JP4560802B2 - High hardness precipitation hardened stainless steel with excellent toughness - Google Patents
High hardness precipitation hardened stainless steel with excellent toughness Download PDFInfo
- Publication number
- JP4560802B2 JP4560802B2 JP2007232081A JP2007232081A JP4560802B2 JP 4560802 B2 JP4560802 B2 JP 4560802B2 JP 2007232081 A JP2007232081 A JP 2007232081A JP 2007232081 A JP2007232081 A JP 2007232081A JP 4560802 B2 JP4560802 B2 JP 4560802B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- hardness
- stainless steel
- corrosion resistance
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010935 stainless steel Substances 0.000 title claims description 37
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 37
- 238000001556 precipitation Methods 0.000 title description 13
- 238000004881 precipitation hardening Methods 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- 230000007797 corrosion Effects 0.000 description 40
- 238000005260 corrosion Methods 0.000 description 40
- 229910000831 Steel Inorganic materials 0.000 description 35
- 239000010959 steel Substances 0.000 description 35
- 238000000465 moulding Methods 0.000 description 21
- 230000003287 optical effect Effects 0.000 description 19
- 239000000243 solution Substances 0.000 description 17
- 238000001816 cooling Methods 0.000 description 14
- 229910001068 laves phase Inorganic materials 0.000 description 14
- 239000011651 chromium Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000005728 strengthening Methods 0.000 description 9
- 230000032683 aging Effects 0.000 description 7
- 229920006351 engineering plastic Polymers 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 230000002411 adverse Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000007774 longterm Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 238000010137 moulding (plastic) Methods 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、耐食性および鏡面仕上性に優れた高硬度析出硬化型ステンレス鋼の靭性を向上させたことで、これらの特性が要求される光ディスクや光学レンズの成形用金型から、さらに高い耐食性と、時には超鏡面仕上性が要求されるガラス強化グレードのエンジニアリングプラスチック(以下、エンプラと表記)、スーパーエンプラ等の射出成形用金型、さらに加えて靭性が要求される精密コネクタ等の成形用金型や、その他には液晶製造装置のスリットコーター等の精密機械部品等に最適なステンレス鋼に関するものである。 The present invention improves the toughness of high hardness precipitation hardened stainless steel with excellent corrosion resistance and mirror finish, and thus has even higher corrosion resistance from molding molds for optical disks and optical lenses that require these characteristics. In some cases, glass-reinforced engineering plastics (hereinafter referred to as engineering plastics), which require ultra-mirror finish, injection molding molds such as super engineering plastics, and molding connectors such as precision connectors that require toughness. In addition, it relates to stainless steel that is most suitable for precision machine parts such as slit coaters of liquid crystal manufacturing equipment.
従来、CD、DVDメディア等の光ディスク樹脂成形の分野、光学レンズ用樹脂又はガラス成形の分野、液晶導光板等の光学部品用樹脂成形の分野には、JIS鋼種のSUS420J2又はそれに類似するステンレス鋼を切削加工及び研削加工した金型が用いられていた。プラスチックの光学部品など極めて精度の要求される場合には、上記SUS420J2相当鋼にNi−Pなどのアモルファスめっきを行ったのち、ダイヤモンドバイトによる切削加工を行って成形面に仕上げる場合もあった。不純物の少ない銅合金を同様に切削加工して仕上げる場合もあった。 Conventionally, in the field of optical disk resin molding such as CD and DVD media, the field of resin or glass molding for optical lenses, and the field of resin molding for optical components such as liquid crystal light guide plates, SUS420J2 of JIS steel grade or similar stainless steel is used. Cutting and grinding molds were used. In cases where extremely high accuracy is required, such as plastic optical parts, after the amorphous steel such as Ni-P is applied to the SUS420J2-equivalent steel, the molded surface may be finished by cutting with a diamond tool. In some cases, copper alloys with few impurities were similarly cut and finished.
一方、耐食性と硬度を両立させる材料として、SKD11系やSUS440C系がある。そして、例えばCが0.08質量%(以下、%と示す)以下でSiを2.0〜5.0%、Crを6.0〜10.0%含む析出硬化型ステンレス鋼が提案されている。そして、このステンレス鋼に、さらに適量のMn,Ni,Mo,Cu,Nb,Ta,Ti,Coを添加して、高硬度の達成を目的とした改良鋼が提案されている(特許文献1)。
上述したSUS420J2からなるものは、耐食性と高硬度である程度のレベルが得られる点では有利であるものの、達成される硬度はせいぜい55HRCが限界であり、使用中の成形ショットを重ねた際の耐摩耗性が不十分であるという問題があった。Ni−Pめっきや銅合金を適用したものでは、更に硬さが低く、長期安定成形に不利となる。 The above-mentioned SUS420J2 is advantageous in that a certain level of corrosion resistance and high hardness can be obtained, but the achieved hardness is limited to 55HRC at most, and wear resistance when stacking molding shots in use is repeated. There was a problem that the property was insufficient. In the case of applying Ni-P plating or a copper alloy, the hardness is further low, which is disadvantageous for long-term stable forming.
また、SUS420J2レベルの耐食性は、水冷を要する光ディスク成形用や、使用中に腐食性ガスを発生するようなプラスチック成形用といった金型の場合だと、長期量産する為に十分とはいえない問題もあった。更に、SUS420J2は組織中にミクロンオーダーの大きなクロム炭化物析出を伴う為、成形面には厳密な平滑鏡面が得られにくい問題点もあった。この問題は、サブナノオーダーの平均面粗さを目指す次世代高密度光ディスクを実用化する上で大きな問題となる。 In addition, SUS420J2 level corrosion resistance is not sufficient for long-term mass production in the case of molds for optical disk molding that requires water cooling and plastic molding that generates corrosive gas during use. there were. Furthermore, since SUS420J2 is accompanied by large chromium carbide precipitates on the order of microns in the structure, there is a problem that it is difficult to obtain a strict smooth mirror surface on the molding surface. This problem becomes a big problem when putting the next generation high density optical disk aiming at the average surface roughness of the sub-nano order into practical use.
一方、高硬度(58HRC以上)と耐食性を求められる用途に従来使用されているSKD11系やSUS440C系の溶製鋼、または粉末鋼においては、その耐食性はSUS420J2系より劣るため、水冷を要する光ディスク成形用や、使用中に腐食性ガスを発生するようなプラスチック成形用といった金型において、長期量産する為に耐食性は十分ではなかった。また、これらの材料は硬質の合金炭化物を含んでいるため、超鏡面仕上性となると、改良の余地がある。 On the other hand, SKD11-based and SUS440C-based molten steels or powdered steels conventionally used for applications requiring high hardness (58 HRC or higher) and corrosion resistance are inferior to SUS420J2 in corrosion resistance. In addition, in a mold for plastic molding that generates corrosive gas during use, the corrosion resistance is not sufficient for long-term mass production. In addition, since these materials contain hard alloy carbides, there is room for improvement when the super mirror finish is achieved.
そして、特許文献1に記載の改良鋼は、高硬度と高耐食性の両立という点で従来鋼より優れた材料ではあるが、その達成される最高硬さは、径20mmの丸棒という小さな鋼片を用いての、しかも固溶化処理時の冷却条件には高硬度化に有利な水冷(急冷)を採用してでさえ、その後の時効処理で58HRCの辺りが限界である。実際に使用される光ディスクや光学部品成形用の金型となれば、このような小さな鋼片では対応が難しく、しかも固溶化処理時の冷却条件も熱処理歪を抑制するための空冷等の徐冷が望ましい。特許文献1の改良鋼の場合、実際に想定される上記の実金型条件を適用すれば、それこそ達成硬さは58HRCにも満たない。 And although the improved steel described in Patent Document 1 is a material superior to the conventional steel in terms of both high hardness and high corrosion resistance, the maximum hardness achieved is a small steel piece called a round bar having a diameter of 20 mm. Even when water cooling (rapid cooling) advantageous for increasing the hardness is adopted as the cooling condition at the time of the solution treatment, the limit is around 58HRC in the subsequent aging treatment. If it is an optical disk or mold for molding optical components that is actually used, it is difficult to handle with such a small steel piece, and the cooling conditions during the solution treatment are also slow cooling such as air cooling to suppress heat treatment strain. Is desirable. In the case of the improved steel of Patent Document 1, if the above-described actual mold conditions are applied, the achieved hardness is less than 58 HRC.
加えて、特許文献1に記載の改良鋼が達成する鏡面性は、従来鋼よりは優れてはいるものの、組織中に炭化物よりは軟らかいLaves(ラーベス)相が多く析出している。高硬度の組織を得ることは、優れた鏡面性の達成に重要な要件であることから、光ディスクや光学部品成形用の超鏡面仕上性が要求される分野において、特許文献1の改良鋼には更なる改良の余地がある。 In addition, although the specularity achieved by the improved steel described in Patent Document 1 is superior to that of conventional steel, a large number of Laves phases that are softer than carbides are precipitated in the structure. Obtaining a structure with high hardness is an important requirement for achieving excellent specularity. Therefore, in the field where super-mirror finish for optical disk and optical component molding is required, the improved steel of Patent Document 1 There is room for further improvement.
また、上記の高硬度、耐食性、鏡面仕上性に加えて、靭性が求められる精密コネクタの成形金型やスリットコーター部品等の分野においては、従来のSUS420J2系については、靭性の点では問題ないが、硬度や耐食性の点でやはり不十分である。SUS440C系については、高硬度であるため、靭性の点でSUS420J2系より劣るが、これは問題にはならない程度である。しかし、耐食性はSUS420J2系より劣るため、やはりこの点では不十分である。そして、特許文献1に記載の改良鋼は、耐食性では優れているものの、硬さや鏡面仕上性の点では不十分であり、さらにSUS440C系よりも劣るその靱性の程度は、使用中の問題ともなり得る。 In addition to the above high hardness, corrosion resistance, and mirror finish, in the field of precision connector molding dies and slit coater parts that require toughness, the conventional SUS420J2 system has no problem in terms of toughness. In terms of hardness and corrosion resistance, it is still insufficient. The SUS440C system has high hardness and is inferior to the SUS420J2 system in terms of toughness, but this is not a problem. However, since the corrosion resistance is inferior to that of the SUS420J2 system, this point is still insufficient. And although the improved steel of patent document 1 is excellent in corrosion resistance, it is inadequate in the point of hardness and mirror finish, and also the degree of toughness inferior to SUS440C system becomes a problem in use. obtain.
本発明の目的は、上記の課題を解決し、硬さ、耐食性、鏡面仕上性に加えて、さらに靭性にも優れることで、精密コネクタの成形金型やスリットコーター部品等の分野にも最適な、靭性に優れた耐食性、超鏡面仕上性を兼備する高硬度析出硬化型ステンレス鋼を提供することである。 The object of the present invention is to solve the above-mentioned problems, and in addition to hardness, corrosion resistance, and mirror finish, it is also excellent in toughness, so it is optimal for fields such as precision connector molding dies and slit coater parts. Another object of the present invention is to provide a high-hardness precipitation hardening stainless steel having excellent corrosion resistance and ultra-mirror surface finish with excellent toughness.
本発明者は、上記の課題を検討した結果、耐食性と高硬度、そして他の金型用途には類のない極めて優れた平滑鏡面性に加えて、さらに靭性をも兼備するためには、Si量の適正化が重要であることを見出した。 As a result of examining the above-mentioned problems, the present inventor has found that in order to combine not only corrosion resistance and high hardness, but also extremely excellent smooth specularity unmatched by other mold applications, in addition to toughness, Si We have found that proper quantity is important.
すなわち本発明は、質量%で、C:0.05%以下、Si:0.6〜1.5%未満、Mn:3.0%以下、Cr:6.0〜14.0%、Ni:4.0〜10.0%、Co:20.0%以下、Cu:6.0%以下、Ti:1.0〜3.5%、Al:2.0%以下(0%を含む)を含有し、Moは1.0%以下に、Nは0.01%以下に規制され、残部はFeおよび不可避的不純物からなることを特徴とする靱性に優れた高硬度析出硬化型ステンレス鋼である。好ましくはSi:1.0〜1.5%未満、あるいはさらにMoは0.5%以下に規制される。1.0%以下のTa、または0.1%以下のZrを含有してもよい。更に好ましくは、硬さが58HRC以上のステンレス鋼である。 That is, the present invention is, in mass%, C: 0.05% or less, Si: 0.6 to less than 1.5%, Mn: 3.0% or less, Cr: 6.0 to 14.0%, Ni: 4.0-10.0%, Co: 20.0% or less, Cu: 6.0% or less, Ti: 1.0-3.5%, Al: 2.0% or less (including 0%) It is a high hardness precipitation hardening stainless steel with excellent toughness, characterized in that Mo is controlled to 1.0% or less, N is controlled to 0.01% or less, and the balance consists of Fe and inevitable impurities. . Preferably, Si is limited to 1.0 to less than 1.5%, or Mo is further limited to 0.5% or less . 1 . You may contain 0% or less of Ta, or 0.1% or less of Zr. More preferably, it is a stainless steel having a hardness of 58 HRC or more.
本発明によれば、耐食性、超鏡面仕上性を兼備する高硬度析出硬化型ステンレス鋼の靭性を飛躍的に改善することができることから、高硬度、耐食性、超鏡面仕上性が要求される光ディスクや光学レンズの成形用金型から、さらに高い耐食性と、時には超鏡面仕上性が要求されるガラス強化グレードのエンプラ、スーパーエンプラ等の射出成形用金型、さらに加えて靭性が要求される精密コネクタ等の成形用金型や液晶製造装置のスリットコーター等の精密機械部品等の長期安定成形の実用化にとっても、欠くことのできない技術となる。 According to the present invention, since the toughness of high hardness precipitation hardening stainless steel having both corrosion resistance and ultra-mirror finish can be dramatically improved, an optical disc that requires high hardness, corrosion resistance, and ultra-mirror finish is required. Optical lens molding molds, glass reinforced grade engineering plastics that sometimes require ultra-mirror finish, injection molding molds such as super engineering plastics, and precision connectors that also require toughness This technology is indispensable for the practical application of long-term stable molding of precision machine parts such as molding molds and slit coaters of liquid crystal manufacturing equipment.
本発明の重要な特徴は、高硬度、高耐食性、超鏡面仕上性を兼備するステンレス鋼を基にして、その成分組成を見直したことで、それらの特性を維持した上に靭性を飛躍的に改善できたところにある。 An important feature of the present invention is that, based on stainless steel that combines high hardness, high corrosion resistance, and super-mirror finish, the composition of the components has been reviewed, and while maintaining these properties, toughness has been dramatically improved. It has been improved.
最初に、本発明の基とした、高硬度、高耐食性、超鏡面仕上性を兼備するステンレス鋼とは、そのSi、Mo等の最適な添加量を見出すことによって達成し、本出願人によって提案済みの特願2006−036573の「鏡面仕上性に優れた高硬度ステンレス鋼」である。この提案済みのステンレス鋼は、Siが1.5%以上に調整されており、実際に想定される実金型条件(大きさ、固溶化処理時の冷却速度)を適用しても60HRCの高硬度が得られるものである。そして、Laves相の析出も微細に抑制されているため、超鏡面仕上性も達成しており、耐食性も優れていることから、光ディスクや光学部品成形、高硬度と耐食性が求められるエンプラ成形等に最適な材料である。しかし、このステンレス鋼は、特許文献1に記載の改良鋼に同様、靭性について改良の余地がある。 First, the stainless steel with high hardness, high corrosion resistance, and super mirror finish based on the present invention is achieved by finding the optimum addition amount of Si, Mo, etc., and proposed by the present applicant. Japanese Patent Application No. 2006-036573, “High hardness stainless steel with excellent mirror finish”. This proposed stainless steel has Si adjusted to 1.5% or more, and even if the actual die conditions (size, cooling rate during solution treatment) are applied, a high 60 HRC is achieved. Hardness can be obtained. And since the precipitation of the Laves phase is finely suppressed, super mirror finish is also achieved, and the corrosion resistance is excellent, so that it can be used for optical disk and optical component molding, engineering plastic molding that requires high hardness and corrosion resistance, etc. The best material. However, this stainless steel, like the improved steel described in Patent Document 1, has room for improvement in toughness.
そこで、本発明者は、上記提案済みのステンレス鋼に対し、さらに靭性をも兼備させるための手法を検討した。まず、提案済みのステンレス鋼においては、その優れた鏡面仕上性や高硬度化の達成のためには、上記のLaves相の十分な固溶を促進するための、製造工程に係る固溶化処理温度は1000℃以上を推奨し、実施例では1100℃を適用している。ここで、この固溶化処理温度が低ければ、結晶粒の微細化を促し、靱性の向上に働くところ、これは上記の通りのLaves相の固溶不足に繋がり、大きなLaves相が残ってしまうことで、鏡面仕上性と硬さの低下が懸念される。よって、本発明においては、この固溶化処理温度を下げること、例えば1100℃未満や1050℃以下の処理温度を適用してもよい一方では、懸念のされる硬さと鏡面仕上性の劣化を抑え得る手法がないかを検討した。その結果、特にSi量の範囲の再適正化を行うことが有効であることを見出したのである。 Therefore, the present inventor examined a method for further combining toughness with the proposed stainless steel. First, in the proposed stainless steel, in order to achieve its excellent mirror finish and high hardness, the solution treatment temperature related to the manufacturing process for promoting sufficient solid solution of the above-mentioned Laves phase. Recommends 1000 ° C. or higher, and 1100 ° C. is applied in the examples. Here, if this solution treatment temperature is low, it promotes refinement of crystal grains and works to improve toughness. This leads to a lack of solid solution of the Laves phase as described above, and a large Laves phase remains. Therefore, there is concern about the decrease in mirror finish and hardness. Therefore, in the present invention, the solution treatment temperature may be lowered, for example, a treatment temperature of less than 1100 ° C. or 1050 ° C. or less may be applied, but deterioration of hardness and mirror finish that are of concern can be suppressed. We examined whether there was a method. As a result, it has been found that it is particularly effective to re-optimize the range of the amount of Si.
本発明の成分組成について説明する。
ステンレス鋼の高硬度化手法としては、その組織中への硬質炭化物の析出作用を採用すると、超鏡面性が得られ難いことは上述の通りである。そこで、本発明のステンレス鋼では、その組織中には炭化物よりは適度に軟らかい金属間化合物を微細に析出させ、炭化物は低減かつ微細にすることにより、耐食性はもちろんのこと、超鏡面性及び高硬度を得るものである。このためにステンレス鋼中のC量の調整は重要であり、Cを0.05%以下に管理することによって鋼組織中の硬質炭化物を低減しかつ、析出サイズをサブミクロンオーダーに抑え、超鏡面仕上性を実現することができる。好ましくは0.02%以下、更に好ましくは0.01%未満である。
The component composition of the present invention will be described.
As described above, as a technique for increasing the hardness of stainless steel, it is difficult to obtain super-specularity when a precipitation action of hard carbide in the structure is employed. Therefore, in the stainless steel of the present invention, an intermetallic compound that is moderately softer than carbide is finely precipitated in the structure, and the carbide is reduced and made finer. Hardness is obtained. For this reason, adjustment of the amount of C in stainless steel is important. By controlling C to 0.05% or less, hard carbides in the steel structure are reduced, and the precipitation size is suppressed to the submicron order. Finishability can be realized. Preferably it is 0.02% or less, More preferably, it is less than 0.01%.
Siは、本発明のステンレス鋼に強度を与える主要な元素である。そして、本発明の想定する金型用途にも適用するためには重要な、超鏡面仕上性を実現するための根幹元素である。すなわち、従来の炭化物による析出強化機構に頼らずに、Cr、Ni、Co、Tiと共にG相を形成するという析出強化機構に寄与することで、優れた鏡面仕上性を得るものである。また、マトリックスに固溶したSiは耐食性(特に耐硫酸)を高める効果もある。よって、本発明でのSiは0.6%以上、好ましくは1.0%以上である。 Si is a main element that imparts strength to the stainless steel of the present invention. And it is an essential element for realizing super mirror finish, which is important for application to the mold application assumed by the present invention. In other words, excellent mirror finish is obtained by contributing to the precipitation strengthening mechanism of forming a G phase together with Cr, Ni, Co, and Ti without relying on the conventional precipitation strengthening mechanism of carbide. Si dissolved in the matrix also has an effect of improving corrosion resistance (particularly sulfuric acid resistance). Therefore, Si in the present invention is 0.6% or more, preferably 1.0% or more.
そして、上記の添加効果の一方では、本発明のステンレス鋼が固溶化処理温度の低下による靱性の向上作用も採用できるところ、Si量の再適正化は、この際の硬さと鏡面仕上性の劣化抑制に有効に働くのである。つまり、固溶化処理温度の低下によって懸念のされるLaves相の固溶不足は、Si量を下げることでLaves相の析出自体を抑制し、鏡面仕上性の劣化を抑制できる。そして、固溶化処理温度の低下により同時に懸念のされる硬さの低下に対しても、本来Laves相にとられていた他の強化元素を上記G相の形成に確保できることから、56HRC以上はもちろんのこと、さらには58HRC以上の十分な高硬度を維持できる。以上、本発明のステンレス鋼にとってのSiは、硬さと鏡面仕上性に加えて、靱性とのバランスを左右する元素であって、特に靱性を重視する本発明にとっては1.5%未満と規定した。 And, on the other hand, the stainless steel of the present invention can adopt the effect of improving the toughness due to the decrease in the solution treatment temperature, but the re-optimization of the Si amount is caused by the deterioration of the hardness and the mirror finish. It works effectively for suppression. That is, the lack of solid solution of the Laves phase, which is a concern due to a decrease in the solution treatment temperature, suppresses the precipitation of the Laves phase itself by reducing the amount of Si, and can suppress the deterioration of the mirror finish. And since the other strengthening elements that were originally taken in the Laves phase can be secured in the formation of the G phase even for the decrease in hardness that is simultaneously a concern due to the decrease in the solution treatment temperature, of course, not less than 56 HRC. Furthermore, sufficient high hardness of 58HRC or more can be maintained. As described above, Si for the stainless steel of the present invention is an element that affects the balance between toughness in addition to hardness and specular finish, and is specified to be less than 1.5% for the present invention that emphasizes toughness. .
Mnは、鋼の脱酸剤として働き、0.05%以上の含有が好ましいが、多すぎると組織中のオーステナイト量が増加しすぎて、所定の硬度が得られにくくなる。よって、Mnは3.0%以下とする。好ましくは0.8%以下である。 Mn works as a deoxidizer for steel and is preferably contained in an amount of 0.05% or more. However, if it is too much, the amount of austenite in the structure increases excessively, and it becomes difficult to obtain a predetermined hardness. Therefore, Mn is made 3.0% or less. Preferably it is 0.8% or less.
Crは、ステンレス鋼の耐食性を確保するための不可欠な成分であって、本発明の金型用途をも考慮すれば、6.0%未満では耐食性が不十分である。また、Si、Ni、Co、Tiと共にG相を形成し、析出強化に寄与する。しかし、14.0%を超えると所定の硬度、望ましくは58HRC以上の硬度が得られにくくなるため為、Crは6.0〜14.0%とした。好ましくは8.0〜13.0%である。 Cr is an indispensable component for ensuring the corrosion resistance of stainless steel, and considering the use of the mold of the present invention, the corrosion resistance is insufficient at less than 6.0%. Moreover, G phase is formed with Si, Ni, Co, and Ti, and it contributes to precipitation strengthening. However, if it exceeds 14.0%, it becomes difficult to obtain a predetermined hardness, desirably a hardness of 58HRC or higher. Therefore, Cr is set to 6.0 to 14.0%. Preferably it is 8.0 to 13.0%.
Niは、鋼に耐食性を付与するとともに、Crとのバランスで鋼の相変態を望ましい形態に、すなわち固溶化熱処理冷却時にオーステナイト単相から低炭素マルテンサイト単相へと変態させる作用を有する元素である。そして、Si、Cr、Co、Tiと共にG相を形成し、析出強化に寄与する。しかし、多過ぎるとオーステナイト量が増大しすぎて、所定の硬度が得られにくくなる。よって、本発明のNiは、4.0〜10.0%とする。好ましくは5.5〜8.5%である。 Ni is an element that imparts corrosion resistance to steel and has the effect of transforming the steel into a desirable form in balance with Cr, that is, from austenite single phase to low-carbon martensite single phase during solution heat treatment cooling. is there. And G phase is formed with Si, Cr, Co, and Ti, and it contributes to precipitation strengthening. However, if the amount is too large, the amount of austenite increases too much and it becomes difficult to obtain a predetermined hardness. Therefore, Ni of the present invention is 4.0 to 10.0%. Preferably it is 5.5 to 8.5%.
Coは、耐食性の改善に加えて、Si、Cr、Ni、Tiと共にG相を形成し、析出強化に寄与する重要な元素である。しかし、過多の含有は機械加工性を損なうので、20.0%以下とする。好ましくは6.0〜12.0%である。 Co is an important element that contributes to precipitation strengthening by forming a G phase together with Si, Cr, Ni, and Ti in addition to improving corrosion resistance. However, since excessive content impairs machinability, it is made 20.0% or less. Preferably it is 6.0 to 12.0%.
Cuは、固溶化処理後の時効の際には、析出硬化に寄与すると共に、耐食性も向上させる。しかしながら、多くの含有は熱間加工性を損なうので、規制管理の重要な元素でもある。本発明では6.0%以下とするが、実金型に要する素材寸法に対応し得るためにも、望ましくは3.0%以下である。0.3〜2.0%が好ましい。 Cu contributes to precipitation hardening and improves corrosion resistance during aging after the solution treatment. However, since a large amount impairs hot workability, it is an important element for regulatory management. Although it is 6.0% or less in the present invention, it is preferably 3.0% or less in order to cope with the material size required for the actual mold. 0.3 to 2.0% is preferable.
Tiは、固溶化および時効処理による硬さ調質の際の、時効硬化に寄与する主要な元素の一つである。即ち、Si、Cr、Ni、Coと共にG相を形成し、析出強化に寄与する重要な元素である。従って、1.0%以上の含有とする。しかし、多く含有すると靭性を低下させ、更に、数十ミクロンオーダーの大きなLaves相が多くなり、それ自体が鏡面仕上性を劣化させると共に、Tiや他の強化元素もLaves相にとられるため、過剰に添加しても効果はない。さらに、過剰のTiは炭化物や窒化物等を形成し、鏡面仕上性に悪影響を及ぼす。よって、本発明では1.0〜3.5%とする。望ましくは1.5〜3.0%である。 Ti is one of the main elements that contribute to age hardening during hardness tempering by solid solution and aging treatment. That is, it is an important element that forms a G phase together with Si, Cr, Ni, and Co and contributes to precipitation strengthening. Therefore, the content is 1.0% or more. However, if it is contained in a large amount, the toughness is lowered, and furthermore, a large Laves phase on the order of several tens of microns is increased. As a result, the surface finish itself deteriorates and Ti and other reinforcing elements are also taken into the Laves phase. There is no effect even if added to. Furthermore, excess Ti forms carbides, nitrides, and the like, which adversely affects mirror finish. Therefore, it is set to 1.0 to 3.5% in the present invention. Desirably, it is 1.5 to 3.0%.
Alは、鋼の脱酸剤として働く元素である。すなわち、本発明が採用する強化機構は硬質炭化物の導入に頼るものではなく、逆に炭化物は鏡面仕上性に悪影響を及ぼすことから低減する必要がある為、Cは0.05%以下、望ましくは0.01%未満にまで規制する。従って、Cによる脱酸が行えないため、Alによる脱酸は有効である。しかし、多くのAl含有は靭性を低下させるので、本発明のAlは2.0%以下とする。望ましくは0.5%以下である。 Al is an element that acts as a deoxidizer for steel. That is, the strengthening mechanism employed by the present invention does not depend on the introduction of hard carbides, and conversely, since carbides adversely affect the mirror finish, it is necessary to reduce C. Restrict to less than 0.01%. Accordingly, deoxidation with C cannot be performed, so deoxidation with Al is effective. However, since much Al content reduces toughness, Al of the present invention is made 2.0% or less. Desirably, it is 0.5% or less.
なお、Alは、一方では、Al2O3やAl/Mg複合酸化物の形成により鋼としての鏡面仕上性を劣化させることが懸念されるので、例えば脱酸後には、溶湯からは極力除去することが望ましい。または、真空誘導炉溶解や消耗電極式再溶解法を積極的に導入することで、Al脱酸自体を省略することもできる。 On the other hand, Al is feared to deteriorate the mirror finish of steel as a result of the formation of Al 2 O 3 or Al / Mg composite oxide. For example, after deoxidation, Al is removed as much as possible from the molten metal. It is desirable. Alternatively, Al deoxidation itself can be omitted by positively introducing a vacuum induction furnace melting or a consumable electrode type remelting method.
Moは、耐食性を向上させると同時に、固溶化および時効処理による硬さ調質の際の時効硬化に寄与するものとして、従来添加のされてきた元素である。しかし、Moを添加するに伴い、数十ミクロンオーダーの大きなLaves相が多くなり、これは鏡面仕上性を劣化させる。そして、Moに加え、他の強化元素もLaves相にとられることから、これは高硬度化に悪影響を及ぼすこととなる。よって、本発明では、Moは1.0%以下に規制することこそが重要であって、望ましくは0.5%以下、さらに望ましくは0.4%未満に規制する。 Mo is an element that has been conventionally added as an element that improves corrosion resistance and contributes to age hardening during solidification and tempering by aging treatment. However, as Mo is added, a large Laves phase on the order of several tens of microns increases, which degrades the mirror finish. And in addition to Mo, other strengthening elements are also taken into the Laves phase, which adversely affects the increase in hardness. Therefore, in the present invention, it is important to limit Mo to 1.0% or less, preferably 0.5% or less, and more preferably less than 0.4%.
Nは、Ti等と窒化物、炭窒化物を形成し、鏡面仕上性に悪影響を及ぼすことから、0.01%以下に規制する必要がある。望ましくは0.005%以下、さらに望ましくは0.003%以下に規制する。 N forms nitrides and carbonitrides with Ti and the like, and adversely affects the mirror finish. Therefore, N must be regulated to 0.01% or less. Desirably, it is regulated to 0.005% or less, and more desirably to 0.003% or less.
本発明の成分組成において特に重要となるのが、含有するSiは低領域で管理すると共に、Moは規制するという、SiとMoの複合管理である。これらを前提として0.6〜1.5%未満という最適量のSi量領域に調整することにより、さらにLaves相の析出を抑えることができ、硬さ、耐食性、超鏡面仕上性を維持しながら、靭性を向上させることができる。 Particularly important in the component composition of the present invention is the combined management of Si and Mo, in which the contained Si is managed in a low region and Mo is regulated. By adjusting to the optimum Si amount region of 0.6 to less than 1.5% on the premise of these, it is possible to further suppress the precipitation of the Laves phase, while maintaining the hardness, corrosion resistance, and super mirror finish. , Toughness can be improved.
また、本発明の上記ステンレス鋼は、必要に応じて、Taを含んでもよい。 Further, the stainless steel of the present invention optionally may include a T a.
Taは、ステンレス鋼の時効硬さを上昇させる効果があるが、やはり過多の含有は鏡面仕上性に悪影響を生じる。よって、添加あるいは含有するとしても1.0%以下が望ましい。更に望ましくは0.5%以下である。なお、上記の効果を得るにあたっては、0.1%以上の含有が望ましい。 Ta has the effect of increasing the aging hardness of stainless steel, but excessive content also adversely affects the mirror finish. Therefore, if added or contained, 1.0% or less is desirable. More desirably, it is 0.5% or less. In addition, in order to acquire said effect, containing 0.1% or more is desirable.
あるいはさらに、本発明のステンレス鋼は、必要に応じて、Zrを含んでもよい。Zrは、鏡面に仕上げた時にピンホールの原因となるAl2O3やAl/Mg複合酸化物をZrO2に置換することによってピンホールを発生しないようにする効果があるが、過多の含有の場合、数十ミクロンオーダーの大きなLaves相やZr系介在物が多くなり、やはり鏡面仕上性が劣化する。よって、添加あるいは含有するとしても0.1%以下が望ましい。更に望ましくは0.08%以下であるが、上記の効果を得るにあたっては、0.01%以上の含有が望ましい。 Alternatively, the stainless steel of the present invention may contain Zr as necessary. Zr has an effect to prevent the occurrence of pinholes by replacing causing pinholes as Al 2 O 3 and Al / Mg composite oxide when the mirror-finished to ZrO 2, excessive content of In this case, a large Laves phase and Zr-based inclusions on the order of several tens of microns increase, and the mirror finish is also deteriorated. Therefore, even if added or contained, 0.1% or less is desirable. The content is more preferably 0.08% or less, but in order to obtain the above effect, the content is preferably 0.01% or more.
また、Zrと同様の効果を有するY、La、Ceのいずれか、あるいは複数を添加してもよい。 Further, any one of Y, La, and Ce having the same effect as Zr, or a plurality of them may be added.
更に上述したように、本発明のステンレス鋼は、その使用環境に応じては、当然に58HRC未満の硬さで使用してもよいが、その硬さが58HRC以上のものを採用することが望ましく、そしてこれを達成しているところにも重要な特徴がある。58HRC以上の硬度は鏡面磨きの粗研磨時にキズをつけ難くし、鏡面仕上げを容易にすると同時に耐摩耗性をも改善できるものである。そして、このような高硬度を達成するためにも上記のステンレス鋼の成分組成は重要な要素である。よって、本発明のステンレス鋼をプラスチックやガラス部品等の、極めて高い表面精度が要求される製品の成形用金型に適用すれば、該硬さに調質し、切削加工又は研削・研磨加工やラッピング加工等の機械加工を施した成形面は、優れた超鏡面仕上性と成形時の耐摩耗性を有する。 Further, as described above, the stainless steel of the present invention may naturally be used with a hardness of less than 58 HRC depending on the use environment, but it is desirable to employ a hardness of 58 HRC or more. There are also important features where this is achieved. Hardness of 58HRC or higher makes it difficult to scratch during rough polishing of mirror polishing, and can facilitate mirror finishing and improve wear resistance. In order to achieve such high hardness, the component composition of the stainless steel is an important factor. Therefore, if the stainless steel of the present invention is applied to a molding die for products that require extremely high surface accuracy, such as plastics and glass parts, the hardness is tempered, and cutting or grinding / polishing is performed. A molding surface subjected to machining such as lapping has excellent super mirror finish and wear resistance during molding.
表1に示す化学成分の、残部Fe及び不可避的不純物からなる試料No.1〜5について、真空誘導炉溶解によって得た鋼塊を熱間加工した後、固溶化処理、時効処理により58HRC以上を狙って調質し、耐食性、鏡面仕上性、及び靭性を評価した。ただし、固溶化処理温度は表2の通りであり、冷却条件は実金型条件を想定した半冷70分を適用した。半冷とは、固溶化処理温度から(固溶化処理温度+室温)の半分の温度まで冷却するのに要する時間のことである。なお、試料No.2、3は本出願人による特願2006−036573を満たす参考鋼であり、試料No.5は従来鋼;SUS440C相当粉末鋼(59.9HRC)である。 Sample No. consisting of the remaining Fe and unavoidable impurities of the chemical components shown in Table 1. About 1-5, after hot-working the steel ingot obtained by the vacuum induction furnace melt | dissolution, it aimed at 58HRC or more by the solution treatment and the aging treatment, and evaluated corrosion resistance, mirror finish, and toughness. However, the solution treatment temperature is as shown in Table 2, and the cooling condition was 70 minutes of semi-cooling assuming actual mold conditions. Semi-cooling refers to the time required for cooling from the solution treatment temperature to half the temperature of (solution treatment temperature + room temperature). Sample No. Reference numerals 2 and 3 are reference steels satisfying Japanese Patent Application No. 2006-036573 by the present applicant. 5 is conventional steel; SUS440C equivalent powder steel (59.9HRC).
耐食性は、硬さを調整した各試料(径10mm、長さ20mm)を50℃、1質量%の酸(塩酸、硝酸)200mlに24時間浸漬し、その前後の重量減少分を腐食減量とする腐食減量測定により評価した。 Corrosion resistance is as follows. Each sample (diameter 10 mm, length 20 mm) with adjusted hardness is immersed in 200 ml of 50%, 1% by weight acid (hydrochloric acid, nitric acid) for 24 hours, and the weight loss before and after that is taken as corrosion weight loss. Evaluation was made by measuring corrosion weight loss.
鏡面仕上性は、硬さを調整した各試料について、光ディスク用金型の成形面加工に適用されている鏡面研磨を想定した条件(アルミナ艶出し仕上げ)での鏡面加工を施し、加工後面の鏡面度を評価した。鏡面度の評価は、良好な鏡面度を呈しているSUS440C相当粉末鋼の鏡面度(顕微鏡拡大写真[×900倍]を図1に示す)を基準「良」とすることで、それに優るものを「優」、それに劣るものを「可」とした。 For the mirror finish, each sample with adjusted hardness is mirror-finished under the conditions (alumina glazing finish) that assumes mirror polishing applied to the molding surface processing of optical disc molds. The degree was evaluated. The specularity is evaluated by setting the specularity of a SUS440C-equivalent powder steel exhibiting good specularity (microscopic magnified photograph [× 900 times] shown in FIG. 1) as a standard “good”, and superior to that. “Excellent”, and inferior to “excellent”.
靭性は、硬さを調整した各試料について、10mmRノッチ試験片を用いてシャルピー衝撃試験を行い、室温でのシャルピー衝撃値により評価した。なお、試験片は、熱間加工後の鋼材の長手方向に試験片の長手方向がくるように採取し(すなわち、L方向から採取し)、そして、衝撃値は、1つの試料につき3回の衝撃試験を行ったうちの、その最大値を評価した。また、スパンが50mmの中央一点荷重の抗折試験を行い(試験片はL方向から採取)、たわみ量により評価した。以上の結果を表2に示す。 The toughness was evaluated based on the Charpy impact value at room temperature by performing a Charpy impact test on each sample with adjusted hardness using a 10 mmR notch test piece. In addition, the test piece was sampled so that the longitudinal direction of the test piece comes in the longitudinal direction of the steel material after hot working (that is, sampled from the L direction), and the impact value was 3 times per sample. The maximum value of the impact test was evaluated. In addition, a bending test with a central single point load with a span of 50 mm was performed (the test piece was taken from the L direction), and evaluation was performed based on the amount of deflection. The results are shown in Table 2.
本発明鋼である試料No.1は、本分野において、硬さ、耐食性、鏡面仕上性はもちろん良好であり、靭性についても試料No.2、3の衝撃値を上回っている。試料No.1の鏡面加工面を示す顕微鏡写真を図2に示しておく。試料No.4は、耐食性はそこそこ良好であるが、硬さ、鏡面仕上性が不十分である。そして、試料No.1〜4のシャルピー試験を行った後の破面を観察すると、試料No.2、3、4の脆性破面に比べ、試料No.1の破面は若干延性をもつ破面が確認された。試料No.5のSUS440C相当粉末鋼は、硬さ、鏡面仕上性は良好であるが、耐食性が不十分である。 Sample No. which is the steel of the present invention. No. 1 is not only good in hardness, corrosion resistance and mirror finish in this field, but also in sample no. It exceeds the impact value of a few. Sample No. A micrograph showing the mirror-finished surface of 1 is shown in FIG. Sample No. No. 4, the corrosion resistance is reasonably good, but the hardness and mirror finish are insufficient. And sample no. When observing the fracture surface after performing the Charpy test of 1-4, sample no. Compared to the brittle fracture surface of 2, 3 and 4, sample no. The fracture surface of 1 was confirmed to have a slightly ductile surface. Sample No. No. 5 SUS440C equivalent powder steel has good hardness and mirror finish, but has insufficient corrosion resistance.
表3に示す化学成分の、残部Fe及び不可避的不純物からなる試料No.6〜11について、真空誘導炉溶解によって得た鋼塊を熱間加工した後、固溶化処理、時効処理により58HRC以上を狙って調質し、実施例1と同様に、耐食性、鏡面仕上性、及び靭性を評価した。ただし、固溶化処理温度は表4の通りであり、冷却条件は実金型条件を想定した半冷70分を適用した。試料No.9〜11は本出願人による特願2006−036573を満たす参考鋼である。評価結果を表4に示す。 Sample No. consisting of the remaining Fe and unavoidable impurities of the chemical components shown in Table 3. About 6-11, after hot-working the steel ingot obtained by vacuum induction furnace melting, tempering aimed at 58HRC or more by solution treatment, aging treatment, as in Example 1, corrosion resistance, mirror finish, And toughness was evaluated. However, the solution treatment temperature is as shown in Table 4, and the cooling condition was 70 minutes of semi-cooling assuming the actual mold condition. Sample No. Reference numerals 9 to 11 are reference steels satisfying Japanese Patent Application No. 2006-036573 by the present applicant. The evaluation results are shown in Table 4.
本発明鋼である試料No.6〜8は、本分野において、硬さ、耐食性、鏡面仕上性が良好であり、靭性についても良好である。 Sample No. which is the steel of the present invention. Nos. 6 to 8 have good hardness, corrosion resistance, mirror finish, and toughness in this field.
高硬度でかつ、優れた耐食性、鏡面仕上性と、更には靱性を有する本発明のステンレス鋼は、光ディスクや光学レンズの成形用金型、ガラス繊維等の強化剤を含有するPPS樹脂など、所謂スーパーエンプラの成形用金型、さらに靭性が要求される精密コネクタの成形用金型等の他に、刃物や錠剤パンチ、精密機械部品等にも適用できる。 The stainless steel of the present invention having high hardness and excellent corrosion resistance, mirror finish, and toughness is a so-called mold for molding optical disks and optical lenses, PPS resin containing a reinforcing agent such as glass fiber, etc. In addition to a mold for super engineering plastics and a mold for precision connectors that require toughness, it can also be applied to blades, tablet punches, precision machine parts, and the like.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007232081A JP4560802B2 (en) | 2006-09-08 | 2007-09-06 | High hardness precipitation hardened stainless steel with excellent toughness |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006243639 | 2006-09-08 | ||
JP2007232081A JP4560802B2 (en) | 2006-09-08 | 2007-09-06 | High hardness precipitation hardened stainless steel with excellent toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008088550A JP2008088550A (en) | 2008-04-17 |
JP4560802B2 true JP4560802B2 (en) | 2010-10-13 |
Family
ID=39372995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007232081A Expired - Fee Related JP4560802B2 (en) | 2006-09-08 | 2007-09-06 | High hardness precipitation hardened stainless steel with excellent toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4560802B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110258559A (en) * | 2017-05-07 | 2019-09-20 | 云南建投第十三建设有限公司 | A kind of alloy material and Percussion Piles construction for drill bit of drilling machine |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5311202B2 (en) * | 2007-11-15 | 2013-10-09 | 日立金属株式会社 | Method for producing age-hardening stainless steel |
JP5528986B2 (en) | 2010-11-09 | 2014-06-25 | 株式会社日立製作所 | Precipitation hardening type martensitic stainless steel and steam turbine member using the same |
JP6132523B2 (en) * | 2012-11-29 | 2017-05-24 | キヤノン株式会社 | Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001107194A (en) * | 1999-09-29 | 2001-04-17 | Nippon Shirikoroi Kogyo Kk | Precipitation hardening type stainless steel and method for producing product therefrom |
JP2002161343A (en) * | 2000-11-20 | 2002-06-04 | Hitachi Metals Ltd | Precipitation-hardening type martensitic stainless-steel with high strength superior in corrosion resistance |
JP2004002951A (en) * | 2002-04-12 | 2004-01-08 | Daido Steel Co Ltd | Free cutting tool steel |
JP2004035992A (en) * | 2002-07-08 | 2004-02-05 | Nippon Koshuha Steel Co Ltd | High toughness steel for plastic molding metallic mold |
JP2005220439A (en) * | 2004-01-06 | 2005-08-18 | Hitachi Metals Ltd | Die with superior formability into mirror plane, and manufacturing method therefor |
JP2006077274A (en) * | 2004-09-08 | 2006-03-23 | Sanyo Special Steel Co Ltd | Steel for mold for molding plastic having excellent mirror finishing property |
-
2007
- 2007-09-06 JP JP2007232081A patent/JP4560802B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001107194A (en) * | 1999-09-29 | 2001-04-17 | Nippon Shirikoroi Kogyo Kk | Precipitation hardening type stainless steel and method for producing product therefrom |
JP2002161343A (en) * | 2000-11-20 | 2002-06-04 | Hitachi Metals Ltd | Precipitation-hardening type martensitic stainless-steel with high strength superior in corrosion resistance |
JP2004002951A (en) * | 2002-04-12 | 2004-01-08 | Daido Steel Co Ltd | Free cutting tool steel |
JP2004035992A (en) * | 2002-07-08 | 2004-02-05 | Nippon Koshuha Steel Co Ltd | High toughness steel for plastic molding metallic mold |
JP2005220439A (en) * | 2004-01-06 | 2005-08-18 | Hitachi Metals Ltd | Die with superior formability into mirror plane, and manufacturing method therefor |
JP2006077274A (en) * | 2004-09-08 | 2006-03-23 | Sanyo Special Steel Co Ltd | Steel for mold for molding plastic having excellent mirror finishing property |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110258559A (en) * | 2017-05-07 | 2019-09-20 | 云南建投第十三建设有限公司 | A kind of alloy material and Percussion Piles construction for drill bit of drilling machine |
Also Published As
Publication number | Publication date |
---|---|
JP2008088550A (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100794157B1 (en) | Stainless steel having a high hardness and excellent mirror-finished surface property, and method of producing the same | |
JP5293596B2 (en) | Precipitation hardening type martensitic stainless cast steel with excellent machinability and manufacturing method thereof | |
JP5412851B2 (en) | Steel for plastic molds and plastic molds | |
JP2007197784A (en) | Alloy steel | |
KR20060125467A (en) | Steel for a plastic molding die | |
JP4560802B2 (en) | High hardness precipitation hardened stainless steel with excellent toughness | |
JP5311202B2 (en) | Method for producing age-hardening stainless steel | |
TWI633193B (en) | Steel for mold | |
JP4269293B2 (en) | Steel for mold | |
JP5376302B2 (en) | Die steel with excellent machinability | |
JP2010051982A (en) | Welding material for repairing mold | |
JP4207165B2 (en) | High hardness stainless steel excellent in mirror finish and method for producing the same | |
JP2015045071A (en) | Steel for anticorrosive plastic molding die excellent in specularity | |
JP4487257B2 (en) | Cold die steel with excellent size reduction characteristics | |
JP7392330B2 (en) | Mold steel and molds | |
WO2011102402A1 (en) | Steel for molds with excellent hole processability and reduced processing deformation, and method for producing same | |
JP2004277818A (en) | Free cutting steel for metal mold for molding plastic | |
CN111041343A (en) | Steel for mold | |
JPH03122252A (en) | Steel for metal mold and metal mold | |
JP5776959B2 (en) | Die steel with excellent hot workability | |
JPH07278737A (en) | Preharden steel for plastic molding and its production | |
JP2005220439A (en) | Die with superior formability into mirror plane, and manufacturing method therefor | |
JP6359241B2 (en) | Corrosion-resistant plastic molding steel with excellent specularity | |
JP2017166066A (en) | Steel for mold and mold | |
JPH11335775A (en) | Steel for metal mold for plastic molding, excellent in mirror-finish characteristics and machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100604 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100702 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100715 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |