JP4567211B2 - Expandable material and cement composition - Google Patents
Expandable material and cement composition Download PDFInfo
- Publication number
- JP4567211B2 JP4567211B2 JP2001019563A JP2001019563A JP4567211B2 JP 4567211 B2 JP4567211 B2 JP 4567211B2 JP 2001019563 A JP2001019563 A JP 2001019563A JP 2001019563 A JP2001019563 A JP 2001019563A JP 4567211 B2 JP4567211 B2 JP 4567211B2
- Authority
- JP
- Japan
- Prior art keywords
- expansion
- parts
- present
- cement
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/008—Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/02—Treatment
- C04B20/04—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、主に土木・建築分野において使用される、施工後のコンクリートにポップアウトや部分的な異常膨張が生じない膨張材及びセメント組成物に関するものである。
なお、本発明でいうコンクリートとは、セメントペースト、モルタル及びコンクリ−トを総称するものである。
【0002】
【従来の技術】
セメント・コンクリートのひび割れ低減や曲げ耐力の向上は、コンクリート構造物の信頼性、耐久性、美観等の観点から重要であり、これらを改善する効果のある膨張材のさらなる技術の進展が望まれている。
従来より、セメント・コンクリートに膨張性を与える膨張材としては、例えば、遊離石灰−アウイン−無水セッコウ系膨張材(特公昭42−21840号公報)や、遊離石灰−カルシウムシリケート−無水セッコウ系膨張材(特公昭53−31170号公報)等があった。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の膨張材を生コンプラントや現場ミキサでモルタル又はコンクリートに添加した場合、練り混ぜ時に膨張材の分散が不十分であると、ポップアウトと呼ばれるコンクリートの表層下に膨張破壊による円錐状の剥離現象が発生する場合があり、コンクリートの性能が低下するだけでなく、その剥離部分が落下する恐れがあるという課題があった。
また、最近では、従来の仕様規定型の設計体系から、性能規定型の設計体系へ移行が検討されており、これまでやや軽視されていたコンクリートの耐久性についても明確な性能規定が定められ、ひび割れの耐久性に対する影響の定量化が行われるものと考えられる。そのため、ひび割れの低減は重要な課題となるが、ひび割れ低減に効果のある膨張材を広範に利用するためには、使用量を少なく、経済的負担が小さい膨張特性に優れた膨張材が不可欠である。
本発明者らは、これらの課題を解決すべく種々の検討を重ねた結果、特定の膨張材を使用することにより、前記課題が解決できるとの知見を得て本発明を完成するに至った。
【0004】
【課題を解決するための手段】
すなわち、本発明は、CaO原料と、CaSO4原料と、Al2O3原料、及びFe2O3原料を熱処理して得られる膨張物質であって、遊離石灰と、無水セッコウと、カルシウムアルミノフェライトを含有してなる遊離石灰量が35〜60%の膨張物質を主成分とする膨張材100部中、水酸化カルシウム量が1〜15部であることを特徴とする膨張材であり、セメントと、該膨張材とを含有してなるセメント組成物である。
なお、本発明で使用する配合割合を示す部、%は質量単位である。
【0005】
【発明の実施の形態】
以下、本発明をさらに詳しく説明する。
【0006】
本発明における膨張物質は、遊離石灰と、無水セッコウと、カルシウムアルミノフェライト、カルシウムフェライト、アウイン及びカルシウムシリケートから選ばれる1種又は2種以上(以下、水硬性化合物という)とを含有してなるものであり、膨張物質100部中、遊離石灰は35〜60部が好ましく、40〜55部がより好ましい。また、水硬性化合物は10〜40部が好ましく、15〜30部がより好ましい。さらに、無水セッコウは10〜40部が好ましく、20〜35部がより好ましい。水硬性化合物中におけるカルシウムアルミノフェライト、カルシウムフェライト、アウイン及びカルシウムシリケートの割合は、特に限定されるものではない。
【0007】
本発明の膨張物質には不純物が存在する。その具体例としては、MgO、TiO2、P2O5、Na2O、K2O、塩素、フッ素等が挙げられるが、本発明の目的を実質的に阻害しない範囲では特に問題とはならない。
【0008】
本発明の水硬性化合物について、以下説明する。
本発明のカルシウムアルミノフェライトとは、CaO−Al2O3−Fe2O3系化合物を総称するものであり、特に限定されるものではないが、一般的に、CaOをC、Al2O3をA、Fe2O3をFとすると、C4AFやC6A2Fと表せる化合物等が挙げられる。通常は、C4AFとして存在していると考えられ、本発明ではカルシウムアルミノフェライトを以下、C4AFと表す。
本発明のカルシウムフェライトとは、CaO−Fe2O3系化合物を総称するものであり、特に限定されるものではないが、一般的に、CaOをC、Fe2O3をFとすると、C2FやCF等の化合物がよく知られている。本発明では、膨張特性が良好となることから、C2Fを使用することが好ましい。本発明では、カルシウムフェライトを以下、C2Fと表す。
本発明のアウインとは、3CaO・3Al2O3・CaSO4で表される化合物を示すものである。
本発明のカルシウムシリケートとは、CaO−SiO2系化合物を総称するものであり、特に限定されるものでないが、一般的に、CaOをC、SiO2をSとすると、C3SやC2S等の化合物が知られている。
【0009】
本発明の膨張材を製造する際、CaO原料と、CaSO4原料と、Al2O3原料、Fe2O3原料及びSiO2原料から選ばれる1種又は2種以上とを熱処理して、遊離石灰、水硬性化合物及び無水セッコウからなる膨張物質を合成してこれを粉砕したものを使用する。遊離石灰、水硬性化合物及び無水セッコウを別々に合成し、これらを粉砕、混合したものを使用したのでは、本発明のような効果は得られない。
CaO原料と、CaSO4原料と、Al2O3原料、Fe2O3原料及びSiO2原料から選ばれる1種又は2種以上とを熱処理して、遊離石灰、水硬性化合物及び無水セッコウからなる膨張物質を合成してこれを粉砕して製造されたものか否かを確認する方法としては、例えば、膨張材中の粗粒子、具体的には100μmよりも大きな粒子を顕微鏡等により観察して組成分析を行い、粒子中に遊離石灰、水硬性化合物及び無水セッコウが混在していることを確認することによって容易に判別できる。
【0010】
膨張材の粉末度は、ブレーン比表面積で1500〜7000cm2/gのものが好ましく、2000〜4000cm2/gのものがより好ましい。膨張材の粉末度が1500cm2/g未満では、コンクリート構造物の長期耐久性が悪くなる場合があり、7000cm2/gを超えると十分な膨張特性が得られない場合がある。
【0011】
本発明の膨張物質を製造する際の熱処理温度であるが、1100〜1600℃の範囲が好ましく、1200〜1500℃の範囲がより好ましい。1100℃未満では、得られた膨張材の膨張特性が十分でなく、1600℃を超えると無水セッコウが分解する場合がある。
【0012】
CaO原料としては、石灰石や消石灰等が挙げられ、Al2O3原料としては、ボーキサイトやアルミ残灰等が、Fe2O3原料としては、銅カラミや鉄粉及び市販の酸化鉄等が、SiO2原料としては、珪石や粘土等が、さらに、CaSO4原料としては、二水セッコウ、半水セッコウ及び無水セッコウ等が挙げられる。
【0013】
本発明において、ポップアウトを防止するために最も重要なことは、膨張材中に含まれる水酸化カルシウム量であり、この量が少ない膨張材をコンクリートに混和すると十分に分散せずに塊状になり、施工後に部分的な異常膨張が発生し、ひび割れやポップアウトが生じる場合がある。
水酸化カルシウム量は、膨張材100部中、1〜15部が好ましく、1.5〜10部がより好ましく、2〜5部がさらに好ましい。1部未満ではポップアウトの防止効果が乏しく、15部を超えると膨張量が低下し、好ましくない。
【0014】
本発明の膨張材中の水酸化カルシウム量を調整する方法は、特に限定されるものではないが、膨張物質粉砕時及び/又は粉砕後、所定量が得られるように水及び/又は水酸化カルシウムを添加、混合する方法や、長期間放置して空気中の水分を吸収する方法等が挙げられる。水を添加する場合の水の使用量は、粉砕機の種類等によって変化する。
また、粉砕時に粉砕助剤として、ジエチレングリコールやトリアルカノールアミン類を併用することもできる。膨張材中の水酸化カルシウムの含有量は、DSC、TG−DTA、IR、FT−IR、X線回折、化学分析等によって定量できる。
【0015】
本発明の膨張材の使用量は、特に限定されるものではないが、セメントと膨張材からなるセメント組成物100部中、膨張材3〜12部が好ましく、4〜8部がより好ましい。本発明の膨張材の使用量がこの範囲外では、本発明の効果、すなわち、優れた膨張特性が得られない場合がある。3部未満では、優れた膨張特性の得られない場合があり、12部を超えて使用すると、強度発現性が低下する場合がある。
【0016】
本発明のセメント組成物とは、JIS R 5210に規定される各種ポルトランドセメント、JIS R 5211、JIS R 5212及びJIS R5213に規定される各種混合セメント、JISに規定された以上の混和材の混和率にて作製した高炉セメント、フライアッシュセメント及びシリカセメント、石灰石粉末等を混合したフィラーセメント、並びにアルミナセメント等のうちの1種又は2種以上と、本発明の膨張材とを含有してなるものである。
本発明のセメント組成物は、そのままセメントペーストとして使用することはもちろん、骨材と混合して、モルタルやコンクリートとしても使用可能である。
【0017】
本発明では、セメントや膨張材に砂や砂利等の骨材の他、凝結促進剤、凝結遅延剤、デキストリン、減水剤、AE減水剤、高性能AE減水剤、AE剤、増粘剤、セメント急硬材、防錆剤、高分子エマルジョン、ベントナイトやモンモリロナイト等の粘土鉱物、無機リン酸塩等のうちの1種又は2種以上を本発明の目的を実質的に阻害しない範囲で併用することが可能である。
【0018】
本発明の膨張材を使用したコンクリート及びモルタル等を製造する際に使用する混合装置としては、既存のいかなる撹拌装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、V型ミキサ、ヘンシェルミキサ及びナウタ−ミキサ等が利用可能である。混合は、それぞれの材料を施工時に混合してもよいし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。混合順序は特に限定されるものでない。
【0019】
【実施例】
以下、実施例により本発明を詳細に説明する。
【0020】
実施例1
CaO原料と、CaSO4原料と、Al2O3原料、Fe2O3原料及びSiO2原料から選ばれる1種又は2種以上とを配合して、電気炉を使用し1400℃で熱処理することによって、表1に示すAからTの種々の組成(各成分の合計100部中の割合)の膨張物質を製造した。
【0021】
この膨張物質に所定量の水を添加してボールミルにて粉砕し、ブレーン比表面積3500±200cm2/gで、膨張材100部中、水酸化カルシウム量が3部となる膨張材を調製した。セメントと膨張材からなるセメント組成物100部に対して膨張材を6部使用し、単位セメント組成物量が310kg/m3、水/セメント組成物比=55%、s/a=44%、減水剤をセメントに対して1%添加してコンクリートを調製し、材齢7日の長さ変化率の測定及びポップアウト試験を行った。また、市販の膨張材についても、同じ膨張材使用量にて試験した。
結果を表2に示す。
【0022】
<使用材料>
セメント:市販普通ポルトランドセメント
CaO原料:試薬一級炭酸カルシウム
Al2O3原料:試薬一級アルミナ
Fe2O3原料:試薬一級酸化第二鉄
SiO2原料:試薬一級酸化珪素
CaSO4原料:試薬一級二水セッコウ
砂:新潟県姫川産、比重2.62、FM値2.86
砂利:新潟県姫川産、比重2.64
水:水道水
減水剤:ポリカルボン酸系、市販品
膨張材▲1▼:カルシウムサルホアルミネート系膨張材、市販品
膨張材▲2▼:石灰系膨張材、市販品
【0023】
<測定方法>
長さ変化率:JIS A 6202 Bに準じて測定
ポップアウト試験:膨張材以外の材料で予めコンクリートを調製しておき、傾胴ミキサにこのコンクリートを入れ、12回転/分の速さでミキサをアジテートしながら膨張材を後添加し、10分間後に排出して、縦1m、横50cm、高さ10cmの型枠内へ打設しポップアウト現象を観察した。
【0024】
【表1】
【0025】
【表2】
【0026】
表2から明らかなように、本発明の膨張材を使用したコンクリートは、いずれも優れた膨張特性を示し、ポップアウトの発生が認められない。
【0027】
実施例2
表1の膨張材D100部中、表3に示す量の水酸化カルシウムの膨張材を調整して使用したこと以外は、実施例1と同様に行った。結果を表3に併記する。
【0028】
【表3】
【0029】
表3から明らかなように、本発明の水酸化カルシウム量が1〜15部の膨張材を混和したコンクリートは、ポップアウトの発生が無く、優れた膨張特性を示す。
【0030】
実施例3
セメントと膨張材からなるセメント組成物100部中、表4に示す量の膨張材を使用したこと以外は、実施例1と同様に行った。結果を表4に併記する。
【0031】
【表4】
【0032】
表4から明らかなように、本発明の膨張材の使用量が増加するにつれコンクリートは優れた膨張特性を示す。
【0033】
【発明の効果】
本発明の膨張材及びそれを含有したセメント組成物を使用することにより、コンクリートは施工後のポップアウトが無く、優れた膨張特性を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an expansion material and a cement composition that are mainly used in the field of civil engineering and construction and do not cause pop-out or partial abnormal expansion in concrete after construction.
The concrete referred to in the present invention is a general term for cement paste, mortar, and concrete.
[0002]
[Prior art]
Reduction of cracks in cement and concrete and improvement of bending strength are important from the viewpoint of reliability, durability, aesthetics, etc. of concrete structures, and further development of expansion materials that are effective in improving these is desired. Yes.
Conventionally, as an expansion material which gives expansibility to cement and concrete, for example, a free lime-auin-anhydrous gypsum-based expansion material (Japanese Patent Publication No. 42-21840) or a free lime-calcium silicate-anhydrous gypsum-based expansion material (Japanese Patent Publication No. 53-31170).
[0003]
[Problems to be solved by the invention]
However, when a conventional expansion material is added to mortar or concrete using a raw plant or on-site mixer, if the expansion material is not sufficiently dispersed during kneading, a conical shape due to expansion failure under the surface of the concrete called pop-out In some cases, a peeling phenomenon may occur, which not only deteriorates the performance of the concrete, but also causes a problem that the peeling portion may fall.
In addition, recently, the transition from the conventional specification-based design system to the performance-based design system has been studied, and a clear performance rule has been established for the durability of concrete that has been neglected until now, It is considered that the effect of cracking on durability is quantified. Therefore, crack reduction is an important issue, but in order to make extensive use of inflatables that are effective in reducing cracks, it is essential to use inflatables that have low expansion and low expansion cost and excellent expansion characteristics. is there.
As a result of repeating various studies to solve these problems, the present inventors have obtained the knowledge that the problems can be solved by using a specific expansion material, and have completed the present invention. .
[0004]
[Means for Solving the Problems]
That is, the present invention includes a CaO material, a CaSO 4 material, a inflation material obtained by heat-treating Al 2 O 3 raw material, and the Fe 2 O 3 raw material, the free lime, anhydrous gypsum, calcium aluminosilicate expanding material in 100 parts of free lime amount comprising the ferrite is composed mainly of 35% to 60% of the expanded material, a expandable material amount of calcium hydroxide, characterized in that 1 to 15 parts, A cement composition comprising cement and the expansion material.
In addition, the part and% which show the mixture ratio used by this invention are a mass unit.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0006]
The swelling substance in the present invention contains free lime, anhydrous gypsum, and one or more selected from calcium aluminoferrite, calcium ferrite, Auin and calcium silicate (hereinafter referred to as hydraulic compound). In 100 parts of the expanded material, 35-60 parts of free lime is preferable, and 40-55 parts is more preferable. Moreover, 10-40 parts is preferable and, as for a hydraulic compound, 15-30 parts is more preferable. Further, the anhydrous gypsum is preferably 10 to 40 parts, more preferably 20 to 35 parts. The proportions of calcium aluminoferrite, calcium ferrite, auin and calcium silicate in the hydraulic compound are not particularly limited.
[0007]
Impurities are present in the expansion material of the present invention. Specific examples thereof include MgO, TiO 2 , P 2 O 5 , Na 2 O, K 2 O, chlorine, fluorine and the like, but there is no particular problem as long as the object of the present invention is not substantially inhibited. .
[0008]
The hydraulic compound of the present invention will be described below.
The calcium aluminoferrite of the present invention is a generic term for CaO—Al 2 O 3 —Fe 2 O 3 compounds and is not particularly limited, but in general, CaO is C, Al 2 O 3. When A is Fe and O is Fe 2 O 3 , examples of the compound are C 4 AF and C 6 A 2 F. Normally, it is considered that C 4 AF exists, and in the present invention, calcium aluminoferrite is hereinafter referred to as C 4 AF.
The calcium ferrite of the present invention is a generic term for CaO—Fe 2 O 3 compounds and is not particularly limited. Generally, when CaO is C and Fe 2 O 3 is F, C 2 Compounds such as F and CF are well known. In the present invention, it is preferable to use C 2 F because the expansion characteristics are good. In the present invention, calcium ferrite is hereinafter referred to as C 2 F.
The Auin of the present invention refers to a compound represented by 3CaO.3Al 2 O 3 .CaSO 4 .
The calcium silicate of the present invention is a generic term for CaO—SiO 2 compounds and is not particularly limited. Generally, when CaO is C and SiO 2 is S, C 3 S or C 2 Compounds such as S are known.
[0009]
When producing the expandable material of the present invention, the CaO raw material, the CaSO 4 raw material, one or two or more selected from the Al 2 O 3 raw material, the Fe 2 O 3 raw material and the SiO 2 raw material are heat-treated and released. A swelling material composed of lime, a hydraulic compound and anhydrous gypsum is synthesized and pulverized. When the free lime, hydraulic compound and anhydrous gypsum are synthesized separately, and those obtained by pulverizing and mixing these are used, the effect of the present invention cannot be obtained.
CaO raw material, CaSO 4 raw material, one or more selected from Al 2 O 3 raw material, Fe 2 O 3 raw material and SiO 2 raw material are heat-treated, and consist of free lime, hydraulic compound and anhydrous gypsum As a method for confirming whether or not the expansion material is synthesized and pulverized, for example, coarse particles in the expansion material, specifically, particles larger than 100 μm are observed with a microscope or the like. It can be easily discriminated by conducting a compositional analysis and confirming that free lime, a hydraulic compound and anhydrous gypsum are mixed in the particles.
[0010]
Fineness of expanding material is preferably one of 1500~7000cm 2 / g in Blaine specific surface area, it is more preferred 2000~4000cm 2 / g. If the fineness of the expansion material is less than 1500 cm 2 / g, the long-term durability of the concrete structure may deteriorate, and if it exceeds 7000 cm 2 / g, sufficient expansion characteristics may not be obtained.
[0011]
Although it is the heat processing temperature at the time of manufacturing the expansion | swelling substance of this invention, the range of 1100-1600 degreeC is preferable and the range of 1200-1500 degreeC is more preferable. If it is less than 1100 degreeC, the expansion | swelling characteristic of the obtained expansion | swelling material is not enough, and when it exceeds 1600 degreeC, anhydrous gypsum may decompose | disassemble.
[0012]
Examples of the CaO raw material include limestone and slaked lime. Examples of the Al 2 O 3 raw material include bauxite and aluminum residual ash. Examples of the Fe 2 O 3 raw material include copper calami, iron powder, and commercially available iron oxide. Examples of the SiO 2 raw material include silica and clay, and examples of the CaSO 4 raw material include dihydrate gypsum, half water gypsum, and anhydrous gypsum.
[0013]
In the present invention, in order to prevent pop-out, the most important thing is the amount of calcium hydroxide contained in the expansion material, and when this small amount of expansion material is mixed with concrete, it becomes a lump without being sufficiently dispersed. , Partial abnormal expansion may occur after construction, causing cracks and pop-outs.
The amount of calcium hydroxide is preferably 1 to 15 parts, more preferably 1.5 to 10 parts, and further preferably 2 to 5 parts in 100 parts of the expansion material. If it is less than 1 part, the effect of preventing pop-out is poor, and if it exceeds 15 parts, the amount of expansion decreases, which is not preferable.
[0014]
The method for adjusting the amount of calcium hydroxide in the expansion material of the present invention is not particularly limited, but water and / or calcium hydroxide so that a predetermined amount can be obtained during and / or after pulverization of the expansion material. And the like, and a method of absorbing moisture in the air by leaving it for a long time. When water is added, the amount of water used varies depending on the type of pulverizer.
Further, diethylene glycol or trialkanolamines can be used in combination as a grinding aid during grinding. The content of calcium hydroxide in the expansion material can be quantified by DSC, TG-DTA, IR, FT-IR, X-ray diffraction, chemical analysis, and the like.
[0015]
Although the usage-amount of the expansion material of this invention is not specifically limited, 3-12 parts of expansion materials are preferable in 100 parts of cement compositions which consist of a cement and an expansion material, and 4-8 parts are more preferable. When the amount of the expansion material of the present invention is outside this range, the effects of the present invention, that is, excellent expansion characteristics may not be obtained. If it is less than 3 parts, excellent expansion characteristics may not be obtained, and if it is used in excess of 12 parts, strength development may be reduced.
[0016]
The cement composition of the present invention includes various portland cements specified in JIS R 5210, various mixed cements specified in JIS R 5211, JIS R 5212, and JIS R 5213, and the mixing ratio of admixtures more than those specified in JIS. One or more of blast furnace cement, fly ash cement and silica cement, filler cement mixed with limestone powder, etc., and alumina cement, etc., prepared by the above, and the expansion material of the present invention It is.
The cement composition of the present invention can be used as a cement paste as it is, as well as mixed with aggregates and used as mortar or concrete.
[0017]
In the present invention, in addition to aggregates such as sand and gravel as cement and expansion material, setting accelerator, setting retarder, dextrin, water reducing agent, AE water reducing agent, high performance AE water reducing agent, AE agent, thickener, cement One or two or more of hardened materials, rust inhibitors, polymer emulsions, clay minerals such as bentonite and montmorillonite, and inorganic phosphates are used in a range that does not substantially impair the object of the present invention. Is possible.
[0018]
Any existing stirring device can be used as a mixing device used when producing concrete, mortar, or the like using the expanding material of the present invention. For example, a tilting mixer, an omni mixer, a V-type mixer, a Henschel mixer, A Nauta-mixer or the like can be used. In mixing, the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance. The mixing order is not particularly limited.
[0019]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
[0020]
Example 1
Mixing CaO raw material, CaSO 4 raw material, one or more selected from Al 2 O 3 raw material, Fe 2 O 3 raw material and SiO 2 raw material, and heat-treating at 1400 ° C. using an electric furnace Thus, expansion materials having various compositions A to T shown in Table 1 (ratio of each component in a total of 100 parts) were produced.
[0021]
A predetermined amount of water was added to the expanded material and pulverized by a ball mill to prepare an expanded material having a Blaine specific surface area of 3500 ± 200 cm 2 / g and a calcium hydroxide amount of 3 parts in 100 parts of the expanded material. 6 parts of expansive material is used for 100 parts of cement composition consisting of cement and expansive material, unit cement composition amount is 310 kg / m 3 , water / cement composition ratio = 55%, s / a = 44%, water reduction Concrete was prepared by adding 1% of the agent to the cement, and the length change rate of 7 days of age and the pop-out test were performed. Moreover, it tested by the same expansion | swelling material usage-amount also about the commercially available expansion | swelling material.
The results are shown in Table 2.
[0022]
<Materials used>
Cement: Commercial ordinary Portland cement CaO raw material: Reagent primary calcium carbonate Al 2 O 3 raw material: Reagent primary alumina Fe 2 O 3 raw material: Reagent primary ferric oxide SiO 2 raw material: Reagent primary silicon oxide CaSO 4 raw material: Reagent primary secondary water Gypsum sand: Himekawa, Niigata Prefecture, specific gravity 2.62, FM value 2.86
Gravel: Niigata prefecture Himekawa production, specific gravity 2.64
Water: tap water reducing agent: polycarboxylic acid, commercially available expansion material (1): calcium sulfoaluminate-based expansion material, commercial expansion material (2): lime-based expansion material, commercial product
<Measurement method>
Length change rate: Measured according to JIS A 6202 B Pop-out test: Concrete is prepared in advance using materials other than expansive material, and this concrete is put into a tilting mixer, and the mixer is run at a speed of 12 revolutions / minute. The expansion material was post-added while agitating, discharged 10 minutes later, and placed in a mold having a length of 1 m, a width of 50 cm, and a height of 10 cm, and a pop-out phenomenon was observed.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
As is clear from Table 2, the concrete using the expansion material of the present invention exhibits excellent expansion characteristics and no occurrence of pop-out is recognized.
[0027]
Example 2
The same procedure as in Example 1 was carried out except that the amount of the calcium hydroxide expansion material shown in Table 3 was adjusted and used in 100 parts of the expansion material D in Table 1. The results are also shown in Table 3.
[0028]
[Table 3]
[0029]
As is apparent from Table 3, the concrete mixed with the expansion material having an amount of calcium hydroxide of 1 to 15 parts according to the present invention does not cause pop-out and exhibits excellent expansion characteristics.
[0030]
Example 3
The same procedure as in Example 1 was carried out except that 100 parts of a cement composition composed of cement and an expanding material was used in the amount shown in Table 4. The results are also shown in Table 4.
[0031]
[Table 4]
[0032]
As is apparent from Table 4, the concrete exhibits excellent expansion properties as the amount of the expansion material of the present invention increases.
[0033]
【The invention's effect】
By using the expansion material of the present invention and the cement composition containing the same, the concrete has no pop-out after construction and exhibits excellent expansion characteristics.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001019563A JP4567211B2 (en) | 2001-01-29 | 2001-01-29 | Expandable material and cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001019563A JP4567211B2 (en) | 2001-01-29 | 2001-01-29 | Expandable material and cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002226243A JP2002226243A (en) | 2002-08-14 |
JP4567211B2 true JP4567211B2 (en) | 2010-10-20 |
Family
ID=18885421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001019563A Expired - Fee Related JP4567211B2 (en) | 2001-01-29 | 2001-01-29 | Expandable material and cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4567211B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5052778B2 (en) * | 2005-11-10 | 2012-10-17 | 電気化学工業株式会社 | Expandable material, cement composition, and cement concrete using the same |
JP5510882B2 (en) * | 2009-06-17 | 2014-06-04 | 住友大阪セメント株式会社 | Method for producing hydraulic composition |
JP6289897B2 (en) * | 2013-12-26 | 2018-03-07 | 太平洋マテリアル株式会社 | Swelling composition and hydraulic composition |
CN104671689B (en) * | 2015-02-05 | 2017-05-17 | 江苏苏博特新材料股份有限公司 | Modified calcium oxide expanding clinker as well as preparation method and application thereof |
JP7293019B2 (en) * | 2019-07-18 | 2023-06-19 | デンカ株式会社 | EXPANDING COMPOSITION FOR CEMENT, CEMENT COMPOSITION, AND METHOD FOR PRODUCING THE EXPANSION COMPOSITION FOR CEMENT |
KR102605732B1 (en) * | 2021-01-22 | 2023-11-29 | 주식회사 아이에스원 | Lime-based oxide sinstered body and manufacturing method thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5399228A (en) * | 1977-02-10 | 1978-08-30 | Denki Kagaku Kogyo Kk | Cement mixture for grouting |
JPH0986978A (en) * | 1995-09-19 | 1997-03-31 | Denki Kagaku Kogyo Kk | Mixed cement composition |
JPH09156978A (en) * | 1995-12-11 | 1997-06-17 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JPH1112006A (en) * | 1997-06-16 | 1999-01-19 | Denki Kagaku Kogyo Kk | Cement admixture, cement composition and chemical prestressed concrete using the same |
JPH11302047A (en) * | 1998-04-23 | 1999-11-02 | Denki Kagaku Kogyo Kk | Expansive material composition and expansive cement composition |
JP2001064054A (en) * | 1999-08-25 | 2001-03-13 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2001064053A (en) * | 1999-08-25 | 2001-03-13 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2001261398A (en) * | 2000-03-22 | 2001-09-26 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2001316147A (en) * | 2000-05-02 | 2001-11-13 | Denki Kagaku Kogyo Kk | Admixture for cement and cement composition |
JP2002029797A (en) * | 2000-07-19 | 2002-01-29 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2002121054A (en) * | 2000-10-10 | 2002-04-23 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2002167254A (en) * | 2000-11-30 | 2002-06-11 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
-
2001
- 2001-01-29 JP JP2001019563A patent/JP4567211B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5399228A (en) * | 1977-02-10 | 1978-08-30 | Denki Kagaku Kogyo Kk | Cement mixture for grouting |
JPH0986978A (en) * | 1995-09-19 | 1997-03-31 | Denki Kagaku Kogyo Kk | Mixed cement composition |
JPH09156978A (en) * | 1995-12-11 | 1997-06-17 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JPH1112006A (en) * | 1997-06-16 | 1999-01-19 | Denki Kagaku Kogyo Kk | Cement admixture, cement composition and chemical prestressed concrete using the same |
JPH11302047A (en) * | 1998-04-23 | 1999-11-02 | Denki Kagaku Kogyo Kk | Expansive material composition and expansive cement composition |
JP2001064054A (en) * | 1999-08-25 | 2001-03-13 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2001064053A (en) * | 1999-08-25 | 2001-03-13 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2001261398A (en) * | 2000-03-22 | 2001-09-26 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2001316147A (en) * | 2000-05-02 | 2001-11-13 | Denki Kagaku Kogyo Kk | Admixture for cement and cement composition |
JP2002029797A (en) * | 2000-07-19 | 2002-01-29 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2002121054A (en) * | 2000-10-10 | 2002-04-23 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP2002167254A (en) * | 2000-11-30 | 2002-06-11 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
Also Published As
Publication number | Publication date |
---|---|
JP2002226243A (en) | 2002-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4567211B2 (en) | Expandable material and cement composition | |
JP4679534B2 (en) | Expandable material, cement composition, and cement concrete using the same | |
JP3390078B2 (en) | Cement admixture and cement composition for grout | |
JP3960718B2 (en) | Cement admixture and cement composition | |
JP4937468B2 (en) | Cement admixture and cement composition | |
JP2001163651A (en) | Grouting cement admixture and cement composition | |
JP2001122650A (en) | Cement admixture and cement composition | |
JP2001064053A (en) | Cement admixture and cement composition | |
JP4744678B2 (en) | Cement admixture and cement composition | |
JP3390082B2 (en) | Cement admixture and cement composition for grout | |
JP4527269B2 (en) | Cement admixture and cement composition | |
JP7083637B2 (en) | Concrete and its manufacturing method | |
JP4459379B2 (en) | Cement admixture and cement composition | |
JP4937465B2 (en) | Cement admixture and cement composition | |
JP3390075B2 (en) | Cement admixture and cement composition | |
JP4459380B2 (en) | Cement admixture and cement composition | |
JP3390080B2 (en) | Cement admixture and cement composition for grout | |
JP5744498B2 (en) | Cement rapid hardwood manufacturing method | |
JP4498555B2 (en) | Cement admixture and cement composition | |
JP3818805B2 (en) | Cement admixture and cement composition | |
JP4514319B2 (en) | Cement admixture and cement composition | |
JP4335424B2 (en) | Cement admixture and cement composition | |
JP4498592B2 (en) | Cement admixture and cement composition | |
JP4338884B2 (en) | Cement admixture and cement composition | |
JP7260998B2 (en) | Expansive composition, cement composition and cement-concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100803 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100805 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4567211 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |