this equation (7) is q (t) = Q0 e -t / TL (8)
It becomes.
[0026]
The output voltage V2 (t) of the voltage conversion circuit 6d (FIG. 3) of the electrostatic induction detection unit 6 has a peak voltage at time T = L / ν when the charged cloud 3g reaches the electrostatic induction detection unit 6. The value Vp is given by the following equation (9) from the equations (5), (6), and (8).
Figure 0004568387
[0027]
From the assumption (A1), the mass m and the diameter Dp of the dust particles are constant, from the assumptions (A3) and (A4), the proportionality constant κ is constant, from the assumption (A4), the recombination time constant Tl is constant, and from the assumption (A5) The relative dielectric constant ε 1 is constant. Therefore, the next coefficient C is also constant.
C = κmTL / Rf q0 (10)
Using this constant C and a constant recombination time constant TL, the cement mass flow rate per unit time is given by the following equation (11) from equation (9).
ρVs ′ = CVp e T / TL (11)
The constant C and the time constant TL are theoretically difficult to obtain. It needs to be obtained by a calibration experiment. Once these coefficients are obtained, the cement mass flow rate ρVs ′ can be obtained by substituting the peak value Vp of the voltage measured by the electrostatic induction detector 6 and the dead time T into the equation (11).
[0028]
In order to verify whether the measurement system of the above embodiment is useful as an environmental monitor for detecting soot dust, the following experiment was conducted using incense smoke.
The incense stick dropped ash so that the burning method was uniform, and as much dust particles as possible were emitted. Incense smoke is an aggregate of fine particles. When multiple incense sticks are burned simultaneously in the same environment, they become ash at a constant rate and burn out at the same time. From this, it can be said that the incense generation amount of the generated smoke is uniform for all incense sticks. Therefore, it is considered that the generation amount of smoke particles is multiplied by an integer by the number of incense sticks.
[0029]
In addition, since it was difficult to precisely measure the amount of dust generated by the incense stick, here, all the gas other than ash such as gas such as carbon dioxide generated when the incense stick burns and fine particles of smoke are included. Therefore, the amount of dust generated (flow) was obtained by subtracting the remaining ash from the mass of the original incense stick and dividing that amount by the time to burn out.
[0030]
A schematic configuration of the experimental system is shown in FIG. The flow direction of the solid-gas two-phase flow M of this system is opposite to that of the above embodiment, and the blower 1 sucks incense smoke into the conduit.
In the experiment, an anemometer 8 is used in advance to derive the relationship between the input voltage of the blower 1 and the wind speed υ flowing in the conduit 2, and the wind speed υ in the conduit 2 can be determined by operating the input voltage of the blower 1. It is like that. The dust is sucked using the upper door so as not to leak to the outside, and is passed through the conduit 2. The electric field charging unit 5 uses the line-pair plate electrode shown in FIG.
The voltage between the electrodes = 16000 V (depending on the absolute rating of the module), the distance between the electrodes h = 29 mm, the radius r of the line electrode r = 0.04 mm, and the length w of the electrode = 21.5 cm. Therefore, the electric field strength is E = 5.5 kV / cm from the equation (1). The timing of charging is adjusted by the pulse frequency of the function generator 9. The feedback resistance Rf (see FIG. 3) of the detector 6d uses 10 MΩ, and the output V2 (t) and timing pulse of the detector 6d are taken into the computer of the arithmetic unit 7 via an A / D converter not shown. It is.
[0031]
In the experiment, the number of incense sticks is increased from 1 to 9, and the fan input voltage is changed at 1V intervals from 4 to 24V in each number. The output voltage, timing pulse, number of incense sticks, and fan input voltage at that time were measured and processed.
[0032]
From the measured number of incense sticks, the output voltage V2 (t) of the detector 6d and the calculated delay time T, the constant C and the time constant TL in the equation (11) are determined by the least square method. At this time, since the number of incense sticks is proportional to the dust mass from the experimental conditions, ρVs ′ is the number of incense sticks, and C = 7.02 and TL = 6.05. Therefore, the number of incense sticks can be found theoretically by substituting the output voltage V2 (t) of the detector 6d and the delay time T into the following equation (12).
ρVs ′ = 7.02 Vp e −T / 6.05 (12)
FIG. 7 shows the relationship between the number of incense sticks actually measured and the number of incense sticks obtained by the above formula. FIG. 7 shows the average value and standard deviation of the measured values.
[0033]
From this result, the calculated value roughly matches the theoretical value, but the error increases as the number of incense sticks increases. In addition, bias is caused by the delay time (flow velocity). This seems to be caused by experimental methods and changes in humidity. When proceeding with the experiment, when the number of incense sticks was measured in the first case, and when the number of second incense sticks was increased, the incense sticks were shortened without replacing them with new incense sticks. The distance opened. When the distance between the incense stick and Ueto increases, soot adhering to the Ueto increases, the number density of particles reaching the electrostatic induction detector 6 decreases, and the smoke suction force differs between the vicinity of the entrance of the Ueto and the remote dam. This may have made a difference in the way incense burns. It is also possible that the relative permittivity of the space to be measured has changed due to changes in humidity.
[0034]
Next, a second embodiment will be described in which the flow measuring device shown in FIG. 1B is used as a particle counter that measures the conveyance amount of a granular material such as a short cylindrical resin pellet conveyed by an air flow. .
FIG. 8 shows the waveform of the output signal V2 (t) when one resin ball passes through the electrostatic induction detector 6 shown in FIG. 1 and the reaction time T at that time (regardless of environmental monitor variables). Is shown. When the measurement object is a granular material such as a resin ball, a number of waveforms as shown in FIG. 8 appear. By counting this waveform, the granular material can be counted. In this case, each granular body can be counted more accurately as the reaction time T is earlier. Therefore, a method for increasing the response speed T by contriving the configuration of the detector 6 and signal processing has been devised.
[0035]
First, signal processing will be described.
Since the shape of the output waveform is similar each time, a model waveform similar to the output waveform is prepared. As shown in FIG. 9A, when a waveform having the same shape as the waveform of FIG. And a function that returns “0” in other cases. By multiplying the output waveform of the detector 6d by the obtained function, a waveform with a shortened reaction time as shown in FIG. 9B can be obtained. An example of the experimental results is shown in FIG.
FIG. 10 shows a waveform a before signal processing and a waveform b after signal processing. The waveform after the signal processing has a reaction time T of about 1/3 compared to the previous one.
[0036]
According to this embodiment, the granular particles in the solid-gas two-phase flow are artificially charged on the upstream side, and the detection electrode disposed on the downstream side by electrostatic induction accompanying the movement of the charged granular particles is applied to the detection electrode. Since it is configured to detect the small current (voltage) generated downstream, the mass flow rate of the granular material can be measured from the magnitude of the current (voltage) generated at the detection electrode, and the upstream artificial The speed of flow can be measured from the timing of typical charging and the detection timing on the downstream side. In addition, it is possible to detect the flow of individual particles in the resin pellet size particles flowing in a sparse state.
[0037]
The following knowledge was acquired by this embodiment.
* The thinner the detection electrode, the shorter the reaction time.
* The above signal processing is effective.
From this fact, it is possible to count the granular materials conveyed one by one apart with an interval of about 1 cm or more by presenting the detection electrode and signal processing.
[0038]
FIG. 11 shows a third embodiment of the present invention. In this embodiment, the flow rate and speed of cement particles, which are a kind of granular material, are measured. In FIG. 11, reference numeral 1 denotes a blower that feeds air A into the conduit 2 in the direction of the arrow. Reference numeral 30 denotes cement powder, which is supplied from the hopper 4 into the conduit 2 and is fed into the gas-solid two-phase flow M dispersed in the airflow at a speed ν in the direction of the arrow. An electric field charging unit 5 that uniformly charges cement particles 30 a in the solid-gas two-phase flow M at a constant time interval is disposed downstream of the hopper 4 in the conduit 2, and further, the solid gas that passes therethrough is disposed downstream of the hopper 4. An electrostatic induction detection unit 6 that detects the charge amount q of the charged cement particles 30b in the two-phase flow M is disposed. The configuration of the calculation unit 7 is the same as that of the first embodiment shown in FIG.
[0039]
Also in the third embodiment, the flow velocity ν and the mass flow rate ρVs ′ of the charged cement particles 30b are calculated from the equations (4) and (11), respectively. The constant C and the recombination time constant TL for calculating the mass flow rate ρVs ′ are obtained by the following calibration experiment. As shown in FIG. 12, a fixed amount supply device 15 capable of adjusting the flow rate and supplying cement particles 30a having an adjusted and accurate flow rate is inserted into the same conduit 2 as in FIG. Then, the delay time T and the peak voltage VP are measured by the calculation unit 7. This measurement is repeated by changing the flow rate, and C and TL are determined by the least square method using the known mass flow rate ρVs ′, the measured delay time T and the peak voltage VP.
[0040]
In each of the above-described embodiments, the electric field charging unit is configured with a straight pair of flat plate electrodes. However, the present invention is not limited to this structure, and is suitable for the installation environment and operating conditions because it is commercialized as an electrostatic precipitator or ionizer. You can choose anything.
[0041]
【The invention's effect】
According to the present invention, an electric field charging unit that is provided in a conduit and charges the granular particles flowing in the conduit, and an amount of electricity that is induced by the charged granular particles that are provided downstream from the electric field charging unit. And a calculation unit that calculates at least one of a flow rate and a flow rate of the granular material in the conduit from the detected amount of electricity. It can be measured with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing a dust flow measuring apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a state in which cement particles move in a conduit according to the present embodiment.
FIG. 3A is a cross-sectional view showing a schematic configuration of an electric field charging unit and an electrostatic induction detection unit of the present embodiment, and FIG. 3B is a diagram for explaining an aspect of charging cement particles in the electric field charging unit; (C) is a characteristic diagram showing a change in the amount of charge of cement particles in the electrostatic induction detection unit, (d) is a characteristic diagram of an output current from the detection electrode, and (e) is a characteristic diagram of an output voltage signal.
FIG. 4 is a diagram for explaining a flow velocity measurement operation by a calculation unit of the present embodiment.
FIG. 5 is a diagram for explaining a flow measurement operation by a calculation unit according to the embodiment.
FIG. 6 is a diagram showing a schematic configuration of an experimental system for verifying the usefulness of this embodiment.
FIG. 7 is a diagram showing the relationship between the number of incense sticks actually measured and the number of incense sticks obtained by an equation.
FIG. 8 is a diagram showing a detection signal waveform when a measurement object in the second embodiment of the present invention is a granular material such as a resin ball.
FIG. 9 is an explanatory diagram of a signal processing method in the embodiment.
FIG. 10 is a diagram showing a waveform a before signal processing and a waveform b after signal processing in the same embodiment;
FIG. 11 is a schematic side view showing a cement particle flow measuring device according to a third embodiment of the present invention.
FIG. 12 is a schematic side view showing an experimental apparatus for calibration in the same embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air blower, 2 ... Conduit, 3 ... Granule (cement), 3a ... Cement particle, 3b ... Charged cement particle, 4 ... Hopper, 5 ... Electric field charging part, 5a ... Insulator, 5b ... Wire electrode, 5c ... surface electrode, 5d ... high voltage generator, 6 ... electrostatic induction detector, 6a ... insulating member, 6b ... detection electrode, 6c ... shielding material, 6d ... detector, 6e ... current-voltage conversion circuit, 7 ... arithmetic unit 8 ... Anemometer, 9 ... Function generator.

Claims (5)

導管に設けられて前記導管内を流れる粉粒体粒子を帯電させる電界荷電部と、
前記導管における前記電界荷電部よりも下流に設けられて帯電した粉粒体粒子によって誘導される電気量を検出する静電誘導検出部と、
前記検出した電気量から、前記導管内の粉粒体の少なくとも流量を算出する演算部とを備え、
前記演算部は、
ρVs'=CVp eT/TL
ただし ρ:粉粒体粒子の数密度(1/m3
Vs:静電誘導検出部にできる空間の体積(m3
Vs':Vs 空間の体積流量(m3 /s)
C:定数
Vp:静電誘導検出部で観測される電圧のピーク値(V)
T:電界荷電部における帯電時刻と静電誘導検出部における
電気量検出時刻との差である遅延時間(s)
TL :再結合・拡散時定数
から粉粒体の流量を求めるものであり、上記CおよびTLは複数測定したTおよびVpから最小二乗法により決定される、粉粒体の流動計測装置。
An electric field charging unit provided in the conduit for charging the granular particles flowing in the conduit;
An electrostatic induction detection unit that detects an amount of electricity that is provided downstream of the electric field charging unit in the conduit and that is induced by charged particles.
A calculation unit that calculates at least the flow rate of the granular material in the conduit from the detected amount of electricity;
The computing unit is
ρVs' = CVp e T / TL
Where ρ: number density of powder particles (1 / m 3 )
Vs: Volume of space created in the electrostatic induction detection unit (m 3 )
Vs': Volume flow rate of Vs space (m 3 / s)
C: Constant
Vp: Peak value of the voltage (V) observed at the electrostatic induction detector
T: Charging time in the electric field charging unit and electrostatic induction detection unit
Delay time (s), which is the difference from the detection time of electricity
TL: A flow measurement device for a granular material for determining the flow rate of the granular material from the recombination / diffusion time constant, wherein C and TL are determined by the least square method from a plurality of measured T and Vp.
請求項1において、前記電界荷電部はコロナ放電によって前記粉粒体粒子に電荷を与えるものである粉粒体の流動計測装置。  2. The granular material flow measurement device according to claim 1, wherein the electric field charging unit gives electric charge to the granular particles by corona discharge. 請求項1または2において、前記静電誘導検出部は前記帯電した粉粒体粒子の移動による静電誘導によって生起される電流を検出するものである粉粒体の流動計測装置。  3. The powder particle flow measurement device according to claim 1, wherein the electrostatic induction detection unit detects a current generated by electrostatic induction caused by movement of the charged powder particles. 請求項1,2または3において、前記電界荷電部は粉粒体粒子に対して一定の周期でパルス状に電圧を印加するものである粉粒体の流動計測装置。  4. The granular material flow measurement device according to claim 1, wherein the electric field charging unit applies a voltage in a pulsed manner to the granular particles at a constant cycle. 請求項1〜4のいずれかにおいて、前記演算部は、
ν=L/T
ただし ν:電界荷電部における帯電時刻と静電誘導検出部における
電気量検出時刻との差である遅延時間Tにおける粉粒体
粒子の平均流速(m/s)
L:電界荷電部と静電誘導検出部との間隔(m)
から粉粒体の平均流速を求める粉粒体の流動計測装置。
In any one of Claims 1-4, the said calculating part is
ν = L / T
Where ν is the charging time in the electric field charging unit and the electrostatic induction detection unit
Powder and granular material at delay time T, which is the difference from the time of detecting the amount of electricity
Average velocity of particles (m / s)
L: Distance (m) between the electric field charging unit and the electrostatic induction detection unit
Measuring device for the flow rate of granular material from which the average flow velocity of the granular material is obtained.
JP07575399A 1999-03-19 1999-03-19 Powder flow measurement device Expired - Fee Related JP4568387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07575399A JP4568387B2 (en) 1999-03-19 1999-03-19 Powder flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07575399A JP4568387B2 (en) 1999-03-19 1999-03-19 Powder flow measurement device

Publications (2)

Publication Number Publication Date
JP2000266772A JP2000266772A (en) 2000-09-29
JP4568387B2 true JP4568387B2 (en) 2010-10-27

Family

ID=13585338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07575399A Expired - Fee Related JP4568387B2 (en) 1999-03-19 1999-03-19 Powder flow measurement device

Country Status (1)

Country Link
JP (1) JP4568387B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582682C (en) * 2007-06-27 2010-01-20 清华大学 Device and method for measuring gas-solid diphasic stream parameter in square pneumatic conveying pipe
DK2742287T3 (en) * 2011-07-13 2016-01-11 Promecon Prozess & Messtechnik CHARGING CHARACTERISTICS INSTALLATION WITH FUEL / AIR CONDITIONING CONDITIONS IN THE COMBUSTION OF MILLED CARBON AND PROCEDURE FOR OPERATION OF A CHARGER CHARACTERISTICS
WO2013121094A1 (en) * 2012-02-18 2013-08-22 Pegasor Oy Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow
JP6493283B2 (en) * 2016-04-18 2019-04-03 株式会社デンソー Measuring device
CN109061325B (en) * 2016-12-12 2020-07-10 大连民族大学 Dust electrostatic detection method
JP6959633B2 (en) * 2017-05-19 2021-11-02 長岡産業株式会社 Charge measuring device, fluid manufacturing equipment, method for measuring the amount of electric charge in a fluid, and method for manufacturing a fluid
JP2018204907A (en) * 2017-06-08 2018-12-27 株式会社Ihi Fine powder accumulation detection device
DE102018218590A1 (en) * 2018-10-30 2020-04-30 Robert Bosch Gmbh Method and device for determining a velocity of a fluid flow in the area of a particle sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372659A (en) * 1976-12-09 1978-06-28 Toyota Motor Co Ltd Detecting method of charge by induction in measurements of flow rate by charged liquids
JPS5420762A (en) * 1977-07-16 1979-02-16 Kinnosuke Watanabe Flowmeter
JPS5880560A (en) * 1981-11-07 1983-05-14 Sankyo Dengiyou Kk Measuring method for velocity of flow of powder and granules
JPH03280915A (en) * 1990-03-30 1991-12-11 Murata Mfg Co Ltd Dust passing quantity detecting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912971B2 (en) * 1976-04-13 1984-03-27 トヨタ自動車株式会社 Petroleum liquid flow rate measuring device
JPH10253411A (en) * 1997-03-06 1998-09-25 Yokogawa Electric Corp Low-conductivity electromagnetic flow meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372659A (en) * 1976-12-09 1978-06-28 Toyota Motor Co Ltd Detecting method of charge by induction in measurements of flow rate by charged liquids
JPS5420762A (en) * 1977-07-16 1979-02-16 Kinnosuke Watanabe Flowmeter
JPS5880560A (en) * 1981-11-07 1983-05-14 Sankyo Dengiyou Kk Measuring method for velocity of flow of powder and granules
JPH03280915A (en) * 1990-03-30 1991-12-11 Murata Mfg Co Ltd Dust passing quantity detecting device

Also Published As

Publication number Publication date
JP2000266772A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
US5214386A (en) Apparatus and method for measuring particles in polydispersed systems and particle concentrations of monodispersed aerosols
Marjamäki et al. Performance evaluation of the electrical low-pressure impactor (ELPI)
JP6030253B2 (en) Sensor for detecting suspended particles
US3763428A (en) Simultaneous measurement of the size distribution of aerosol particles and the number of particles of each size in a flowing gaseous medium
CN108680764B (en) Air flow velocity measuring method based on ion tracing
US9574986B2 (en) Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow
Qian et al. Flow measurement of biomass and blended biomass fuels in pneumatic conveying pipelines using electrostatic sensor-arrays
EP2815226B1 (en) Apparatus and process for producing air flow and the use of such apparatus in measuring particle concentration in air flow
JP4568387B2 (en) Powder flow measurement device
WO2012022843A1 (en) Particle sensor
Hu et al. A comparative study of induced and transferred charges for mass flow rate measurement of pneumatically conveyed particles
Intra et al. An electrostatic sensor for the continuous monitoring of particulate air pollution
US7729101B2 (en) Method and apparatus for monitoring and controlling ionizing blowers
Heydarianasl et al. Optimization of electrostatic sensor electrodes using particle swarm optimization technique
JP5225321B2 (en) Powder flow measurement device
Li et al. Evaluation of an electrical aerosol detector (EAD) for the aerosol integral parameter measurement
Thonglek et al. Use of pulse-energized electrostatic precipitator to remove submicron particulate matter in exhaust gas
GB2374671A (en) Methods to improve electrostatic particle measurement
Rahmat et al. Particles mass flow rate and concentration measurement using electrostatic sensor
Ghazali et al. Electrostatic sensor in circular and rectangular shape electrode for solid dry pneumatic conveyor system
Tan et al. Submicron particle sizing by aerodynamic dynamic focusing and electrical charge measurement
Despotović Some experiences in the exploitatation of triboelectric sensors for measuring concentration of particulate matter on thermal power plants
JP3503627B2 (en) Ion measuring instrument
Hyun et al. Design and performance evaluation of a PN1 sensor for real-time measurement of indoor aerosol size distribution
JP2002022703A (en) Powder and granular material concentration meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees