[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4563476B2 - 符号化器、復号化器及び符号化方法 - Google Patents

符号化器、復号化器及び符号化方法 Download PDF

Info

Publication number
JP4563476B2
JP4563476B2 JP2008227505A JP2008227505A JP4563476B2 JP 4563476 B2 JP4563476 B2 JP 4563476B2 JP 2008227505 A JP2008227505 A JP 2008227505A JP 2008227505 A JP2008227505 A JP 2008227505A JP 4563476 B2 JP4563476 B2 JP 4563476B2
Authority
JP
Japan
Prior art keywords
ldpc
time
parity check
information
coding rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008227505A
Other languages
English (en)
Other versions
JP2010041703A5 (ja
JP2010041703A (ja
Inventor
豊 村上
周太 岡村
雅之 折橋
高明 岸上
昌蔵 岡坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008227505A priority Critical patent/JP4563476B2/ja
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to BRPI0913438-7A priority patent/BRPI0913438B1/pt
Priority to KR1020107026059A priority patent/KR101529360B1/ko
Priority to PCT/JP2009/003129 priority patent/WO2010004722A1/ja
Priority to EP18201751.7A priority patent/EP3457576B1/en
Priority to EP09794170.2A priority patent/EP2296283B1/en
Priority to CN201310711416.XA priority patent/CN103701474B/zh
Priority to EP15182348.1A priority patent/EP2966783B1/en
Priority to US12/937,366 priority patent/US8397145B2/en
Priority to CN200980121588.3A priority patent/CN102057579B/zh
Priority to CN201310711243.1A priority patent/CN103647559B/zh
Publication of JP2010041703A publication Critical patent/JP2010041703A/ja
Publication of JP2010041703A5 publication Critical patent/JP2010041703A5/ja
Publication of JP4563476B2 publication Critical patent/JP4563476B2/ja
Application granted granted Critical
Priority to US13/756,208 priority patent/US8612838B2/en
Priority to US14/072,586 priority patent/US8892984B2/en
Priority to US14/516,437 priority patent/US9178654B2/en
Priority to US14/860,302 priority patent/US9331715B2/en
Priority to US15/077,737 priority patent/US9564923B2/en
Priority to US15/387,041 priority patent/US10038457B2/en
Priority to US16/019,387 priority patent/US10263641B2/en
Priority to US16/248,252 priority patent/US10855312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/1154Low-density parity-check convolutional codes [LDPC-CC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/23Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using convolutional codes, e.g. unit memory codes
    • H03M13/235Encoding of convolutional codes, e.g. methods or arrangements for parallel or block-wise encoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/615Use of computational or mathematical techniques
    • H03M13/616Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/615Use of computational or mathematical techniques
    • H03M13/617Polynomial operations, e.g. operations related to generator polynomials or parity-check polynomials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6306Error control coding in combination with Automatic Repeat reQuest [ARQ] and diversity transmission, e.g. coding schemes for the multiple transmission of the same information or the transmission of incremental redundancy
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6356Error control coding in combination with rate matching by repetition or insertion of dummy data, i.e. rate reduction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • H03M13/6516Support of multiple code parameters, e.g. generalized Reed-Solomon decoder for a variety of generator polynomials or Galois fields
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/6527IEEE 802.11 [WLAN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • Error Detection And Correction (AREA)

Description

本発明は、複数の符号化率に対応可能な低密度パリティ検査畳み込み符号(LDPC−CC:Low Density Parity Check-Convolutional Codes)を用いる符号化器、復号化器及び符号化方法に関する。
近年、実現可能な回路規模で高い誤り訂正能力を発揮する誤り訂正符号として、低密度パリティ検査(LDPC:Low-Density Parity-Check)符号に注目が集まっている。LDPC符号は、誤り訂正能力が高く、かつ実装が容易なので、IEEE802.11nの高速無線LANシステムやディジタル放送システムなどの誤り訂正符号化方式に採用されている。
LDPC符号は、低密度なパリティ検査行列Hで定義される誤り訂正符号である。また、LDPC符号は、検査行列Hの列数Nと等しいブロック長を持つブロック符号である。例えば、非特許文献1、非特許文献2、非特許文献3では、ランダム的なLDPC符号、Array LDPC符号、QC−LDPC符号(QC:Quasi-Cyclic)が提案されている。
しかし、現在の通信システムの多くは、イーサネット(登録商標)のように、送信情報を、可変長のパケットやフレーム毎にまとめて伝送するという特徴がある。このようなシステムにブロック符号であるLDPC符号を適用する場合、例えば、可変長なイーサネット(登録商標)のフレームに対して固定長のLDPC符号のブロックをどのように対応させるかといった課題が生じる。IEEE802.11nでは、送信情報系列にパディング処理やパンクチャ処理を施すことで、送信情報系列の長さと、LDPC符号のブロック長の調節を行っているが、パディングやパンクチャによって、符号化率が変化したり、冗長な系列を送信したりすることを避けることは困難である。
このようなブロック符号のLDPC符号(以降、これをLDPC−BC:Low-Density Parity-Check Block Codeと標記する)に対して、任意の長さの情報系列に対しての符号化・復号化が可能なLDPC−CC(Low-Density Parity-Check Convolutional Codes)の検討が行われている(例えば、非特許文献1、非特許文献2参照)。
LDPC−CCは,低密度なパリティ検査行列により定義される畳み込み符号であり,例えば符号化率R=1/2(=b/c)のLDPC−CCのパリティ検査行列H[0,n]は、図1で示される。ここで、H[0,n]の要素h (m)(t)は、0または1をとる。また、h (m)(t)以外の要素は全て0である。MはLDPC−CCにおけるメモリ長、nはLDPC−CCの符号語の長さをあらわす。図1に示されるように、LDPC−CCの検査行列は行列の対角項とその近辺の要素にのみに1が配置されており、行列の左下及び右上の要素はゼロであり、平行四辺形型の行列であるという特徴がある。
ここで,h (0)(t)=1,h (0)(t)=1であるとき、検査行列H[0,n]Tで定義されるLDPC−CCの符号化器は図2であらわされる。図2に示すように、LDPC−CCの符号化器は、ビットレングスcのシフトレジスタM+1個とmod2加算(排他的論理和演算)器で構成される。このため、LDPC−CCの符号化器には、生成行列の乗算を行う回路や後退(前方)代入法に基づく演算を行うLDPC−BCの符号化器に比べ、非常に簡易な回路で実現することができるという特徴がある。また、図2は畳み込み符号の符号化器であるため、情報系列を固定長のブロックに区切って符号化する必要はなく、任意の長さの情報系列を符号化することができる。
R. G. Gallager, "Low-density parity check codes," IRE Trans. Inform. Theory, IT-8, pp-21-28, 1962. D. J. C. Mackay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, vol.45, no.2, pp399-431, March 1999. J. L. Fan, "Array codes as low-density parity-check codes," proc. of 2nd Int. Symp. on Turbo Codes, pp.543-546, Sep. 2000. R. D. Gallager, "Low-DensityParity-Check Codes," Cambridge, MA: MIT Press, 1963. M. P. C. Fossorier, M. Mihaljevic, and H. Imai, "Reduced complexity iterative decoding of low density parity check codes based on belief propagation," IEEE Trans. Commun., vol.47., no.5, pp.673-680, May 1999. J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Yu Hu, "Reduced-complexity decoding of LDPC codes," IEEE Trans. Commun., vol.53., no.8, pp.1288-1299, Aug. 2005. M. P. C. Fossorier, M. Mihaljevic, and H. Imai, "Reduced complexity iterative decoding of low density parity check codes based on belief propagation," IEEE Trans. Commun., vol.47., no.5, pp.673-680, May 1999. J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Yu Hu, "Reduced-complexity decoding of LDPC codes," IEEE Trans. Commun., vol.53., no.8, pp.1288-1299, Aug. 2005. J. Zhang, and M. P. C. Fossorier, "Shuffled iterative decoding," IEEE Trans. Commun., vol.53, no.2, pp.209-213, Feb. 2005. S. Lin, D. J. Jr., Costello, "Error control coding : Fundamentals and applications,"Prentice-Hall. 和田山 正, "低密度パリティ検査符号とその復号方法,"トリケップス.
しかしながら、複数の符号化率を、低演算規模で、かつ、データの受信品質が良いLDPC−CC及びその符号化器及び復号化器に関し、十分な検討がなされていない。
例えば、非特許文献7では、複数の符号化率に対応するためにパンクチャを用いることが示されている。パンクチャを用いて複数符号化率に対応する場合、まず、もととなる符号、つまり、マザー符号を用意し、マザー符号における符号化系列を作成し、その符号化系列から、送信しない(パンクチャ)ビットを選択する。そして、送信しないビット数を変えることで、複数の符号化率に対応している。これにより、符号化器、復号化器ともにマザー符号用の符号化器、復号化器により、全ての符号化率に対応することができるため、演算規模(回路規模)が削減できるという利点を持つ。
一方で、複数符号化率を対応する方法としては、符号化率毎に異なる符号を用意する(Distributed Codes)という方法があり、特に、LDPC符号の場合、非特許文献8に記載されているように様々な符号長、符号化率を容易に構成できる柔軟性を持つことから、複数の符号化率に対し複数の符号で対応する方法が一般的である。このとき、複数の符号を用いていることから、演算規模(回路規模)が大きいという欠点があるが、パンクチャで複数符号化率に対応した場合と比較し、データの受信品質が非常に良いという利点を持つ。
以上の点を考慮した場合、これまでに、複数の符号化率に対応するために複数の符号を用意することで、データの受信品質を確保しながら、符号化器、復号化器の演算規模を削減できるLDPC符号の生成方法について議論した文献は少なく、これを実現するLDPC符号の作成方法を確立できると、これまで実現が困難であった、データの受信品質の向上と演算規模の低減の両立が可能となる。
本発明はかかる点に鑑みてなされたものであり、LDPC−CCを用いた符号化器及び復号化器において、複数の符号化率を複数の符号で実現することで、データの受信品質を向上させ、かつ、低演算規模で符号化器及び復号化器を実現することができるLDPC−CCの符号化方法を提供することを目的とする。
本発明の符号化器は、符号化率(q−1)/q(qは3以上の整数)のパリティ検査多項式(44)を用いて、時変周期g(gは自然数)の低密度パリティ検査畳み込み符号(LDPC−CC:Low-Density Parity-Check Convolutional Codes)を作成する符号化器であって、符号化率(s−1)/s(s≦q)を設定する符号化率設定手段と、時点iの情報Xr,i(r=1,2,…,q−1)を入力し、式(44)のAXr,k(D)X(D)の演算結果を出力する第r演算手段と、時点i−1のパリティPi−1を入力し、式(44)のB(D)P(D)の演算結果を出力するパリティ演算手段と、前記第1から第(q−1)演算手段の演算結果及び前記パリティ演算手段の演算結果の排他的論理和を、時刻iのパリティPとして得る加算手段と、前記情報Xs,iから前記情報Xq−1,iをゼロに設定する情報生成手段と、を具備する構成を採る。
本発明の復号化器は、符号化率(q−1)/q(qは3以上の整数)のパリティ検査多項式(45)に準じた検査行列を具備し、時変周期g(gは自然数)の低密度パリティ検査畳み込み符号(LDPC−CC:Low-Density Parity-Check Convolutional Codes)を信頼度伝播(BP:Belief Propagation)を利用して復号する復号化器であって、設定された符号化率(s−1)/s(s≦q)に応じて、時点i(iは整数)の情報Xs,iから情報Xq−1,iに対応する対数尤度比を既定値に設定する対数尤度比設定手段と、前記対数尤度比を用いて、式(45)のパリティ検査多項式に準じた検査行列にしたがって行処理演算及び列処理演算を行う演算処理手段と、を具備する構成を採る。
本発明の符号化方法は、符号化率(y−1)/y及び(z−1)/z(y<z)に対応可能な時変周期g(gは自然数)の低密度パリティ検査畳み込み符号(LDPC−CC:Low-Density Parity-Check Convolutional Codes)の符号化方法であって、パリティ検査多項式(46)を用いて符号化率(z−1)/zの低密度パリティ検査畳み込み符号を生成し、パリティ検査多項式(47)を用いて符号化率(y−1)/yの低密度パリティ検査畳み込み符号を生成するようにした。
本発明の符号化器及び復号化器によれば、LDPC−CCを用いた符号化器及び復号化器において、複数の符号化率を低演算規模で実現することができるとともに高いデータ受信品質を得ることができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
先ず、実施の形態の具体的な構成及び動作を説明する前に、良好な特性を有するLDPC−CCについて説明する。
(良好な特性を有するLDPC−CC)
以下に、特性が良好な時変周期gのLDPC−CCについて説明する。
先ず、特性が良好な時変周期4のLDPC−CCについて説明する。なお、以下では、符号化率1/2の場合を例に説明する。
時変周期を4とするLDPC−CCのパリティ検査多項式として、式(1−1)〜(1−4)を考える。このとき、X(D)はデータ(情報)の多項式表現であり、P(D)はパリティの多項式表現である。ここで、式(1−1)〜(1−4)では、X(D)、P(D)それぞれに4つの項が存在するようなパリティ検査多項式としたが、これは、良好な受信品質を得る上で、4つの項とすると好適であるからである。
Figure 0004563476
式(1−1)において、a1、a2、a3、a4は整数(ただし、a1≠a2≠a3≠a4であり、a1からa4の全てが異なる)とする。なお、以降、「X≠Y≠・・・≠Z」と標記する場合、X、Y、・・・、Zは互いに、全て異なることをあらわすものとする。また、b1、b2、b3、b4は整数(ただし、b1≠b2≠b3≠b4)とする。式(1−1)のパリティ検査多項式を「検査式#1」と呼び、式(1−1)のパリティ検査多項式に基づくサブ行列を、第1サブ行列Hとする。
また、式(1−2)において、A1、A2、A3、A4は整数(ただし、A1≠A2≠A3≠A4)とする。また、B1、B2、B3、B4は整数(ただし、B1≠B2≠B3≠B4)とする。式(1−2)のパリティ検査多項式を「検査式#2」と呼び、式(1−2)のパリティ検査多項式に基づくサブ行列を、第2サブ行列Hとする。
また、式(1−3)において、α1、α2、α3、α4は整数(ただし、α1≠α2≠α3≠α4)とする。また、β1、β2、β3、β4は整数(ただし、β1≠β2≠β3≠β4)とする。式(1−3)のパリティ検査多項式を「検査式#3」と呼び、式(1−3)のパリティ検査多項式に基づくサブ行列を、第3サブ行列Hとする。
また、式(1−4)において、E1、E2、E3、E4は整数(ただし、E1≠E2≠E3≠E4)とする。また、F1、F2、F3、F4は整数(ただし、F1≠F2≠F3≠F4)とする。式(1−4)のパリティ検査多項式を「検査式#4」と呼び、式(1−4)のパリティ検査多項式に基づくサブ行列を、第4サブ行列Hとする。
そして、第1サブ行列H、第2サブ行列H、第3サブ行列H、第4サブ行列Hから、図3のように検査行列を生成した時変周期4のLDPC―CCについて考える。
このとき、式(1−1)〜(1−4)において、X(D)及びP(D)の次数の組み合わせ(a1、a2、a3、a4)、(b1、b2、b3、b4)、(A1、A2、A3、A4)、(B1、B2、B3、B4)、(α1、α2、α3、α4)、(β1、β2、β3、β4)、(E1、E2、E3、E4)、(F1、F2、F3、F4)の各値を4で除算した余りをkとした場合、上記のようにあらわした4つの係数セット(例えば、(a1、a2、a3、a4))に、余り0、1、2、3が1つずつ含まれるようにし、かつ、上記の4つの係数セット全てで成立するようにする。
例えば、「検査式#1」のX(D)の各次数(a1、a2、a3、a4)を(a1、a2、a3、a4)=(8,7,6,5)とすると、各次数(a1、a2、a3、a4)を4で除算した余りkは、(0,3,2,1)となり、4つの係数セットに、余り(k)0、1、2、3が1つずつ含まれるようになる。同様に、「検査式#1」のP(D)の各次数(b1、b2、b3、b4)を(b1、b2、b3、b4)=(4,3,2,1)とすると、各次数(b1、b2、b3、b4)を4で除算した余りkは、(0,3,2,1)となり、4つの係数セットに、余り(k)として、0、1、2、3が1つずつ含まれるようになる。他の検査式(「検査式#2」、「検査式#3」、「検査式#4」)のX(D)及びP(D)それぞれの4つの係数セットについても上記の「余り」に関する条件が成立するものとする。
このようにすることで、式(1−1)〜(1−4)から構成される検査行列Hの列重みが全ての列において4となる、レギュラーLDPC符号を形成することができるようになる。ここで、レギュラーLDPC符号とは、各列重みが一定とされた検査行列により定義されるLDPC符号であり、特性が安定し、エラーフロアが出にくいという特徴がある。特に、列重みが4の場合、特性が良好であることから、上記のようにしてLDPC−CCを生成することにより、受信性能が良いLDPC−CCを得ることができるようになる。
なお、表1は、上記「余り」に関する条件が成り立つ、時変周期4、符号化率1/2のLDPC−CCの例(LDPC−CC#1〜#3)である。表1において、時変周期4のLDPC−CCは、「検査多項式#1」、「検査多項式#2」、「検査多項式#3」、「検査多項式#4」の4つのパリティ検査多項式により定義される。
Figure 0004563476
上記では、符号化率1/2の時を例に説明したが、符号化率が(n−1)/nのときについても、情報X1(D)、X2(D)、・・・Xn−1(D)におけるそれぞれの4つの係数セットにおいて、上記の「余り」に関する条件が成立すれば、やはり、レギュラーLDPC符号となり、良好な受信品質を得ることができる。
なお、時変周期2の場合においても、上記「余り」に関する条件を適用すると、特性が良好な符号を探索できることが確認された。以下、特性が良好な時変周期2のLDPC−CCについて説明する。なお、以下では、符号化率1/2の場合を例に説明する。
時変周期を2とするLDPC−CCのパリティ検査多項式として、式(2−1)、(2−2)を考える。このとき、X(D)はデータ(情報)の多項式表現であり、P(D)はパリティの多項式表現である。ここで、式(2−1)、(2−2)では、X(D)、P(D)それぞれに4つの項が存在するようなパリティ検査多項式としたが、これは、良好な受信品質を得る上で、4つの項とすると好適であるからである。
Figure 0004563476
式(2−1)において、a1、a2、a3、a4は整数(ただし、a1≠a2≠a3≠a4)とする。また、b1、b2、b3、b4は整数(ただし、b1≠b2≠b3≠b4)とする。式(2−1)のパリティ検査多項式を「検査式#1」と呼び、式(2−1)のパリティ検査多項式に基づくサブ行列を、第1サブ行列Hとする。
また、式(2−2)において、A1、A2、A3、A4は整数(ただし、A1≠A2≠A3≠A4)とする。また、B1、B2、B3、B4は整数(ただし、B1≠B2≠B3≠B4)とする。式(2−2)のパリティ検査多項式を「検査式#2」と呼び、式(2−2)のパリティ検査多項式に基づくサブ行列を、第2サブ行列Hとする。
そして、第1サブ行列H及び第2サブ行列Hから生成する時変周期2のLDPC―CCについて考える。
このとき、式(2−1)、(2−2)において、X(D)及びP(D)の次数の組み合わせ(a1、a2、a3、a4)、(b1、b2、b3、b4)、(A1、A2、A3、A4)、(B1、B2、B3、B4)の各値を4で除算した余りをkとした場合、上記のようにあらわした4つの係数セット(例えば、(a1、a2、a3、a4))に、余り0、1、2、3が1つずつ含まれるようにし、かつ、上記の4つの係数セット全てで成立するようにする。
例えば、「検査式#1」のX(D)の各次数(a1、a2、a3、a4)を(a1、a2、a3、a4)=(8,7,6,5)とすると、各次数(a1、a2、a3、a4)を4で除算した余りkは、(0,3,2,1)となり、4つの係数セットに、余り(k)0、1、2、3が1つずつ含まれるようになる。同様に、「検査式#1」のP(D)の各次数(b1、b2、b3、b4)を(b1、b2、b3、b4)=(4,3,2,1)とすると、各次数(b1、b2、b3、b4)を4で除算した余りkは、(0,3,2,1)となり、4つの係数セットに、余り(k)として、0、1、2、3が1つずつ含まれるようになる。「検査式#2」のX(D)及びP(D)それぞれの4つの係数セットについても上記の「余り」に関する条件が成立するものとする。
このようにすることで、式(2−1)、(2−2)から構成される検査行列Hの列重みが全ての列において4となる、レギュラーLDPC符号を形成することができるようになる。ここで、レギュラーLDPC符号とは、各列重みが一定とされた検査行列により定義されるLDPC符号であり、特性が安定し、エラーフロアが出にくいという特徴がある。特に、行重みが8の場合、特性が良好であることから、上記のようにしてLDPC−CCを生成することにより、受信性能を更に向上することができるLDPC−CCを得ることができるようになる。
なお、表2に、上記「余り」に関する条件が成り立つ、時変周期2、符号化率1/2のLDPC−CCの例(LDPC−CC#1、#2)を示す。表2において、時変周期2のLDPC−CCは、「検査多項式#1」、「検査多項式#2」の2つのパリティ検査多項式により定義される。
Figure 0004563476
上記では(時変周期2のLDPC−CC)、符号化率1/2の時を例に説明したが、符号化率が(n−1)/nのときについても、情報X1(D)、X2(D)、・・・Xn−1(D)におけるそれぞれの4つの係数セットにおいて、上記の「余り」に関する条件が成立すれば、やはり、レギュラーLDPC符号となり、良好な受信品質を得ることができる。
また、時変周期3の場合においても、「余り」に関する以下の条件を適用すると、特性が良好な符号を探索できることが確認された。以下、特性が良好な時変周期3のLDPC−CCについて説明する。なお、以下では、符号化率1/2の場合を例に説明する。
時変周期を3とするLDPC−CCのパリティ検査多項式として、式(3−1)〜(3−3)を考える。このとき、X(D)はデータ(情報)の多項式表現であり、P(D)はパリティの多項式表現である。ここで、式(3−1)〜(3−3)では、X(D)、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とする。
Figure 0004563476
式(3−1)において、a1、a2、a3は整数(ただし、a1≠a2≠a3)とする。また、b1、b2、b3は整数(ただし、b1≠b2≠b3)とする。式(3−1)のパリティ検査多項式を「検査式#1」と呼び、式(3−1)のパリティ検査多項式に基づくサブ行列を、第1サブ行列Hとする。
また、式(3−2)において、A1、A2、A3は整数(ただし、A1≠A2≠A3)とする。また、B1、B2、B3は整数(ただし、B1≠B2≠B3)とする。式(3−2)のパリティ検査多項式を「検査式#2」と呼び、式(3−2)のパリティ検査多項式に基づくサブ行列を、第2サブ行列Hとする。
また、式(3−3)において、α1、α2、α3は整数(ただし、α1≠α2≠α3)とする。また、β1、β2、β3は整数(ただし、β1≠β2≠β3)とする。式(3−3)のパリティ検査多項式を「検査式#3」と呼び、式(3−3)のパリティ検査多項式に基づくサブ行列を、第3サブ行列Hとする。
そして、第1サブ行列H、第2サブ行列H、第3サブ行列Hから生成する時変周期3のLDPC―CCについて考える。
このとき、式(3−1)〜(3−3)において、X(D)及びP(D)の次数の組み合わせ(a1、a2、a3)、(b1、b2、b3)、(A1、A2、A3)、(B1、B2、B3)、(α1、α2、α3)、(β1、β2、β3)の各値を3で除算した余りをkとした場合、上記のようにあらわした3つの係数セット(例えば、(a1、a2、a3))に、余り0、1、2が1つずつ含まれるようにし、かつ、上記の3つの係数セット全てで成立するようにする。
例えば、「検査式#1」のX(D)の各次数(a1、a2、a3)を(a1、a2、a3)=(6,5,4)とすると、各次数(a1、a2、a3)を3で除算した余りkは、(0,2,1)となり、3つの係数セットに、余り(k)0、1、2が1つずつ含まれるようになる。同様に、「検査式#1」のP(D)の各次数(b1、b2、b3)を(b1、b2、b3)=(3,2,1)とすると、各次数(b1、b2、b3)を4で除算した余りkは、(0,2,1)となり、3つの係数セットに、余り(k)として、0、1、2が1つずつ含まれるようになる。「検査式#2」、「検査式#3」のX(D)及びP(D)それぞれの3つの係数セットについても上記の「余り」に関する条件が成立するものとする。
このようにしてLDPC−CCを生成することにより、一部の例外を除き、行重みが全ての行で等く、かつ、列重みが全ての行で等しいレギュラーLDPC−CC符号を生成することができる。なお、例外とは、検査行列の最初の一部及び最後の一部では、行重み、列重みが、他の行重み、列重みと等しくならないことをいう。更に、BP復号を行った場合、「検査式#2」における信頼度及び「検査式#3」における信頼度が、的確に「検査式#1」に対して伝播し、「検査式#1」における信頼度及び「検査式#3」における信頼度が、的確に「検査式#2」に対して伝播し、「検査式#1」における信頼度及び「検査式#2」における信頼度が、「検査式#3」に対して的確に伝播する。このため、より受信品質が良好なLDPC−CCを得ることができる。これは、列単位で考えた場合、「1」が存在する位置が、上述のように、信頼度を的確に伝播するように配置されることになるためである。
以下、図を用いて、上述の信頼度伝播について説明する。図4Aは、時変周期3のLDPC−CCのパリティ検査多項式及び検査行列Hの構成を示している。
「検査式#1」は、式(3−1)のパリティ検査多項式において、(a1、a2、a3)=(2,1,0)、(b1、b2、b3)=(2,1,0)の場合であり、各係数を3で除算した余りは、(a1%3、a2%3、a3%3)=(2,1,0)、(b1%3、b2%3、b3%3)=(2,1,0)である。なお、「Z%3」は、Zを3で除算した余りをあらわす。
「検査式#2」は、式(3−2)のパリティ検査多項式において、(A1、A2、A3)=(5,1,0)、(B1、B2、B3)=(5,1,0)の場合であり、各係数を3で除算した余りは、(A1%3、A2%3、A3%3)=(2,1,0)、(B1%3、B2%3、B3%3)=(2,1,0)である。
「検査式#3」は、式(3−3)のパリティ検査多項式において、(α1、α2、α3)=(4,2,0)、(β1、β2、β3)=(4,2,0)の場合であり、各係数を3で除算した余りは、(α1%3、α2%3、α3%3)=(1,2,0)、(β1%3、β2%3、β3%3)=(1,2,0)である。
したがって、図4Aに示した時変周期3のLDPC−CCの例は、上述した「余り」に関する条件、つまり、
(a1%3、a2%3、a3%3)、
(b1%3、b2%3、b3%3)、
(A1%3、A2%3、A3%3)、
(B1%3、B2%3、B3%3)、
(α1%3、α2%3、α3%3)、
(β1%3、β2%3、β3%3)が、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなるという条件を満たしている。
再度、図4Aに戻って、信頼度伝播について説明する。BP復号における列6506の列演算によって、「検査式#1」の領域6501の「1」は、「検査行列#2」の領域6504の「1」及び「検査行列#3」の領域6505の「1」から、信頼度が伝播される。上述したように、「検査式#1」の領域6501の「1」は、3で除算した余りが0となる係数である(a3%3=0(a3=0)、又は、b3%3=0(b3=0))。また、「検査行列#2」の領域6504の「1」は、3で除算した余りが1となる係数である(A2%3=1(A2=1)、又は、B2%3=1(B2=1))。また、「検査式#3」の領域6505の「1」は、3で除算した余りが2となる係数である(α2%3=2(α2=2)、又は、β2%3=2(β2=2))。
このように、「検査式#1」の係数において余りが0となる領域6501の「1」は、BP復号における列6506の列演算において、「検査式#2」の係数において余りが1となる領域6504の「1」、及び、「検査式#3」の係数において余りが2となる領域6505の「1」から、信頼度が伝播される。
同様に、「検査式#1」の係数において余りが1となる領域6502の「1」は、BP復号における列6509の列演算において、「検査式#2」の係数において余りが2となる領域6507の「1」、及び、「検査式#3」の係数において余りが0となる領域6508の「1」から、信頼度が伝播される。
同様に、「検査式#1」の係数において余りが2となる領域6503の「1」は、BP復号における列6512の列演算において、「検査式#2」の係数において余りが0となる領域6510の「1」、及び、「検査式#3」の係数において余りが1となる領域6511の「1」から、信頼度が伝播される。
図4Bを用いて、信頼度伝播について補足説明をする。図4Bは、図4Aの「検査式#1」〜「検査式#3」のX(D)に関する各項同士の信頼度伝播の関係を示している。図4Aの「検査式#1」〜「検査式#3」は、式(3−1)〜(3−3)のX(D)に関する項において、(a1、a2、a3)=(2、1、0)、(A1、A2、A3)=(5、1、0)、(α1、α2、α3)=(4、2、0)の場合である。
図4Bにおいて、四角で囲まれた項(a3、A3、α3)は、3で除算した余りが0の係数を示す。また、丸で囲まれた項(a2、A2、α1)は、3で除算した余りが1の係数を示す。また、菱形で囲まれた項(a1、A1、α2)は、3で除算した余りが2の係数を示す。
図4Bから分かるように、「検査式#1」のa1は、3で除算した余りが異なる「検査式#2」のA3及び「検査式#3」のα1から信頼度が伝播される。「検査式#1」のa2は、3で除算した余りが異なる「検査式#2」のA1及び「検査式#3」のα3から信頼度が伝播される。「検査式#1」のa3は、3で除算した余りが異なる「検査式#2」のA2及び「検査式#3」のα2から信頼度が伝播される。図4Bには、「検査式#1」〜「検査式#3」のX(D)に関する各項同士の信頼度伝播の関係を示したが、P(D)に関する各項同士についても同様のことがいえる。
このように、「検査式#1」には、「検査式#2」の係数のうち、3で除算した余りが0、1、2となる係数から、信頼度が伝播される。つまり、「検査式#1」には、「検査式#2」の係数のうち、3で除算した余りが全て異なる係数から、信頼度が伝播されることになる。したがって、相関が低い信頼度同士が全て「検査式#1」に伝播することになる。
同様に、「検査式#2」には、「検査式#1」の係数のうち、3で除算した余りが0、1、2となる係数から、信頼度が伝播される。つまり、「検査式#2」には、「検査式#1」の係数のうち、3で除算した余りが全て異なる係数から、信頼度が伝播されることになる。また、「検査式#2」には、「検査式#3」の係数のうち、3で除算した余りが0、1、2となる係数から、信頼度が伝播される。つまり、「検査式#2」には、「検査式#3」の係数のうち、3で除算した余りが全て異なる係数から、信頼度が伝播されることになる。
同様に、「検査式#3」には、「検査式#1」の係数のうち、3で除算した余りが0、1、2となる係数から、信頼度が伝播される。つまり、「検査式#3」には、「検査式#1」の係数のうち、3で除算した余りが全て異なる係数から、信頼度が伝播されることになる。また、「検査式#3」には、「検査式#2」の係数のうち、3で除算した余りが0、1、2となる係数から、信頼度が伝播される。つまり、「検査式#3」には、「検査式#2」の係数のうち、3で除算した余りが全て異なる係数から、信頼度が伝播されることになる。
このように、式(3−1)〜(3−3)のパリティ検査多項式の各次数が、上述した「余り」に関する条件を満たすようにすることにより、全ての列演算において、信頼度が必ず伝播されるようになるので、全ての検査式において、効率よく信頼度を伝播させることができるようになり、更に誤り訂正能力を高くすることができる。
以上、時変周期3のLDPC−CCについて、符号化率1/2の場合を例に説明したが、符号化率は1/2に限られない。符号化率(n−1)/n(nは2以上の整数)の場合には、情報X1(D)、X2(D)、・・・Xn−1(D)における、それぞれの3つの係数セットにおいて、上記の「余り」に関する条件が成立すれば、やはり、レギュラーLDPC符号となり、良好な受信品質を得ることができる。
以下、符号化率(n−1)/n(nは2以上の整数)の場合について説明する。
時変周期を3とするLDPC−CCのパリティ検査多項式として、式(4−1)〜(4−3)を考える。このとき、X1(D)、X2(D)、・・・Xn−1(D)はデータ(情報)X1、X2、・・・Xn−1の多項式表現であり、P(D)はパリティの多項式表現である。ここで、式(4−1)〜(4−3)では、X1(D)、X2(D)、・・・Xn−1(D)、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とする。
Figure 0004563476
式(4−1)において、ai,1、ai,2、ai,3(i=1,2,・・・,n−1)は整数(ただし、ai,1≠ai,2≠ai,3)とする。また、b1、b2、b3は整数(ただし、b1≠b2≠b3)とする。式(4−1)のパリティ検査多項式を「検査式#1」と呼び、式(4−1)のパリティ検査多項式に基づくサブ行列を、第1サブ行列Hとする。
また、式(4−2)において、Ai,1、Ai,2、Ai,3(i=1,2,・・・,n−1は整数(ただし、Ai,1≠Ai,2≠Ai,3)とする。また、B1、B2、B3は整数(ただし、B1≠B2≠B3)とする。式(4−2)のパリティ検査多項式を「検査式#2」と呼び、式(4−2)のパリティ検査多項式に基づくサブ行列を、第2サブ行列Hとする。
また、式(4−3)において、αi,1、αi,2、αi,3(i=1,2,・・・,n−1は整数(ただし、αi,1≠αi,2≠αi,3)とする。また、β1、β2、β3は整数(ただし、β1≠β2≠β3)とする。式(4−3)のパリティ検査多項式を「検査式#3」と呼び、式(4−3)のパリティ検査多項式に基づくサブ行列を、第3サブ行列Hとする。
そして、第1サブ行列H、第2サブ行列H、第3サブ行列Hから生成する時変周期3のLDPC―CCについて考える。
このとき、式(4−1)〜(4−3)において、X1(D)、X2(D)、・・・Xn−1(D)及びP(D)の次数の組み合わせ
(a1,1、a1,2、a1,3)、
(a2,1、a2,2、a2,3)、・・・、
(an−1,1、an−1,2、an−1,3)、
(b1、b2、b3)、
(A1,1、A1,2、A1,3)、
(A2,1、A2,2、A2,3)、・・・、
(An−1,1、An−1,2、An−1,3)、
(B1、B2、B3)、
(α1,1、α1,2、α1,3)、
(α2,1、α2,2、α2,3)、・・・、
(αn−1,1、αn−1,2、αn−1,3)、
(β1、β2、β3)
の各値を3で除算した余りをkとした場合、上記のようにあらわした3つの係数セット(例えば、(a1,1、a1,2、a1,3))に、余り0、1、2が1つずつ含まれるようにし、かつ、上記の3つの係数セット全てで成立するようにする。
つまり、
(a1,1%3、a1,2%3、a1,3%3)、
(a2,1%3、a2,2%3、a2,3%3)、・・・、
(an−1,1%3、an−1,2%3、an−1,3%3)、
(b1%3、b2%3、b3%3)、
(A1,1%3、A1,2%3、A1,3%3)、
(A2,1%3、A2,2%3、A2,3%3)、・・・、
(An−1,1%3、An−1,2%3、An−1,3%3)、
(B1%3、B2%3、B3%3)、
(α1,1%3、α1,2%3、α1,3%3)、
(α2,1%3、α2,2%3、α2,3%3)、・・・、
(αn−1,1%3、αn−1,2%3、αn−1,3%3)、
(β1%3、β2%3、β3%3)が、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなるようにする。
このようにしてLDPC−CCを生成することにより、レギュラーLDPC−CC符号を生成することができる。更に、BP復号を行った場合、「検査式#2」における信頼度及び「検査式#3」における信頼度が、的確に「検査式#1」に対して伝播し、「検査式#1」における信頼度及び「検査式#3」における信頼度が、的確に「検査式#2」に対して伝播し、「検査式#1」における信頼度及び「検査式#2」における信頼度が、「検査式#3」に対して的確に伝播する。このため、符号化率1/2の場合と同様に、より受信品質が良好なLDPC−CCを得ることができる。
なお、表3に、上記「余り」に関する条件が成り立つ、時変周期3、符号化率1/2のLDPC−CCの例(LDPC−CC#1、#2、#3、#4、#5)を示す。表3において、時変周期3のLDPC−CCは、「検査(多項)式#1」、「検査(多項)式#2」、「検査(多項)式#3」の3つのパリティ検査多項式により定義される。
Figure 0004563476
また、時変周期3と同様に、時変周期が3の倍数(例えば、時変周期が6、9、12、・・・)のLDPC−CCに対し、「余り」に関する以下の条件を適用すると、特性が良好な符号を探索できることが確認された。以下、特性が良好な時変周期3の倍数のLDPC−CCについて説明する。なお、以下では、符号化率1/2、時変周期6のLDPC−CCの場合を例に説明する。
時変周期を6とするLDPC−CCのパリティ検査多項式として、式(5―1)〜式(5―6)を考える。
Figure 0004563476
このとき、X(D)はデータ(情報)の多項式表現であり、P(D)はパリティの多項式表現である。時変周期6のLDPC−CCでは、時刻iのパリティPi及び情報Xiは、i%6=kとすると(k=0、1、2、3、4、5)、式(5−(k+1))のパリティ検査多項式が成立することになる。例えば、i=1とすると、i%6=1(k=1)となるので、式(6)が成立する。
Figure 0004563476
ここで、式(5−1)〜(5−6)では、X(D)、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とする。
式(5−1)において、a1,1、a1,2、a1,3は整数(ただし、a1,1≠a1,2≠a1,3)とする。また、b1,1、b1,2、b1,3は整数(ただし、b1,1≠b1,2≠b1,3)とする。式(5−1)のパリティ検査多項式を「検査式#1」と呼び、式(5−1)のパリティ検査多項式に基づくサブ行列を、第1サブ行列Hとする。
また、式(5−2)において、a2,1、a2,2、a2,3は整数(ただし、a2,1≠a2,2≠a2,3)とする。また、b2,1、b2,2、b2,3は整数(ただし、b2,1≠b2,2≠b2,3)とする。式(5−2)のパリティ検査多項式を「検査式#2」と呼び、式(5−2)のパリティ検査多項式に基づくサブ行列を、第2サブ行列Hとする。
また、式(5−3)において、a3,1、a3,2、a3,3は整数(ただし、a3,1≠a3,2≠a3,3)とする。また、b3,1、b3,2、b3,3は整数(ただし、b3,1≠b3,2≠b3,3)とする。式(5−3)のパリティ検査多項式を「検査式#3」と呼び、式(5−3)のパリティ検査多項式に基づくサブ行列を、第3サブ行列Hとする。
また、式(5−4)において、a4,1、a4,2、a4,3は整数(ただし、a4,1≠a4,2≠a4,3)とする。また、b4,1、b4,2、b4,3は整数(ただし、b4,1≠b4,2≠b4,3)とする。式(5−4)のパリティ検査多項式を「検査式#4」と呼び、式(5−4)のパリティ検査多項式に基づくサブ行列を、第4サブ行列Hとする。
また、式(5−5)において、a5,1、a5,2、a5,3は整数(ただし、a5,1≠a5,2≠a5,3)とする。また、b5,1、b5,2、b5,3は整数(ただし、b5,1≠b5,2≠b5,3)とする。式(5−5)のパリティ検査多項式を「検査式#5」と呼び、式(5−5)のパリティ検査多項式に基づくサブ行列を、第5サブ行列Hとする。
また、式(5−6)において、a6,1、a6,2、a6,3は整数(ただし、a6,1≠a6,2≠a6,3)とする。また、b6,1、b6,2、b6,3は整数(ただし、b6,1≠b6,2≠b6,3)とする。式(5−6)のパリティ検査多項式を「検査式#6」と呼び、式(5−6)のパリティ検査多項式に基づくサブ行列を、第6サブ行列Hとする。
そして、第1サブ行列H、第2サブ行列H、第3サブ行列H、第4サブ行列H、第5サブ行列H、第6サブ行列Hから生成する時変周期6のLDPC―CCについて考える。
このとき、式(5−1)〜(5−6)において、X(D)及びP(D)の次数の組み合わせ
(a1,1、a1,2、a1,3)、
(b1,1、b1,2、b1,3)、
(a2,1、a2,2、a2,3)、
(b2,1、b2,2、b2,3)、
(a3,1、a3,2、a3,3)、
(b3,1、b3,2、b3,3)、
(a4,1、a4,2、a4,3)、
(b4,1、b4,2、b4,3)、
(a5,1、a5,2、a5,3)、
(b5,1、b5,2、b5,3)、
(a6,1、a6,2、a6,3)、
(b6,1、b6,2、b6,3)
の各値を3で除算したときの余りkとした場合、上記のようにあらわした3つの係数セット(例えば、(a1,1、a1,2、a1,3))に、余り0、1、2が1つずつ含まれるようにし、かつ、上記の3つの係数セット全てで成立するようにする。つまり、
(a1,1%3、a1,2%3、a1,3%3)、
(b1,1%3、b1,2%3、b1,3%3)、
(a2,1%3、a2,2%3、a2,3%3)、
(b2,1%3、b2,2%3、b2,3%3)、
(a3,1%3、a3,2%3、a3,3%3)、
(b3,1%3、b3,2%3、b3,3%3)、
(a4,1%3、a4,2%3、a4,3%3)、
(b4,1%3、b4,2%3、b4,3%3)、
(a5,1%3、a5,2%3、a5,3%3)、
(b5,1%3、b5,2%3、b5,3%3)、
(a6,1%3、a6,2%3、a6,3%3)、
(b6,1%3、b6,2%3、b6,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
このようにしてLDPC−CCを生成することにより、「検査式#1」に対して、タナーグラフを描いた際、エッジが存在する場合、的確に「検査式#2、又は、検査式#5」における信頼度、「検査式#3、又は、検査式#6」における信頼度が的確に伝播する。
また、「検査式#2」に対して、タナーグラフを描いた際、エッジが存在する場合、的確に「検査式#1、又は、検査式#4」における信頼度、「検査式#3、又は、検査式#6」における信頼度が的確に伝播する。
また、「検査式#3」に対して、タナーグラフを描いた際、エッジが存在する場合、的確に「検査式#1、又は、検査式#4」における信頼度、「検査式#2、又は、検査式#5」における信頼度が的確に伝播する。「検査式#4」に対して、タナーグラフを描いた際、エッジが存在する場合、的確に「検査式#2、又は、検査式#5」における信頼度、「検査式#3、又は、検査式#6」における信頼度が的確に伝播する。
また、タナーグラフを描いた際、エッジが存在する場合、「検査式#5」に対して、的確に「検査式#1、又は、検査式#4」における信頼度、「検査式#3、又は、検査式#6」における信頼度が的確に伝播する。また、「検査式#6」に対して、タナーグラフを描いた際、エッジが存在する場合、的確に「検査式#1、又は、検査式#4」における信頼度、「検査式#2、又は、検査式#5」における信頼度が的確に伝播する。
このため、時変周期が3のときと同様に、より良好な誤り訂正能力を時変周期6のLDPC−CCが保持することになる。
これについて、図4Cを用いて、信頼度伝播について説明する。図4Cは、「検査式#1」〜「検査式#6」のX(D)に関する各項同士の信頼度伝播の関係を示している。図4Cにおいて、四角は、ax,yにおいて(x=1,2,3,4,5,6;y=1,2,3)、3で除算した余りが0の係数を示す。
また、丸は、ax,yにおいて(x=1,2,3,4,5,6;y=1,2,3)、3で除算した余りが1の係数を示す。また、菱形は、ax,yにおいて(x=1,2,3,4,5,6;y=1,2,3)、3で除算した余りが2の係数を示す。
図4Cから分かるように、タナーグラフを描いた際、エッジが存在した場合、「検査式#1」のa1,1は、3で除算した余りが異なる「検査式#2又は#5」及び「検査式#3又は#6」から信頼度が伝播される。同様に、タナーグラフを描いた際、エッジが存在した場合、「検査式#1」のa1,2は、3で除算した余りが異なる「検査式#2又は#5」及び「検査式#3又は#6」から信頼度が伝播される。
同様に、タナーグラフを描いた際、エッジが存在した場合、「検査式#1」のa1,3は、3で除算した余りが異なる「検査式#2又は#5」及び「検査式#3又は#6」から信頼度が伝播される。図4Cには、「検査式#1」〜「検査式#6」のX(D)に関する各項同士の信頼度伝播の関係を示したが、P(D)に関する各項同士についても同様のことがいえる。
このように、「検査式#1」のタナーグラフにおける各ノードには、「検査式#1」以外の係数ノードから信頼度が伝播することになる。したがって、相関が低い信頼度同士が全て「検査式#1」に伝播することになるので、誤り訂正能力が向上すると考えられる。
図4Cでは、「検査式#1」に着目したが、「検査式#2」から「検査式#6」についても同様にタナーグラフを描くことができ、「検査式#K」のタナーグラフにおける各ノードには、「検査式#K」以外の係数ノードから信頼度が伝播することになる。したがって、相関が低い信頼度同士が全て「検査式#K」に伝播することになるので、誤り訂正能力が向上すると考えられる。(K=2,3,4,5,6)
このように、式(5−1)〜(5−6)のパリティ検査多項式の各次数が、上述した「余り」に関する条件を満たすようにすることにより、全ての検査式において、効率よく信頼度を伝播させることができるようになり、誤り訂正能力を更に高くすることができる可能性が高まる。
以上、時変周期6のLDPC−CCについて、符号化率1/2の場合を例に説明したが、符号化率は1/2に限られない。符号化率(n−1)/n(nは2以上の整数)の場合には、情報X1(D)、X2(D)、・・・Xn−1(D)における、それぞれの3つの係数セットにおいて、上記の「余り」に関する条件が成立すれば、やはり、良好な受信品質を得ることができる可能性が高まる。
以下、符号化率(n−1)/n(nは2以上の整数)の場合について説明する。
時変周期を6とするLDPC−CCのパリティ検査多項式として、式(7−1)〜(7−6)を考える。
Figure 0004563476
このとき、X1(D)、X2(D)、・・・Xn−1(D)はデータ(情報)X1、X2、・・・Xn−1の多項式表現であり、P(D)はパリティの多項式表現である。ここで、式(7−1)〜(7−6)では、X1(D)、X2(D)、・・・Xn−1(D)、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とする。上記の符号化率1/2のとき、また、時変周期3のときと同様に考えると、式(7−1)〜(7−6)のパリティ検査多項式であらわされる時変周期6、符号化率(n−1)/n(nは2以上の整数)のLDPC−CCにおいて、以下の条件(<条件#1>)を満たすと、より高い誤り訂正能力を得ることができる可能性が高まる。
ただし、時変周期6、符号化率(n−1)/n(nは2以上の整数)のLDPC−CCにおいて、時刻iのパリティをPi及び情報をXi,1、Xi,2、・・・、Xi,n−1であらわす。このとき、i%6=kとすると(k=0、1、2、3、4、5)、式(7−(k+1))のパリティ検査多項式が成立する。例えば、i=8とすると、i%6=2(k=2)となるので、式(8)が成立する。
Figure 0004563476
<条件#1>
式(7−1)〜(7−6)において、X1(D)、X2(D)、・・・Xn−1(D)及びP(D)の次数の組み合わせが以下の条件を満たす。
(a#1,1,1%3、a#1,1,2%3、a#1,1,3%3)、
(a#1,2,1%3、a#1,2,2%3、a#1,2,3%3)、・・・、
(a#1,k,1%3、a#1,k,2%3、a#1,k,3%3)、・・・、
(a#1,n−1,1%3、a#1,n−1,2%3、a#1,n−1,3%3)、
(b#1,1%3、b#1,2%3、b#1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(k=1、2、3、・・・、n−1)
かつ、
(a#2,1,1%3、a#2,1,2%3、a#2,1,3%3)、
(a#2,2,1%3、a#2,2,2%3、a#2,2,3%3)、・・・、
(a#2,k,1%3、a#2,k,2%3、a#2,k,3%3)、・・・、
(a#2,n−1,1%3、a#2,n−1,2%3、a#2,n−1,3%3)、
(b#2,1%3、b#2,2%3、b#2,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(k=1、2、3、・・・、n−1)
かつ、
(a#3,1,1%3、a#3,1,2%3、a#3,1,3%3)、
(a#3,2,1%3、a#3,2,2%3、a#3,2,3%3)、・・・、
(a#3,k,1%3、a#3,k,2%3、a#3,k,3%3)、・・・、
(a#3,n−1,1%3、a#3,n−1,2%3、a#3,n−1,3%3)、
(b#3,1%3、b#3,2%3、b#3,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(k=1、2、3、・・・、n−1)
かつ、
(a#4,1,1%3、a#4,1,2%3、a#4,1,3%3)、
(a#4,2,1%3、a#4,2,2%3、a#4,2,3%3)、・・・、
(a#4,k,1%3、a#4,k,2%3、a#4,k,3%3)、・・・、
(a#4,n−1,1%3、a#4,n−1,2%3、a#4,n−1,3%3)、
(b#4,1%3、b#4,2%3、b#4,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(k=1、2、3、・・・、n−1)
かつ、
(a#5,1,1%3、a#5,1,2%3、a#5,1,3%3)、
(a#5,2,1%3、a#5,2,2%3、a#5,2,3%3)、・・・、
(a#5,k,1%3、a#5,k,2%3、a#5,k,3%3)、・・・、
(a#5,n−1,1%3、a#5,n−1,2%3、a#5,n−1,3%3)、
(b#5,1%3、b#5,2%3、b#5,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(k=1、2、3、・・・、n−1)
かつ、
(a#6,1,1%3、a#6,1,2%3、a#6,1,3%3)、
(a#6,2,1%3、a#6,2,2%3、a#6,2,3%3)、・・・、
(a#6,k,1%3、a#6,k,2%3、a#6,k,3%3)、・・・、
(a#6,n−1,1%3、a#6,n−1,2%3、a#6,n−1,3%3)、
(b#6,1%3、b#6,2%3、b#6,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(k=1、2、3、・・・、n−1)
上述では、時変周期6のLDPC−CCにおいて、高い誤り訂正能力を持つ符号について説明したが、時変周期3、6のLDPC−CCの設計方法と同様に、時変周期3g(g=1、2、3、4、・・・)のLDPC−CC(つまり、時変周期が3の倍数のLDPC−CC)を作成した場合、高い誤り訂正能力を持つ符号を生成することができる。以下では、その符号の構成方法について詳しく説明する。
時変周期を3g(g=1、2、3、4、・・・)、符号化率(n−1)/n(nは2以上の整数)のLDPC−CCのパリティ検査多項式として、式(9−1)〜(9−3g)を考える。
Figure 0004563476
このとき、X1(D)、X2(D)、・・・Xn−1(D)はデータ(情報)X1、X2、・・・Xn−1の多項式表現であり、P(D)はパリティの多項式表現である。ここで、式(9−1)〜(9−3g)では、X1(D)、X2(D)、・・・Xn−1(D)、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とする。
時変周期3のLDPC−CC及び時変周期6のLDPC−CCと同様に考えると、式(9−1)〜(9−3g)のパリティ検査多項式であらわされる時変周期3g、符号化率(n−1)/n(nは2以上の整数)のLDPC−CCにおいて、以下の条件(<条件#2>)を満たすと、より高い誤り訂正能力を得ることができる可能性が高まる。
ただし、時変周期3g、符号化率(n−1)/n(nは2以上の整数)のLDPC−CCにおいて、時刻iのパリティをPi及び情報をXi,1、Xi,2、・・・、Xi,n−1であらわす。このとき、i%3g=kとすると(k=0、1、2、・・・、3g−1)、式(9−(k+1))のパリティ検査多項式が成立する。例えば、i=2とすると、i%3g=2(k=2)となるので、式(10)が成立する。
Figure 0004563476
また、式(9−1)〜式(9−3g)において、a#k,p,1、a#k,p,2、a#k,p,3は整数(ただし、a#k,p,1≠a#k,p,2≠a#k,p,3)とする(k=1、2、3、・・・、3g:p=1、2、3、・・・、n−1)。また、b#k,1、b#k,2、b#k,3は整数(ただし、b#k,1≠b#k,2≠b#k,3)とする。式(9−k)のパリティ検査多項式(k=1、2、3、・・・、3g)を「検査式#k」と呼び、式(9−k)のパリティ検査多項式に基づくサブ行列を、第kサブ行列Hとする。そして、第1サブ行列H、第2サブ行列H、第3サブ行列H、・・・、第3gサブ行列H3gから生成する時変周期3gのLDPC―CCについて考える。
<条件#2>
式(9−1)〜(9−3g)において、X1(D)、X2(D)、・・・Xn−1(D)及びP(D)の次数の組み合わせが以下の条件を満たす。
(a#1,1,1%3、a#1,1,2%3、a#1,1,3%3)、
(a#1,2,1%3、a#1,2,2%3、a#1,2,3%3)、・・・、
(a#1,p,1%3、a#1,p,2%3、a#1,p,3%3)、・・・、
(a#1,n−1,1%3、a#1,n−1,2%3、a#1,n−1,3%3)、
(b#1,1%3、b#1,2%3、b#1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#2,1,1%3、a#2,1,2%3、a#2,1,3%3)、
(a#2,2,1%3、a#2,2,2%3、a#2,2,3%3)、・・・、
(a#2,p,1%3、a#2,p,2%3、a#2,p,3%3)、・・・、
(a#2,n−1,1%3、a#2,n−1,2%3、a#2,n−1,3%3)、
(b#2,1%3、b#2,2%3、b#2,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#3,1,1%3、a#3,1,2%3、a#3,1,3%3)、
(a#3,2,1%3、a#3,2,2%3、a#3,2,3%3)、・・・、
(a#3,p,1%3、a#3,p,2%3、a#3,p,3%3)、・・・、
(a#3,n−1,1%3、a#3,n−1,2%3、a#3,n−1,3%3)、
(b#3,1%3、b#3,2%3、b#3,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、



かつ、
(a#k,1,1%3、a#k,1,2%3、a#k,1,3%3)、
(a#k,2,1%3、a#k,2,2%3、a#k,2,3%3)、・・・、
(a#k,p,1%3、a#k,p,2%3、a#k,p,3%3)、・・・、
(a#k,n−1,1%3、a#k,n−1,2%3、a#k,n−1,3%3)、
(b#k,1%3、b#k,2%3、b#k,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)(よって、k=1、2、3、・・・、3g)
かつ、



かつ、
(a#3g−2,1,1%3、a#3g−2,1,2%3、a#3g−2,1,3%3)、
(a#3g−2,2,1%3、a#3g−2,2,2%3、a#3g−2,2,3%3)、・・・、
(a#3g−2,p,1%3、a#3g−2,p,2%3、a#3g−2,p,3%3)、・・・、
(a#3g−2,n−1,1%3、a#3g−2,n−1,2%3、a#3g−2,n−1,3%3)、
(b#3g−2,1%3、b#3g−2,2%3、b#3g−2,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#3g−1,1,1%3、a#3g−1,1,2%3、a#3g−1,1,3%3)、
(a#3g−1,2,1%3、a#3g−1,2,2%3、a#3g−1,2,3%3)、・・・、
(a#3g−1,p,1%3、a#3g−1,p,2%3、a#3g−1,p,3%3)、・・・、
(a#3g−1,n−1,1%3、a#3g−1,n−1,2%3、a#3g−1,n−1,3%3)、
(b#3g−1,1%3、b#3g−1,2%3、b#3g−1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#3g,1,1%3、a#3g,1,2%3、a#3g,1,3%3)、
(a#3g,2,1%3、a#3g,2,2%3、a#3g,2,3%3)、・・・、
(a#3g,p,1%3、a#3g,p,2%3、a#3g,p,3%3)、・・・、
(a#3g,n−1,1%3、a#3g,n−1,2%3、a#3g,n−1,3%3)、
(b#3g,1%3、b#3g,2%3、b#3g,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
ただし、符号化を容易に行うという点を考慮すると、式(9−1)〜(9−3g)において、
(b#k,1%3、b#k,2%3、b#k,3%3)の3つのうち“0”が1つ存在すると良い(ただし、k=1、2、・・・3g)。このとき、D=1が存在し、かつb#k,1、b#k,2、b#k,3が0以上の整数であれば、パリティPを逐次的に求めることができるという特徴を持つからである。
また、同一時点のパリティビットとデータビットに関連性を持たせ、高い訂正能力を持つ符号の探索を容易に行うためには、
(a#k,1,1%3、a#k,1,2%3、a#k,1,3%3)の3つのうち“0”が1つ存在し、
(a#k,2,1%3、a#k,2,2%3、a#k,2,3%3)の3つのうち“0”が1つ存在し、



(a#k,p,1%3、a#k,p,2%3、a#k,p,3%3)の3つのうち“0”が1つ存在し、



(a#k,n−1,1%3、a#k,n−1,2%3、a#k,n−1,3%3)の3つのうち“0”が1つ存在すると良い(ただし、k=1、2、・・・3g)。
次に、符号化を容易に行うという点を考慮した時変周期3g(g=2、3、4、5、・・・)のLDPC−CCについて考える。このとき、符号化率を(n−1)/n(nは2以上の整数)とするとLDPC−CCのパリティ検査多項式は以下のようにあらわすことができる。
Figure 0004563476
このとき、X1(D)、X2(D)、・・・Xn−1(D)はデータ(情報)X1、X2、・・・Xn−1の多項式表現であり、P(D)はパリティの多項式表現である。ここで、式(11−1)〜(11−3g)では、X1(D)、X2(D)、・・・Xn−1(D)、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とする。ただし、時変周期3g、符号化率(n−1)/n(nは2以上の整数)のLDPC−CCにおいて、時刻iのパリティをPi及び情報をXi,1、Xi,2、・・・、Xi,n−1であらわす。このとき、i%3g=kとすると(k=0、1、2、・・・、3g−1)、式(11−(k+1))のパリティ検査多項式が成立する。例えば、i=2とすると、i%3g=2(k=2)となるので、式(12)が成立する。
Figure 0004563476
このとき、<条件#3>及び<条件#4>を満たすと、より高い誤り訂正能力を持つ符号を作成することができる可能性が高まる。
<条件#3>
式(11−1)〜(11−3g)において、X1(D)、X2(D)、・・・Xn−1(D)の次数の組み合わせが以下の条件を満たす。
(a#1,1,1%3、a#1,1,2%3、a#1,1,3%3)、
(a#1,2,1%3、a#1,2,2%3、a#1,2,3%3)、・・・、
(a#1,p,1%3、a#1,p,2%3、a#1,p,3%3)、・・・、
(a#1,n−1,1%3、a#1,n−1,2%3、a#1,n−1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#2,1,1%3、a#2,1,2%3、a#2,1,3%3)、
(a#2,2,1%3、a#2,2,2%3、a#2,2,3%3)、・・・、
(a#2,p,1%3、a#2,p,2%3、a#2,p,3%3)、・・・、
(a#2,n−1,1%3、a#2,n−1,2%3、a#2,n−1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#3,1,1%3、a#3,1,2%3、a#3,1,3%3)、
(a#3,2,1%3、a#3,2,2%3、a#3,2,3%3)、・・・、
(a#3,p,1%3、a#3,p,2%3、a#3,p,3%3)、・・・、
(a#3,n−1,1%3、a#3,n−1,2%3、a#3,n−1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、



かつ、
(a#k,1,1%3、a#k,1,2%3、a#k,1,3%3)、
(a#k,2,1%3、a#k,2,2%3、a#k,2,3%3)、・・・、
(a#k,p,1%3、a#k,p,2%3、a#k,p,3%3)、・・・、
(a#k,n−1,1%3、a#k,n−1,2%3、a#k,n−1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)(よって、k=1、2、3、・・・、3g)
かつ、



かつ、
(a#3g−2,1,1%3、a#3g−2,1,2%3、a#3g−2,1,3%3)、
(a#3g−2,2,1%3、a#3g−2,2,2%3、a#3g−2,2,3%3)、・・・、
(a#3g−2,p,1%3、a#3g−2,p,2%3、a#3g−2,p,3%3)、・・・、
(a#3g−2,n−1,1%3、a#3g−2,n−1,2%3、a#3g−2,n−1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#3g−1,1,1%3、a#3g−1,1,2%3、a#3g−1,1,3%3)、
(a#3g−1,2,1%3、a#3g−1,2,2%3、a#3g−1,2,3%3)、・・・、
(a#3g−1,p,1%3、a#3g−1,p,2%3、a#3g−1,p,3%3)、・・・、
(a#3g−1,n−1,1%3、a#3g−1,n−1,2%3、a#3g−1,n−1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#3g,1,1%3、a#3g,1,2%3、a#3g,1,3%3)、
(a#3g,2,1%3、a#3g,2,2%3、a#3g,2,3%3)、・・・、
(a#3g,p,1%3、a#3g,p,2%3、a#3g,p,3%3)、・・・、
(a#3g,n−1,1%3、a#3g,n−1,2%3、a#3g,n−1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(p=1、2、3、・・・、n−1)
加えて、式(11−1)〜(11−3g)において、P(D)の次数の組み合わが以下の条件を満たす。
(b#1,1%3、b#1,2%3)、
(b#2,1%3、b#2,2%3)、
(b#3,1%3、b#3,2%3)、・・・、
(b#k,1%3、b#k,2%3)、・・・、
(b#3g−2,1%3、b#3g−2,2%3)、
(b#3g−1,1%3、b#3g−1,2%3)、
(b#3g,1%3、b#3g,2%3)は、
(1、2)、(2、1)のいずれかとなる(k=1、2、3、・・・、3g)。
式(11−1)〜(11−3g)に対する<条件#3>は、式(9−1)〜(9−3g)に対する<条件#2>と同様の関係となる。式(11−1)〜(11−3g)に対して、<条件#3>に加え、以下の条件(<条件#4>)を付加すると、より高い誤り訂正能力を持つLDPC−CCを作成することができる可能性が高まる。
<条件#4>
式(11−1)〜(11−3g)のP(D)の次数において、以下の条件を満たす。
(b#1,1%3g、b#1,2%3g)、
(b#2,1%3g、b#2,2%3g)、
(b#3,1%3g、b#3,2%3g)、・・・、
(b#k,1%3g、b#k,2%3g)、・・・、
(b#3g−2,1%3g、b#3g−2,2%3g)、
(b#3g−1,1%3g、b#3g−1,2%3g)、
(b#3g,1%3g、b#3g,2%3g)の6g個の次数(2つの次数が1組を構成するので、3g組を構成する次数は6g個ある)の値には、0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。
ところで、検査行列において、“1”の存在する位置に規則性を持ちながらもランダム性があると良好な誤り訂正能力が得られる可能性が高い。式(11−1)〜(11−3g)のパリティ検査多項式を持つ時変周期3g(g=2、3、4、5、・・・)、符号化率を(n−1)/n(nは2以上の整数)のLDPC−CCでは、<条件#3>に加え<条件#4>の条件をつけ符号を作成すると、検査行列において、“1”の存在する位置に規則性を持ちながらもランダム性を与えることが可能となるため、良好な誤り訂正能力が得られる可能性が高まる。
次に、符号化を容易に行うことができ、かつ、同一時点のパリティビットとデータビットに関連性を持たせる、時変周期3g(g=2、3、4、5、・・・)のLDPC−CCについて考える。このとき、符号化率を(n−1)/n(nは2以上の整数)とするとLDPC−CCのパリティ検査多項式は以下のようにあらわすことができる。
Figure 0004563476
このとき、X1(D)、X2(D)、・・・Xn−1(D)はデータ(情報)X1、X2、・・・Xn−1の多項式表現であり、P(D)はパリティの多項式表現である。そして、式(13−1)〜(13−3g)では、X1(D)、X2(D)、・・・Xn−1(D)、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とし、X1(D)、X2(D)、・・・Xn−1(D)、P(D)にはDの項が存在することになる。(k=1、2、3、・・・、3g)
ただし、時変周期3g、符号化率(n−1)/n(nは2以上の整数)のLDPC−CCにおいて、時刻iのパリティをPi及び情報をXi,1、Xi,2、・・・、Xi,n−1であらわす。このとき、i%3g=kとすると(k=0、1、2、・・・、3g−1)、式(13−(k+1))のパリティ検査多項式が成立する。例えば、i=2とすると、i%3g=2(k=2)となるので、式(14)が成立する。
Figure 0004563476
このとき、以下の条件(<条件#5>及び<条件#6>)を満たすと、更に高い誤り訂正能力を持つ符号を作成できる可能性が高くなる。
<条件#5>
式(13−1)〜(13−3g)において、X1(D)、X2(D)、・・・Xn−1(D)の次数の組み合わせが以下の条件を満たす。
(a#1,1,1%3、a#1,1,2%3)、
(a#1,2,1%3、a#1,2,2%3)、・・・、
(a#1,p,1%3、a#1,p,2%3)、・・・、
(a#1,n−1,1%3、a#1,n−1,2%3)は、
(1、2)、(2、1)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#2,1,1%3、a#2,1,2%3)、
(a#2,2,1%3、a#2,2,2%3)、・・・、
(a#2,p,1%3、a#2,p,2%3)、・・・、
(a#2,n−1,1%3、a#2,n−1,2%3)は、
(1、2)、(2、1)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#3,1,1%3、a#3,1,2%3)、
(a#3,2,1%3、a#3,2,2%3)、・・・、
(a#3,p,1%3、a#3,p,2%3)、・・・、
(a#3,n−1,1%3、a#3,n−1,2%3)は、
(1、2)、(2、1)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、



かつ、
(a#k,1,1%3、a#k,1,2%3)、
(a#k,2,1%3、a#k,2,2%3)、・・・、
(a#k,p,1%3、a#k,p,2%3)、・・・、
(a#k,n−1,1%3、a#k,n−1,2%3)は、
(1、2)、(2、1)のいずれかとなる。(p=1、2、3、・・・、n−1)(よって、k=1、2、3、・・・、3g)
かつ、



かつ、
(a#3g−2,1,1%3、a#3g−2,1,2%3)、
(a#3g−2,2,1%3、a#3g−2,2,2%3)、・・・、
(a#3g−2,p,1%3、a#3g−2,p,2%3)、・・・、
(a#3g−2,n−1,1%3、a#3g−2,n−1,2%3)は、
(1、2)、(2、1)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#3g−1,1,1%3、a#3g−1,1,2%3)、
(a#3g−1,2,1%3、a#3g−1,2,2%3)、・・・、
(a#3g−1,p,1%3、a#3g−1,p,2%3)、・・・、
(a#3g−1,n−1,1%3、a#3g−1,n−1,2%3)は、
(1、2)、(2、1)のいずれかとなる。(p=1、2、3、・・・、n−1)
かつ、
(a#3g,1,1%3、a#3g,1,2%3)、
(a#3g,2,1%3、a#3g,2,2%3)、・・・、
(a#3g,p,1%3、a#3g,p,2%3)、・・・、
(a#3g,n−1,1%3、a#3g,n−1,2%3)は、
(1、2)、(2、1)のいずれかとなる。(p=1、2、3、・・・、n−1)
加えて、式(13−1)〜(13−3g)において、P(D)の次数の組み合わが以下の条件を満たす。
(b#1,1%3、b#1,2%3)、
(b#2,1%3、b#2,2%3)、
(b#3,1%3、b#3,2%3)、・・・、
(b#k,1%3、b#k,2%3)、・・・、
(b#3g−2,1%3、b#3g−2,2%3)、
(b#3g−1,1%3、b#3g−1,2%3)、
(b#3g,1%3、b#3g,2%3)は、
(1、2)、(2、1)のいずれかとなる(k=1、2、3、・・・、3g)。
式(13−1)〜(13−3g)に対する<条件#5>は、式(9−1)〜(9−3g)に対する<条件#2>と同様の関係となる。式(13−1)〜(13−3g)に対して、<条件#5>に加え、以下の条件(<条件#6>)を付加すると、高い誤り訂正能力を持つLDPC−CCを作成できる可能性が高くなる。
<条件#6>
式(13−1)〜(13−3g)のX1(D)の次数において、次の条件を満たす。
(a#1,1,1%3g、a#1,1,2%3g)、
(a#2,1,1%3g、a#2,1,2%3g)、・・・、
(a#p,1,1%3g、a#p,1,2%3g)、・・・、
(a#3g,1,1%3g、a#3g,1,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
かつ、
式(13−1)〜(13−3g)のX2(D)の次数において、次の条件を満たす。
(a#1,2,1%3g、a#1,2,2%3g)、
(a#2,2,1%3g、a#2,2,2%3g)、・・・、
(a#p,2,1%3g、a#p,2,2%3g)、・・・、
(a#3g,2,1%3g、a#3g,2,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
かつ、
式(13−1)〜(13−3g)のX3(D)の次数において、次の条件を満たす。
(a#1,3,1%3g、a#1,3,2%3g)、
(a#2,3,1%3g、a#2,3,2%3g)、・・・、
(a#p,3,1%3g、a#p,3,2%3g)、・・・、
(a#3g,3,1%3g、a#3g,3,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
かつ、



かつ、
式(13−1)〜(13−3g)のXk(D)の次数において、次の条件を満たす。
(a#1,k,1%3g、a#1,k,2%3g)、
(a#2,k,1%3g、a#2,k,2%3g)、・・・、
(a#p,k,1%3g、a#p,k,2%3g)、・・・、
(a#3g,k,1%3g、a#3g,k,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
(k=1、2、3、・・・、n−1)
かつ、



かつ、
式(13−1)〜(13−3g)のXn−1(D)の次数において、次の条件を満たす。
(a#1,n−1,1%3g、a#1,n−1,2%3g)、
(a#2,n−1,1%3g、a#2,n−1,2%3g)、・・・、
(a#p,n−1,1%3g、a#p,n−1,2%3g)、・・・、
(a#3g,n−1,1%3g、a#3g,n−1,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
かつ、
式(13−1)〜(13−3g)のP(D)の次数において、次の条件を満たす。
(b#1,1%3g、b#1,2%3g)、
(b#2,1%3g、b#2,2%3g)、
(b#3,1%3g、b#3,2%3g)、・・・、
(b#k,1%3g、b#k,2%3g)、・・・、
(b#3g−2,1%3g、b#3g−2,2%3g)、
(b#3g−1,1%3g、b#3g−1,2%3g)、
(b#3g,1%3g、b#3g,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(k=1、2、3、・・・、3g)
ところで、検査行列において、“1”の存在する位置に規則性を持ちながらもランダム性があると良好な誤り訂正能力が得られる可能性が高い。式(13−1)〜(13−3g)のパリティ検査多項式を持つ時変周期3g(g=2、3、4、5、・・・)、符号化率を(n−1)/n(nは2以上の整数)のLDPC−CCでは、<条件#5>に加え<条件#6>の条件を付加して符号を作成すると、検査行列において、“1”の存在する位置に規則性を持ちながらもランダム性を与えることが可能となるため、より良好な誤り訂正能力が得られる可能性が高まる。
また、<条件#6>のかわりに、<条件#6’>を用いる、つまり、<条件#5>に加え、<条件#6’>を付加し符号を作成しても、より高い誤り訂正能力を持つLDPC−CCを作成できる可能性が高くなる。
<条件#6’>
式(13−1)〜(13−3g)のX1(D)の次数において、次の条件を満たす。
(a#1,1,1%3g、a#1,1,2%3g)、
(a#2,1,1%3g、a#2,1,2%3g)、・・・、
(a#p,1,1%3g、a#p,1,2%3g)、・・・、
(a#3g,1,1%3g、a#3g,1,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
又は、
式(13−1)〜(13−3g)のX2(D)の次数において、次の条件を満たす。
(a#1,2,1%3g、a#1,2,2%3g)、
(a#2,2,1%3g、a#2,2,2%3g)、・・・、
(a#p,2,1%3g、a#p,2,2%3g)、・・・、
(a#3g,2,1%3g、a#3g,2,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
又は、
式(13−1)〜(13−3g)のX3(D)の次数において、次の条件を満たす。
(a#1,3,1%3g、a#1,3,2%3g)、
(a#2,3,1%3g、a#2,3,2%3g)、・・・、
(a#p,3,1%3g、a#p,3,2%3g)、・・・、
(a#3g,3,1%3g、a#3g,3,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
又は、



又は、
式(13−1)〜(13−3g)のXk(D)の次数において、次の条件を満たす。
(a#1,k,1%3g、a#1,k,2%3g)、
(a#2,k,1%3g、a#2,k,2%3g)、・・・、
(a#p,k,1%3g、a#p,k,2%3g)、・・・、
(a#3g,k,1%3g、a#3g,k,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
(k=1、2、3、・・・、n−1)
又は、



又は、
式(13−1)〜(13−3g)のXn−1(D)の次数において、次の条件を満たす。
(a#1,n−1,1%3g、a#1,n−1,2%3g)、
(a#2,n−1,1%3g、a#2,n−1,2%3g)、・・・、
(a#p,n−1,1%3g、a#p,n−1,2%3g)、・・・、
(a#3g,n−1,1%3g、a#3g,n−1,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
又は、
式(13−1)〜(13−3g)のP(D)の次数において、次の条件を満たす。
(b#1,1%3g、b#1,2%3g)、
(b#2,1%3g、b#2,2%3g)、
(b#3,1%3g、b#3,2%3g)、・・・、
(b#k,1%3g、b#k,2%3g)、・・・、
(b#3g−2,1%3g、b#3g−2,2%3g)、
(b#3g−1,1%3g、b#3g−1,2%3g)、
(b#3g,1%3g、b#3g,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(k=1、2、3、・・・、3g)
以上、時変周期3g、符号化率(n−1)/n(nは2以上の整数)のLDPC−CCについて説明した。以下、時変周期3g、符号化率1/2(n=2)のLDPC−CCのパリティ検査多項式の次数の条件について説明する。
時変周期を3g(g=1、2、3、4、・・・)、符号化率1/2(n=2)のLDPC−CCのパリティ検査多項式として、式(15−1)〜(15−3g)を考える。
Figure 0004563476
このとき、X(D)はデータ(情報)Xの多項式表現であり、P(D)はパリティの多項式表現である。ここで、式(15−1)〜(15−3g)では、X(D)、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とする。
時変周期3のLDPC−CC及び時変周期6のLDPC−CCと同様に考えると、式(15−1)〜(15−3g)のパリティ検査多項式であらわされる時変周期3g、符号化率1/2(n=2)のLDPC−CCにおいて、以下の条件(<条件#2−1>)を満たすと、より高い誤り訂正能力を得ることができる可能性が高まる。
ただし、時変周期3g、符号化率1/2(n=2)のLDPC−CCにおいて、時刻iのパリティをPi及び情報をXi,1であらわす。このとき、i%3g=kとすると(k=0、1、2、・・・、3g−1)、式(15−(k+1))のパリティ検査多項式が成立する。例えば、i=2とすると、i%3g=2(k=2)となるので、式(16)が成立する。
Figure 0004563476
また、式(15−1)〜式(15−3g)において、a#k,1,1、a#k,1,2、a#k,1,3は整数(ただし、a#k,1,1≠a#k,1,2≠a#k,1,3)とする(k=1、2、3、・・・、3g)。また、b#k,1、b#k,2、b#k,3は整数(ただし、b#k,1≠b#k,2≠b#k,3)とする。式(15−k)のパリティ検査多項式(k=1、2、3、・・・、3g)を「検査式#k」と呼び、式(15−k)のパリティ検査多項式に基づくサブ行列を、第kサブ行列Hとする。そして、第1サブ行列H、第2サブ行列H、第3サブ行列H、・・・、第3gサブ行列H3gから生成する時変周期3gのLDPC―CCについて考える。
<条件#2−1>
式(15−1)〜(15−3g)において、X(D)及びP(D)の次数の組み合わせが以下の条件を満たす。
(a#1,1,1%3、a#1,1,2%3、a#1,1,3%3)、
(b#1,1%3、b#1,2%3、b#1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、
(a#2,1,1%3、a#2,1,2%3、a#2,1,3%3)、
(b#2,1%3、b#2,2%3、b#2,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、
(a#3,1,1%3、a#3,1,2%3、a#3,1,3%3)、
(b#3,1%3、b#3,2%3、b#3,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、



かつ、
(a#k,1,1%3、a#k,1,2%3、a#k,1,3%3)、
(b#k,1%3、b#k,2%3、b#k,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(よって、k=1、2、3、・・・、3g)
かつ、



かつ、
(a#3g−2,1,1%3、a#3g−2,1,2%3、a#3g−2,1,3%3)、
(b#3g−2,1%3、b#3g−2,2%3、b#3g−2,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、
(a#3g−1,1,1%3、a#3g−1,1,2%3、a#3g−1,1,3%3)、
(b#3g−1,1%3、b#3g−1,2%3、b#3g−1,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、
(a#3g,1,1%3、a#3g,1,2%3、a#3g,1,3%3)、
(b#3g,1%3、b#3g,2%3、b#3g,3%3)は、
(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
ただし、符号化を容易に行うという点を考慮すると、式(15−1)〜(15−3g)において、
(b#k,1%3、b#k,2%3、b#k,3%3)の3つのうち“0”が1つ存在すると良い(ただし、k=1、2、・・・3g)。このとき、D=1が存在し、かつb#k,1、b#k,2、b#k,3が0以上の整数であれば、パリティPを逐次的に求めることができるという特徴を持つからである。
また、同一時点のパリティビットとデータビットに関連性を持たせ、高い訂正能力を持つ符号の探索を容易に行うためには、
(a#k,1,1%3、a#k,1,2%3、a#k,1,3%3)の3つのうち“0”が1つ存在すると良い(ただし、k=1、2、・・・3g)。
次に、符号化を容易に行うという点を考慮した時変周期3g(g=2、3、4、5、・・・)のLDPC−CCについて考える。このとき、符号化率を1/2(n=2)とするとLDPC−CCのパリティ検査多項式は以下のようにあらわすことができる。
Figure 0004563476
このとき、X(D)はデータ(情報)Xの多項式表現であり、P(D)はパリティの多項式表現である。ここで、式(17−1)〜(17−3g)では、X、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とする。ただし、時変周期3g、符号化率1/2(n=2)のLDPC−CCにおいて、時刻iのパリティをPi及び情報をXi,1であらわす。このとき、i%3g=kとすると(k=0、1、2、・・・、3g−1)、式(17−(k+1))のパリティ検査多項式が成立する。例えば、i=2とすると、i%3g=2(k=2)となるので、式(18)が成立する。
Figure 0004563476
このとき、<条件#3−1>及び<条件#4−1>を満たすと、より高い誤り訂正能力を持つ符号を作成することができる可能性が高まる。
<条件#3−1>
式(17−1)〜(17−3g)において、X(D)の次数の組み合わせが以下の条件を満たす。
(a#1,1,1%3、a#1,1,2%3、a#1,1,3%3)は、(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、
(a#2,1,1%3、a#2,1,2%3、a#2,1,3%3)は、(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、
(a#3,1,1%3、a#3,1,2%3、a#3,1,3%3)は、(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、



かつ、
(a#k,1,1%3、a#k,1,2%3、a#k,1,3%3)は、(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。(よって、k=1、2、3、・・・、3g)
かつ、



かつ、
(a#3g−2,1,1%3、a#3g−2,1,2%3、a#3g−2,1,3%3)は、(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、
(a#3g−1,1,1%3、a#3g−1,1,2%3、a#3g−1,1,3%3)は、(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
かつ、
(a#3g,1,1%3、a#3g,1,2%3、a#3g,1,3%3)は、(0、1、2)、(0、2、1)、(1、0、2)、(1、2、0)、(2、0、1)、(2、1、0)のいずれかとなる。
加えて、式(17−1)〜(17−3g)において、P(D)の次数の組み合わが以下の条件を満たす。
(b#1,1%3、b#1,2%3)、
(b#2,1%3、b#2,2%3)、
(b#3,1%3、b#3,2%3)、・・・、
(b#k,1%3、b#k,2%3)、・・・、
(b#3g−2,1%3、b#3g−2,2%3)、
(b#3g−1,1%3、b#3g−1,2%3)、
(b#3g,1%3、b#3g,2%3)は、
(1、2)、(2、1)のいずれかとなる(k=1、2、3、・・・、3g)。
式(17−1)〜(17−3g)に対する<条件#3−1>は、式(15−1)〜(15−3g)に対する<条件#2−1>と同様の関係となる。式(17−1)〜(17−3g)に対して、<条件#3−1>に加え、以下の条件(<条件#4−1>)を付加すると、より高い誤り訂正能力を持つLDPC−CCを作成することができる可能性が高まる。
<条件#4−1>
式(17−1)〜(17−3g)のP(D)の次数において、以下の条件を満たす。
(b#1,1%3g、b#1,2%3g)、
(b#2,1%3g、b#2,2%3g)、
(b#3,1%3g、b#3,2%3g)、・・・、
(b#k,1%3g、b#k,2%3g)、・・・、
(b#3g−2,1%3g、b#3g−2,2%3g)、
(b#3g−1,1%3g、b#3g−1,2%3g)、
(b#3g,1%3g、b#3g,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。
ところで、検査行列において、“1”の存在する位置に規則性を持ちながらもランダム性があると良好な誤り訂正能力が得られる可能性が高い。式(17−1)〜(17−3g)のパリティ検査多項式を持つ時変周期3g(g=2、3、4、5、・・・)、符号化率1/2(n=2)のLDPC−CCでは、<条件#3−1>に加え<条件#4−1>の条件をつけ符号を作成すると、検査行列において、“1”の存在する位置に規則性を持ちながらもランダム性を与えることが可能となるため、より良好な誤り訂正能力が得られる可能性が高まる。
次に、符号化を容易に行うことができ、かつ、同一時点のパリティビットとデータビットに関連性を持たせる、時変周期3g(g=2、3、4、5、・・・)のLDPC−CCについて考える。このとき、符号化率を1/2(n=2)とするとLDPC−CCのパリティ検査多項式は以下のようにあらわすことができる。
Figure 0004563476
このとき、X(D)はデータ(情報)Xの多項式表現であり、P(D)はパリティの多項式表現である。そして、式(19−1)〜(19−3g)では、X(D)、P(D)それぞれに3つの項が存在するようなパリティ検査多項式とし、X(D)、P(D)にはDの項が存在することになる。(k=1、2、3、・・・、3g)
ただし、時変周期3g、符号化率1/2(n=2)のLDPC−CCにおいて、時刻iのパリティをPi及び情報をXi,1であらわす。このとき、i%3g=kとすると(k=0、1、2、・・・、3g−1)、式(19−(k+1))のパリティ検査多項式が成立する。例えば、i=2とすると、i%3g=2(k=2)となるので、式(20)が成立する。
Figure 0004563476
このとき、以下の条件(<条件#5−1>及び<条件#6−1>)を満たすと、より高い誤り訂正能力を持つ符号を作成することができる可能性が高まる。
<条件#5−1>
式(19−1)〜(19−3g)において、X(D)の次数の組み合わせが以下の条件を満たす。
(a#1,1,1%3、a#1,1,2%3)は、(1、2)、(2、1)のいずれかとなる。
かつ、
(a#2,1,1%3、a#2,1,2%3)は、(1、2)、(2、1)のいずれかとなる。
かつ、
(a#3,1,1%3、a#3,1,2%3)は、(1、2)、(2、1)のいずれかとなる。
かつ、



かつ、
(a#k,1,1%3、a#k,1,2%3)は、(1、2)、(2、1)のいずれかとなる。(よって、k=1、2、3、・・・、3g)
かつ、



かつ、
(a#3g−2,1,1%3、a#3g−2,1,2%3)は、(1、2)、(2、1)のいずれかとなる。
かつ、
(a#3g−1,1,1%3、a#3g−1,1,2%3)は、(1、2)、(2、1)のいずれかとなる。
かつ、
(a#3g,1,1%3、a#3g,1,2%3)は、(1、2)、(2、1)のいずれかとなる。
加えて、式(19−1)〜(19−3g)において、P(D)の次数の組み合わが以下の条件を満たす。
(b#1,1%3、b#1,2%3)、
(b#2,1%3、b#2,2%3)、
(b#3,1%3、b#3,2%3)、・・・、
(b#k,1%3、b#k,2%3)、・・・、
(b#3g−2,1%3、b#3g−2,2%3)、
(b#3g−1,1%3、b#3g−1,2%3)、
(b#3g,1%3、b#3g,2%3)は、
(1、2)、(2、1)のいずれかとなる(k=1、2、3、・・・、3g)。
式(19−1)〜(19−3g)に対する<条件#5−1>は、式(15−1)〜(15−3g)に対する<条件#2−1>と同様の関係となる。式(19−1)〜(19−3g)に対して、<条件#5−1>に加え、以下の条件(<条件#6−1>)を付加すると、より高い誤り訂正能力を持つLDPC−CCを作成することができる可能性が高まる。
<条件#6−1>
式(19−1)〜(19−3g)のX(D)の次数において、次の条件を満たす。
(a#1,1,1%3g、a#1,1,2%3g)、
(a#2,1,1%3g、a#2,1,2%3g)、・・・、
(a#p,1,1%3g、a#p,1,2%3g)、・・・、
(a#3g,1,1%3g、a#3g,1,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
かつ、
式(19−1)〜(19−3g)のP(D)の次数において、次の条件を満たす。
(b#1,1%3g、b#1,2%3g)、
(b#2,1%3g、b#2,2%3g)、
(b#3,1%3g、b#3,2%3g)、・・・、
(b#k,1%3g、b#k,2%3g)、・・・、
(b#3g−2,1%3g、b#3g−2,2%3g)、
(b#3g−1,1%3g、b#3g−1,2%3g)、
(b#3g,1%3g、b#3g,2%3g)の6g(3g×2)個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(k=1、2、3、・・・、3g)
ところで、検査行列において、“1”の存在する位置に規則性を持ちながらもランダム性があると、良好な誤り訂正能力が得られる可能性が高い。式(19−1)〜(19−3g)のパリティ検査多項式を持つ時変周期3g(g=2、3、4、5、・・・)、符号化率1/2のLDPC−CCでは、<条件#5−1>に加え<条件#6−1>の条件を付加して符号を作成すると、検査行列において、“1”の存在する位置に規則性を持ちながらもランダム性を与えることが可能となるため、より良好な誤り訂正能力が得られる可能性が高まる。
また、<条件#6−1>のかわりに、<条件#6’−1>を用いる、つまり、<条件#5−1>に加え、<条件#6’−1>を付加し符号を作成しても、より高い誤り訂正能力を持つLDPC−CCを作成することができる可能性が高まる。
<条件#6’−1>
式(19−1)〜(19−3g)のX(D)の次数において、次の条件を満たす。
(a#1,1,1%3g、a#1,1,2%3g)、
(a#2,1,1%3g、a#2,1,2%3g)、・・・、
(a#p,1,1%3g、a#p,1,2%3g)、・・・、
(a#3g,1,1%3g、a#3g,1,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(p=1、2、3、・・・、3g)
又は、
式(19−1)〜(19−3g)のP(D)の次数において、次の条件を満たす。
(b#1,1%3g、b#1,2%3g)、
(b#2,1%3g、b#2,2%3g)、
(b#3,1%3g、b#3,2%3g)、・・・、
(b#k,1%3g、b#k,2%3g)、・・・、
(b#3g−2,1%3g、b#3g−2,2%3g)、
(b#3g−1,1%3g、b#3g−1,2%3g)、
(b#3g,1%3g、b#3g,2%3g)の6g個の値には、
0から3g−1の整数(0、1、2、3、4、・・・、3g−2、3g−1)のうち、3の倍数(つまり、0、3、6、・・・、3g−3)以外の値の全ての値が存在する。(k=1、2、3、・・・、3g)
一例として、良好な誤り訂正能力を持つ、符号化率1/2、時変周期6のLDPC−CCを表4に列挙する。
Figure 0004563476
以上、特性が良好な時変周期gのLDPC−CCについて説明した。なお、LDPC−CCは、情報ベクトルnに生成行列Gを乗ずることにより、符号化データ(符号語)を得ることができる。つまり、符号化データ(符号語)cは、c=n×Gとあらわすことができる。ここで、生成行列Gは、予め設計された検査行列Hに対応して求められたものである。具体的には、生成行列Gは、G×H=0を満たす行列である。
例えば、符号化率1/2、生成多項式G=[1 G(D)/G(D)]の畳み込み符号を例に考える。このとき、Gはフィードフォワード多項式、Gはフィードバック多項式をあらわす。情報系列(データ)の多項式表現をX(D)、パリティ系列の多項式表現をP(D)とするとパリティ検査多項式は、以下の式(21)のようにあらわされる。
Figure 0004563476
ここで、Dは、遅延演算子である。
図5に、(7,5)の畳み込み符号に関する情報を記載する。(7,5)畳み込み符号の生成行列はG=[1 (D+1)/(D+D+1)]とあらわされる。したがって、パリティ検査多項式は、以下の式(22)となる。
Figure 0004563476
ここで、時点iにおけるデータをX、パリティをPとあらわし、送信系列W=(X,P)とあらわす。そして、送信ベクトルw=(X,P,X,P,・・・,X,P・・・)とあらわす。すると、式(22)から、検査行列Hは図5に示すようにあらわすことができる。このとき、以下の式(23)の関係式が成立する。
Figure 0004563476
したがって、復号側では、検査行列Hを用い、非特許文献7〜非特許文献9に示されているようなBP(Belief Propagation)(信頼度伝播)復号、BP復号を近似したmin-sum復号、offset BP復号、Normalized BP復号、shuffled BP復号などの信頼度伝播を利用した復号を行うことができる。
(畳み込み符号に基づく時不変・時変LDPC−CC(符号化率(n−1)/n)(n:自然数))
以下、畳み込み符号に基づく時不変・時変LDPC−CCの概要を述べる。
符号化率R=(n−1)/nの情報X、X、・・・、Xn−1の多項式表現をX(D)、X(D)、・・・、Xn−1(D)、また、パリティPの多項式表現をP(D)とし、式(24)のようにあらわされるパリティ検査多項式を考える。
Figure 0004563476
式(24)において、このときap,p(p=1,2,・・・,n−1;q=1,2,・・・,rp)は、例えば、自然数であり、ap,1≠ap,2≠・・・≠ap,rpを満足する。また、bq(q=1,2,・・・,s)は、自然数であり、b≠b≠・・・≠bを満足する。このとき、式(24)のパリティ検査多項式に基づく検査行列で定義される符号を、ここでは、時不変LDPC−CCと呼ぶ。
式(24)に基づく異なるパリティ検査多項式をm個用意する(mは、2以上の整数)。そのパリティ検査多項式を以下のようにあらわす。
Figure 0004563476
ここで、i=0,1,・・・,m−1である。
そして、時点jにおける情報X、X、・・・、Xn−1をX1,j、X2,j、・・・、Xn−1,jとあらわし、時点jにおけるパリティPをPjとあらわし、u=(X1,j,X2,j,・・・,Xn−1,j,Pj)とする。このとき、時点jの情報X1,j、X2,j、・・・、Xn−1,j及びパリティPは、式(26)のパリティ検査多項式を満たす。
Figure 0004563476
ここで、「j mod m」は、jをmで除算した余りである。
式(26)のパリティ検査多項式に基づく検査行列で定義される符号を、ここでは時変LDPC−CCと呼ぶ。このとき、式(24)のパリティ検査多項式で定義される時不変LDPC−CC、及び、式(26)のパリティ検査多項式で定義される時変LDPC−CCは、逐次的にパリティをレジスタ及び排他的論理和で簡単に求めることができるという特徴を持つ。
例えば、符号化率2/3で、式(24)〜式(26)に基づく時変周期2のLDPC―CCの検査行列Hの構成を、図6に示す。式(26)に基づく時変周期2の異なる2つの検査多項式に対し、「検査式#1」、「検査式#2」と名付ける。図6において、(Ha,111)は「検査式#1」に相当する部分であり、(Hc,111)は「検査式#2」に相当する部分である。以下、(Ha,111)及び(Hc,111)をサブ行列と定義する。
このように、本提案の時変周期2のLDPC−CCの検査行列Hを、「検査式#1」のパリティ検査多項式をあらわす第1サブ行列と、「検査式#2」のパリティ検査多項式をあらわす第2サブ行列とにより定義することができる。具体的には、検査行列Hにおいて、第1サブ行列と第2サブ行列とが行方向に交互に配置されるようにする。なお、符号化率2/3の場合、図6に示すように、第i行と第i+1行とでは、サブ行列が3列右にシフトした構成となる。
また、時変周期2の時変LDPC−CCの場合、第i行のサブ行列と第i+1行のサブ行列とは、異なるサブ行列となる。つまり、サブ行列(Ha,11)または(Hc,11)のいずれか一方が第1サブ行列となり、他方が第2サブ行列となる。送信ベクトルuを、u=(X1,0、X2,0、P、X1,1、X2,1、P、・・・、X1,k、X2,k、P、・・・・)とすると、Hu=0が成立する(式(23)参照))。
次に、符号化率2/3の場合に、時変周期をmとするLDPC−CCを考える。時変周期2の場合と同様に、式(24)であらわされるパリティ検査多項式をm個用意する。そして、式(24)であらわされる「検査式#1」を用意する。同様に、式(24)であらわされる「検査式#2」から「検査式#m」を用意する。時点mi+1のデータXとパリティPをそれぞれXmi+1、Pmi+1とあらわし、時点mi+2のデータXとパリティPとを、それぞれXmi+2、Pmi+2とあわし、・・・、時点mi+mのデータXとパリティPとを、それぞれXmi+m、Pmi+mとあらわす(i:整数)。
このとき、時点mi+1のパリティPmi+1を「検査式#1」を用いて求め、時点mi+2のパリティPmi+2を「検査式#2」を用いて求め、・・・、時点mi+mのパリティPmi+mを「検査式#m」を用いて求めるLDPC−CCを考える。このようなLDPC−CC符号は、
・符号化器を簡単に構成することができ、かつ、パリティを逐次的に求めることができる
・終端ビットの削減、終端時のパンクチャ時の受信品質の向上が見込める
という利点を備える。
図7に、上述した符号化率2/3、時変周期mのLDPC−CCの検査行列の構成を示す。図7において、(H,111)は「検査式#1」に相当する部分であり、(H,111)は「検査式#2」に相当する部分であり、・・・、(H,111)は「検査式#m」に相当する部分である。以下、(H,111)を第1サブ行列と定義し、(H,111)を第2サブ行列と定義し、・・・、(H,111)を、第mサブ行列と定義する。
このように、本提案の時変周期mのLDPC−CCの検査行列Hは、「検査式#1」のパリティ検査多項式をあらわす第1サブ行列、「検査式#2」のパリティ検査多項式をあらわす第2サブ行列、・・・、及び、「検査式#m」のパリティ検査多項式をあらわす第mサブ行列により定義することができる。具体的には、検査行列Hにおいて、第1サブ行列から第mサブ行列までが、行方向に周期的に配置されるようにした(図7参照)。なお、符号化率2/3の場合、第i行と第i+1行とでは、サブ行列が3列右にシフトした構成となる(図7参照)。
送信ベクトルuを、u=(X1,0、X2,0、P、X1,1、X2,1、P、・・・、X1,k、X2,k、P、・・・・)とすると、Hu=0が成立する(式(23)参照))。
上述の説明では、符号化率(n−1)/nの畳み込み符号に基づく時不変・時変LDPC−CCの一例として、符号化率2/3の場合を例に説明したが、同様に考えることで、符号化率(n−1)/nの畳み込み符号に基づく時不変・時変LDPC−CCのパリティ検査行列を作成することができる。
すなわち、符号化率2/3の場合、図7において、(H,111)は「検査式#1」に相当する部分(第1サブ行列)であり、(H,111)は「検査式#2」に相当する部分(第2サブ行列)であり、・・・、(H,111)は「検査式#m」に相当する部分(第mサブ行列)であるのに対し、符号化率(n−1)/nの場合、図8に示すようになる。つまり、「検査式#1」に相当する部分(第1サブ行列)は、(H,11・・・1)であらわされ、「検査式#k」(k=2、3、・・・、m)に相当する部分(第kサブ行列)は、(H,11・・・1)であらわされる。このとき、第kサブ行列において、Hを除く部分の「1」の個数は、n−1個となる。そして、検査行列Hにおいて、第i行と第i+1行とでは、サブ行列がn−1列右にシフトした構成となる(図8参照)。
送信ベクトルuを、u=(X1,0、X2,0、・・・、Xn−1,0、P、X1,1、X2,1、・・・、Xn−1,1、P、・・・、X1,k、X2,k、・・・、Xn−1,k、P、・・・・)とすると、Hu=0が成立する(式(23)参照)。
なお、図9に、一例として、符号化率R=1/2の場合のLDPC−CC符号化器の構成例を示す。図9に示すように、LDPC−CC符号化器100は、データ演算部110、パリティ演算部120、ウェイト制御部130及びmod2加算(排他的論理和演算)器140を主に備える。
データ演算部110は、シフトレジスタ111−1〜111−M、ウェイト乗算器112−0〜112−Mを備える。
パリティ演算部120は、シフトレジスタ121−1〜121−M、ウェイト乗算器122−0〜122−Mを備える。
シフトレジスタ111−1〜111−M及び121−1〜121−Mは、それぞれv1,t−i,v2,t−i(i=0,…,M)を保持するレジスタであり、次の入力が入ってくるタイミングで、保持している値を右隣のシフトレジスタに出力し、左隣のシフトレジスタから出力される値を新たに保持する。なお、シフトレジスタの初期状態は全て0である。
ウェイト乗算器112−0〜112−M,122−0〜122−Mは、ウェイト制御部130から出力される制御信号にしたがって、h (m),h (m)の値を0/1に切り替える。
ウェイト制御部130は、内部に保持する検査行列に基づいて、そのタイミングにおけるh (m),h (m)の値を出力し、ウェイト乗算器112−0〜112−M,122−0〜122−Mに供給する。
mod2加算器140は、ウェイト乗算器112−0〜112−M,122−0〜122−Mの出力に対しmod2の算出結果を全て加算し、v2,tを算出する。
このような構成を採ることで、LDPC−CC符号化器100は、検査行列にしたがったLDPC−CCの符号化を行うことができる。
なお、ウェイト制御部130が保持する検査行列の各行の並びが行毎に異なる場合、LDPC−CC符号化器100は、時変(time varying)畳み込み符号化器となる。また、符号化率(q−1)/qのLDPC−CCの場合には、データ演算部110を(q−1)個設け、mod2加算器140が、各ウェイト乗算器の出力をmod2加算(排他的論理和演算)を行う構成とすれば良い。
(実施の形態1)
次いで、本実施の形態では、符号化器・復号化器において、低演算規模で複数の符号化率に対応することができるLDPC−CCの探索方法について説明する。以下に説明する方法により探索されたLDPC−CCを用いることにより、復号化器では、高いデータ受信品質を実現することができる。
本実施の形態におけるLDPC−CCの探索方法は、例えば、上述したような特性が良好なLDPC−CCのうち、符号化率1/2のLDPC−CCに基づいて、符号化率2/3,3/4,4/5,…,(q−1)/qのLDPC−CCを順次探索する。これにより、符号化及び復号化処理において、最も符号化率の高い(q−1)/qのときの符号化器、復号化器を用意することで、最も符号化率の高い(q−1)/qより小さい符号化率(s−1)/s(s=2、3、・・・、q−1)の符号化、復号化を行うことが可能となる。
なお、以下では、一例として、時変周期3のLDPC−CCを用いて説明する。上述したように、時変周期3のLDPC−CCは、非常に良好な誤り訂正能力を有する。
(LDPC−CCの探索方法)
(1)符号化率1/2
先ず、基礎となるLDPC−CCとして、符号化率1/2のLDPC−CCを選択する。基礎となる符号化率1/2のLDPC−CCとしては、上述したような特性が良好なLDPC−CCを選択する。
以下では、基礎となる符号化率1/2のLDPC−CCのパリティ検査多項式として、式(27−1)〜式(27−3)であらわされるパリティ検査多項式を選択した場合について説明する。(式(27−1)〜式(27−3)の例では上述の(良好な特性を有するLDPC―CC)と同様の形式であらわしているため、時変周期3のLDPC−CCは、3つのパリティ検査多項式で定義することができる。)
Figure 0004563476
式(27−1)〜式(27−3)は、表3に記載したように、特性が良好な時変周期3、符号化率1/2のLDPC−CCのパリティ検査多項式の一例である。そして、上述の(良好な特性を有するLDPC―CC)で説明したように、時点jにおける情報XをX1,jとあらわし、時点jにおけるパリティPをPjとあらわし、u=(X1,j,Pj)とする。このとき、時点jの情報X1,j及びパリティPは、
「j mod 3=0のとき、式(27―1)のパリティ検査多項式を満たす。」
「j mod 3=1のとき、式(27―2)のパリティ検査多項式を満たす。」
「j mod 3=2のとき、式(27―3)のパリティ検査多項式を満たす。」
このとき、パリティ検査多項式と検査行列の関係は、上述の(良好な特性を有するLDPC−CC)で説明した場合と同様である。
(2)符号化率2/3
次いで、特性が良好な符号化率1/2のパリティ検査多項式に基づいて、符号化率2/3のLDPC−CCのパリティ検査多項式を作成する。具体的には、符号化率2/3のLDPC−CCのパリティ検査多項式が、基礎とする符号化率1/2のパリティ検査多項式を含む構成とする。
ベースの符号化率1/2のLDPC−CCに、式(27−1)〜式(27−3)を用いる場合の符号化率2/3のLDPC−CCのパリティ検査多項式を式(28−1)〜式(28−3)のようにあらわすことができる。
Figure 0004563476
式(28−1)〜式(28−3)に示されるパリティ検査多項式は、式(27−1)〜式(27−3)に、それぞれX2(D)の項を追加した構成を採る。式(28−1)〜式(28−3)を用いる符号化率2/3のLDPC−CCのパリティ検査多項式は、後述する符号化率3/4のパリティ検査多項式の基礎となる。
なお、式(28−1)〜式(28−3)において、X2(D)の各次数、(α1,β1)、(α2,β2)、(α3,β3)が、上述の条件(<条件#1>〜<条件#6>等)を満たすように設定すると、符号化率2/3の場合にも、特性が良好なLDPC−CCを得ることができる。
そして、上述の(良好な特性を有するLDPC―CC)で説明したように、時点jにおける情報X1、をX1,j、2,jとあらわし、時点jにおけるパリティPをPjとあらわし、u=(X1,j,X2,j,Pj)とする。このとき、時点jの情報X1,j、2,j及びパリティPは、
「j mod 3=0のとき、式(28―1)のパリティ検査多項式を満たす。」
「j mod 3=1のとき、式(28―2)のパリティ検査多項式を満たす。」
「j mod 3=2のとき、式(28―3)のパリティ検査多項式を満たす。」
このとき、パリティ検査多項式と検査行列の関係は、上述の(良好な特性を有するLDPC−CC)で説明した場合と同様である。
(3)符号化率3/4
次いで、上述の符号化率2/3のパリティ検査多項式に基づいて、符号化率3/4のLDPC−CCのパリティ検査多項式を作成する。具体的には、符号化率3/4のLDPC−CCのパリティ検査多項式が、基礎とする符号化率2/3のパリティ検査多項式を含む構成とする。
ベースの符号化率2/3のLDPC−CCに、式(28−1)〜式(28−3)を用いる場合の符号化率3/4のLDPC−CCのパリティ検査多項式を式(29−1)〜式(29−3)に示す。
Figure 0004563476
式(29−1)〜式(29−3)に示されるパリティ検査多項式は、式(28−1)〜式(28−3)に、それぞれX3(D)の項を追加した構成を採る。なお、式(29−1)〜式(29−3)において、X3(D)の各次数、(γ1,δ1)、(γ2,δ2)、(γ3,δ3)が、特性が良好なLDPC−CCの次数の条件(<条件#1>〜<条件#6>等)を満たすように設定すると、符号化率3/4の場合にも、特性が良好なLDPC−CCを得ることができる。
そして、上述の(良好な特性を有するLDPC―CC)で説明したように、時点jにおける情報X1、2、をX1,j、2,j、3,jとあらわし、時点jにおけるパリティPをPjとあらわし、u=(X1,j,X2,j,X3,j,Pj)とする。このとき、時点jの情報X1,j、2,j、3,j及びパリティPは、
「j mod 3=0のとき、式(29―1)のパリティ検査多項式を満たす。」
「j mod 3=1のとき、式(29―2)のパリティ検査多項式を満たす。」
「j mod 3=2のとき、式(29―3)のパリティ検査多項式を満たす。」
このとき、パリティ検査多項式と検査行列の関係は、上述の(良好な特性を有するLDPC−CC)で説明した場合と同様である。
式(30−1)〜(30−(q−1))に、上述のようにして探索した場合の時変周期gのLDPC−CCのパリティ検査多項式の一般式を示す。
Figure 0004563476
ただし、式(30−1)は一般式で表現しているため、式(30−1)のような表現をしているが、上述の(良好な特性を有するLDPC―CC)で説明したように、実際は、時変周期がgなので、式(30−1)はg個のパリティ検査多項式で表現される。(本実施の形態で説明したように、例えば、時変周期3の場合、式(27−1)〜式(27−3)のように、3個のパリティ検査多項式で表現されている。)式(30−1)と同様に、式(30−2)〜式(30−(q−1))のそれぞれの式も時変周期がgなのでg個のパリティ検査多項式で表現される。
ここで、式(30−1)のg個のパリティ検査多項式を式(30−1−0)、式(30−1−1)、式(30−1−2)、・・・、式(30−1−(g−2))、式(30―1−(g−1))と表現することにする。
同様に、式(30−w)はg個のパリティ検査多項式で表現される(w=2、3、・・・、q−1)。ここで、式(30−w)のg個のパリティ検査多項式を式(30−w−0)、式(30−w−1)、式(30−w−2)、・・・、式(30−w−(g−2))、式(30―w−(g−1))と表現することにする。
なお、式(30−1)〜式(30−(q−1))において、X1,i、X2,i、・・・、Xq−1,iは、時点iにおける情報X、X、・・・、Xq−1を示し、Pは時点iにおけるパリティPを示す。また、AXr,k(D)は、符号化率(r−1)/r(r=2,3,…,q(qは3以上の自然数))の時刻iとし、k=i mod gとして求めたkのパリティ検査多項式におけるX(D)の項である。また、B(D)は、符号化率(r−1)/rの時刻iとしk=i mod gとして求めたkのパリティ検査多項式におけるP(D)の項である。また、「i mod g」は、iをgで除算した余りである。
すなわち、式(30−1)は、符号化率1/2に対応する時変周期gのLDPC−CCのパリティ検査多項式であり、式(30−2)は、符号化率2/3に対応する時変周期gのLDPC−CCのパリティ検査多項式であり、…、式(30−(q−1))は、符号化率(q−1)/qに対応する時変周期gのLDPC−CCのパリティ検査多項式である。
このようにして、特性が良好な符号化率1/2のLDPC−CCのパリティ検査多項式である式(30−1)を基礎として、符号化率2/3のLDPC−CCのパリティ検査多項式(30−2)を生成する。
更に、符号化率2/3のLDPC−CCのパリティ検査多項式(30−2)を基礎として、符号化率3/4のLDPC−CCのパリティ検査多項式(30−3)を生成する。以降同様にして、符号化率(r−1)/rのLDPC−CCを基礎として、符号化率r/(r+1)のLDPC−CCのパリティ検査多項式を生成する。(r=2、3、・・・、q−2、q−1)
以上のパリティ検査多項式の構成方法について別の表現をする。符号化率(y−1)/yである時変周期gのLDPC―CCと、符号化率(z−1)/zである時変周期gのLDPC−CCとを、考える。ただし、符号化器の回路の共用化と、復号化器の回路の共用化とを図る符号化率の中で最大の符号化率は(q−1)/qであり、gは2以上の整数、yは2以上の整数、zは2以上の整数とし、y<z≦qの関係が成立するものとする。なお、符号化器の回路の共用化とは、符号化器内部の回路の共用化であり、符号化器と復号化器との回路の共用化ではない。
このとき、式(30―1)〜(30−(q−1))の説明をする際に述べたg個のパリティ検査多項式を表現した式(30−w−0)、式(30−w−1)、式(30−w−2)、・・・、式(30−w−(g−2))、式(30―w−(g−1))において、w=y―1としたときのg個のパリティ検査多項式を式(31−1)〜式(31−g)であらわす。
Figure 0004563476
式(31−1)〜式(31―g)において、式(31−w)と式(31―w’)は等価の式であり、以降で式(31−w)と記載されているところを式(31−w’)と置き換えても良い(w=1、2、・・・、g)。
そして、上述の(良好な特性を有するLDPC―CC)で説明したように、時点jにおける情報X1、2、・・・、Xy−1をX1,j、2,j、・・・、Xy−1,jとあらわし、時点jにおけるパリティPをPjとあらわし、u=(X1,j,X2,j、・・・、Xy−1,j、Pj)とする。このとき、時点jの情報X1,j、2,j、・・・、Xy−1,j及びパリティPは、
「j mod g=0のとき、式(31―1)のパリティ検査多項式を満たす。」
「j mod g=1のとき、式(31―2)のパリティ検査多項式を満たす。」
「j mod g=2のとき、式(31―3)のパリティ検査多項式を満たす。」



「j mod g=kのとき、式(31―(k+1))のパリティ検査多項式を満たす。」



「j mod g=g−1のとき、式(31―g)のパリティ検査多項式を満たす。」
このとき、パリティ検査多項式と検査行列の関係は、上述の(良好な特性を有するLDPC−CC)で説明した場合と同様である。
次に、式(30―1)〜(30−(q−1))の説明をする際に述べたg個のパリティ検査多項式を表現した式(30−w−0)、式(30−w−1)、式(30−w−2)、・・・、式(30−w−(g−2))、式(30―w−(g−1))において、w=z―1としたときのg個のパリティ検査多項式を式(32−1)〜式(32−g)であらわす。(y<z≦qの関係から、式(32−1)〜式(32−g)とあらわすことができる。)
Figure 0004563476
式(32−1)〜式(32―g)において、式(32−w)と式(32―w’)は等価の式であり、以降で式(32−w)と記載されているところを式(32−w’)と置き換えても良い(w=1、2、・・・、g)。
そして、上述の(良好な特性を有するLDPC―CC)で説明したように、時点jにおける情報X1、2、・・・、Xy−1、・・・、Xs、・・・、Xz−1をX1,j、2,j、・・・、Xy−1,j、・・・、Xs,j、・・・、Xz−1,jとあらわし、時点jにおけるパリティPをPjとあらわし、u=(X1,j,X2,j、・・・、Xy−1,j、・・・、Xs,j、・・・、Xz−1,j、Pj)とする(したがって、y<z≦qの関係から、s=y、y+1、y+2、y+3、・・・、z−3、z−2、z−1となる。)。このとき、時点jの情報X1,j、2,j、・・・、Xy−1,j、・・・、Xs,j、・・・、Xz−1,j及びパリティPは、
「j mod g=0のとき、式(32―1)のパリティ検査多項式を満たす。」
「j mod g=1のとき、式(32―2)のパリティ検査多項式を満たす。」
「j mod g=2のとき、式(32―3)のパリティ検査多項式を満たす。」



「j mod g=kのとき、式(32―(k+1))のパリティ検査多項式を満たす。」



「j mod g=g−1のとき、式(32―g)のパリティ検査多項式を満たす。」このとき、パリティ検査多項式と検査行列の関係は、上述の(良好な特性を有するLDPC−CC)で説明した場合と同様である。
上記関係が成立する場合において、符号化率(y−1)/yにおける時変周期gのLDPC―CCと、符号化率(z−1)/zにおける時変周期gのLDPC−CCとにおいて、以下の条件が成立する場合、符号化率(y−1)/yにおける時変周期gのLDPC―CCの符号化器と、符号化率(z−1)/zにおける時変周期gのLDPC−CCの符号化器とが、回路の共用化ができ、かつ、符号化率(y−1)/yにおける時変周期gのLDPC―CCの復号化器と、符号化率(z−1)/zにおける時変周期gのLDPC−CCの復号化器とが、回路の共用化ができる。その条件は、以下のとおりである。
まず、式(31―1)と式(32−1)とでは、以下の関係が成立する。
「式(31―1)のAX1,0(D)と式(32―1)のAX1,0(D)とは、等号が成立する。」



「式(31―1)のAXf,0(D)と式(32―1)のAXf,0(D)とは、等号が成立する。」



「式(31―1)のAXy−1,0(D)と式(32―1)のAXy−1,0(D)とは、等号が成立する。」
つまり、上記関係はf=1、2、3、・・・、y−1で成立する。
また、パリティに対しても以下の関係が成立する。
「式(31―1)のB(D)と式(32―1)のB(D)とは、等号が成立する。」
同様に、式(31―2)と式(32−2)では以下の関係が成立する。
「式(31―2)のAX1,1(D)と式(32―2)のAX1,1(D)とは、等号が成立する。」



「式(31―2)のAXf,1(D)と式(32―2)のAXf,1(D)とは、等号が成立する。」



「式(31―2)のAXy−1,1(D)と式(32―2)のAXy−1,1(D)とは、等号が成立する。」
つまり、上記関係はf=1、2、3、・・・、y−1で成立する。
また、パリティに対しても以下の関係が成立する。
「式(31―2)のB(D)と式(32―2)のB(D)とは、等号が成立する。」

(略)
同様に、式(31―h)と式(32−h)とでは、以下の関係が成立する。
「式(31―h)のAX1,h−1(D)と式(32―h)のAX1,h−1(D)とは、等号が成立する。」



「式(31―h)のAXf,h−1(D)と式(32―h)のAXf,h−1(D)とは、等号が成立する。」



「式(31―h)のAXy−1,h−1(D)と式(32―h)のAXy−1,h−1(D)とは、等号が成立する。」
つまり、上記関係はf=1、2、3、・・・、y−1で成立する。
また、パリティに対しても以下の関係が成立する。
「式(31―h)のBh−1(D)と式(32―h)のBh−1(D)とは、等号が成立する。」

(略)
同様に、式(31―g)と式(32−g)とでは、以下の関係が成立する。
「式(31―g)のAX1,g−1(D)と式(32―g)のAX1,g−1(D)とは、等号が成立する。」



「式(31―g)のAXf,g−1(D)と式(32―g)のAXf,g−1(D)とは、等号が成立する。」



「式(31―g)のAXy−1,g−1(D)と式(32―g)のAXy−1,g−1(D)とは、等号が成立する。」
つまり、上記関係はf=1、2、3、・・・、y−1で成立する。
また、パリティに対しても以下の関係が成立する。
「式(31―g)のBg−1(D)と式(32―g)のBg−1(D)とは、等号が成立する。」
(よって、h=1、2、3、・・・、g−2、g−1、gとなる。)
以上のような関係が成立した場合、符号化率(y−1)/yにおける時変周期gのLDPC―CCの符号化器と符号化率(z−1)/zにおける時変周期gのLDPC−CCの符号化器とが、回路の共用化ができ、かつ、符号化率(y−1)/yにおける時変周期gのLDPC―CCの復号化器と符号化率(z−1)/zにおける時変周期gのLDPC−CCの復号化器とが、回路の共用化ができる。ただし、符号化器の回路の共用方法、及び、復号化器の回路の共用化方法については、以降の(符号化器、復号化器の構成)で詳しく説明する。
上述の条件を満足した、時変周期3、対応する符号化率が1/2、2/3、3/4、5/6のLDPC−CCのパリティ検査多項式の一例を表5に示す。ただし、パリティ検査多項式の形式は、表3の形式と同様の形式であらわしている。これにより、送信装置、受信装置が、符号化率が1/2、2/3、3/4、5/6を対応した場合、(または、4つの符号化率のうち2つ以上の符号化率を送信装置、受信装置が対応した場合、)演算規模(回路規模)の低減(Distributed codesでありながら、符号化器の回路の共用化と、復号化器の回路の共用化とができるため、回路規模を低減することができる)、及び、受信装置が高いデータの受信品質を得ることができる。
Figure 0004563476
表5の時変周期3のLDPC−CCが、上記条件を満たしていることを説明する。例えば、表5の符号化率1/2における時変周期3のLDPC―CCと、表5の符号化率2/3における時変周期3のLDPC―CCと、について考える。つまり、(31−1)〜(31−g)においてy=2となり、(32−1)〜(32−g)においてz=3となる。
すると、表5の符号化率1/2における時変周期3のLDPC―CCから、式(31−1)のAX1,0(D)はD373+D56+1となり、表5の符号化率2/3における時変周期3のLDPC―CCから、式(32―1)のAX1,0(D)はD373+D56+1となり「式(31―1)のAX1,0(D)と式(32―1)のAX1,0(D)とは、等号が成立する。」
また、表5の符号化率1/2における時変周期3のLDPC―CCから、式(31―1)のB(D)はD406+D218+1となり、表5の符号化率2/3における時変周期3のLDPC―CCから、式(32―1)のB(D)=D406+D218+1となり、「式(31―1)のB(D)と式(32―1)のB(D)とは、等号が成立する。」
同様に、表5の符号化率1/2における時変周期3のLDPC―CCから、式(31−2)のAX1,1(D)=D457+D197+1となり、表5の符号化率2/3における時変周期3のLDPC―CCから式(32―2)のAX1,1(D)=D457+D197+1となり、「式(31―2)のAX1,1(D)と式(32―2)のAX1,1(D)とは、等号が成立する。」
また、表5の符号化率1/2における時変周期3のLDPC―CCから、式(31―2)のB(D)はD491+D22+1となり、表5の符号化率2/3における時変周期3のLDPC―CCから、式(32―2)のB(D)=D491+D22+1となり、「式(31―2)のB(D)と式(32―2)のB(D)とは、等号が成立する。」
同様に、表5の符号化率1/2における時変周期3のLDPC―CCから、式(31−3)のAX1,2(D)はD485+D70+1となり、表5の符号化率2/3における時変周期3のLDPC―CCから、式(32―3)のAX1,2(D)=D485+D70+1となり、「式(31―3)のAX1,2(D)と式(32―3)のAX1,2(D)とは、等号が成立する。」
また、表5の符号化率1/2における時変周期3のLDPC―CCから、式(31―3)のB(D)はD236+D181+1となり、表5の符号化率2/3における時変周期3のLDPC―CCから、式(32―3)のB(D)はD236+D181+1となり、「式(31―3)のB(D)と式(32―3)のB(D)とは、等号が成立する。」
以上から分かるように、表5の符号化率1/2における時変周期3のLDPC―CCと、表5の符号化率2/3における時変周期3のLDPC―CCとは、上記の条件を満たしていることが確認できる。
以上と同様に、表5の時変周期3のLDPC−CCにおいて、符号化率1/2、2/3、3/4、5/6のうち、2つの異なる符号化率の時変周期3のLDPC―CCを選択し、上記の条件を満たすかの検証を行うと、いずれの選択パターンにおいても、上記の条件を満たすことが確認できる。
なお、LDPC−CCは畳み込み符号の一種であるため、情報ビットの復号における信頼度を確保するために、ターミネーションやテイルバイティングが必要となる。ここでは、データ(情報)Xの状態をゼロにする(以下「Information-zero-termination」という)方法を行う場合について考える。
「Information-zero-termination」の方法を示した図が、図10である。図10に示したように、送信する情報系列のうち最後に送信する情報ビット(最終の送信ビット)がXn(110)である。この最終の情報ビットXn(110)に伴い符号化器が生成するパリティビットまでしか送信装置がデータを送信しなかった場合に、受信装置が復号を行った場合、情報の受信品質が大きく劣化する。この問題を解決するために、最終の情報ビットXn(110)以降の情報ビット(「仮想の情報ビット」と呼ぶ)を「0」と仮定して符号化を行い、パリティビット(130)を生成する。
このとき、仮想の情報ビット(120)は、受信装置が「0」と分かっているので、送信装置は仮想の情報ビット(120)を送信せず、仮想の情報ビット(120)によって生成されたパリティビット(130)のみを送信する(このパリティビットは送信しなければならない冗長なビットになる。したがって、このパリティビットのことを冗長ビットと呼ぶ。)。すると新たな課題として、データの伝送効率の向上及びデータの受信品質の確保の両立を図るためには、データの受信品質を確保しつつ、仮想の情報ビット(120)によって生成されたパリティビット(130)の数をできる限り少なくする必要がある。
このとき、データの受信品質を確保しつつ、仮想の情報ビットによって生成されたパリティビットの数をできる限り少なくするためには、パリティ検査多項式のパリティに関わる項が重要な役割を果たしていることがシミュレーションにより確認された。
一例として、時変周期m(mは整数、かつ、m≧2)、符号化率が1/2のときのLDPC−CCを例に説明する。時変周期mのとき、必要となるm個のパリティ検査多項式を次式であらわす。
Figure 0004563476
ただし、i=0、1、・・・、m−1とする。また、AX1,i(D)に存在するDの次数は0以上の整数しか存在せず(例えば、AX1,1(D)=D15+D+Dのように、Dについて存在する次数は15、3、0のように、全てが0以上の次数で構成される)、B(D)に存在するDの次数も0以上の次数しか存在しないものとする(例えば、B(D)=D18+D+Dのように、Dについて存在する次数は18、4、0のように、全てが0以上の次数で構成される)。
このとき、時刻jにおいて、次式のパリティ検査多項式が成立する。
Figure 0004563476
そして、X(D)において、AX1,1(D)におけるDの最も高い次数をα(例えば、AX1,1(D)=D15+D+Dとすると、Dについて次数15、次数3、次数0が存在し、Dの最も高い次数α=15となる。)、AX1,2(D)におけるDの最も高い次数をα、・・・、AX1,i(D)におけるDの最も高い次数をα、・・・、AX1,m−1(D)におけるDの最も高い次数をαm−1とする。そして、αにおいて(i=0、1、2、・・・、m−1)最も大きい値をαとする。
一方、P(D)において、B(D)におけるDの最も高い次数をβ、B(D)におけるDの最も高い次数をβ、・・・、B(D)におけるDの最も高い次数をβ、・・・、Bm−1(D)におけるDの最も高い次数をβm−1とする。そして、βにおいて(i=0、1、2、・・・、m−1)最も大きい値をβとする。
すると、データの受信品質を確保しつつ、仮想の情報ビットによって生成されたパリティビットの数をできる限り少なくするためには、βがαの1/2以下とすると良い。
ここでは、符号化率1/2の場合についてが、それ以上の符号化率の場合についても同様に考えることができる。このとき、特に、符号化率4/5以上の場合、データの受信品質を確保しつつ、仮想の情報ビットによって生成されたパリティビットの数をできる限り少なくするという条件を満たすための必要な冗長ビットが非常に大きくなる傾向があり、上記と同様に考えた条件というものが、データの受信品質を確保しつつ、仮想の情報ビットによって生成されたパリティビットの数をできる限り少なくするためには重要となる。
一例として、時変周期m(mは整数、かつ、m≧2)、符号化率が4/5のときのLDPC−CCを例に説明する。時変周期mのとき、必要となるm個のパリティ検査多項式を次式であらわす。
Figure 0004563476
ただし、i=0、1、・・・、m−1とする。また、AX1,i(D)に存在するDの次数は0以上の整数しか存在せず(例えば、AX1,1(D)=D15+D+Dのように、Dについて存在する次数は15、3、0のように、全てが0以上の次数で構成される)、同様に、AX2,i(D)に存在するDの次数は0以上の整数しか存在せず、AX3,i(D)に存在するDの次数は0以上の整数しか存在せず、AX4,i(D)に存在するDの次数は0以上の整数しか存在せず、B(D)に存在するDの次数も0以上の次数しか存在しないものとする(例えば、B(D)=D18+D+Dのように、Dについて存在する次数は18、4、0のように、全てが0以上の次数で構成される)。
このとき、時刻jにおいて、次式のパリティ検査多項式が成立する。
Figure 0004563476
そして、X(D)において、AX1,1(D)におけるDの最も高い次数をα1,1(例えば、AX1,1(D)=D15+D+Dとすると、Dについて次数15、次数3、次数0が存在し、Dの最も高い次数α1,1=15となる。)、AX1,2(D)におけるDの最も高い次数をα1,2、・・・、AX1,i(D)におけるDの最も高い次数をα1,i、・・・、AX1,m−1(D)におけるDの最も高い次数をα1,m−1とする。そして、α1,iにおいて(i=0、1、2、・・・、m−1)最も大きい値をαとする。
(D)において、AX2,1(D)におけるDの最も高い次数をα2,1(例えば、AX2,1(D)=D15+D+Dとすると、Dについて次数15、次数3、次数0が存在し、Dの最も高い次数α2,1=15となる。)、AX2,2(D)におけるDの最も高い次数をα2,2、・・・、AX2,i(D)におけるDの最も高い次数をα2,i、・・・、AX2,m−1(D)におけるDの最も高い次数をα2,m−1とする。そして、α2,iにおいて(i=0、1、2、・・・、m−1)最も大きい値をαとする。
(D)において、AX3,1(D)におけるDの最も高い次数をα3,1(例えば、AX3,1(D)=D15+D+Dとすると、Dについて次数15、次数3、次数0が存在し、Dの最も高い次数α3,1=15となる。)、AX3,2(D)におけるDの最も高い次数をα3,2、・・・、AX3,i(D)におけるDの最も高い次数をα3,i、・・・、AX3,m−1(D)におけるDの最も高い次数をα3,m−1とする。そして、α3,iにおいて(i=0、1、2、・・・、m−1)最も大きい値をαとする。
(D)において、AX4,1(D)におけるDの最も高い次数をα4,1(例えば、AX4,1(D)=D15+D+Dとすると、Dについて次数15、次数3、次数0が存在し、Dの最も高い次数α4,1=15となる。)、AX4,2(D)におけるDの最も高い次数をα4,2、・・・、AX4,i(D)におけるDの最も高い次数をα4,i、・・・、AX4,m−1(D)におけるDの最も高い次数をα4,m−1とする。そして、α4,iにおいて(i=0、1、2、・・・、m−1)最も大きい値をαとする。
P(D)において、B(D)におけるDの最も高い次数をβ、B(D)におけるDの最も高い次数をβ、・・・、B(D)におけるDの最も高い次数をβ、・・・、Bm−1(D)におけるDの最も高い次数をβm−1とする。そして、βにおいて(i=0、1、2、・・・、m−1)最も大きい値をβとする。
すると、データの受信品質を確保しつつ、仮想の情報ビットによって生成されたパリティビットの数をできる限り少なくするためには、
「βがαの1/2以下、かつ、βがαの1/2以下、かつ、βがαの1/2以下、かつ、βがαの1/2以下とする」
と良く、特に、良好なデータの受信品質を確保できる可能性が高い。
また、
「βがαの1/2以下、または、βがαの1/2以下、または、βがαの1/2以下、または、βがαの1/2以下とする」
としても、データの受信品質を確保しつつ、仮想の情報ビットによって生成されたパリティビットの数をできる限り少なくすることができるが、若干、データの受信品質の低下を招く可能性がある(ただし、必ず、データの受信品質の低下を招くというわけではない。)。
よって、時変周期m(mは整数、かつ、m≧2)、符号化率が(n−1)/nのときのLDPC−CCのときは以下のように考えることができる。
時変周期mのとき、必要となるm個のパリティ検査多項式を次式であらわす。
Figure 0004563476
ただし、i=0、1、・・・、m−1とする。また、AX1,i(D)に存在するDの次数は0以上の整数しか存在せず(例えば、AX1,1(D)=D15+D+Dのように、Dについて存在する次数は15、3、0のように、全てが0以上の次数で構成される)、同様に、AX2,i(D)に存在するDの次数は0以上の整数しか存在せず、AX3,i(D)に存在するDの次数は0以上の整数しか存在せず、AX4,i(D)に存在するDの次数は0以上の整数しか存在せず、・・・、AXu,i(D)に存在するDの次数は0以上の整数しか存在せず、・・・、AXn−1,i(D)に存在するDの次数は0以上の整数しか存在せず、B(D)に存在するDの次数も0以上の次数しか存在しないものとする(例えば、B(D)=D18+D+Dのように、Dについて存在する次数は18、4、0のように、全てが0以上の次数で構成される)(u=1、2、3、・・・、n−2、n−1)。
このとき、時刻jにおいて、次式のパリティ検査多項式が成立する。
Figure 0004563476
そして、X(D)において、AX1,1(D)におけるDの最も高い次数をα1,1(例えば、AX1,1(D)=D15+D+Dとすると、Dについて次数15、次数3、次数0が存在し、Dの最も高い次数α1,1=15となる。)、AX1,2(D)におけるDの最も高い次数をα1,2、・・・、AX1,i(D)におけるDの最も高い次数をα1,i、・・・、AX1,m−1(D)におけるDの最も高い次数をα1,m−1とする。そして、α1,iにおいて(i=0、1、2、・・・、m−1)最も大きい値をαとする。
(D)において、AX2,1(D)におけるDの最も高い次数をα2,1(例えば、AX2,1(D)=D15+D+Dとすると、Dについて次数15、次数3、次数0が存在し、Dの最も高い次数α2,1=15となる。)、AX2,2(D)におけるDの最も高い次数をα2,2、・・・、AX2,i(D)におけるDの最も高い次数をα2,i、・・・、AX2,m−1(D)におけるDの最も高い次数をα2,m−1とする。そして、α2,iにおいて(i=0、1、2、・・・、m−1)最も大きい値をαとする。


(D)において、AXu,1(D)におけるDの最も高い次数をαu,1(例えば、AXu,1(D)=D15+D+Dとすると、Dについて次数15、次数3、次数0が存在し、Dの最も高い次数αu,1=15となる。)、AXu,2(D)におけるDの最も高い次数をαu,2、・・・、AXu,i(D)におけるDの最も高い次数をαu,i、・・・、AXu,m−1(D)におけるDの最も高い次数をαu,m−1とする。そして、αu,iにおいて(i=0、1、2、・・・、m−1)最も大きい値をαとする。(u=1、2、3、・・・、n−2、n−1)


n−1(D)において、AXn−1,1(D)におけるDの最も高い次数をαn−1,1(例えば、AXn−1,1(D)=D15+D+Dとすると、Dについて次数15、次数3、次数0が存在し、Dの最も高い次数αn−1,1=15となる。)、AXn−1,2(D)におけるDの最も高い次数をαn−1,2、・・・、AXn−1,i(D)におけるDの最も高い次数をαn−1,i、・・・、AXn−1,m−1(D)におけるDの最も高い次数をαn−1,m−1とする。そして、αn−1,iにおいて(i=0、1、2、・・・、m−1)最も大きい値をαn−1とする。
P(D)において、B(D)におけるDの最も高い次数をβ、B(D)におけるDの最も高い次数をβ、・・・、B(D)におけるDの最も高い次数をβ、・・・、Bm−1(D)におけるDの最も高い次数をβm−1とする。そして、βにおいて(i=0、1、2、・・・、m−1)最も大きい値をβとする。
すると、データの受信品質を確保しつつ、仮想の情報ビットによって生成されたパリティビットの数をできる限り少なくするためには、
「βがαの1/2以下、かつ、βがαの1/2以下、かつ、・・・、かつ、βがαの1/2以下、かつ、・・・、かつ、βがαn−1の1/2以下とする(u=1、2、3、・・・、n−2、n−1)」
と良く、特に、良好なデータの受信品質を確保できる可能性が高い。
また、
「βがαの1/2以下、または、βがαの1/2以下、または、・・・、または、βがαの1/2以下、または、・・・、または、βがαn−1の1/2以下とする(u=1、2、3、・・・、n−2、n−1)」
としても、データの受信品質を確保しつつ、仮想の情報ビットによって生成されたパリティビットの数をできる限り少なくすることができるが、若干、データの受信品質の低下を招く可能性がある(ただし、必ず、データの受信品質の低下を招くというわけではない。)。
表6に、データの受信品質を確保しつつ、冗長ビットを少なくすることができる時変周期3、符号化率が1/2、2/3、3/4、4/5のLDPC−CCのパリティ検査多項式の一例を示す。表6の時変周期3のLDPC−CCにおいて、符号化率1/2、2/3、3/4、4/5のうち、2つの異なる符号化率の時変周期3のLDPC―CCを選択したとき、既に説明した符号化器及び復号化器を共通化することができる条件を満たすか否か検証すると、いずれの選択パターンにおいても、表5の時変周期3のLDPC−CCと同様に、符号化器及び復号化器を共通化することができる条件を満たすことが確認できる。
なお、表5の符号化率5/6のとき、冗長ビットが1000ビット以上必要であったが、表6の符号化率4/5のとき、冗長ビットは500ビット以下となることが確認できている。
また、表6の符号では、符号化率ごとに異なる数の冗長ビット(「Information-zero-termination」のために付加された冗長ビット)となる。このとき、符号化率が大きくなるにつれ冗長ビットの数は多くなる傾向にある。つまり、表5、表6のように符号を作成した場合、符号化率(n−1)/nの符号と符号化率(m−1)/mの符号があった場合(n>m)、符号化率(n−1)/nの符号に必要な冗長ビット(「Information-zero-termination」のために付加された冗長ビット)の数は、符号化率(m−1)/mの符号に必要な冗長ビット(「Information-zero-termination」のために付加された冗長ビット)の数より多くなる。
Figure 0004563476
以上、符号化器の回路の共用化と、復号化器の回路の共用化とを図る符号化率の中で最大の符号化率は(q−1)/qとし、符号化率(r−1)/r(r=2,3,…,q(qは3以上の自然数))の時変周期gのLDPC−CCのパリティ検査多項式について説明した(gは2以上の整数)。
ここで、少なくとも符号化率(y−1)/yの時変周期gのLDPC−CC及び符号化率(z−1)/zの時変周期gのLDPC−CCの符号化器を具備する送信装置(y≠z)と、少なくとも符号化率(y−1)/yの時変周期gのLDPC−CC及び符号化率(z−1)/zの時変周期gのLDPC−CCの復号化器を具備する受信装置と、の演算規模(回路規模)を低減できる時変周期gのLDPC−CCのパリティ検査多項式の生成方法と、パリティ検査多項式の特徴について説明した。
ここで、送信装置は、少なくとも符号化率(y−1)/yの時変周期gのLDPC−CCの符号化系列を伝送するための変調信号、または、符号化率(z−1)/zの時変周期gのLDPC−CCの符号化系列を伝送するための変調信号のいずれかの変調信号を生成することができる送信装置である。
また、受信装置は、少なくとも符号化率(y−1)/yの時変周期gのLDPC−CCの符号化系列を含んだ受信信号、または、符号化率(z−1)/zの時変周期gのLDPC−CCの符号化系列を含んだ受信信号のいずれかの受信信号を復調し、復号する受信装置である。
本発明で提案した時変周期gのLDPC−CCを用いることにより、符号化器を具備する送信装置と復号化器を具備する受信装置との演算規模(回路規模)を低減することができる(回路の共通化を行うことができる)という効果を有する。
更に、本発明で提案した時変周期gのLDPC−CCを用いることにより、いずれの符号化率においても、受信装置は高いデータの受信品質を得ることができるという効果を有する。なお、符号化器の構成、復号化器の構成、及びその動作については以下で詳しく説明する。
また、式(30−1)〜式(30−(q−1))では、符号化率1/2、2/3、3/4、・・・、(q−1)/qの場合の時変周期gのLDPC−CCを説明したが、符号化器を具備する送信装置、及び復号化器を具備する受信装置が、符号化率1/2、2/3、3/4、・・・、(q−1)/qの全てをサポートする必要はなく、少なくとも2つ以上の異なる符号化率をサポートしていれば、送信装置及び受信装置の演算規模(回路規模)の低減(符号化器、復号化器の回路の共通化)、及び、受信装置が高いデータの受信品質を得ることができるという効果を得ることができる。
また、送受信装置(符号化器/復号化器)がサポートする符号化率が、全て、本実施の形態で述べた方法に基づいた符号である場合、サポートする符号化率のうち最も高い符号化率の符号化器/復号化器を持つことで、容易に全ての符号化率の符号化、復号化に対応することができ、このとき、演算規模削減の効果が非常に大きい。
また、本実施の形態では、上述の(良好な特性を有するLDPC−CC)の符号をもとに説明したが、必ずしも上述の(良好な特性を有するLDPC−CC)で説明した条件を満たす必要はなく、上述の(良好な特性を有するLDPC−CC)で述べた形式のパリティ検査多項式に基づく時変周期gのLDPC−CCであれば、同様に本実施の形態を実施することができる(gは2以上の整数)。これについては、(31−1)〜(31−g)と(32−1)〜(32−g)との関係から、明らかである。
当然であるが、例えば、送受信装置(符号化器/復号化器)が符号化率1/2、2/3、3/4、5/6に対応しており、符号化率1/2、2/3、3/4は上記の規則に基づいたLDPC−CCを使用し、符号化率5/6は、上記の規則に基づかない符号を使用していた場合、符号化器/復号化器は符号化率1/2、2/3、3/4に対しては回路の共用化が可能であり、符号化率5/6に対しては、回路の共用化が困難となる。
(実施の形態2)
本実施の形態では、実施の形態の1で説明した探索方法を用いて形成したLDPC−CCの符号化器の回路の共用化方法と、復号化器の回路の共用化方法とについて詳しく説明する。
はじめに、本発明に係る、符号化器の回路の共用化と、復号化器の回路の共用化とを図る符号化率のうち最も高い符号化率を(q−1)/qとし(例えば、送受信装置が対応する符号化率を1/2、2/3、3/4、5/6としたとき、符号化率1/2、2/3、3/4の符号は、符号化器/復号化器において回路を共通化し、符号化率5/6は符号化器/復号化器において回路を共通化対象としないものとする。このとき、上記で述べた最も高い符号化率(q−1)/qは3/4となる。)、複数の符号化率(r−1)/r(rは2以上q以下の整数)に対応可能な時変周期g(gは自然数)のLDPC−CCを作成する符号化器について説明する。
図11は、本実施の形態に係る符号化器の要部構成の一例を示すブロック図である。なお、図11に示す符号化器200は、符号化率1/2、2/3、3/4に対応可能な符号化器である。図11の符号化器200は、情報生成部210、第1情報演算部220−1、第2情報演算部220−2、第3情報演算部220−3、パリティ演算部230、加算部240、符号化率設定部250及びウェイト制御部260を主に備える。
情報生成部210は、符号化率設定部250から指定される符号化率に応じて、時点iの情報X1,i、情報X2,i、情報X3,iを設定する。例えば、符号化率設定部250が符号化率を1/2に設定した場合、情報生成部210は、時点iの情報X1,iに入力情報データSを設定し、時点iの情報X2,i及び時点iの情報X3,iに0を設定する。
また、符号化率2/3の場合、情報生成部210は、時点iの情報X1,iに入力情報データSを設定し、時点iの情報X2,iに入力情報データSj+1を設定し、時点iの情報X3,iに0を設定する。
また、符号化率3/4の場合、情報生成部210は、時点iの情報X1,iに入力情報データSを設定し、時点iの情報X2,iに入力情報データSj+1を設定し、時点iの情報X3,iに入力情報データSj+2を設定する。
このようにして、情報生成部210は、符号化率設定部250によって設定された符号化率に応じて、入力情報データを時点iの情報X1,i、情報X2,i、情報X3,iを設定し、設定後の情報X1,iを第1情報演算部220−1に出力し、設定後の情報X2,iを第2情報演算部220−2に出力し、設定後の情報X3,iを第3情報演算部220−3に出力する。
第1情報演算部220−1は、式(30−1)のAX1,k(D)にしたがって、X(D)を算出する。同様に、第2情報演算部220−2は、式(30−2)のAX2,k(D)にしたがって、X(D)を算出する。同様に、第3情報演算部220−3は、式(30−3)のAX3,k(D)にしたがって、X(D)を算出する。
このとき、実施の形態1で説明したように、(31−1)〜(31−g)と(32−1)〜(32−g)とにおいて満足する条件から、符号化率が切り替わったとしても、第1情報演算部220−1の構成を変更する必要がなく、また、同様に、第2情報演算部220−2の構成を変更する必要がなく、また、第3情報演算部220−3の構成を変更する必要はない。
したがって、複数の符号化率に対応する場合は、符号化器の回路が共用可能な符号化率の中で最も高い符号化率の符号化器の構成を基礎にして、上記のような操作で、他の符号化率に対応することができる。つまり、符号化器の主要な部分である第1情報演算部220−1、第2情報演算部220−2、及び、第3情報演算部220−3は、符号化率に関わらず共通化することができるという利点を、実施の形態1において説明したLDPC−CCは有することになる。そして、例えば、表5に示したLDPC−CCは、符号化率に関わらず、良好なデータの受信品質を与えるという利点を持つ。
図12に、第1情報演算部220−1の内部構成を示す。図12の第1情報演算部220−1は、シフトレジスタ221−1〜221−M、ウェイト乗算器222−0〜222−M、及び、加算部223を備える。
シフトレジスタ221−1〜221−Mは、それぞれ、X1,i−t(t=0,・・・,M―1)を保持するレジスタであり、次の入力が入ってくるタイミングで、保持している値を右隣のシフトレジスタに送出し、左隣のシフトレジスタから出力されてきた値を保持する。
ウェイト乗算器222−0〜222−Mは、ウェイト制御部260から出力される制御信号にしたがって、h (m)の値を0又は1に切り替える。
加算部223は、ウェイト乗算器222−0〜222−Mの出力に対して、排他的論理和演算を行い、演算結果Y1,iを算出し、算出したY1,iを、図11の加算部240に出力する。
なお、第2情報演算部220−2及び第3情報演算部220−3の内部構成は、第1情報演算部220−1と同様であるので、説明を省略する。第2情報演算部220−2は、第1情報演算部220−1と同様にして、演算結果Y2,iを算出し、算出したY2,iを加算部240に出力する。第3情報演算部220−3は、第1情報演算部220−1と同様にして、演算結果Y3,iを算出し、算出したY3,iを、図11の加算部240に出力する。
図11のパリティ演算部230は、式(30−1)〜式(30−3)のB(D)にしたがって、P(D)を算出する。
図13に、図11のパリティ演算部230の内部構成を示す。図13のパリティ演算部230は、シフトレジスタ231−1〜231−M、ウェイト乗算器232−0〜232−M、及び、加算部233を備える。
シフトレジスタ231−1〜231−Mは、それぞれ、Pi−t(t=0,・・・,M―1)を保持するレジスタであり、次の入力が入ってくるタイミングで、保持している値を右隣のシフトレジスタに送出し、左隣のシフトレジスタから出力されてきた値を保持する。
ウェイト乗算器232−0〜232−Mは、ウェイト制御部260から出力される制御信号にしたがって、h (m)の値を0又は1に切り替える。
加算部233は、ウェイト乗算器232−0〜232−Mの出力に対し排他的論理和演算を行い、演算結果Zを算出し、算出したZを、図11の加算部240に出力する。
再度図11に戻って、加算部240は、第1情報演算部220−1、第2情報演算部220−2、第3情報演算部220−3、及び、パリティ演算部230から出力される演算結果Y1,i、Y2,i、Y3,i、Zの排他的論理和演算を行い、時刻iのパリティPを得、出力する。加算部240は、時刻iのパリティPをパリティ演算部230にも出力する。
符号化率設定部250は、符号化器200の符号化率を設定し、符号化率の情報を情報生成部210に出力する。
ウェイト制御部260は、ウェイト制御部260内に保持する式(30−1)〜式(30−3)に対応した検査行列に基づいて、式(30−1)〜式(30−3)のパリティ検査多項式に基づく時刻iにおけるh (m)の値を、第1情報演算部220−1、第2情報演算部220−2、第3情報演算部220−3及びパリティ演算部230に出力する。また、ウェイト制御部260は、ウェイト制御部260内に保持する式(30−1)〜式(30−3)に対応した検査行列に基づいて、そのタイミングにおけるh (m)の値を232−0〜232−Mに出力する。
なお、図14に本実施の形態に係る符号化器の別の構成例を示す。図14の符号化器において、図11の符号化器と共通する構成部分には、図11と同一の符号を付している。図14の符号化器200は、符号化率設定部250が、符号化率の情報を第1情報演算部220−1、第2情報演算部220−2、第3情報演算部220−3、及び、パリティ演算部230に出力する点で、図11の符号化器200と異なっている。
第2情報演算部220−2は、符号化率が1/2の場合には、演算処理を行わずに、演算結果Y2,iとして0を加算部240に出力する。また、第3情報演算部220−3は、符号化率が1/2または2/3の場合には、演算処理を行わずに、演算結果Y3,iとして0を加算部240に出力する。
なお、図11の符号化器200では、情報生成部210が、符号化率に応じて、時点iの情報X2,i、情報X3,iを0に設定したのに対し、図14の符号化器200では、第2情報演算部220−2及び第3情報演算部220−3が、符号化率に応じて、演算処理を停止し、演算結果Y2,i、Y3,iとして0を出力するので、得られる演算結果は図11の符号化器200と同じとなる。
このように、図14の符号化器200では、第2情報演算部220−2及び第3情報演算部220−3が、符号化率に応じて、演算処理を停止するので、図11の符号化器200に比べ演算処理を低減することができる。
次に、実施の形態1で述べたLDPC−CCの復号化器の回路の共用化方法について詳しく説明する。
図15は、本実施の形態に係る復号化器の要部構成を示すブロック図である。なお、図15に示す復号化器300は、符号化率1/2、2/3、3/4に対応可能な復号化器である。図14の復号化器300は、対数尤度比設定部310及び行列処理演算部320を主に備える。
対数尤度比設定部310は、図示せぬ対数尤度比演算部により算出される受信対数尤度比及び符号化率を入力し、符号化率に応じて、受信対数尤度比に既知の対数尤度比を挿入する。
例えば、符号化率が1/2の場合、符号化器200では、X2,i、X3,iとして“0”を送信していることに相当するので、対数尤度比設定部310は、既知ビット“0”に対応する固定の対数尤度比をX2,i、X3,iの対数尤度比として挿入し、挿入後の対数尤度比を行列処理演算部320に出力する。以下、図16を用いて説明をする。
図16に示すように、符号化率1/2の場合、対数尤度比設定部310は、X1,i及びPに対応する受信対数尤度比LLRX1,i,LLRPiを入力とする。そこで、対数尤度比設定部310は、X2,i,X3,iに対応する受信対数尤度比LLRX2,i,LLR3,iを挿入する。図16において、点線の丸で囲まれた受信対数尤度比は、対数尤度比設定部310によって挿入された受信対数尤度比LLRX2,i,LLR3,iを示す。対数尤度比設定部310は、受信対数尤度比LLRX2,i,LLR3,iとして、固定値の対数尤度比を挿入する。
また、符号化率が2/3の場合、符号化器200は、X3,iとして“0”を送信していることに相当するので、対数尤度比設定部310は、既知ビット“0”に対応する固定の対数尤度比をX3,iの対数尤度比として挿入し、挿入後の対数尤度比を行列処理演算部320に出力する。以下、図17を用いて説明をする。
図17に示すように、符号化率2/3の場合、対数尤度比設定部310は、X1,i,X2,i及びPに対応する受信対数尤度比LLRX1,i,LLRX2,i,LLRPiを入力とする。そこで、対数尤度比設定部310は、X3,iに対応する受信対数尤度比LLR3,iを挿入する。図17において、点線の丸で囲まれた受信対数尤度比は、対数尤度比設定部310によって挿入された受信対数尤度比LLR3,iを示す。対数尤度比設定部310は、受信対数尤度比LLR3,iとして、固定値の対数尤度比を挿入する。
図15の行列処理演算部320は、記憶部321、行処理演算部322及び列処理演算部323を備える。
記憶部321は、受信対数尤度比、行処理によって得られる外部値αmn、及び、列処理によって得られる事前値βmnを保持する。
行処理演算部322は、符号化器200がサポートする符号化率のうち、最大の符号化率3/4のLDPC−CCの検査行列Hの行方向のウェイトパターンを保持する。行処理演算部322は、当該行方向のウェイトパターンにしたがって、記憶部321から必要な事前値βmnを読み込み、行処理演算を行う。
行処理演算において、行処理演算部322は、事前値βmnを用いて、単一パリティ検査符号の復号を行い、外部値αmnを求める。
第m番目の行処理について説明する。ただし、2元MxN行列H={Hmn}を復号対象とするLDPC符号の検査行列とする。Hmn=1を満たす全ての組(m,n)に対して、次の更新式を利用して外部値amnを更新する。
Figure 0004563476
ここで、Φ(x)は、Gallagerのf関数と呼ばれ、次式で定義される。
Figure 0004563476
列処理演算部323は、符号化器200がサポートする符号化率のうち、最大の符号化率3/4のLDPC−CCの検査行列Hの列方向のウェイトパターンを保持する。列処理演算部323は、当該列方向のウェイトパターンにしたがって、記憶部321から必要な外部値αmnを読み込み、事前値βmnを求める。
列処理演算において、列処理演算部323は、入力対数尤度比λと外部値αmnとを用いて繰り返し復号により、事前値βmnを求める。
第m番目の列処理について説明する。
mn=1を満たす全ての組(m,n)に対して、次の更新式を利用してbmnを更新する。ただし、q=1の場合のみ、αmn=0として計算する。
Figure 0004563476
復号化器300は、上述の行処理と列処理とを所定の回数だけ繰り返すことにより、事後対数尤度比を得る。
以上のように、本実施の形態では、対応可能な符号化率のうち、最も高い符号化率を(q−1)/qとし、符号化率設定部250が、符号化率を(s−1)/sに設定した際、情報生成部210は、前記情報Xs,iから前記情報Xq−1,iまでの情報をゼロに設定する。例えば、対応する符号化率が1/2、2/3、3/4の場合(q=4)、第1情報演算部220−1は、時点iの情報X1,iを入力し、式(30−1)のX(D)項を算出する。また、第2情報演算部220−2は、時点iの情報X2,iを入力し、式(30−2)のX(D)項を算出する。また、第3情報演算部220−3は、時点iの情報X3,iを入力し、式(30−3)のX(D)項を算出する。また、パリティ演算部230は、時点i−1のパリティPi−1を入力し、式(30−1)〜式(30−3)のP(D)項を算出する。また、加算部240は、第1情報演算部220−1、第2情報演算部220−2、第3情報演算部220−3の演算結果及びパリティ演算部230の演算結果の排他的論理和を、時刻iのパリティPとして得るようにした。
この構成によれば、異なる符号化率に対応したLDPC−CCを作成する場合においても、本説明における情報演算部の構成を共通化することができるため、低演算規模で、複数の符号化率に対応可能なLDPC−CCの符号化器、復号化器を提供することができる。
また、AX1,k(D)〜AXq−1,k(D)が、上述の「良好な特性を有するLDPC−CC」において述べた<条件#1>〜<条件#6>等を満たすように設定した場合には、異なる符号化率に対応可能な符号化器及び復号化器を低演算規模で提供することができるとともに、受信機は、良好なデータの受信品質を得ることができる。ただし、実施の形態1で説明したように、LDPC−CCの生成方法は、上述の「良好な特性を有するLDPC−CC」に限ったものではない。
そして、図15の復号化器300は、復号化器の回路の共用を可能とする符号化率の中で、最大の符号化率に応じた復号化器の構成に、対数尤度比設定部310を追加することで、複数の符号化率に対応して復号を行うことができる。なお、対数尤度比設定部310は、符号化率に応じて、時点iの情報Xr,iから情報Xq−1,iまでの(q−2)個の情報に対応する対数尤度比を既定値に設定する。
なお、以上の説明では、符号化器200がサポートする最大の符号化率が3/4の場合について説明したが、サポートする最大の符号化率はこれに限らず、符号化率(q−1)/q(qは5以上の整数)をサポートする場合においても適用可能である(当然であるが、最大符号化率が2/3でも良い。)。この場合には、符号化器200が、第1〜第(q−1)情報演算部を備える構成とし、加算部240が、第1〜第(q−1)情報演算部の演算結果及びパリティ演算部230の演算結果の排他的論理和を、時刻iのパリティPとして得るようにすれば良い。
また、送受信装置(符号化器/復号化器)がサポートする符号化率が、全て、上述の実施の形態1で述べた方法に基づいた符号である場合、サポートする符号化率のうち、最も高い符号化率の符号化器/復号化器を持つことで、複数の符号化率の符号化、復号化に対応することができ、このとき、演算規模削減の効果が非常に大きい。
また、上述では、復号方式の例としてsum-product復号を例に説明したが、復号方法はこれに限ったものではなく、非特許文献7〜非特許文献9に示されている、例えば、min-sum復号、Normalized BP(Belief Propagation)復号、Shuffled BP復号、Offset BP復号などの、message-passingアルゴリズムを用いた復号方法(BP復号)を用いれば同様に実施することができる。
次に、通信状況により適応的に符号化率を切り替える通信装置に、本発明を適用した場合の形態について説明する。なお、以下では、本発明を無線通信装置に適用した場合を例に説明するが、これに限られず、電灯線通信(PLC:Power Line Communication)装置、可視光通信装置、または、光通信装置にも適用可能である。
図18に、適応的に符号化率を切り替える通信装置400の構成を示す。図18の通信装置400の符号化率決定部410は、通信相手の通信装置から送信される受信信号(例えば、通信相手が送信したフィードバック情報)を入力とし、受信信号に受信処理等を行う。そして、符号化率決定部410は、通信相手の通信装置との間の通信状況の情報、例えば、ビットエラー率、パケットエラー率、フレームエラー率、受信電界強度等の情報を(例えば、フィードバック情報から)得、通信相手の通信装置との間の通信状況の情報から符号化率及び変調方式を決定する。そして、符号化率決定部410は、決定した符号化率及び変調方式を、制御信号として符号化器200及び変調部420に出力する。
符号化率決定部410は、例えば、図19に示すような送信フォーマットを用いて、制御情報シンボルに符号化率の情報を含めることにより、符号化器200が用いる符号化率を通信相手の通信装置に通知する。ただし、図19では図示していないが、通信相手が、復調やチャネル推定のために必要な、例えば、既知の信号(プリアンブル、パイロットシンボル、リファレンスシンボルなど)を含んでいるものとする。
このようにして、符号化率決定部410は、通信相手の通信装置500が送信した変調信号を受信し、その通信状況に基づいて、送信する変調信号の符号化率を決定することにより、符号化率を適応的に切り替える。符号化器200は、制御信号により指定された符号化率に基づいて、上述の手順でLDPC−CC符号化を行う。変調部420は、制御信号により指定された変調方式を用いて、符号化後の系列を変調する。
図20に、通信装置400と通信を行う通信相手の通信装置の構成例を示す。図20の通信装置500の制御情報生成部530は、ベースバンド信号に含まれる制御情報シンボルから制御情報を抽出する。制御情報シンボルには、符号化率の情報が含まれる。制御情報生成部530は、抽出した符号化率の情報を制御信号として対数尤度比生成部520及び復号化器300に出力する。
受信部510は、通信装置400から送信される変調信号に対応する受信信号に周波数変換、直交復調等の処理を施すことでベースバンド信号を得、ベースバンド信号を対数尤度比生成部520に出力する。また、受信部510は、ベースバンド信号に含まれる既知信号を用いて、通信装置400と通信装置500との間の(例えば、無線)伝送路におけるチャネル変動を推定し、推定したチャネル推定信号を対数尤度比生成部520に出力する。
また、受信部510は、ベースバンド信号に含まれる既知信号を用いて、通信装置400と通信装置500との間の(例えば、無線)伝送路におけるチャネル変動を推定し、伝搬路の状況の判断を可能とするフィードバック情報(チャネル変動そのもの、例えば、Channel State Informationがその一例)を生成し、出力する。このフィードバック情報は、図示しない送信装置を通して、制御情報の一部として、通信相手(通信装置400)に送信される。対数尤度比生成部520は、ベースバンド信号を用いて、各送信系列の対数尤度比を求め、得られた対数尤度比を復号化器300に出力する。
復号化器300は、上述したように、制御信号が示す符号化率(s−1)/sに応じて、時点iの情報Xs,iから情報Xs−1,iまでの情報に対応する対数尤度比を既定値に設定し、復号器において回路の共用化を施した符号化率のうち、最大の符号化率に応じたLDPC−CCの検査行列を用いて、BP復号する。
このようにして、本発明を適用した通信装置400及び通信相手の通信装置500の符号化率が通信状況により適応的に変更され得る。
なお、符号化率の変更方法はこれに限ったものではなく、通信相手である通信装置500が符号化率決定部410を備え、希望する符号化率を指定するようにても良い。また、通信装置500が送信した変調信号から通信装置400が伝送路の変動を推定し、符号化率を決定しても良い。この場合、上述のフィードバックの情報は不要となる。
(実施の形態3)
本実施の形態では、実施の形態1で説明した探索方法を用いて形成したLDPC−CC符号におけるハイブリッドARQ(Automatic Repeat reQuest:自動再送要求)について説明する。
図21に、ハイブリッドARQを行う通信装置#1(例えば、基地局装置)が送信する変調信号のフレーム構成例を示す。図21のフレーム構成において、再送情報シンボルは、通信相手(例えば、端末装置)に再送データであるか新規データであるかの情報を通知するためのシンボルである。符号化率情報シンボルは、通信相手に、符号化率を通知するためのシンボルである。変調方式情報シンボルは、通信相手に変調方式を伝送するためのシンボルである。
その他の制御情報シンボルは、例えば、データ長等の制御情報を通知するためのシンボルである。また、情報を伝送するためのシンボル(以下「データシンボル」という)は、例えば、データ(情報)に対しLPDC−CC符号化を施すことにより得られた符号化データ(符号語)(一例として、情報とパリティ)を伝送するためのシンボルである。データシンボルには、フレーム誤りを検出するためのデータ、例えば、CRC(Cyclic Redundancy Check)が含まれているものとする。
図22に、通信装置#1の通信相手である通信装置#2(例えば、端末装置)が送信する変調信号のフレーム構成例を示す。図22のフレーム構成において、再送要求シンボルは、再送要求の有無を示すシンボルである。通信装置#2は、復号データに誤りが発生しているかをチェックし、誤りありの場合、再送を要求し、誤り無しの場合、再送を要求しない。再送要求シンボルは、この再送要求の有無を通知するためのシンボルである。
その他の制御情報シンボルは、例えば、通信相手の通信装置#1に、変調方式、使用している符号、符号化率、データ長等の制御情報を伝送するためシンボルである。情報を伝送するためのシンボルは、通信相手の通信装置#1に送信するデータ(情報)を伝送するためのシンボルである。
図23に、ハイブリッドARQに着目した場合の、本実施の形態における通信装置#1及び通信装置#2が送信するフレームの流れの一例を示す。なお、以下では、通信装置#1及び通信装置#2が、符号化率1/2,2/3,3/4をサポートする場合を例に説明する。
図23[1]:初めに、通信装置#1はフレーム#1の変調信号を送信する。このとき、フレーム#1のデータシンボル領域で送信されるデータは、新規データに符号化率3/4の符号化を施して得られた符号語である。
図23[2]:通信装置#2は、フレーム#1の変調信号を受信し、復調し、復号し、CRCチェックを行う。この結果、誤りが発生しなかったので、通信装置#1に再送を要求しない。
図23[3]:通信装置#1は、フレーム#2の変調信号を送信する。なお、フレーム#2のデータシンボル領域で送信されるデータは、新規データに符号化率3/4の符号化を施して得られた符号語である。
図23[4]:通信装置#2は、フレーム#2の変調信号を受信し、復調し、復号し、CRCチェックを行う。この結果、誤りが発生していたので、通信装置#1に再送を要求する。
図23[5]:通信装置#1は、通信装置#2から再送が要求されたため、フレーム#2に応じたフレーム#2’を送信する。具体的には、通信装置#1は、フレーム#2で送信された符号語を得る際に用いられた符号化率3/4より小さい符号化率2/3を用いて、データ(情報)の一部を符号化し、得られた符号語のうちパリティのみをフレーム#2’で送信する。
ここで、図24を用いて、フレーム#2及びフレーム#2’において送信されるデータについて説明する。
初回送信時、フレーム#2では、情報X1,i、X2,i、X3,i(i=1,2,…,m)と、情報X1,i、X2,i、X3,iに対して符号化率3/4のLDPC−CC符号化が施され得られたパリティP3/4,i(i=1,2,…,m)が送信される。
通信装置#2から通信装置#1に、フレーム#2の再送要求が要求されると、通信装置#1では、初回送信時に用いられた符号化率3/4より小さい符号化率2/3を用いて、フレーム#2で送信された情報X1,i、X2,i、X3,i(i=1,2,…,m)のうち、X1,i、X2,i(i=1,2,…,m)に対し符号化が施され、パリティP2/3,i(i=1,2,…,m)が生成される。
そして、フレーム#2’では、このパリティP2/3,i(i=1,2,…,m)のみが送信される。
このとき、特に、通信装置#1が備える符号化器を、実施の形態2のように構成した場合、初回送信時の符号化率3/4の符号化と、再送時の符号化率2/3の符号化の双方を、同一の符号化器を用いて行うことができる。つまり、ハイブリッドARQにより再送を行う場合においても、ハイブリッドARQ用に新たな符号化器を追加することなく、初回送信時の符号化を行う際に用いる符号化器を用いて、再送時の符号化を行うことができる。
このように、ハイブリッドARQを行う場合において、初回送信時の符号化を行う際に用いる符号化器と同一の符号化器を用いることができるのは、符号化器が複数の符号化率をサポートし、かつ、当該複数の符号化率に対応するパリティ検査多項式が、実施の形態1で述べたLDPC−CCであることによる。
図23[6]:通信装置#2は、再送時に送信されるフレーム#2’の変調信号を受信し、復調し、復号し、CRCチェックを行う。
図23[6]の動作(再送時のデータの復号方法)について図25を用いて説明する。再送時には、先に受信したフレーム#2の復号結果を用いて、フレーム#2’を復号する。
具体的には、先ず、再送時の最初の復号(第1ステップ)として、先にフレーム#2で受信した情報X1,i、X2,i(i=1,2,…,m)のLLR(Log Likelihood Ratio:対数尤度比)と、フレーム#2’で受信した符号化率2/3のパリティP2/3,i(i=1,2,…,m)のLLRとを用いて、情報X1,i、X2,i(i=1,2,…,m)を復号する(つまり、符号化率2/3のLDPC−CCの復号処理を行う)。
フレーム#2’では、フレーム#2に比べ符号化率を小さくしたので、符号化利得が向上し、情報X1,i、X2,i(i=1,2,…,m)を復号することができる可能性が高く、再送時の受信品質の確保が可能である。また、再送されるデータは、パリティのみであるため、データの伝送効率が良い。
次に、再送時の2度目の復号(第2ステップ)として、第1ステップにおいて情報X1,i、X2,i(i=1,2,…,m)の推定値が得られているので、その推定値を用いて情報X1,i、X2,iのLLRを生成し(例えば、「0」と推定されていた場合、十分高い信頼度の「0」に相当するLLRを与え、「1」と推定された場合、十分高い信頼度の「1」に相当するLLRを与える)、これらと、先にフレーム#2で受信した情報X3,i(i=1,2,…,m)のLLRと、先にフレーム#2で受信したパリティP3/4,i(i=1,2,…,m)のLLRとを用いて、符号化率3/4のLDPC−CCの復号を行い、情報X3,i(i=1,2,…,m)を得る。
このようにして、通信装置#2は、ハイブリッドARQにより再送されたフレーム#2’を用いて、初回送信時に送信されたフレーム#2を復号する。このとき、特に、通信装置#2が備える復号化器を、実施の形態2のように構成した場合、初回送信時の復号化と、再送時の復号化(第1及び第2ステップの復号)の双方を、同一の復号化器を用いて行うことができる。
つまり、ハイブリッドARQにより再送を行う場合においても、ハイブリッドARQ用に新たな復号化器を追加することなく、初回送信時の復号化を行う際に用いる復号化器を用いて、再送時の復号化(第1及び第2ステップの復号)を行うことができる。
このように、ハイブリッドARQを行う場合において、初回送信時の復号化を行う際に用いる復号化器と同一の復号化器を用いることができるのは、通信相手の通信装置#1が備える符号化器が、複数の符号化率をサポートし、かつ、当該複数の符号化率に対応するパリティ検査多項式が、実施の形態1で述べたLDPC−CCであることによる。
このようにして、通信装置#2は、フレーム#2’の変調信号を受信し、復調し、復号し、CRCチェックを行う。この結果、誤りが発生しなかったので、通信装置#2に再送を要求しない。
図23[7]:通信装置#1はフレーム#3の変調信号を送信する。このとき、フレーム#3のデータシンボル領域で送信されるデータは、新規データに符号化率3/4の符号化を施して得られた符号語である。
図23[8]:通信装置#2は、フレーム#3の変調信号を受信し、復調し、復号し、CRCチェックを行う。この結果、誤りが発生しなかったので、通信装置#1に再送を要求しない。
図26に、ハイブリッドARQに着目した場合の、本実施の形態における通信装置#1と通信装置#2が送信するフレームの流れの別の一例を示す。図23に示すフレームの流れと異なる点は、図26では、再送時の符号化率を1/2とした点と、フレーム#2に対応して、フレーム#2’が再送されるのに加え、フレーム#2”が2回目の再送として更に再送される点である。なお、以下では、通信装置#1及び通信装置#2が、符号化率1/2,2/3,3/4をサポートする場合を例に説明する。
図26[1]:初めに、通信装置#1はフレーム#1の変調信号を送信する。このとき、フレーム#1のデータシンボル領域で送信されるデータは、新規データに符号化率3/4の符号化を施して得られた符号語である。
図26[2]:通信装置#2は、フレーム#1の変調信号を受信し、復調し、復号し、CRCチェックを行う。この結果、誤りが発生しなかったので、通信装置#1に再送を要求しない。
図26[3]:通信装置#1は、フレーム#2の変調信号を送信する。なお、フレーム#2のデータシンボル領域で送信されるデータは、新規データに符号化率3/4の符号化を施して得られた符号語である。
図26[4]:通信装置#2は、フレーム#2の変調信号を受信し、復調し、復号し、CRCチェックを行う。この結果、誤りが発生していたので、通信装置#1に再送を要求する。
図26[5]:通信装置#1は、通信装置#2から再送が要求されたため、フレーム#2に応じたフレーム#2’を送信する。具体的には、通信装置#1は、フレーム#2で送信された符号語を得る際に用いられた符号化率3/4より小さい符号化率1/2を用いて、データ(情報)の一部(又は全部)を符号化し、得られた符号語のうちパリティのみをフレーム#2’で送信する。
なお、再送時に用いられる符号化率は、初回送信時に用いられる符号化率3/4より小さければ良く、初回送信時に用いられる符号化率より小さい符号化率が複数ある場合には、例えば、通信装置#1と通信装置#2との間の伝搬路の状況に応じて、複数の符号化率から最適な符号化率を設定するようにしても良い。
ここで、図27を用いて、フレーム#2及びフレーム#2’において送信されるデータについて説明する。
初回送信時、フレーム#2では、情報X1,i、X2,i、X3,i(i=1,2,…,m)と、情報X1,i、X2,i、X3,iに対して符号化率3/4のLDPC−CC符号化が施され得られたパリティP3/4,i(i=1,2,…,m)が送信される。
通信装置#2から通信装置#1に、フレーム#2の再送要求が要求されると、通信装置#1では、初回送信時に用いられた符号化率3/4より小さい符号化率1/2を用いて、フレーム#2で送信された情報X1,i、X2,i、X3,i(i=1,2,…,m)のうち、X1,i(i=1,2,…,m)に対し符号化が施され、パリティP1/2,i(i=1,2,…,m)が生成される。
そして、フレーム#2’では、このパリティP1/2,i(i=1,2,…,m)のみが送信される。
このとき、特に、通信装置#1が備える符号化器を、実施の形態2のように構成した場合、初回送信時の符号化率3/4の符号化と、再送時の符号化率1/2の符号化の双方を、同一の符号化器を用いて行うことができる。つまり、ハイブリッドARQにより再送を行う場合においても、ハイブリッドARQ用に新たな符号化器を追加することなく、初回送信時の符号化を行う際に用いる符号化器を用いて、再送時の符号化を行うことができる。符号化器がサポートする、複数の符号化率に対応するパリティ検査多項式を、実施の形態1で述べたLDPC−CCとする理由による。
図26[6]:通信装置#2は、再送時に送信されるフレーム#2’の変調信号を受信し、復調し、復号し、CRCチェックを行う。
再送時(1回目の再送時)の復号方法について図28を用いて説明する。通信装置#2は、1回目の再送時には、先に受信したフレーム#2の復号結果を用いて、フレーム#2’を復号する。
具体的には、先ず、1回目の再送時の最初の復号(第1ステップ)として、通信装置#2は、先にフレーム#2で受信した情報X1,i(i=1,2,…,m)のLLRと、フレーム#2’で受信した符号化率1/2のパリティP1/2,i(i=1,2,…,m)のLLRとを用いて、情報X1,i(i=1,2,…,m)を復号する(つまり、符号化率1/2のLDPC−CCの復号処理を行う)。
フレーム#2’では、フレーム#2に比べ符号化率を小さくしたので、符号化利得が向上し、情報X1,i(i=1,2,…,m)を復号できる可能性が高く、再送時の受信品質の確保が可能である。また、再送されるデータは、パリティのみであるため、データの伝送効率が良い。
次に、1回目の再送時の2度目の復号(第2ステップ)として、通信装置#2は、第1ステップにおいて情報X1,i(i=1,2,…,m)の推定値が得られているので、その推定値を用いて情報X1,iのLLRを生成する(例えば、「0」と推定されていた場合、十分高い信頼度の「0」に相当するLLRを与え、「1」と推定された場合、十分高い信頼度の「1」に相当するLLRを与える)。
通信装置#2は、推定値を用いて生成した情報X1,iのLLRと、先にフレーム#2で受信した情報X2,i、X3,i(i=1,2,…,m)のLLRと、先にフレーム#2で受信したパリティP3/4,i(i=1,2,…,m)のLLRと、を用いて、符号化率3/4のLDPC−CCの復号を行い情報X2,i、X3,i(i=1,2,…,m)を得る。
このようにして、通信装置#2は、ハイブリッドARQにより再送時に送信されたフレーム#2’を用いて、初回送信時に送信されたフレーム#2を復号する。
通信装置#2は、フレーム#2の復号結果に対しCRCチェックを行う。この結果、誤りが発生していたので、通信装置#1に再度再送を要求する。
図26[7]:通信装置#1は、通信装置#2から2度目の再送が要求されたため、フレーム#2に応じたフレーム#2”を送信する。具体的には、通信装置#1は、フレーム#2で送信された符号語を得る際に用いられた符号化率3/4より小さい符号化率1/2を再度用いて、1回目の再送時に符号化されなかったデータ(情報)の一部(又は全部)を符号化し、得られた符号語のうちパリティのみをフレーム#2”で送信する。
ここで、図29を用いて、フレーム#2”において送信されるデータについて説明する。
上述したように、1回目の再送時には、初回送信時の符号化率3/4より小さい符号化率1/2を用いて、フレーム#2で送信された情報X1,i、X2,i、X3,i(i=1,2,…,m)のうち、X1,i(i=1,2,…,m)を用いて符号化率1/2のLDPC−CCの符号化が施され、パリティP1/2,i(i=1,2,…,m)が生成された(図27参照)。そして、1回目の再送時のフレーム#2’では、このパリティP1/2,i(i=1,2,…,m)のみが送信された(図27参照)。
2回目の再送時には、初回送信時の符号化率3/4より小さい符号化率(ここでは一例として1/2)を用いて、フレーム#2で送信された情報X1,i、X2,i、X3,i(i=1,2,…,m)のうち、1回目の再送時には符号化されなかったX2,i(i=1,2,…,m)を用いて、例えば、符号化率1/2のLDPC−CCの符号化が施され、パリティp1/2,i(i=1,2,…,m)が生成される(図29参照)。そして、2回目の再送時のフレーム#2”では、このパリティp1/2,i(i=1,2,…,m)のみが送信される(図29参照)。
なお、2回目の再送時に、符号化率1/2で符号化される際に用いられるLDPC−CCのパリティ検査多項式は、1回目の再送時に、同じ符号化率1/2で符号化される際に用いられたLDPC−CCのパリティ検査多項式を同じとする(つまり、符号化の際の入力が異なるだけで、符号化の際に用いられる符号は同一である)。
このようにすることで、初回送信時と、1回目の再送時とで、同一の符号化器を用いて符号語を生成できるのに加え、2回目の再送時の符号語も同一の符号化器を用いて生成することができるようになる。これにより、新たな符号化器を追加することなく、本実施の形態のハイブリッドARQを実現することができる。
図29に示す例では、2回目の再送時には、1回目の再送時において符号化された情報X1,i(i=1,2,…,m)以外の情報報X2,i(i=1,2,…,m)を、1回目の再送時における符号化に用いられたパリティ検査多項式を用いて符号化して得られた符号語が送信された。
このように、再送要求が複数ある場合、n(nは2以上の整数)回目の再送時には、(n−1)回目以前の再送時において符号化された情報以外の情報を優先的に符号化して得られた符号語を再送すると、フレーム#2を構成する各情報の対数尤度比の確からしさが徐々に向上していくので、復号側でより確実にフレーム#2を復号することができるようになる。
なお、再送要求が複数ある場合、n(nは2以上の整数)回目の再送時に、(n−1)回目以前の再送時において再送されたデータと同一のデータを再送しても良い。また、再送要求が複数ある場合、チェイスコンバイニング等の他のARQ方式と組み合わせても良い。また、複数回の再送を行うことになった場合、各再送で符号化率が異なっていても良い。
図26[8]:通信装置#2は、再度再送(2回目の再送)されたフレーム#2”の変調信号を受信し、復調し、復号し、CRCチェックを行う。
2回目の再送時の復号方法について図30を用いて説明する。2回目の再送時には、通信装置#2は、先に受信したフレーム#2の復号結果を用いて、フレーム#2”を復号する。
具体的には、先ず、2回目の再送時の最初の復号(第1ステップ)として、通信装置#2は、先にフレーム#2で受信した情報X2,i(i=1,2,…,m)のLLRと、フレーム#2”で受信した符号化率1/2のパリティp1/2,i(i=1,2,…,m)のLLRとを用いて、情報X2,i(i=1,2,…,m)を復号する(つまり、符号化率1/2のLDPC−CCの復号処理を行う)。
フレーム#2”では、フレーム#2に比べ符号化率を小さくしたので、符号化利得が向上し、情報X2,i(i=1,2,…,m)を復号できる可能性が高く、再送時の受信品質の確保が可能である。また、再送されるデータは、パリティのみであるため、データの伝送効率が良い。
次に、2回目の再送時の2度目の復号(第2ステップ)として、通信装置#2は、第1ステップにおいて情報X2,i(i=1,2,…,m)の推定値が得られているので、その推定値を用いて情報X2,iのLLRを生成する(例えば、「0」と推定されていた場合、十分高い信頼度の「0」に相当するLLRを与え、「1」と推定された場合、十分高い信頼度の「1」に相当するLLRを与える)。
通信装置#2は、推定値を用いて生成された情報X2,iのLLRと、先にフレーム#2で受信した情報X3,i(i=1,2,…,m)、パリティP3/4,i(i=1,2,…,m)のLLRと、1回目の再送時の復号(第1及び第2ステップ)で推定された情報X1,i(i=1,2,…,m)の推定値を用いて生成した情報X1,iのLLRを用いて、符号化率3/4のLDPC−CCの復号を行い、情報X3,i(i=1,2,…,m)を得る。
このようにして、通信装置#2は、ハイブリッドARQにより再送されたフレーム#2’及びフレーム#2”を用いて、初回送信時に送信されたフレーム#2を復号する。
通信装置#2は、フレーム#2を復号した後、CRCチェックを行う。この結果、誤りが発生しなかったので、通信装置#1に再送を要求しない。
図31に、本実施の形態に係るハイブリッドARQを行う通信装置#1の構成を示す。図31の通信装置600は、例えば、基地局装置に搭載される。
図31の通信装置600の受信・復調部610は、通信相手から送信される図22のフレーム構成をとる変調信号を受信して受信信号を取得し、受信信号に周波数変換、復調、復号等の受信処理を施すことにより、再送要求シンボルを抽出する。受信・復調部610は、再送要求シンボルを再送要求判定部620に出力する。
再送要求判定部620は、再送要求シンボルから再送要求の有無を判定し、判定結果を再送要求情報として切替部640に出力する。また、再送要求判定部620は、再送要求の有無に応じて、符号化部650及びバッファ630に指示信号を出力する。
具体的には、再送要求判定部620は、再送要求無しの場合、符号化部650が、初回送信時に用いる符号化率として設定された符号化率を用いて符号化を行うように、符号化部650に指示信号を出力する。一方、再送要求判定部620は、再送要求有りの場合、符号化部650が、ハイブリッドARQを選択した場合、再送時に初回送信時に用いた符号化率より小さい符号化率を用いて符号化を行うように、符号化部650に指示信号を出力する(ただし、ハイブリッドARQを選択しなかった場合、例えば、チェイスコンバイニングを選択した場合は、初回送信時に用いた符号化率より小さい符号化率を選択するとは限らない。)。また、再送要求判定部620は、再送要求有りの場合、バッファ630が、記憶するデータ(情報)S20を切替部640に出力するように、バッファ630に指示信号を出力する。
バッファ630は、切替部640を介して符号化部650に出力されるデータ(情報)S10を記憶し、再送要求判定部620からの指示信号に応じて、データ(情報)S20を切替部640に出力する。
切替部640は、再送要求情報に応じて、データ(情報)S10及びバッファ630に記憶されたデータ(情報)S20のうちいずれか一方を符号化部650に出力する。具体的には、再送要求情報が再送要求無しを示す場合には、切替部640は、まだ符号化されていないデータ(情報)S10を、新規データとして、符号化部650に出力する。一方、再送要求情報が再送要求有りを示す場合には、切替部640は、バッファ630に保持されるデータ(情報)S20を、再送データとして、符号化部650に出力する。
符号化部650は、実施の形態2に示した符号化器200を備え、再送要求判定部620から指示される符号化率に応じて、入力データにLDPC−CC符号化を施し、LDPC−CC符号語を取得する。
例えば、初回送信時に、図23[3]のフレーム#2を送信する場合、符号化部650は、再送要求判定部620から通知される指示信号に応じて、符号化率3/4を用いて、情報X1,i、X2,i、X3,i(i=1,2,…,m)に対し符号化を施し、パリティP3/4,i(i=1,2,…,m)を生成する(図24参照)。
そして、符号化部650は、情報X1,i、X2,i、X3,i(i=1,2,…,m)及びパリティ3/4,i(i=1,2,…,m)をLDPC−CC符号語として変調・送信部660に出力する。
また、例えば、1回目の再送時に、図23[5]のフレーム#2’を送信する場合、符号化部650は、再送要求判定部620から通知される指示信号に応じて、符号化率を3/4から2/3に切り替えて、フレーム#2で送信された情報X1,i、X2,i、X3,i(i=1,2,…,m)のうち、X1,i、X2,i(i=1,2,…,m)に対し符号化を施し、パリティ2/3,i(i=1,2,…,m)を生成する(図24参照)。
ここで重要な点は、符号化部650が、実施の形態2で説明した符号化器200を含む点である。すなわち、符号化器200が、符号化率(y−1)/y及び(z−1)/z(y<z)に対応可能な時変周期g(gは自然数)のLDPC−CC符号化を行う場合に、符号化部650は、初回送信時に、パリティ検査多項式(42)を用いてLDPC−CC符号語を生成し、再送要求がある場合、再送時に、パリティ検査多項式(43)を用いてLDPC−CC符号語を生成する。
Figure 0004563476
Figure 0004563476
これにより、ハイブリッドARQにより再送を行う場合においても、ハイブリッドARQ用に新たな符号化器を追加することなく、初回送信時の符号化を行う際に用いる符号化器を用いて、再送時の符号化を行うことができる。
そして、符号化部650は、このパリティ2/3,i(i=1,2,…,m)のみをLDPC−CC符号語として変調・送信部660に出力する。
変調・送信部660は、LDPC−CC符号語に変調、周波数変換等の送信処理を施し、図示せぬアンテナを介して通信相手の通信装置#2に送信する。
図32に、通信装置#1の通信相手である通信装置#2の要部構成例を示す。図32の通信装置700は、例えば、端末装置に搭載される。
図32の通信装置700の受信・復調部710は、図示せぬアンテナを介して受信された受信信号を入力し、受信信号に対して周波数変換等の無線処理を施すことで、図21に示すフレーム構成をとる受信信号を取得する。受信・復調部710は、受信信号から再送情報シンボル、符号化率情報シンボル、変調方式情報シンボル等の制御情報シンボルを抽出し、これら制御情報シンボルを制御情報解析部720に出力する。また、受信・復調部710は、受信信号からデータシンボルを抽出し、受信データとして対数尤度比生成部730に出力する。
制御情報解析部720は、制御情報シンボルから、再送データであるか新規データであるかの情報、符号化率、変調方式の制御情報を抽出し、これら制御情報を復号化部740に出力する。
対数尤度比生成部730は、受信データの対数尤度比を算出する。対数尤度比生成部730は、対数尤度比を復号化部740に出力する。
復号化部740は、図15の復号化器300を備え、制御情報解析部720から通知される制御情報を用いて、受信データの対数尤度比に対して復号化を行い、受信データの対数尤度比を更新する。
例えば、初回送信時に送信された、図23[3]のフレーム#2を受信する場合、復号化部740は、制御情報解析部720から通知される指示信号に応じて、符号化率を3/4に設定し、復号化を行い、受信データの復号処理後の対数尤度比を得る。
また、例えば、再送時に送信された、図23[5]のフレーム#2’を受信する場合、復号化部740は、制御情報解析部720から通知される指示信号に応じて、符号化率3/4から符号化率2/3に切り替えて、復号化を行い、受信データの復号処理後の対数尤度比を得る。なお、再送時には、復号化部740は、複数のステップで復号化を行う。以下、図23[3]のフレーム#2及び図23[5]のフレーム#2’を受信する場合を例に説明する。
具体的には、先ず、再送時の最初の復号(第1ステップ)として、復号化部740は、先にフレーム#2で受信した情報X1,i、X2,i(i=1,2,…,m)のLLR(Log Likelihood Ratio:対数尤度比)と、フレーム#2’で受信した符号化率2/3のパリティP2/3,i(i=1,2,…,m)のLLRとを用いて、情報X1,i、X2,i(i=1,2,…,m)を復号する(つまり、符号化率2/3のLDPC−CCの復号処理を行う)。
フレーム#2’では、フレーム#2に比べ符号化率を小さくしたので、符号化利得が向上し、情報X1,i、X2,i(i=1,2,…,m)を復号することができる可能性が高く、再送時の受信品質の確保が可能である。また、再送されるデータは、パリティのみであるため、データの伝送効率が良い。
次に、再送時の2度目の復号(第2ステップ)として、復号化部740は、第1ステップにおいて情報X1,i、X2,i(i=1,2,…,m)の推定値が得られているので、その推定値を用いて情報X1,i、X2,iのLLRを生成する(例えば、「0」と推定されていた場合、十分高い信頼度の「0」に相当するLLRを与え、「1」と推定された場合、十分高い信頼度の「1」に相当するLLRを与える)。
復号化部740は、推定値を用いて生成した情報X1,i、X2,iのLLRと、先にフレーム#2で受信した情報X3,i(i=1,2,…,m)のLLRと、先にフレーム#2で受信したパリティP3/4,i(i=1,2,…,m)のLLRとを用いて、符号化率3/4のLDPC−CCの復号を行い、情報X3,i(i=1,2,…,m)を得る。
ここで重要な点は、復号化部740が、実施の形態2で説明した復号化器300を含む点である。すなわち、復号化器300が、符号化率(y−1)/y及び(z−1)/z(y<z)に対応可能な時変周期g(gは自然数)のLDPC−CC復号化を行う場合に、復号化部740は、初回送信時の復号では、パリティ検査多項式(42)を用いてLDPC−CC符号語を復号化し、再送時の最初の復号(第1ステップ)では、パリティ検査多項式(43)を用いてLDPC−CC符号語を復号化し、再送時の2度目の復号(第2ステップ)では、パリティ検査多項式(42)を用いてLDPC−CC符号語を復号化する。
これにより、ハイブリッドARQにより再送を行う場合においても、ハイブリッドARQ用に新たな復号化器を追加することなく、初回送信時の復号化を行う際に用いる復号化器を用いて、再送時の復号化(第1及び第2ステップの復号)を行うことができる。
復号化部740は、復号処理後の受信データの対数尤度比を、判定部750に出力する。
判定部750は、復号化部740から入力される対数尤度比に基づいてデータを推定することにより、復号データを取得する。判定部750は、復号データを再送要求部760に出力する。
再送要求部760は、復号データにCRCチェック等を行うことで誤り検出を行い、誤りの有無に応じて、再送要求情報を形成し、再送要求情報を変調・送信部770に出力する。
変調・送信部770は、データ(情報)及び再送要求情報を入力し、これらに符号化、変調、周波数変換等の処理を施すことで変調信号を得、変調信号を図示せぬアンテナを介して通信相手の通信装置#1に送信する。
このように、図31及び図32の構成により、本実施の形態のハイブリッドARQを実施することができる。これにより、ハイブリッドARQ用に新たな符号化器を追加することなく、初回送信時の符号化を行う際に用いる符号化器を用いて、再送時の符号化を行うことができる。また、初回送信時の復号化と、再送時の復号化(第1及び第2ステップの復号)の双方を、同一の復号化器を用いて行うことができる。つまり、ハイブリッドARQ用に新たな復号化器を追加することなく、初回送信時の復号化を行う際に用いる復号化器を用いて、再送時の復号化(第1及び第2ステップの復号)を行うことができる。
本発明の符号化器の一つの態様は、符号化率(q−1)/q(qは3以上の整数)のパリティ検査多項式(44)を用いて、時変周期g(gは自然数)の低密度パリティ検査畳み込み符号(LDPC−CC:Low-Density Parity-Check Convolutional Codes)を作成する符号化器であって、符号化率(s−1)/s(s≦q)を設定する符号化率設定手段と、時点iの情報Xr,i(r=1,2,…,q−1)を入力し、式(44)のAXr,k(D)X(D)の演算結果を出力する第r演算手段と、時点i−1のパリティPi−1を入力し、式(44)のB(D)P(D)の演算結果を出力するパリティ演算手段と、前記第1から第(q−1)演算手段の演算結果及び前記パリティ演算手段の演算結果の排他的論理和を、時刻iのパリティPとして得る加算手段と、前記情報Xs,iから前記情報Xq−1,iをゼロに設定する情報生成手段と、を具備する構成を採る。
Figure 0004563476
本発明の復号化器の一つの態様は、符号化率(q−1)/q(qは3以上の整数)のパリティ検査多項式(45)に準じた検査行列を具備し、時変周期g(gは自然数)の低密度パリティ検査畳み込み符号(LDPC−CC:Low-Density Parity-Check Convolutional Codes)を信頼度伝播(BP:Belief Propagation)を利用して復号する復号化器であって、設定された符号化率(s−1)/s(s≦q)に応じて、時点i(iは整数)の情報Xs,iから情報Xq−1,iに対応する対数尤度比を既定値に設定する対数尤度比設定手段と、前記対数尤度比を用いて、式(45)のパリティ検査多項式に準じた検査行列にしたがって行処理演算及び列処理演算を行う演算処理手段と、を具備する構成を採る。
Figure 0004563476
本発明の符号化方法の一つの態様は、符号化率(y−1)/y及び(z−1)/z(y<z)に対応可能な時変周期g(gは自然数)の低密度パリティ検査畳み込み符号(LDPC−CC:Low-Density Parity-Check Convolutional Codes)の符号化方法であって、パリティ検査多項式(46)を用いて符号化率(z−1)/zの低密度パリティ検査畳み込み符号を生成し、パリティ検査多項式(47)を用いて符号化率(y−1)/yの低密度パリティ検査畳み込み符号を生成するようにした。
Figure 0004563476
Figure 0004563476
本発明は上記全ての実施の形態に限定されず、種々変更して実施することが可能である。例えば、上記実施の形態では、主に、符号化器及び復号化器で実現する場合について説明しているが、これに限られるものではなく、電灯線通信装置で実現する場合においても適用可能である。
また、この符号化方法及び復号化方法をソフトウェアとして行うことも可能である。例えば、上記符号化方法及び通信方法を実行するプログラムを予めROM(Read Only Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
また、上記符号化方法及び復号化方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAM(Random Access Memory)に記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
また、本発明は、無線通信に限らず、電灯線通信(PLC:Power Line Communication)、可視光通信、光通信においても有用であることは言うまでもない。
本発明に係る符号化器、復号化器及び符号化方法は、LDPC−CCを用いた符号化器及び復号化器において、複数の符号化率を低回路規模で実現し、かつ、高いデータ受信品質を得ることができる。
LDPC−CCの検査行列を示す図 LDPC−CC符号化器の構成を示す図 時変周期4のLDPC−CCの検査行列の構成の一例を示す図 時変周期3のLDPC−CCのパリティ検査多項式及び検査行列Hの構成を示す図 図4Aの「検査式#1」〜「検査式#3」のX(D)に関する各項同士の信頼度伝播の関係を示す図 「検査式#1」〜「検査式#6」のX(D)に関する各項同士の信頼度伝播の関係を示す図 (7,5)畳み込み符号の検査行列を示す図 符号化率2/3、時変周期2のLDPC―CCの検査行列Hの構成の一例を示す図 符号化率2/3、時変周期mのLDPC−CCの検査行列の構成の一例を示す図 符号化率(n−1)/n、時変周期mのLDPC−CCの検査行列の構成の一例を示す図 LDPC−CC符号化部の構成の一例を示す図 「Information-zero-termination」の方法を説明するための図 本発明の実施の形態2に係る符号化器の要部構成を示すブロック図 実施の形態2に係る第1情報演算部の要部構成を示すブロック図 実施の形態2に係るパリティ演算部の要部構成を示すブロック図 実施の形態2に係る符号化器の別の要部構成を示すブロック図 実施の形態2に係る復号化器の要部構成を示すブロック図 符号化率1/2の場合における対数尤度比設定部の動作を説明するための図 符号化率2/3の場合における対数尤度比設定部の動作を説明するための図 実施の形態2に係る符号化器を搭載する送信装置の構成の一例を示す図 送信フォーマットの一例を示す図 実施の形態2に係る復号化器を搭載する受信装置の構成の一例を示す図 本発明の実施の形態3に係るハイブリッドARQを行う通信装置#1が送信する変調信号のフレーム構成例を示す図 実施の形態3に係る通信装置#1の通信相手の通信装置#2が送信する変調信号のフレーム構成例を示す図 本実施の形態における通信装置#1及び通信装置#2が送信するフレームの流れの一例を示す図 フレーム#2及びフレーム#2’において送信されるデータの説明に供する図 再送時の復号方法の説明に供する図 本実施の形態における通信装置#1及び通信装置#2が送信するフレームの流れの別の一例を示す図 フレーム#2及びフレーム#2’において送信されるデータの説明に供する図 1回目の再送時の復号方法の説明に供する図 フレーム#2”において送信されるデータの説明に供する図 2回目の再送時の復号方法の説明に供する図 実施の形態3に係る通信装置#1の要部構成を示すブロック図 実施の形態3に係る通信装置#2の要部構成を示すブロック図
符号の説明
100 LDPC−CC符号化器
110 データ演算部
120,230 パリティ演算部
130,260 ウェイト制御部
140 mod2加算器
111−1〜111−M,121−1〜121−M,221−1〜221−M,231−1〜231−M シフトレジスタ
112−0〜112−M,122−0〜122−M,222−0〜222−M,232−0〜232−M ウェイト乗算器
200 符号化器
210 情報生成部
220−1 第1情報演算部
220−2 第2情報演算部
220−3 第3情報演算部
240 加算部
250 符号化率設定部
300 復号化器
310 対数尤度比設定部
320 行列処理演算部
321 記憶部
322 行処理演算部
323 列処理演算部
400,500 通信装置
410 符号化率決定部
420 変調部
510 受信部
520,730 対数尤度比生成部
530 制御情報生成部
600,700 通信装置
610,710 受信・復調部
620 再送要求判定部
630 バッファ
640 切替部
650 符号化部
660,770 変調・送信部
720 制御情報解析部
740 復号化部
750 判定部
760 再送要求部

Claims (5)

  1. 符号化率(q−1)/q(qは3以上の整数)のパリティ検査多項式(1)を用いて、時変周期g(gは自然数)の低密度パリティ検査畳み込み符号(LDPC−CC:Low-Density Parity-Check Convolutional Codes)を作成する符号化器であって、
    符号化率(s−1)/s(s≦q)を設定する符号化率設定手段と、
    時点iの情報Xr,i(r=1,2,…,q−1)を入力し、式(1)のAXr,k(D)Xi(D)の演算結果を出力する第r演算手段と、
    時点i−1のパリティPi−1を入力し、式(1)のBk(D)P(D)の演算結果を出力するパリティ演算手段と、
    前記第1から第(q−1)演算手段の演算結果及び前記パリティ演算手段の演算結果の排他的論理和を、時刻iのパリティPiとして得る加算手段と、
    前記情報Xs,iから前記情報Xq−1,iをゼロに設定する情報生成手段と、
    を具備する符号化器。
    Figure 0004563476
  2. 符号化率(q−1)/q(qは3以上の整数)のパリティ検査多項式(2)に準じた検査行列を具備し、時変周期g(gは自然数)の低密度パリティ検査畳み込み符号(LDPC−CC:Low-Density Parity-Check Convolutional Codes)を信頼度伝播(BP:Belief Propagation)を利用して復号する復号化器であって、
    設定された符号化率(s−1)/s(s≦q)に応じて、時点i(iは整数)の情報Xs,iから情報Xq−1,iに対応する対数尤度比を既定値に設定する対数尤度比設定手段と、
    前記対数尤度比を用いて、式(2)のパリティ検査多項式に準じた検査行列にしたがって行処理演算及び列処理演算を行う演算処理手段と、
    を具備する復号化器。
    Figure 0004563476
  3. 符号化率(y−1)/y及び(z−1)/z(y<z)に対応可能な時変周期g(gは自然数)の低密度パリティ検査畳み込み符号(LDPC−CC:Low-Density Parity-Check Convolutional Codes)の符号化方法であって、
    パリティ検査多項式(3)を用いて符号化率(z−1)/zの低密度パリティ検査畳み込み符号を生成し、
    パリティ検査多項式(4)を用いて符号化率(y−1)/yの低密度パリティ検査畳み込み符号を生成する、
    を有する符号化方法。
    Figure 0004563476
    Figure 0004563476
  4. 前記パリティ検査多項式(3)において、Bk(D)の次数の最大値は、AXγ,k(D)の次数の最大値の1/2以下である、
    請求項3の符号化方法。
  5. 初回送信時に、前記パリティ検査多項式(3)を用いて前記低密度パリティ検査畳み込み符号を生成し、
    再送要求がある場合、再送時に、前記パリティ検査多項式(4)を用いて前記低密度パリティ検査畳み込み符号を生成する、
    請求項3の符号化方法。
JP2008227505A 2008-07-09 2008-09-04 符号化器、復号化器及び符号化方法 Active JP4563476B2 (ja)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP2008227505A JP4563476B2 (ja) 2008-07-09 2008-09-04 符号化器、復号化器及び符号化方法
CN201310711243.1A CN103647559B (zh) 2008-07-09 2009-07-06 接收装置
KR1020107026059A KR101529360B1 (ko) 2008-07-09 2009-07-06 부호화기, 복호화기 및 부호화 방법
PCT/JP2009/003129 WO2010004722A1 (ja) 2008-07-09 2009-07-06 符号化器、復号化器及び符号化方法
EP18201751.7A EP3457576B1 (en) 2008-07-09 2009-07-06 Transmission method, reception method, and corresponding apparatuses
EP09794170.2A EP2296283B1 (en) 2008-07-09 2009-07-06 Encoder, decoder, and encoding method
CN201310711416.XA CN103701474B (zh) 2008-07-09 2009-07-06 编码方法及发送装置
EP15182348.1A EP2966783B1 (en) 2008-07-09 2009-07-06 Encoder and transmission apparatus
US12/937,366 US8397145B2 (en) 2008-07-09 2009-07-06 Encoder, decoder, and encoding method
CN200980121588.3A CN102057579B (zh) 2008-07-09 2009-07-06 编码器、解码器及编码方法
BRPI0913438-7A BRPI0913438B1 (pt) 2008-07-09 2009-07-06 Método de codificação e aparelho de transmissão
US13/756,208 US8612838B2 (en) 2008-07-09 2013-01-31 Convolutional code encoding method
US14/072,586 US8892984B2 (en) 2008-07-09 2013-11-05 Convolutional code encoding method
US14/516,437 US9178654B2 (en) 2008-07-09 2014-10-16 Transmission apparatus and associated method of encoding transmission data
US14/860,302 US9331715B2 (en) 2008-07-09 2015-09-21 Reception apparatus and associated method of receiving encoded data
US15/077,737 US9564923B2 (en) 2008-07-09 2016-03-22 Reception apparatus and associated method of receiving encoded data
US15/387,041 US10038457B2 (en) 2008-07-09 2016-12-21 Transmission apparatus and associated method of encoding transmission data
US16/019,387 US10263641B2 (en) 2008-07-09 2018-06-26 Reception apparatus and associated method of receiving encoded data
US16/248,252 US10855312B2 (en) 2008-07-09 2019-01-15 Transmission apparatus and associated method of encoded data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008179636 2008-07-09
JP2008227505A JP4563476B2 (ja) 2008-07-09 2008-09-04 符号化器、復号化器及び符号化方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010132050A Division JP4879338B2 (ja) 2008-07-09 2010-06-09 符号化方法

Publications (3)

Publication Number Publication Date
JP2010041703A JP2010041703A (ja) 2010-02-18
JP2010041703A5 JP2010041703A5 (ja) 2010-07-22
JP4563476B2 true JP4563476B2 (ja) 2010-10-13

Family

ID=41506850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227505A Active JP4563476B2 (ja) 2008-07-09 2008-09-04 符号化器、復号化器及び符号化方法

Country Status (7)

Country Link
US (9) US8397145B2 (ja)
EP (3) EP2296283B1 (ja)
JP (1) JP4563476B2 (ja)
KR (1) KR101529360B1 (ja)
CN (3) CN103647559B (ja)
BR (1) BRPI0913438B1 (ja)
WO (1) WO2010004722A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048469A (ja) * 2008-07-09 2013-03-07 Panasonic Corp 受信装置
JP5844747B2 (ja) * 2011-01-21 2016-01-20 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 符号化方法、復号方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8732545B2 (en) 2008-12-26 2014-05-20 Panasonic Corporation Encoding method and encoder for generating a low-density parity check convolutional code and decoder for decoding a low-density parity check convolutional code using belief propagation
JP5681287B2 (ja) * 2011-07-27 2015-03-04 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 符号化方法、復号方法
JP5833633B2 (ja) 2011-07-27 2015-12-16 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 符号化方法、復号方法
CN102687445B (zh) 2011-12-30 2015-01-21 华为技术有限公司 前向纠错编、解码方法、装置及系统
EP2879296A4 (en) * 2012-07-24 2015-08-05 Panasonic Ip Corp America ENCODING METHOD AND DECODING METHOD
EP4117209A1 (en) * 2015-12-23 2023-01-11 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding channel in communication or broadcasting system
US10367528B2 (en) * 2016-03-04 2019-07-30 Sandisk Technologies Llc Convolutional low-density parity-check coding
US10063258B2 (en) 2016-03-04 2018-08-28 Sandisk Technologies Llc Method and data storage device to estimate a number of errors using convolutional low-density parity-check coding
US10389389B2 (en) 2016-03-04 2019-08-20 Western Digital Technologies, Inc. Method and data storage device using convolutional low-density parity-check coding with a long page write and a short page read granularity
EP3472955B1 (en) 2016-07-29 2020-09-23 Huawei Technologies Co., Ltd. Encoding device and method and corresponding decoding device and method
CN106788880B (zh) * 2016-09-30 2019-08-09 北京展讯高科通信技术有限公司 应用ldpc编码的数据传输方法及装置
CN107947801B (zh) * 2017-11-24 2020-12-15 西南电子技术研究所(中国电子科技集团公司第十研究所) 多码率兼容ldpc码编码器
CN111756453A (zh) * 2019-03-28 2020-10-09 创发信息科技(苏州)有限公司 通过一对双绞线或两对双绞线来传输的以太网通信系统
KR102574250B1 (ko) 2021-08-09 2023-09-06 서울대학교산학협력단 저밀도 패리티 체크 부호를 이용한 dna 데이터 부호화 및 복호화 방법, 프로그램 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107081A1 (ja) * 2004-04-28 2005-11-10 Mitsubishi Denki Kabushiki Kaisha 再送制御方法および通信装置
JP2007215089A (ja) * 2006-02-13 2007-08-23 Fujitsu Ltd 復号装置及び復号方法
JP2008153760A (ja) * 2006-12-14 2008-07-03 Samsung Electronics Co Ltd 情報符号化装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699368A (en) 1994-03-25 1997-12-16 Mitsubishi Denki Kabushiki Kaisha Error-correcting encoder, error-correcting decoder, and data transmitting system with error-correcting codes
DE69530196T2 (de) 1994-06-02 2003-11-20 Elan Drug Delivery Ltd Methode zum verhindern der aggregation von proteinen/peptiden bei rehydratation oder auftauen
US5812601A (en) * 1996-11-15 1998-09-22 Telefonaktiebolaget Lm Ericsson Coding for higher-level modulation
DE10100614A1 (de) * 2001-01-09 2002-07-11 Siemens Ag Verfahren und Anordnung zur Codierung bzw. Decodierung
CN100592641C (zh) * 2002-02-28 2010-02-24 三菱电机株式会社 Ldpc码用检查矩阵生成方法及检查矩阵生成装置
US6785863B2 (en) * 2002-09-18 2004-08-31 Motorola, Inc. Method and apparatus for generating parity-check bits from a symbol set
EP1592137A1 (en) * 2004-04-28 2005-11-02 Samsung Electronics Co., Ltd. Apparatus and method for coding/decoding block low density parity check code with variable block length
WO2006075382A1 (ja) * 2005-01-14 2006-07-20 Fujitsu Limited 符号化方法、復号方法及びそれらの装置
US20080225261A1 (en) 2007-03-13 2008-09-18 Noriyuki Hirayanagi Exposure apparatus and device manufacturing method
JP5354979B2 (ja) * 2007-07-12 2013-11-27 パナソニック株式会社 低密度パリティ検査畳み込み符号(ldpc−cc)符号化器及びldpc−cc復号器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107081A1 (ja) * 2004-04-28 2005-11-10 Mitsubishi Denki Kabushiki Kaisha 再送制御方法および通信装置
JP2007215089A (ja) * 2006-02-13 2007-08-23 Fujitsu Ltd 復号装置及び復号方法
JP2008153760A (ja) * 2006-12-14 2008-07-03 Samsung Electronics Co Ltd 情報符号化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048469A (ja) * 2008-07-09 2013-03-07 Panasonic Corp 受信装置
JP5844747B2 (ja) * 2011-01-21 2016-01-20 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 符号化方法、復号方法

Also Published As

Publication number Publication date
CN103701474A (zh) 2014-04-02
BRPI0913438B1 (pt) 2021-11-03
CN103647559A (zh) 2014-03-19
EP2296283B1 (en) 2015-10-28
US8612838B2 (en) 2013-12-17
US9178654B2 (en) 2015-11-03
US20150039974A1 (en) 2015-02-05
EP2296283A4 (en) 2013-01-09
BRPI0913438A2 (pt) 2021-06-15
US20130145228A1 (en) 2013-06-06
US20140068370A1 (en) 2014-03-06
US20180323800A1 (en) 2018-11-08
US20160013808A1 (en) 2016-01-14
US8397145B2 (en) 2013-03-12
US10038457B2 (en) 2018-07-31
CN103701474B (zh) 2017-01-18
KR20110037940A (ko) 2011-04-13
US20110041044A1 (en) 2011-02-17
WO2010004722A1 (ja) 2010-01-14
CN103647559B (zh) 2017-04-12
US10855312B2 (en) 2020-12-01
EP2296283A1 (en) 2011-03-16
EP2966783B1 (en) 2018-12-05
US20160204807A1 (en) 2016-07-14
CN102057579B (zh) 2014-01-22
US10263641B2 (en) 2019-04-16
KR101529360B1 (ko) 2015-06-16
EP3457576A1 (en) 2019-03-20
CN102057579A (zh) 2011-05-11
US20170104495A1 (en) 2017-04-13
US9564923B2 (en) 2017-02-07
US8892984B2 (en) 2014-11-18
JP2010041703A (ja) 2010-02-18
EP2966783A1 (en) 2016-01-13
US20190149170A1 (en) 2019-05-16
EP3457576B1 (en) 2023-10-11
US9331715B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
JP4563476B2 (ja) 符号化器、復号化器及び符号化方法
JP4898858B2 (ja) 符号化器、復号化器及び符号化方法
JP6785348B2 (ja) 受信装置および受信方法
JP5391253B2 (ja) 送信装置及び送信方法
JP5575965B2 (ja) 送信装置及び送信方法
JP5848472B2 (ja) 受信装置及び受信方法
JP5706024B2 (ja) 送信装置及び送信方法
JP6282325B2 (ja) 受信装置及び受信方法
JP6005830B2 (ja) 受信装置及び受信方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100608

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4563476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150