[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4559363B2 - Gas turbine equipped with heavy oil reformer, control device for heavy oil reformer, and operation method of gas turbine equipped with heavy oil reformer - Google Patents

Gas turbine equipped with heavy oil reformer, control device for heavy oil reformer, and operation method of gas turbine equipped with heavy oil reformer Download PDF

Info

Publication number
JP4559363B2
JP4559363B2 JP2006004767A JP2006004767A JP4559363B2 JP 4559363 B2 JP4559363 B2 JP 4559363B2 JP 2006004767 A JP2006004767 A JP 2006004767A JP 2006004767 A JP2006004767 A JP 2006004767A JP 4559363 B2 JP4559363 B2 JP 4559363B2
Authority
JP
Japan
Prior art keywords
reformer
reformed fuel
gas turbine
heavy oil
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006004767A
Other languages
Japanese (ja)
Other versions
JP2007187045A (en
Inventor
信幸 穂刈
浩二 西田
修 横田
林  明典
真一 稲毛
宏和 高橋
慎介 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Hitachi Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2006004767A priority Critical patent/JP4559363B2/en
Publication of JP2007187045A publication Critical patent/JP2007187045A/en
Application granted granted Critical
Publication of JP4559363B2 publication Critical patent/JP4559363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

本発明は、重質油を改質して燃料に利用するガスタービンに関し、特に重質油を水熱反応させて改質燃料を生成する改質装置を備えたガスタービン及び改質装置の制御装置と、改質装置を備えたガスタービンの運転方法に関する。   The present invention relates to a gas turbine that reforms heavy oil and uses it as fuel, and in particular, a gas turbine including a reformer that generates a reformed fuel by hydrothermal reaction of heavy oil and control of the reformer. The present invention relates to an apparatus and a method for operating a gas turbine including a reformer.

重質油はガスタービンを腐食する重金属を多く含むことから重質油そのものをガスタービンの燃料として使用することは適さない。このため、重質油から脱金属させた有用な改質燃料等のエネルギー源に変換する方法が提案されている。これらの燃料変換技術は何れも、重質油を、高温高圧水の状態となる13〜30MPa、400〜480℃の改質反応条件下で水と接触させて改質反応させることにより、重質油を分解して炭化水素ガス、軽質油分、重質分、金属酸化物等の金属化合物を生成し、炭化水素系ガスと軽質油分を高温高圧の蒸気に溶解させて改質燃料として取り出し、重油中に存在する金属化合物はカルシウム化合物、コークス、重質残滓(タール)等に捕捉して除去するものである。   Since heavy oil contains a lot of heavy metals that corrode gas turbines, it is not suitable to use heavy oils themselves as fuel for gas turbines. For this reason, a method of converting into an energy source such as useful reformed fuel demetalized from heavy oil has been proposed. In any of these fuel conversion technologies, a heavy oil is brought into contact with water under a reforming reaction condition of 13 to 30 MPa and 400 to 480 ° C. in a state of high-temperature and high-pressure water. Oil is decomposed to produce metal compounds such as hydrocarbon gas, light oil, heavy oil, metal oxide, etc., and hydrocarbon gas and light oil are dissolved in high-temperature and high-pressure steam and taken out as reformed fuel. The metal compound present therein is captured and removed by calcium compound, coke, heavy residue (tar) or the like.

特許文献1には、上記の重質油の改質装置を備えたガスタービンで、重質油の改質に用いる高温高圧の蒸気を発生させるエネルギーを節約してプラントのシステム効率を上げるため、ガスタービンから排出される燃焼排ガスから熱回収して蒸気を発生させる排熱回収ボイラを配置して、発生した蒸気を重質油の改質装置の加熱に利用するガスタービンプラントが提案されている。   In Patent Document 1, in order to increase the system efficiency of the plant by saving energy for generating high-temperature and high-pressure steam used for heavy oil reforming in the gas turbine equipped with the heavy oil reforming device, A gas turbine plant has been proposed in which an exhaust heat recovery boiler that recovers heat from combustion exhaust gas discharged from a gas turbine to generate steam is used and the generated steam is used to heat a heavy oil reformer. .

特開2003−286865号公報(5頁、図1)JP 2003-286865 A (page 5, FIG. 1)

重質油を改質する改質装置と、この改質装置で生成した改質燃料を燃料として供給し燃焼させてガスタービン装置を負荷運転するように構成したガスタービンのプラントでは、改質装置とガスタービン装置との両者の運転の連携に課題が発生する。 A reformer for reforming heavy oil, and a reformer in a gas turbine plant configured to supply and burn the reformed fuel generated by the reformer as a fuel to burn the gas turbine device. A problem arises in cooperation between the operation of the gas turbine apparatus and the gas turbine apparatus.

重質油の改質装置は一種の化学プラントであり、一定の温度、圧力、滞留時間を保った場合には所望の性能を満足する運転結果が得られる。ところで、前記改質装置を負荷変化、即ち、重質油の処理量を変化させた場合には、温度、圧力条件が変動し、生成する改質燃料の性状に変化が生じて、ガスタービンに適した燃料を供給できなくなる恐れがある。そのため、一般的な化学プラントと同様に、改質装置の負荷変化速度は1%/分以下の緩慢な変化量に抑える運転が必要がある。一方、改質燃料を使用するガスタービン装置は、迅速な負荷変化で運転できることが特徴の一つであり、その負荷変化速度は約10%/分と速い。このため、ガスタービン装置の迅速な負荷変化速度に合わせて改質装置を負荷変化させれば、改質燃料の性状が大きく変動してガスタービンに適合した燃料を安定供給できなくなる。また、改質装置の緩慢な負荷変化速度を優先すれば、ガスタービン装置が発電所で必要とされる発電量に合わせて迅速に負荷を変化させる負荷運転ができないという問題が生じる。   The heavy oil reformer is a kind of chemical plant, and when a certain temperature, pressure, and residence time are maintained, an operation result that satisfies the desired performance can be obtained. By the way, when the load of the reformer is changed, that is, when the amount of heavy oil processed is changed, the temperature and pressure conditions fluctuate, and the property of the reformed fuel to be generated changes, resulting in the gas turbine. There is a risk that a suitable fuel cannot be supplied. Therefore, like a general chemical plant, it is necessary to operate so that the load change rate of the reformer is suppressed to a slow change amount of 1% / min or less. On the other hand, a gas turbine apparatus using reformed fuel is characterized in that it can be operated with a rapid load change, and the load change speed is as fast as about 10% / min. For this reason, if the load of the reformer is changed in accordance with the rapid load change speed of the gas turbine device, the property of the reformed fuel greatly fluctuates, and the fuel suitable for the gas turbine cannot be stably supplied. In addition, if priority is given to the slow load change speed of the reformer, there is a problem that the load operation in which the gas turbine device can quickly change the load in accordance with the amount of power generation required at the power plant occurs.

本発明の目的は、負荷変化速度の異なる改質装置とガスタービン装置とを、ガスタービン装置の負荷運転に制約を与えずに連携させて運転することを可能にして、プラントの運転自由度を向上させた改質装置を備えたガスタービン、及びその制御装置、並びにガスタービンの運転方法を提供することにある。   An object of the present invention is to enable a reformer and a gas turbine apparatus having different load change speeds to operate in a linked manner without restricting the load operation of the gas turbine apparatus. It is an object of the present invention to provide a gas turbine including an improved reformer, a control device for the gas turbine, and a method for operating the gas turbine.

本発明の改質装置を備えたガスタービンは、重質油を高温高圧の水と接触させて改質反応させることにより重質油から改質燃料を生成する改質装置と、この改質装置によって重質油から生成した改質燃料をガスタービンの燃焼器に燃料として利用するガスタービン装置とを備えた重質油改質装置を備えたガスタービンにおいて、前記改質装置で生成した改質燃料を貯蔵する改質燃料タンクを設置して該改質燃料タンクから前記ガスタービン装置の燃焼器に改質燃料を供給するように構成し、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量に基づいて前記改質装置の運転負荷を制御する改質燃料制御装置を設けたことを特徴とする。   A gas turbine equipped with a reformer according to the present invention includes a reformer that generates reformed fuel from heavy oil by bringing the heavy oil into contact with high-temperature and high-pressure water to cause a reforming reaction, and the reformer. In the gas turbine including the heavy oil reformer including the gas turbine apparatus that uses the reformed fuel generated from the heavy oil by the gas turbine as fuel in the combustor of the gas turbine, the reformer generated in the reformer A reformed fuel tank for storing fuel is installed, and the reformed fuel is supplied from the reformed fuel tank to the combustor of the gas turbine device, and the reformed fuel stored in the reformed fuel tank is A reformed fuel control device for controlling the operation load of the reformer based on the storage amount is provided.

本発明の重質油改質装置を備えたガスタービンの制御装置は、重質油を高温高圧の水と接触させ、水熱反応を利用して重質油を改質して改質燃料を生成する改質装置と、この改質装置によって重質油から生成した改質燃料をガスタービンの燃焼器に燃料として利用するガスタービン装置とを備えたものにおいて、前記改質装置で生成した改質燃料を貯蔵する改質燃料タンクを設置して該改質燃料タンクから前記ガスタービン装置の燃焼器に改質燃料を供給するように構成し、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量に基づいて前記改質装置の運転負荷を制御する改質燃料制御装置を設けたことを特徴とする。   The control device for a gas turbine equipped with the heavy oil reforming apparatus of the present invention brings heavy oil into contact with high-temperature and high-pressure water, reforms the heavy oil by using a hydrothermal reaction, and generates reformed fuel. A reformer generated by the reformer and a gas turbine device that uses the reformed fuel generated from heavy oil by the reformer as fuel in the combustor of the gas turbine. A reformed fuel tank for storing quality fuel is installed and the reformed fuel is supplied from the reformed fuel tank to the combustor of the gas turbine device, and the reformed fuel stored in the reformed fuel tank A reformed fuel control device is provided for controlling the operating load of the reformer based on the amount of storage.

本発明によれば、負荷変化速度の異なる改質装置とガスタービン装置とを、ガスタービン装置の負荷運転に制約を与えずに連携させて運転することが可能となり、プラントの運転自由度を向上させた改質装置を備えたガスタービンが実現できる。   According to the present invention, it is possible to operate a reformer and a gas turbine apparatus having different load change speeds in cooperation with each other without restricting the load operation of the gas turbine apparatus, thereby improving the operational freedom of the plant. A gas turbine equipped with the reforming device can be realized.

次に本発明の実施例について図面を用いて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

本発明の一実施例である重質油改質装置を備えたガスタービンプラントについて図1を用いて詳細に説明する。図1において、ガスタービン50は、空気2を圧縮して圧縮空気3を作る圧縮機1と、圧縮機1で圧縮された圧縮空気3と燃料系統から供給される改質燃料24とを燃焼させる燃焼器4と、燃焼器4で改質燃料24を燃焼して発生した燃焼ガスで回転駆動されるタービン5と、このタービン5の回転駆動により駆動されて発電する発電機6を備えている。また、圧縮機1はタービン5の回転駆動によって駆動されて空気2を圧縮するようになっている。そして、前記燃焼器4での燃焼で発生した燃焼ガスはタービン5を回転駆動した後にタービン5から燃焼排ガス7として配管7aを通じて煙突14に排出される。ところで、この燃焼排ガス7の温度は550℃以上の高温であり、この燃焼排ガス7から熱を回収するために前記配管7aの経路の途中に排熱回収ボイラ8が設置されている。そして、この排熱回収ボイラ8からは、550℃以上の燃焼排ガス7との熱交換で発生した約350〜550℃の高温高圧の蒸気の一部を、配管9a、9bを通じて供給して駆動される蒸気タービン10と、蒸気タービン10によって駆動されて電力を得る発電機11と、蒸気タービン10から排出されて温度の低下した蒸気を凝縮して復水にする復水器12と、復水器12から復水を加圧して該排熱回収ボイラ8に給水として供給するポンプ13を備えた蒸気タービン装置が、流体的に連通して設置されている。   A gas turbine plant equipped with a heavy oil reforming apparatus according to an embodiment of the present invention will be described in detail with reference to FIG. In FIG. 1, a gas turbine 50 combusts a compressor 1 that compresses air 2 to produce compressed air 3, and compressed air 3 compressed by the compressor 1 and reformed fuel 24 supplied from a fuel system. A combustor 4, a turbine 5 that is rotationally driven by combustion gas generated by burning the reformed fuel 24 in the combustor 4, and a generator 6 that is driven by the rotational drive of the turbine 5 and generates electric power are provided. The compressor 1 is driven by the rotational drive of the turbine 5 to compress the air 2. The combustion gas generated by the combustion in the combustor 4 is driven to rotate the turbine 5 and then discharged from the turbine 5 as combustion exhaust gas 7 to the chimney 14 through the pipe 7a. By the way, the temperature of the combustion exhaust gas 7 is a high temperature of 550 ° C. or higher, and in order to recover heat from the combustion exhaust gas 7, an exhaust heat recovery boiler 8 is installed in the middle of the path of the pipe 7a. The exhaust heat recovery boiler 8 is driven by supplying a part of high-temperature and high-pressure steam at about 350 to 550 ° C. generated by heat exchange with the combustion exhaust gas 7 at 550 ° C. or higher through the pipes 9a and 9b. Steam turbine 10, a generator 11 that is driven by the steam turbine 10 to obtain electric power, a condenser 12 that condenses steam discharged from the steam turbine 10 and having a reduced temperature to condensate, and a condenser A steam turbine device including a pump 13 that pressurizes condensate from 12 and supplies it to the exhaust heat recovery boiler 8 as feed water is installed in fluid communication.

前記したガスタービン50と蒸気タービン装置から構成されるコンバインドサイクルでは、排熱回収ボイラ8でガスタービンの燃焼排ガス7と熱交換させて高温高圧の蒸気9を発生させ、この蒸気9を配管9a、9bを通じて駆動蒸気として供給して蒸気タービン10を回転駆動し、発電機11を駆動して発電する。また、重質油を高温高圧水と接触させる改質反応により重質油を改質して改質燃料を生成し、この改質燃料をガスタービンの燃料に供するガスタービンでは、前記改質反応に用いる高温高圧の蒸気22を、前記排熱回収ボイラ8に外部から反応水19をポンプ20で加圧して供給し、ガスタービン50から排出された550℃以上の高温の燃焼排ガス7と熱交換して熱回収させることにより、同様に約350〜550℃の高温高圧の蒸気22として発生させている。そして、発生した高温高圧の蒸気22は排熱回収ボイラ8から配管22aを通じて改質装置23に供給させることにより、ガスタービンの燃焼排ガス7から熱回収してガスタービンシステムとしての効率を高めている。また、ガスタービン燃料である改質燃料の原料となる重質油15を加熱するために、排熱回収ボイラ8で燃焼排ガス7から熱回収して発生させた蒸気9の一部を、配管9aを通じて重質油予熱器18に供給し、配管15aを通じて供給される重質油15と重質油予熱器18にて熱交換させて重質油15を加熱している。そして、この重質油予熱器18にて加熱された重質油15は次に改質装置23に供給されるが、この改質装置23にて、排熱回収ボイラ8から配管22aを通じて供給される高温高圧の蒸気22と混合し接触して改質反応させ、軽質化、脱金属されて改質された改質燃料24を生成する。前記改質装置23にて重質油を改質反応させるには、重質油を高温高圧水の状態となる13〜30MPa、400〜480℃の水と、滞留時間1〜10分の間、接触させて改質反応させる。そして、前記改質装置23で重質油15から改質されて生成した改質燃料24は、減圧器25で減圧された後に配管24aを通じて改質燃料タンク26に供給されて貯蔵される。改質燃料タンク26に貯蔵された改質燃料24の貯蔵量は、改質燃料タンク26に設置された液位計31にて計測されるようになっている。   In the combined cycle composed of the gas turbine 50 and the steam turbine device described above, the exhaust heat recovery boiler 8 exchanges heat with the combustion exhaust gas 7 of the gas turbine to generate high-temperature and high-pressure steam 9, and this steam 9 is connected to the pipe 9a, The steam is supplied as driving steam through 9b and the steam turbine 10 is driven to rotate, and the generator 11 is driven to generate power. Further, in a gas turbine that reforms heavy oil by a reforming reaction in which the heavy oil is brought into contact with high-temperature high-pressure water to produce reformed fuel, and this reformed fuel is used as fuel for the gas turbine, the reforming reaction is performed. The high-temperature and high-pressure steam 22 used for heating is supplied to the exhaust heat recovery boiler 8 by pressurizing the reaction water 19 with a pump 20 from the outside, and exchanges heat with the high-temperature combustion exhaust gas 7 of 550 ° C. or higher discharged from the gas turbine 50. In this way, the heat is recovered to generate steam 22 having a high temperature and a high pressure of about 350 to 550 ° C. The generated high-temperature and high-pressure steam 22 is supplied from the exhaust heat recovery boiler 8 to the reforming device 23 through the pipe 22a, whereby heat is recovered from the combustion exhaust gas 7 of the gas turbine to improve the efficiency of the gas turbine system. . Further, in order to heat the heavy oil 15 that is a raw material of the reformed fuel, which is a gas turbine fuel, a part of the steam 9 generated by heat recovery from the combustion exhaust gas 7 by the exhaust heat recovery boiler 8 is connected to the pipe 9a. The heavy oil 15 is supplied to the heavy oil preheater 18 through the pipe 15a, and heat is exchanged between the heavy oil 15 supplied through the pipe 15a and the heavy oil preheater 18 to heat the heavy oil 15. The heavy oil 15 heated by the heavy oil preheater 18 is then supplied to the reformer 23, and is supplied from the exhaust heat recovery boiler 8 through the pipe 22 a by the reformer 23. The reformed fuel 24 is mixed and contacted with the high-temperature and high-pressure steam 22 to cause a reforming reaction, and is reformed by lightening and demetalization. In order to cause the reforming reaction of the heavy oil in the reformer 23, the heavy oil is in a state of high temperature and high pressure water of 13 to 30 MPa, 400 to 480 ° C. water, and a residence time of 1 to 10 minutes. It is contacted to cause a reforming reaction. The reformed fuel 24 produced by reforming the heavy oil 15 by the reformer 23 is decompressed by the decompressor 25 and then supplied to the reformed fuel tank 26 through the pipe 24a and stored. The storage amount of the reformed fuel 24 stored in the reformed fuel tank 26 is measured by a liquid level meter 31 installed in the reformed fuel tank 26.

この改質燃料タンク26に貯蔵された改質燃料24は、ガスタービン50の運転に必要な改質燃料としての必要量を配管37aに設置した改質燃料ポンプ27によって燃焼器4に供給して燃焼させ、ガスタービン50を所望の負荷で負荷運転させる。通常、ガスタービン50に供給される燃料流量(改質燃料ポンプ27の押し出し量)の指令値である改質燃料流量指令値29は、発電所が計画するガスタービン50への要求負荷Loに対する予定燃料量を基本量として、発電機6の出力値30と要求負荷Loの偏差を修正するように補正されて決定される。本実施例のガスタービンプラントでは、改質燃料タンク26の液位計31で計測された改質燃料液位値32を、改質燃料制御装置35に対する入力信号としている。改質燃料制御装置35は、液位計31で計測された改質燃料タンクの改質燃料液位値32から計算される改質燃料24の貯蔵量を基に、改質装置23で生成される改質燃料24の量を演算して、前記改質装置23に対する運転負荷指令を出力している。   The reformed fuel 24 stored in the reformed fuel tank 26 is supplied to the combustor 4 by a reformed fuel pump 27 installed in the pipe 37a in a necessary amount as a reformed fuel necessary for the operation of the gas turbine 50. Combustion is performed, and the gas turbine 50 is loaded with a desired load. Normally, the reformed fuel flow rate command value 29, which is a command value for the flow rate of fuel supplied to the gas turbine 50 (the amount of push out of the reformed fuel pump 27), is scheduled for the required load Lo on the gas turbine 50 planned by the power plant. Based on the fuel amount as a basic amount, the correction is made so as to correct the deviation between the output value 30 of the generator 6 and the required load Lo. In the gas turbine plant of this embodiment, the reformed fuel level value 32 measured by the level gauge 31 of the reformed fuel tank 26 is used as an input signal to the reformed fuel control device 35. The reformed fuel control device 35 is generated by the reformer 23 based on the storage amount of the reformed fuel 24 calculated from the reformed fuel liquid level value 32 of the reformed fuel tank measured by the liquid level gauge 31. The operation load command for the reformer 23 is output by calculating the amount of the reformed fuel 24.

前記改質燃料制御装置35には、改質燃料タンク26の液位に基づいて予め改質装置23の運転モードを選定して登録してある論理演算器35aと、前記論理演算器35aで選定された運転モードによって操作される改質装置運転指令器35bと、燃料切れ等の緊急用に指令するガスタービン運転指令器35cとが夫々備えられている。そして、前記改質装置運転指令器35bから、前記選定された運転モードに応じて出力される重質油供給量指令値33は、重質油ポンプ16の運転を制御する信号となる。同様に、前記改質装置運転指令器35bから、前記選定された運転モードに応じて出力される反応水供給量指令値34は、反応水ポンプ20の運転を制御する信号となる。同様に、ガスタービン運転指令器35cから出力されるガスタービン運転指令値36はガスタービン制御装置40から出力される運転指令を制御する信号となる。   The reforming fuel control device 35 is selected by the logic operation unit 35a in which the operation mode of the reforming device 23 is selected and registered in advance based on the liquid level of the reforming fuel tank 26 and the logic operation unit 35a. The reformer operation command device 35b operated in accordance with the operation mode and the gas turbine operation command device 35c for commanding for emergency such as running out of fuel are provided. The heavy oil supply amount command value 33 output from the reformer operation command unit 35b according to the selected operation mode is a signal for controlling the operation of the heavy oil pump 16. Similarly, the reaction water supply command value 34 output from the reformer operation command device 35b according to the selected operation mode is a signal for controlling the operation of the reaction water pump 20. Similarly, the gas turbine operation command value 36 output from the gas turbine operation command device 35 c is a signal for controlling the operation command output from the gas turbine control device 40.

そして、改質燃料タンク26に貯蔵された改質燃料24の液位が、予め定められた常用範囲より高い「高」の値になった場合、改質燃料制御装置35の論理演算器35aによって予め登録してある運転モードを選定して、改質装置23の運転負荷を低負荷モードへ切り替える指令を出す。ここで改質燃料の液位が液位「高」の値とは、改質燃料タンク26の貯蔵量として常用範囲の液位を越えた値を示す。また、改質装置23の運転負荷が低負荷モードでは、改質装置23で製造される改質燃料量が通常のガスタービンの燃料使用量よりも少ない量に設定されることを意味する。この場合の改質燃料の製造量は、ガスタービン50の定格負荷の必要燃料量より少なく、例えば半分程度の量を製造するので、ガスタービン50が定格負荷運転されていれば、改質燃料タンク26の液位は下降することになる。また、ガスタービン50の運転が要求負荷L0に応じて負荷を変動させて用いる場合には、ガスタービン50の運用負荷を時間平均した実績運用負荷から平均燃料使用量を算出して、改質燃料製造量をこの平均燃料使用量より少なく設定すれば、改質燃料タンク26の液位は長期的には下降する。この時、改質装置23が運転できる最低負荷、即ち、最低限の改質燃料製造量としても勿論良い。   When the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26 becomes a “high” value that is higher than a predetermined normal range, the logic calculator 35 a of the reformed fuel control device 35 A pre-registered operation mode is selected, and a command for switching the operation load of the reformer 23 to the low load mode is issued. Here, the value of the liquid level of the reformed fuel indicates a value exceeding the liquid level in the normal range as the storage amount of the reformed fuel tank 26. Further, when the operation load of the reformer 23 is in the low load mode, it means that the amount of reformed fuel produced by the reformer 23 is set to an amount smaller than the fuel consumption of a normal gas turbine. The production amount of the reformed fuel in this case is smaller than the required fuel amount of the rated load of the gas turbine 50, for example, about half of the amount is produced. Therefore, if the gas turbine 50 is operated at the rated load, the reformed fuel tank The liquid level of 26 will drop. When the operation of the gas turbine 50 is used with the load varied according to the required load L0, the average fuel usage is calculated from the actual operation load obtained by averaging the operation load of the gas turbine 50 over time, and the reformed fuel If the production amount is set to be smaller than the average fuel consumption, the liquid level in the reformed fuel tank 26 is lowered in the long term. At this time, of course, the minimum load at which the reformer 23 can operate, that is, the minimum amount of reformed fuel produced may be used.

改質装置23の運転を低負荷モードで運転し、改質燃料タンク26の液位が下降していった場合、ある時点で改質燃料26の貯蔵量が常用範囲の下限、即ち、改質燃料24の液位が液位「低」に至る。ここからは、改質燃料タンク26に貯蔵される改質燃料24の液位を上昇に転じさせる必要があるため、改質装置23の運転を高負荷モードへ切り替え、改質燃料の製造量を増加させる。この時、改質装置23は定格負荷、即ち、改質燃料の製造量を最大として運転することが考えられる。改質装置23の定格負荷における改質燃料の製造量は、ガスタービン50が定格負荷で使用する燃料量よりも多くなるように装置を設計して制御するようにすれば、ガスタービン50を定格で連続運転した場合も、改質燃料タンク26に貯蔵される改質燃料24の液位を上昇させることができる。また、ガスタービン50の運用を主に部分負荷運転とする発電所であれば、改質装置23の定格負荷における改質燃料の製造量を、ガスタービン50の定格負荷の必要燃料量と同等、或いはそれ以下としても、平均の燃料使用量よりも製造量が多くなり、長期的には改質燃料タンク26の液位が上昇する運転が可能となる。   When the reforming device 23 is operated in the low load mode and the liquid level of the reforming fuel tank 26 is lowered, the storage amount of the reforming fuel 26 at a certain point is the lower limit of the normal range, that is, reforming. The liquid level of the fuel 24 reaches the liquid level “low”. From this point, since it is necessary to shift the level of the reformed fuel 24 stored in the reformed fuel tank 26 upward, the operation of the reformer 23 is switched to the high load mode, and the amount of reformed fuel produced is reduced. increase. At this time, it is conceivable that the reformer 23 is operated with the rated load, that is, the production amount of the reformed fuel being maximized. If the apparatus is designed and controlled so that the amount of reformed fuel produced at the rated load of the reformer 23 is larger than the amount of fuel used by the gas turbine 50 at the rated load, the gas turbine 50 is rated. In the case of continuous operation, the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26 can be raised. Further, in the case of a power plant where the operation of the gas turbine 50 is mainly a partial load operation, the production amount of the reformed fuel at the rated load of the reformer 23 is equal to the required fuel amount of the rated load of the gas turbine 50, Or even if it is less than that, the production amount is larger than the average fuel consumption, and operation in which the liquid level of the reformed fuel tank 26 rises in the long term becomes possible.

また、通常のガスタービン設備で使用される燃料タンクの液位監視では、燃料タンクからの燃料の溢れ、或いは燃料途絶を防止するため、燃料の液位が液位「高高」及び液位「低低」の位置で夫々警報を発するように警報装置が設けられている。本実施例の場合でも、改質燃料タンク26に貯蔵される改質燃料24の液位監視においても同様の警報を用いている。即ち、改質燃料タンク26に貯蔵された改質燃料24の液位が、液位「高高」では、これ以上改質燃料26を貯蔵することは改質燃料タンク26からの燃料の溢れが発生して危険となるので、改質燃料26の供給、即ち、改質装置23の運転を停止する。改質装置23の運転が停止すれば、新たに改質燃料タンク26に供給される改質燃料26が停止するので、改質燃料タンク26に貯蔵される改質燃料24の液位は徐々に下降して、やがて、液位「高高」の警報値を下回る値となる。この場合、後に改質装置23を再起動する必要があるが、本実施例では、改質燃料タンク26の液位が液位「低」に至った時点で、改質装置23の運転を再起動する形態とした。このとき、先に述べたモード設定の制御も同時に働くため、改質装置23は起動後に高負荷モードで運転され、改質燃料タンク26に改質装置23から改質燃料26の供給が行われるので、改質燃料タンク26の液位は上昇を始める。   Further, in the liquid level monitoring of the fuel tank used in the normal gas turbine equipment, the fuel level is changed to the liquid level “high” and “level” in order to prevent the fuel from overflowing or fuel interruption from the fuel tank. Alarm devices are provided so as to issue alarms at low and low positions, respectively. Even in the case of the present embodiment, the same alarm is used for monitoring the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26. That is, when the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26 is the liquid level “high and high”, storing the reformed fuel 26 any more will cause the overflow of fuel from the reformed fuel tank 26. Since this occurs, the supply of the reformed fuel 26, that is, the operation of the reformer 23 is stopped. If the operation of the reforming device 23 stops, the reformed fuel 26 newly supplied to the reformed fuel tank 26 stops, so that the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26 gradually increases. The value falls and eventually falls below the warning value for the liquid level “high / high”. In this case, it is necessary to restart the reformer 23 later, but in this embodiment, when the liquid level in the reformed fuel tank 26 reaches the liquid level “low”, the operation of the reformer 23 is restarted. It was set as the form to start. At this time, since the mode setting control described above also works simultaneously, the reformer 23 is operated in the high load mode after startup, and the reformed fuel 26 is supplied from the reformer 23 to the reformed fuel tank 26. Therefore, the liquid level in the reformed fuel tank 26 starts to rise.

以上のように、改質燃料タンク26の液位に応じて、改質装置23の運転負荷を高負荷、低負荷と切り替え、また、必要に応じて改質装置23の運転を停止、再起動させることで、制御系の時定数の異なる改質装置23の負荷運転と、ガスタービン50の負荷運転を連動させた制御が可能となる。   As described above, the operation load of the reformer 23 is switched between high load and low load according to the liquid level of the reformed fuel tank 26, and the operation of the reformer 23 is stopped and restarted as necessary. By doing so, it is possible to perform control in which the load operation of the reformer 23 having a different time constant of the control system and the load operation of the gas turbine 50 are linked.

図2には、図1に示した本発明の一実施例である水熱反応を利用した重質油改質装置を備えたガスタービンプラントにおいて、改質燃料タンク26に貯蔵された改質燃料24の液位に基づいて改質装置23の負荷運転の運転モードを切り替える運転制御装置35の具体例を示した。具体的には、図1における運転制御装置35の演算に基づき、配管15aを通じて重質油ポンプ16の運転によって供給される重質油15の流量(重質油ポンプ16の押し出し量)の重質油供給量指令値33を演算して与え、改質装置23で安定して改質燃料が製造できる変化速度で徐々に重質油15の流量を増加、或いは減少させる。同様に、運転制御装置35の演算に基づき、この重質油15を改質するのに必要な高温高圧蒸気22が配管22aを通じて供給できるように、配管19aを通じて反応水ポンプ20の運転によって供給される反応水19の供給量(反応水ポンプ20の押し出し量)の指令値である反応水供給量指令値34を演算して与え、改質装置23で安定して改質燃料が製造できる変化速度で徐々に反応水19の流量を増加、或いは減少させる。   FIG. 2 shows the reformed fuel stored in the reformed fuel tank 26 in the gas turbine plant equipped with the heavy oil reformer utilizing the hydrothermal reaction according to the embodiment of the present invention shown in FIG. The specific example of the operation control apparatus 35 which switches the operation mode of the load operation of the reformer 23 based on 24 liquid levels was shown. Specifically, based on the calculation of the operation control device 35 in FIG. 1, the flow rate of the heavy oil 15 supplied by the operation of the heavy oil pump 16 through the pipe 15a (the amount of extrusion of the heavy oil pump 16) is heavy. The oil supply amount command value 33 is calculated and given, and the flow rate of the heavy oil 15 is gradually increased or decreased at a change rate at which the reformer 23 can stably produce the reformed fuel. Similarly, based on the calculation of the operation control device 35, it is supplied by the operation of the reaction water pump 20 through the pipe 19a so that the high-temperature high-pressure steam 22 necessary for reforming the heavy oil 15 can be supplied through the pipe 22a. The reaction water supply amount command value 34 which is a command value of the supply amount of the reaction water 19 (the amount of extrusion of the reaction water pump 20) is calculated and given, and the change rate at which the reformer 23 can stably produce the reformed fuel Then gradually increase or decrease the flow rate of the reaction water 19.

そして、改質燃料タンク26の液位の監視において、ガスタービン50が通常の定格運転を所望の日数継続できる改質燃料タンク26に貯蔵された改質燃料24の液位の範囲を、液位が「常用範囲」、即ちタンクの運用上、常時使う液位範囲として定めている。そして、この液位が「常用範囲」の上限を越えた液位を、液位「高」として定義し、また、この液位が「常用範囲」の下限を下回った液位を、液位「低」と定義している。   In the monitoring of the liquid level of the reformed fuel tank 26, the range of the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26 in which the gas turbine 50 can continue the normal rated operation for a desired number of days is expressed as the liquid level. Is defined as the “normal range”, that is, the liquid level range that is always used in the operation of the tank. Then, the liquid level where the liquid level exceeds the upper limit of the “normal range” is defined as the liquid level “high”, and the liquid level where the liquid level falls below the lower limit of the “normal range” is defined as the liquid level “ Defined as low.

また、改質燃料タンク26から改質燃料の溢れを防止するための警報値として、液位「高高」が、液位「高」を越えた更に高い液位の位置に定められている。一方、改質燃料タンク26が空になりガスタービン50への改質燃料の供給が途絶することを防止するための警報値として、液位「低低」が、液位「低」を下回った更に低い液位の位置に定められている。尚、前記液位「高高」、及び「低低」は、通常のガスタービンの燃料タンクにも警報値として設定されている。そして、前記液位「高高」の設定値は、通常、燃料タンクの全容量に対して5%程度の上部空間を持ち、気温変化による油体積の膨張を考慮して、10〜20%の裕度を持たせることが多い。また、液位「低低」の設定値は、警報発信からガスタービンを安全に停止できる時間の燃料必要量を考慮して決定される。ガスタービンの停止所要時間3時間、燃料タンク容量がガスタービンの連続運転1週間分とすれば、全貯蔵量の2%にあたる燃料液位の位置に、液位「低低」を設定する必要がある。実際には、5〜10%の裕度を持たせることが一般的である。   Further, as an alarm value for preventing overflow of the reformed fuel from the reformed fuel tank 26, the liquid level “high / high” is set at a higher liquid level position exceeding the liquid level “high”. On the other hand, as a warning value for preventing the reformed fuel tank 26 from becoming empty and the supply of the reformed fuel to the gas turbine 50 from being interrupted, the liquid level “low / low” has fallen below the liquid level “low”. Further, the liquid level is set at a lower level. The liquid levels “high / high” and “low / low” are also set as alarm values in the fuel tank of a normal gas turbine. The set value of the liquid level “high / high” usually has an upper space of about 5% with respect to the total capacity of the fuel tank, and takes into account the expansion of the oil volume due to temperature change, and is 10% to 20%. Often tolerated. Further, the set value of the liquid level “low / low” is determined in consideration of the required amount of fuel during the time when the gas turbine can be safely stopped from the alarm transmission. If the required time for stopping the gas turbine is 3 hours and the fuel tank capacity is for one week of continuous operation of the gas turbine, it is necessary to set the liquid level “low” at the fuel level corresponding to 2% of the total storage amount. is there. In practice, it is common to have a margin of 5-10%.

本実施例では、改質燃料タンク26に貯蔵された改質燃料24の液位は、(2)液位「高」は、液位「高高」に対して5〜10%の裕度を持つように設定される。また、(4)液位「低」は、液位「低低」に対して5〜10%の裕度を持つように設定される。そして、(3)液位「常用範囲」は、前記(2)液位「高」と(4)液位「低」の間の燃料貯蔵量が、改質装置23での改質燃料の製造なしに任意の一定期間、例えば数日間の間、ガスタービン50を定格負荷で運転できる使用燃料量となるよう設定される。また、改質燃料タンク26に貯蔵する改質燃料24の液位については、改質装置23がトラブルを起こして改質燃料が供給出来なくなった場合でも、設備に復旧に要する期間、例えば1週間の間、ガスタービンを定格負荷で運転できる燃料量に定めて貯蔵する方法等がある。また、改質装置23が改質燃料24を改質燃料タンク26に供給できなくなり、液位「低」に至った場合は、別途、通常のガスタービン燃料油を補給、或いはガスタービン50の燃焼器4に供給してガスタービン50の運転を続行する方法が考えられる。この場合、改質燃料タンク26に貯蔵する改質燃料24の液位として、液位「低」から液位「低低」までの燃料貯蔵量が、ガスタービンの燃料油を調達、運搬、給油するのに要する期間、例えば、2〜3日分の必要燃料量として定めるようにしても良い。   In the present embodiment, the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26 is (2) the liquid level “high” has a margin of 5 to 10% with respect to the liquid level “high / high”. Set to have. Further, (4) the liquid level “low” is set to have a margin of 5 to 10% with respect to the liquid level “low and low”. (3) The liquid level “normal range” indicates that the amount of fuel stored between (2) the liquid level “high” and (4) the liquid level “low” is Without being set, the amount of fuel used is set so that the gas turbine 50 can be operated at a rated load for an arbitrary fixed period, for example, several days. In addition, regarding the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26, even if the reformer 23 causes trouble and the reformed fuel cannot be supplied, a period required for restoration of the equipment, for example, one week During this time, there is a method of storing the gas turbine by determining the amount of fuel that can be operated at the rated load. In addition, when the reformer 23 cannot supply the reformed fuel 24 to the reformed fuel tank 26 and the liquid level reaches “low”, a normal gas turbine fuel oil is separately supplied or the gas turbine 50 is combusted. A method may be considered in which the operation of the gas turbine 50 is continued by supplying it to the vessel 4. In this case, as the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26, the fuel storage amount from the liquid level “low” to the liquid level “low low” procures, transports, and refuels gas turbine fuel oil. It may be determined as a required fuel amount for a period required for the operation, for example, 2 to 3 days.

次に、図3を用いて前記した改質燃料タンク26に貯蔵された改質燃料24の液位L0と、改質燃料24の液位に基づいて改質装置23の負荷運転を予め複数の運転モードに分けて選定して登録した論理演算器35aを備えた改質燃料制御装置35との関係を説明する。図3において、前記改質燃料制御装置35に設けられた論理演算器35aでは、改質燃料タンク液位計31で検出される改質燃料液位値32である改質燃料タンク26の液位L0が夫々、(1)液位「高高」、(2)液位「高」、(3)液位「常用範囲」、(4)液位「低」、(5)液位「低低」を示す5ケースの液位に対応して、改質装置23に指示すべき運転の操作指令として改質装置23の負荷運転を複数の運転モードの中から選択すべき運転モードを、論理演算器35aに、例えば論理テーブルの形で予め登録している。尚、この論理テーブルに替えて演算ロジックを組み込んでも良い。   Next, the load operation of the reforming device 23 is performed in advance based on the liquid level L0 of the reformed fuel 24 stored in the reformed fuel tank 26 described above with reference to FIG. The relationship with the reformed fuel control device 35 provided with the logical operation unit 35a selected and registered for each operation mode will be described. In FIG. 3, in the logical operation unit 35 a provided in the reformed fuel control device 35, the liquid level of the reformed fuel tank 26 which is the reformed fuel liquid level value 32 detected by the reformed fuel tank liquid level meter 31. L0 is (1) liquid level “high high”, (2) liquid level “high”, (3) liquid level “normal range”, (4) liquid level “low”, (5) liquid level “low low” In response to the liquid level of the five cases indicating "", the operation mode in which the load operation of the reformer 23 should be selected from among a plurality of operation modes as the operation command of the operation to be instructed to the reformer 23 is logically calculated. For example, a logical table is registered in the device 35a in advance. Note that arithmetic logic may be incorporated instead of this logical table.

前記改質燃料制御装置35に設けた論理演算器35aの機能と、改質装置23の負荷運転として選択された運転モードとの関係を詳細に説明すると、改質燃料タンク液位計31で検出される改質燃料タンク26に貯蔵された改質燃料24の液位を示す改質燃料タンク液位L0が、(3)液位「常用範囲」を示すケースでは、前記論理演算器35aにて操作指令として改質装置23の運転モードは定格負荷である高負荷モードを選択し、選択された高負荷モードに応じて前記論理演算器35aから改質装置運転指令器35bを経由して改質装置23を高負荷で運転する負荷運転を行う。前記の液位「常用範囲」で示される改質燃料タンクの液位の範囲とは、ガスタービンの燃料タンクとしての運用上、常時使う液位範囲であって、ガスタービン50を定格負荷で改質装置23での改質燃料の製造なしに任意の一定期間、例えば数日間の間、運転できる改質燃料の貯蔵量である。   The relationship between the function of the logical operation unit 35a provided in the reformed fuel control device 35 and the operation mode selected as the load operation of the reformer 23 will be described in detail. In the case where the reformed fuel tank liquid level L0 indicating the liquid level of the reformed fuel 24 stored in the reformed fuel tank 26 indicates (3) the liquid level “normal range”, the logical operation unit 35a As the operation command, the operation mode of the reformer 23 is selected as a high load mode that is a rated load, and reforming is performed from the logical operation unit 35a via the reformer operation command unit 35b according to the selected high load mode. A load operation is performed in which the device 23 is operated at a high load. The liquid level range of the reformed fuel tank indicated by the above-mentioned liquid level “normal range” is a liquid level range that is always used for operation as a fuel tank of a gas turbine, and the gas turbine 50 is modified with a rated load. This is the amount of reformed fuel that can be operated for an arbitrary period of time, for example, several days, without the production of reformed fuel in the quality device 23.

次に、液位が上昇して改質燃料タンク液位L0が、(2)液位「高」を示すケースでは、前記論理演算器35aにて操作指令として改質装置23の運転モードは低負荷モードを選択し、選択された低負荷モードに応じて改質装置23から改質燃料タンク26に供給される改質燃料24の供給量を抑制するように、前記論理演算器35aから改質装置運転指令器35bを経由して改質装置23を低負荷で運転する負荷運転を行う。   Next, in the case where the liquid level rises and the reformed fuel tank liquid level L0 indicates (2) the liquid level “high”, the operation mode of the reforming device 23 is low as an operation command in the logical operation unit 35a. The load calculation mode is selected from the logic unit 35a so as to suppress the supply amount of the reformed fuel 24 supplied from the reformer 23 to the reformed fuel tank 26 in accordance with the selected low load mode. A load operation is performed in which the reformer 23 is operated at a low load via the device operation command unit 35b.

次に、液位が減少して改質燃料タンク液位L0が、(4)液位「低」を示すケースでは、前記論理演算器35aにて操作指令として改質装置23の運転モードは高負荷モードを選択し、選択された高負荷モードに応じて改質装置23から改質燃料タンク26に供給される改質燃料24の供給量を定格負荷に上昇して供給量を増加させるように、前記論理演算器35aから改質装置運転指令器35bを経由して改質装置23を高負荷で運転する負荷運転を行う。また、下記するケースのように、改質燃料タンク液位L0が、(1)液位「高高」を示すに至って改質装置23の運転を停止した場合であって、その後、ガスタービン50の負荷運転の継続によって改質燃料タンク液位L0が低下して(4)液位「低」を示すに至ったケースでは、運転を停止している改質装置23の運転モードとして再起動モードを選択し、選択された高負荷モードに対応させて改質装置23を起動から高負荷に至るように、前記論理演算器35aから改質装置運転指令器35bを経由して改質装置23を再起動運転させる必要がある。そうしないと、改質装置23からの改質燃料24の供給が無いので改質燃料タンク液位L0が更に低下して(5)液位「低低」に至り、ガスタービン50を緊急停止せざるを得ない状況となるためである。   Next, in the case where the liquid level decreases and the reformed fuel tank liquid level L0 indicates (4) the liquid level “low”, the operation mode of the reforming device 23 is high as an operation command in the logical operation unit 35a. The load mode is selected, and the supply amount of the reformed fuel 24 supplied from the reformer 23 to the reformed fuel tank 26 is increased to the rated load according to the selected high load mode so as to increase the supply amount. Then, a load operation is performed in which the reformer 23 is operated at a high load from the logical operation unit 35a via the reformer operation command unit 35b. Further, as in the case described below, when the reformed fuel tank liquid level L0 reaches (1) the liquid level “high and high” and the operation of the reformer 23 is stopped, the gas turbine 50 is In the case where the reformed fuel tank liquid level L0 is lowered by continuing the load operation of (4) and the liquid level indicates "low", the restart mode is set as the operation mode of the reformer 23 that has stopped the operation. The reforming device 23 is changed from the logical operation unit 35a via the reforming device operation command unit 35b so that the reforming device 23 is started to a high load in accordance with the selected high load mode. It is necessary to restart operation. Otherwise, since there is no supply of the reformed fuel 24 from the reformer 23, the reformed fuel tank liquid level L0 further decreases and (5) the liquid level becomes “low”, and the gas turbine 50 is stopped urgently. This is because the situation becomes unavoidable.

次に、液位が大幅に上昇して改質燃料タンク液位L0が、液位「高」を越えた、(1)液位「高高」を示すに至ったケースでは、前記論理演算器35aにて操作指令として改質装置23の運転モードは停止を選択し、選択された停止モードに応じて前記論理演算器35aから改質装置運転指令器35bを経由して改質装置23の運転を停止させる。そして、改質燃料タンク26に供給される改質燃料24の供給をストップさせて改質燃料タンク26から改質燃料24がオーバーフローすることを防止する。   Next, in the case where the liquid level rises significantly and the reformed fuel tank liquid level L0 exceeds the liquid level “high”, (1) the liquid level “high high” is reached, the logical operation unit The operation mode of the reformer 23 is selected to be stopped as an operation command at 35a, and the operation of the reformer 23 is performed from the logical operation unit 35a via the reformer operation command unit 35b according to the selected stop mode. Stop. Then, the supply of the reformed fuel 24 supplied to the reformed fuel tank 26 is stopped to prevent the reformed fuel 24 from overflowing from the reformed fuel tank 26.

ところで、ガスタービン50の負荷運転は、上記した改質燃料タンク液位L0に基づいた改質装置23の各種負荷運転とは独立して、発電所の要求負荷に基づき単独に負荷運転されている。   By the way, the load operation of the gas turbine 50 is independently operated based on the required load of the power plant independently of the various load operations of the reformer 23 based on the reformed fuel tank liquid level L0. .

次に、液位が大幅に下降して改質燃料タンク液位L0が、液位「低」、より減少した、(5)液位「低低」を示すに至ったケースでは、前記論理演算器35aにて操作指令として改質装置23の運転モードは高負荷モードを選択し、選択された高負荷モードに応じて前記論理演算器35aから改質装置運転指令器35bを経由して改質装置23から改質燃料タンク26に供給される改質燃料24の供給量を定格負荷として改質装置23の高負荷運転を行う。この場合、状況によってはガスタービン50は燃料切れの緊急状態となるので、安全のため、ガスタービン50の運転を停止する指令を、別途、前記論理演算器35aからガスタービン運転指令器35cを経由して前記ガスタービン制御装置40にガスタービン運転指令値36として出力し、前記ガスタービン制御装置40からはガスタービン50の運転を停止するために燃料供給を遮断する改質燃料流量指令値29を出力して運転停止させる制御を行う。   Next, in the case where the liquid level is greatly lowered and the reformed fuel tank liquid level L0 is further decreased, the liquid level “low” and (5) the liquid level “low and low” is indicated. The operation mode of the reformer 23 is selected as an operation command in the unit 35a, and the high load mode is selected as the operation mode, and reforming is performed from the logic unit 35a via the reformer operation command unit 35b in accordance with the selected high load mode. The reformer 23 is operated at a high load with the supply amount of the reformed fuel 24 supplied from the device 23 to the reformed fuel tank 26 as a rated load. In this case, since the gas turbine 50 is in an emergency state of running out of fuel depending on the situation, a command to stop the operation of the gas turbine 50 is separately sent from the logic unit 35a via the gas turbine operation command unit 35c for safety. Then, a gas turbine operation command value 36 is outputted to the gas turbine control device 40, and a reformed fuel flow rate command value 29 for shutting off the fuel supply in order to stop the operation of the gas turbine 50 from the gas turbine control device 40. Control to stop operation by outputting.

そして、改質燃料タンク液位L0に基づいて前記した論理演算器35aでの改質装置23の運転モードの選択による操作指令によって改質装置運転指令器35bを操作し、緊急の場合はガスタービン運転指令器35cも操作する。即ち、論理演算器35aで選定された改質装置23の運転モードによって前記改質装置運転指令器35bから出力される重質油供給量指令値33で重質油ポンプ16の運転を制御し、同様に該改質装置運転指令器35bから出力される反応水供給量指令値34で反応水ポンプ20の運転を制御することによって、改質装置23の負荷運転を行う。また、液位「低低」の緊急状態となった燃料切れ時には、ガスタービン運転指令器35cを経由してガスタービン制御装置40に出力されるガスタービン運転指令値36はガスタービン50の運転を停止させるためのものであり、ガスタービン制御装置40から出力される緊急指令によりガスタービン50の運転が停止される。   Then, based on the reformed fuel tank liquid level L0, the reformer operation command unit 35b is operated by an operation command based on the selection of the operation mode of the reformer 23 by the logical operation unit 35a described above. The operation command device 35c is also operated. That is, the operation of the heavy oil pump 16 is controlled by the heavy oil supply command value 33 output from the reformer operation command unit 35b according to the operation mode of the reformer 23 selected by the logic unit 35a. Similarly, by controlling the operation of the reaction water pump 20 with the reaction water supply amount command value 34 output from the reformer operation command unit 35b, the load operation of the reformer 23 is performed. In addition, when the fuel level is low and the fuel level is in an emergency state, the gas turbine operation command value 36 output to the gas turbine control device 40 via the gas turbine operation command device 35 c is used to operate the gas turbine 50. The operation of the gas turbine 50 is stopped by an emergency command output from the gas turbine control device 40.

以上説明したように、前記改質燃料制御装置35を改質燃料タンク26の液位に基づいて改質装置23の運転モードを選定するように構成したことによって、本実施例の制御システムにおいては、液位計31で検出される改質燃料タンク26に貯蔵された改質燃料24の改質燃料液位L0が、(3)液位「常用範囲」を越えて上昇して(2)液位「高」に達すると、改質燃料制御装置35の論理演算器35aで選定される運転モードによって、改質装置23の負荷運転は高負荷モードから低負荷モードに運転の操作指令が切り替えられる。このときの改質装置23での改質燃料24の製造量は、ガスタービン50の定格負荷の運転に必要な燃料量よりも少なく、例えば半分の量の改質燃料24を製造するようにしても良い。よって、独立して負荷運転されているガスタービン50が定格負荷運転を継続すれば、改質燃料タンク26の液位は徐々に下降することになる。また、ガスタービン50が独立して運転負荷を変動させる運転を行なっているのであれば、ガスタービン50の運用負荷を時間平均した実績運用負荷から平均燃料使用量を算出し、改質燃料24の製造量をこれより少なく設定すれば、改質燃料タンク26の液位は長期的には下降する。この場合、改質装置23の運転負荷は、運転できる最低負荷の改質燃料24の製造量として運転しても良い。   As described above, the reforming fuel control device 35 is configured to select the operation mode of the reforming device 23 based on the liquid level of the reforming fuel tank 26, so that in the control system of this embodiment, The reformed fuel liquid level L0 of the reformed fuel 24 stored in the reformed fuel tank 26 detected by the liquid level gauge 31 rises beyond (3) the liquid level “normal range” (2) liquid When the position “high” is reached, the load operation of the reformer 23 is switched from the high load mode to the low load mode according to the operation mode selected by the logic unit 35 a of the reformed fuel control device 35. . At this time, the production amount of the reformed fuel 24 in the reformer 23 is smaller than the fuel amount necessary for operating the rated load of the gas turbine 50, for example, half the amount of the reformed fuel 24 is produced. Also good. Accordingly, if the gas turbine 50 that is independently operated under load continues the rated load operation, the liquid level in the reformed fuel tank 26 gradually decreases. Further, if the gas turbine 50 performs an operation that varies the operation load independently, the average fuel usage is calculated from the actual operation load obtained by averaging the operation load of the gas turbine 50 over time. If the production amount is set to be smaller than this, the liquid level in the reformed fuel tank 26 is lowered in the long term. In this case, the operation load of the reformer 23 may be operated as the production amount of the reformed fuel 24 having the lowest load that can be operated.

改質燃料タンク26の改質燃料液位L0が、(3)の液位「常用範囲」を下回って(4)液位「低」に達すると、改質燃料制御装置35の論理演算器35aで選定される改質装置23の負荷運転は高負荷モードが選択される。改質装置23の負荷運転の具体的な内容は、図1において、重質油15の流量(重質油ポンプ16の押し出し量)の指令値である重質油供給量指令値33を安定した燃料が製造できる変化速度で増加させ、この重質油15を改質するに必要な高温高圧蒸気22が供給できるよう、反応水19の供給量(反応水ポンプ20の押し出し量)の指令値を設定する。実施例1に示したように、この時、改質装置23は定格負荷、すなわち改質燃料24の製造量を最高にして運転することが考えられる。改質装置23を定格負荷で運転した際の改質燃料24の製造量は、ガスタービン50が定格負荷運転で使用する燃料量よりも多くなるように改質装置23を設計しておけば、ガスタービン50を定格で連続で運転した場合でも、改質燃料タンク26の液位を上昇させることができる。また、ガスタービン50の運用を主に部分負荷運転とする発電所であれば、改質装置23の定格負荷における改質燃料24の製造量を、ガスタービン50の定格負荷の必要燃料量と同等、或いはそれ以下にしても、平均の燃料使用量よりも改質燃料の製造量が多くなり、長期的には改質燃料タンク26の液位が上昇する運転が可能となる。   When the reformed fuel liquid level L0 of the reformed fuel tank 26 falls below the liquid level “normal range” of (3) and reaches (4) the liquid level “low”, the logical operation unit 35a of the reformed fuel control device 35 The high-load mode is selected for the load operation of the reformer 23 selected in step (b). The specific contents of the load operation of the reformer 23 are as follows. In FIG. 1, the heavy oil supply amount command value 33 which is the command value of the flow rate of the heavy oil 15 (the push amount of the heavy oil pump 16) is stabilized. The command value of the supply amount of the reaction water 19 (the push amount of the reaction water pump 20) is increased so that the high-temperature and high-pressure steam 22 necessary for reforming the heavy oil 15 can be supplied by increasing at a change rate capable of producing fuel. Set. As shown in the first embodiment, at this time, it is conceivable that the reformer 23 is operated with the rated load, that is, the production amount of the reformed fuel 24 being maximized. If the reforming device 23 is designed so that the amount of reformed fuel 24 produced when the reforming device 23 is operated at the rated load is larger than the amount of fuel used by the gas turbine 50 at the rated load operation, Even when the gas turbine 50 is continuously operated at the rated value, the liquid level of the reformed fuel tank 26 can be increased. Further, in the case of a power plant where the operation of the gas turbine 50 is mainly a partial load operation, the production amount of the reformed fuel 24 at the rated load of the reformer 23 is equal to the required fuel amount of the rated load of the gas turbine 50. Or, even if it is less than that, the amount of reformed fuel produced is larger than the average amount of fuel used, and operation in which the liquid level of the reformed fuel tank 26 rises over the long term becomes possible.

改質燃料タンク26の改質燃料液位L0が、大幅に上昇して(4)の液位「高」を越えて、(5)液位「高高」、即ち、貯蔵量上限に至った場合には、改質燃料制御装置35の論理演算器35aで選定される改質装置23の運転モードは停止が選択され、改質燃料タンク26からの改質燃料24の溢れを防止するために改質装置23の運転を停止する。   The reformed fuel liquid level L0 in the reformed fuel tank 26 significantly increased and exceeded the liquid level “high” in (4), and (5) the liquid level “high”, that is, reached the upper limit of the storage amount. In this case, the operation mode of the reforming device 23 selected by the logical operation unit 35a of the reformed fuel control device 35 is selected to be stopped, and in order to prevent the reformed fuel 24 from overflowing from the reformed fuel tank 26. The operation of the reformer 23 is stopped.

また、本実施例では、改質燃料タンク26の改質燃料液位L0が、(4)液位「低」まで低下しており、且つ、改質装置23の運転が停止している場合は、改質燃料制御装置35の論理演算器35aで選定される改質装置23の運転モードは再起動が選択され、改質装置23の運転を再起動して定格負荷の高負荷まで上昇させる。改質装置23を再起動するタイミングとして、液位が液位「低」に至る前の、例えば液位「常用範囲」の下側10%などの予め定められた液位で運転を再起動するように設定しても良い。   Further, in this embodiment, when the reformed fuel liquid level L0 of the reformed fuel tank 26 is lowered to (4) the liquid level “low” and the operation of the reformer 23 is stopped. The restart mode is selected as the operation mode of the reforming device 23 selected by the logical operation unit 35a of the reforming fuel control device 35, and the operation of the reforming device 23 is restarted to increase the rated load to a high load. As a timing for restarting the reformer 23, the operation is restarted at a predetermined liquid level before the liquid level reaches the “low” level, for example, 10% below the liquid level “normal range”. You may set as follows.

また、改質燃料タンク26の改質燃料液位L0が、(4)液位「低」より大幅に下がって、(5)液位「低低」に至った場合は、ガスタービン50は燃料切れ寸前となるので、通常のガスタービン用の燃料タンクの燃料供給制御と同じく、ガスタービン50の運転を停止して燃料途絶による緊急遮断を防止する。   Further, when the reformed fuel liquid level L0 of the reformed fuel tank 26 is significantly lower than (4) the liquid level “low” and (5) the liquid level “low / low” is reached, the gas turbine 50 causes the fuel to flow. Since it is just before the cut, the operation of the gas turbine 50 is stopped to prevent an emergency shutoff due to the fuel interruption, as in the case of the fuel supply control of the fuel tank for a normal gas turbine.

図4に、図1に示した本発明の一実施例である重質油の改質装置を備えたガスタービンにおいて、前記改質装置を、改質燃料タンク26の液位に基づいて図2に示した改質燃料制御装置35により選定した運転モードに沿って運転した場合に、各運転ステップ(1)(2)(3)(4)(5)(6)に対応する、ガスタービンの運転負荷(上段図)と、改質装置の運転負荷モードと(中段図)、改質燃料タンクの液位(下段図)を、ガスタービンの運転時間の経過に対するトレンドで夫々示した。   FIG. 4 shows a gas turbine equipped with the heavy oil reforming apparatus according to the embodiment of the present invention shown in FIG. Of the gas turbine corresponding to each of the operation steps (1), (2), (3), (4), (5), and (6) when operated according to the operation mode selected by the reformed fuel control device 35 shown in FIG. The operational load (upper diagram), the operational load mode of the reformer (middle diagram), and the liquid level of the reformed fuel tank (lower diagram) are shown as trends with respect to the lapse of the operation time of the gas turbine.

図4において、まず、運転ステップ(1)では、当初、ガスタービン50は定格負荷で、改質装置23は定格負荷である高負荷モードで運転されている。また、改質装置23の負荷運転が高負荷モードでは改質燃料24の製造量がガスタービン50の定格負荷での必要燃料量を越えており、本トレンドグラフの初期では点線で示した改質燃料タンクの液位が時間と共に上昇している。   In FIG. 4, first, in the operation step (1), the gas turbine 50 is initially operated in a high load mode, which is a rated load, and the reformer 23 is a rated load. In addition, when the load operation of the reformer 23 is in the high load mode, the production amount of the reformed fuel 24 exceeds the required fuel amount at the rated load of the gas turbine 50, and the reformation indicated by the dotted line at the beginning of this trend graph. The fuel tank level is rising over time.

次に運転ステップ(2)では、電力デマンドなどの要求により、必要に応じてガスタービン50の負荷を下げると、改質燃料24の使用量が減少するため改質燃料タンクの液位が上昇し、やがて液位「高」に至る。そして、液位が「高」に達すると、改質装置23の運転モードは高負荷モードから負荷を下げ始め、改質燃料24の製造量を減少させながら低負荷モードヘと移行する。改質装置23の負荷変化の速度は、ガスタービン50の負荷変化速度の1/10と遅いが、この間の燃料需給量の差は、改質燃料タンク26に貯蔵された改質燃料24の貯蔵量を変化させて吸収している。   Next, in the operation step (2), when the load of the gas turbine 50 is lowered as required due to a demand such as an electric power demand, the amount of the reformed fuel 24 used is reduced, so that the liquid level of the reformed fuel tank rises. Eventually, the liquid level reaches “high”. When the liquid level reaches “high”, the operation mode of the reformer 23 starts to decrease the load from the high load mode, and shifts to the low load mode while decreasing the production amount of the reformed fuel 24. The speed of the load change of the reformer 23 is as low as 1/10 of the load change speed of the gas turbine 50. The difference in fuel supply and demand during this period is the storage of the reformed fuel 24 stored in the reformed fuel tank 26. Absorbs by changing the amount.

次に、運転ステップ(3)では、改質装置23の負荷降下にともない、改質燃料24の製造量がガスタービン50で使用する燃料量を下回るため、やがて改質燃料タンクの液位は下降を始める。   Next, in the operation step (3), as the reformer 23 decreases in load, the production amount of the reformed fuel 24 falls below the amount of fuel used in the gas turbine 50. Begin.

次に、運転ステップ(4)では、ガスタービン50の負荷運転が更に低負荷にまで下がった場合を示す。改質装置23の負荷運転が低負荷モードを選定した場合でも改質燃料24の製造量が余剰となるので、改質燃料タンクの液位は上昇に転じて、改質燃料タンクの液位は上限である「高高」に至る。液位「高高」に達すると、改質燃料タンク26から改質燃料24の溢れを防止するため、改質装置23の負荷運転は停止を選択して運転を停止し、改質燃料24の製造及び供給は止まる。この間、ガスタービン50は独立して運転を継続しているため、改質燃料タンクの液位は減少を始める。   Next, in the operation step (4), a case where the load operation of the gas turbine 50 is further reduced to a low load is shown. Even when the low load mode is selected for the load operation of the reformer 23, the production amount of the reformed fuel 24 becomes excessive, so the liquid level of the reformed fuel tank starts to rise, and the liquid level of the reformed fuel tank is It reaches the upper limit of “high” and “high”. When the liquid level reaches “high / high”, in order to prevent the reformed fuel 24 from overflowing from the reformed fuel tank 26, the load operation of the reformer 23 is selected to stop, and the operation is stopped. Production and supply stops. During this time, since the gas turbine 50 continues to operate independently, the liquid level in the reformed fuel tank starts to decrease.

次に、運転ステップ(5)では、その後、ガスタービン50の負荷を低負荷から定格の高負荷まで上昇させた運転を行う。そうすると、ガスタービン50の燃料使用量が増加するので、改質燃料タンクの液位は下降速度が大きくなり、やがて、改質燃料タンクの液位は液位「低」に至る。液位「低」に低下すると、改質装置23の運転は再起動のモードを選択されて改質装置23が再起動されて高負荷モードに向かって負荷を上昇する。前期改質装置23の負荷上昇速度は遅いため、改質装置23の起動後も一定時間は改質燃料タンクの液位は下降を続ける。   Next, in the operation step (5), thereafter, an operation is performed in which the load of the gas turbine 50 is increased from a low load to a rated high load. As a result, the amount of fuel used in the gas turbine 50 increases, so that the liquid fuel level in the reformed fuel tank decreases at a higher rate, and eventually the liquid level in the reformed fuel tank reaches the liquid level “low”. When the liquid level falls to “low”, the operation of the reformer 23 is selected as the restart mode, the reformer 23 is restarted, and the load increases toward the high load mode. Since the load increasing speed of the reformer 23 is low, the liquid level of the reformed fuel tank continues to decrease for a certain time after the reformer 23 is started.

次に、運転ステップ(6)では、ガスタービン50の負荷が定格負荷に戻ると、改質装置23の負荷上昇に伴って改質燃料の製造量が増大し、やがてガスタービン50の燃料使用量を上回るため、改質燃料タンクの液位は徐々に上昇に転じて図4に表示していない常用範囲の液位に復帰する。   Next, in the operation step (6), when the load of the gas turbine 50 returns to the rated load, the production amount of reformed fuel increases as the load of the reformer 23 increases, and the fuel usage amount of the gas turbine 50 eventually. Therefore, the liquid level of the reformed fuel tank gradually rises and returns to the liquid level in the normal range not shown in FIG.

このように、本発明の上記した実施例によれば、改質装置の運転負荷は、改質燃料タンクの液位あるいは貯蔵量により負荷決定し、負荷変化速度は改質装置が安定して改質燃料を製造できる速度にできる。一方、ガスタービンは、改質燃料タンクに貯蔵された改質燃料を用いて、早い負荷変化速度で自由に負荷変化が可能となる。このことにより、負荷変化速度の異なる改質装置とガスタービンを連携して運転することが可能となる。   As described above, according to the above-described embodiment of the present invention, the operation load of the reformer is determined by the liquid level or the storage amount of the reformed fuel tank, and the load change rate is stably improved by the reformer. It will be able to produce high quality fuel. On the other hand, the gas turbine can change the load freely at a fast load change speed using the reformed fuel stored in the reformed fuel tank. This makes it possible to operate the reformer and the gas turbine with different load change speeds in cooperation.

したがって、本実施例では、ガスタービンは常に必要な発電量に応じて自由に負荷変化でき、改質装置は安定した改質燃料を製造できる負荷変化速度で負荷を切り替えが可能となる運転が行える。そして、ガスタービンと改質装置の負荷変化速度の差による改質燃料の需給格差を改質燃料タンクに貯蔵した改質燃料の貯蔵量を変化させることによって吸収できるので、ガスタービンの負荷運転を改質装置の負荷運転の状況に束縛されることなく独立して変化させることが可能となり、改質装置を備えたガスタービンの運転自由度を向上させることができる。また、ガスタービンは常に必要な発電量に応じて自由に負荷変化でき、改質装置は安定した改質燃料を製造できる負荷変化速度で負荷を切り替え可能となるので、改質装置を備えたガスタービンの運転自由度を向上させることができる。   Therefore, in this embodiment, the gas turbine can always freely change the load according to the required amount of power generation, and the reformer can perform an operation that allows the load to be switched at a load change rate that can produce a stable reformed fuel. . Since the difference in supply and demand of reformed fuel due to the difference in load change speed between the gas turbine and reformer can be absorbed by changing the amount of reformed fuel stored in the reformed fuel tank, the load operation of the gas turbine can be reduced. It becomes possible to change independently without being constrained by the state of load operation of the reformer, and the degree of freedom of operation of the gas turbine provided with the reformer can be improved. In addition, the gas turbine can always freely change the load according to the required amount of power generation, and the reformer can switch the load at a load change rate that can produce a stable reformed fuel. The operational freedom of the turbine can be improved.

重質油から改質燃料を生成する重質油の改質装置を備えたガスタービンに適用可能である。 The present invention can be applied to a gas turbine equipped with a heavy oil reformer that generates reformed fuel from heavy oil.

本発明の一実施例である重質油改質装置を備えたガスタービンの構成を示すプラント系統図。The plant system figure which shows the structure of the gas turbine provided with the heavy oil reforming apparatus which is one Example of this invention. 図1に示す本発明の一実施例である重質油改質装置を備えたガスタービンプラントに設置された改質燃料制御装置による改質燃料タンク液位と改質装置の運転モードとの関係の例模式的に示す図。FIG. 1 shows a relationship between a reformed fuel tank liquid level and a reformer operation mode by a reformed fuel control device installed in a gas turbine plant equipped with a heavy oil reformer according to an embodiment of the present invention. FIG. 図1に示す本発明の一実施例である重質油改質装置を備えたガスタービンプラントに設置された改質燃料制御装置の詳細を示す制御系統図。The control system figure which shows the detail of the reformed fuel control apparatus installed in the gas turbine plant provided with the heavy oil reformer which is one Example of this invention shown in FIG. 図1に示す本発明の一実施例である重質油改質装置を備えたガスタービンプラントの運転状況のトレンドを示すタイムチャート図。The time chart figure which shows the trend of the operating condition of the gas turbine plant provided with the heavy oil reformer which is one Example of this invention shown in FIG.

符号の説明Explanation of symbols

1:圧縮機、2:空気、3:圧縮空気、4:燃焼器、5:タービン、6:発電機、7:ガスタービン排ガス、7a:配管、8:排熱回収ホイラ、9:蒸気、9a:配管、9b:配管、10:蒸気タービン、11:発電機、13:給水ポンプ、14:煙突、15:重質油、15a:配管、16:重質油ポンプ、18:重質油予熱器、18a:配管、19:反応水、19a:配管、20:反応水ポンプ、22:高温高圧蒸気、22a:配管、23:改質装置、24:改質燃料、24a:配管、25:減圧装置、26:改質燃料タンク、27:改質燃料ポンプ、28:改質燃料流量計、29:改質燃料流量指令値、30:発電出力値、31:改質燃料タンク液位計、32:改質燃料液位値、33:重質油供給量指令値、34:反応水供給量指令値、35:改質燃料制御装置、35a:論理演算器、35b:改質装置運転指令器、35c:ガスタービン運転指令器、36:ガスタービン運転指令値、37a:配管、40:ガスタービン制御装置、50:ガスタービン。 1: compressor, 2: air, 3: compressed air, 4: combustor, 5: turbine, 6: generator, 7: gas turbine exhaust gas, 7a: piping, 8: exhaust heat recovery boiler, 9: steam, 9a : Piping, 9b: piping, 10: steam turbine, 11: generator, 13: feed pump, 14: chimney, 15: heavy oil, 15a: piping, 16: heavy oil pump, 18: heavy oil preheater 18a: piping, 19: reaction water, 19a: piping, 20: reaction water pump, 22: high temperature and high pressure steam, 22a: piping, 23: reforming device, 24: reformed fuel, 24a: piping, 25: decompression device , 26: reformed fuel tank, 27: reformed fuel pump, 28: reformed fuel flow meter, 29: reformed fuel flow command value, 30: power generation output value, 31: reformed fuel tank level meter, 32: Reformed fuel liquid level value, 33: Heavy oil supply command value, 34: Reacted water supply command value, 35: Reform Charge control device, 35a: logical operation unit, 35b: reformer operation command device, 35c: gas turbine operation command device, 36: gas turbine operation command value, 37a: piping, 40: gas turbine control device, 50: gas turbine .

Claims (15)

重質油を高温高圧の水と接触させて改質反応させることにより重質油から改質燃料を生成する改質装置と、この改質装置によって重質油から生成した改質燃料をガスタービンの燃焼器に燃料として利用するガスタービン装置とを備えた重質油改質装置を備えたガスタービンにおいて、前記改質装置で生成した改質燃料を貯蔵する改質燃料タンクを設置して該改質燃料タンクから前記ガスタービン装置の燃焼器に改質燃料を供給するように構成し、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量に基づいて前記改質装置の運転負荷を制御する改質燃料制御装置を設けたことを特徴とする重質油改質装置を備えたガスタービン。 A reformer that generates reformed fuel from heavy oil by contacting the heavy oil with high-temperature and high-pressure water to cause a reforming reaction, and the reformed fuel generated from the heavy oil by the reformer is converted into a gas turbine. In a gas turbine having a heavy oil reformer equipped with a gas turbine device used as fuel in a combustor of the engine, a reformed fuel tank for storing the reformed fuel generated by the reformer is installed and the The reformed fuel tank is configured to supply reformed fuel to the combustor of the gas turbine apparatus, and the operating load of the reformer is reduced based on the amount of reformed fuel stored in the reformed fuel tank. A gas turbine provided with a heavy oil reforming device, wherein a reformed fuel control device for controlling is provided. 請求項1に記載の重質油改質装置を備えたガスタービンにおいて、前記ガスタービン装置は、前記ガスタービン装置に要求される負荷に基づいてガスタービンの運転を制御するガスタービン制御装置からの操作指令により前記改質燃料タンクからガスタービン装置の燃焼器に供給される改質燃料の流量を調節するように構成されていることを特徴とする重質油改質装置を備えたガスタービン。 The gas turbine comprising the heavy oil reformer according to claim 1, wherein the gas turbine apparatus includes a gas turbine controller that controls operation of the gas turbine based on a load required for the gas turbine apparatus. A gas turbine provided with a heavy oil reforming device, wherein the flow rate of reformed fuel supplied from the reformed fuel tank to a combustor of the gas turbine device is adjusted by an operation command. 請求項1に記載の重質油改質装置を備えたガスタービンにおいて、前記改質燃料制御装置は、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量に基づいて前記改質装置の運転負荷を制御するように構成して、前記改質燃料タンクに貯蔵される改質燃料の貯蔵量を所望の範囲に調節することを特徴とする重質油改質装置を備えたガスタービン。 The gas turbine comprising the heavy oil reformer according to claim 1, wherein the reformed fuel control device is configured to control the reformer based on a storage amount of the reformed fuel stored in the reformed fuel tank. A gas turbine provided with a heavy oil reforming device, configured to control an operation load, and adjusting a storage amount of the reformed fuel stored in the reformed fuel tank to a desired range. 請求項1に記載の重質油改質装置を備えたガスタービンにおいて、前記ガスタービン装置から燃焼排ガスを排出する燃焼排ガス系統の途中に廃熱回収ボイラを設置して、前記廃熱回収ボイラで該燃焼排ガスと熱交換して発生した高温高圧の蒸気を前記改質装置で使用される高温高圧の水として供給する第1の配管系統を配設したことを特徴とする重質油改質装置を備えたガスタービン。 A gas turbine equipped with the heavy oil reformer according to claim 1, wherein a waste heat recovery boiler is installed in the middle of a combustion exhaust gas system for discharging combustion exhaust gas from the gas turbine device, and the waste heat recovery boiler A heavy oil reformer comprising a first piping system for supplying high-temperature and high-pressure steam generated by heat exchange with the combustion exhaust gas as high-temperature and high-pressure water used in the reformer. Gas turbine equipped with. 請求項4に記載の重質油改質装置を備えたガスタービンにおいて、前記改質装置に供給される重質油の配管系統の途中に該改質装置に供給する重質油を過熱する重質油予熱器を設置し、この重質油予熱器の加熱源として前記廃熱回収ボイラで発生した高温高圧の蒸気の一部を前記重質油予熱器に供給する第2の配管系統を配設したことを特徴とする重質油改質装置を備えたガスタービン。 5. A gas turbine comprising the heavy oil reformer according to claim 4, wherein a heavy oil that overheats the heavy oil supplied to the reformer in the middle of a heavy oil piping system supplied to the reformer. A heavy oil preheater is installed, and a second piping system for supplying a portion of the high-temperature and high-pressure steam generated in the waste heat recovery boiler to the heavy oil preheater as a heating source for the heavy oil preheater is arranged. A gas turbine provided with a heavy oil reforming device. 請求項4に記載の重質油改質装置を備えたガスタービンにおいて、前記改質装置に供給される重質油の配管系統の途中に該改質装置に供給する重質油を過熱する重質油予熱器を設置し、この重質油予熱器の加熱源として供給される前記廃熱回収ボイラで発生した高温高圧の蒸気の一部を利用して駆動される蒸気タービン装置と、この蒸気タービン装置に高温高圧の蒸気の一部を供給する第3の配管系統を配設したことを特徴とする重質油改質装置を備えたガスタービン。 5. A gas turbine comprising the heavy oil reformer according to claim 4, wherein a heavy oil that overheats the heavy oil supplied to the reformer in the middle of a heavy oil piping system supplied to the reformer. A steam turbine apparatus that is installed using a high-temperature and high-pressure steam generated in the waste heat recovery boiler that is installed as a heating source of the heavy oil preheater, A gas turbine provided with a heavy oil reforming device, wherein a third piping system for supplying a part of high-temperature and high-pressure steam to the turbine device is disposed. 重質油を高温高圧の水と接触させ、水熱反応を利用して重質油を改質して改質燃料を生成する改質装置と、この改質装置によって重質油から生成した改質燃料をガスタービンの燃焼器に燃料として利用するガスタービン装置とを備えたものにおいて、前記改質装置で生成した改質燃料を貯蔵する改質燃料タンクを設置して該改質燃料タンクから前記ガスタービン装置の燃焼器に改質燃料を供給するように構成し、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量に基づいて前記改質装置の運転負荷を制御する改質燃料制御装置を設けたことを特徴とする重質油改質装置を備えたガスタービンの制御装置。 A reformer that contacts heavy oil with high-temperature and high-pressure water and reforms the heavy oil using a hydrothermal reaction to produce reformed fuel, and a reformer that is generated from the heavy oil by the reformer. Comprising a reformed fuel tank for storing the reformed fuel produced by the reformer, wherein the reformed fuel tank is provided with a gas turbine device that uses the quality fuel as fuel in the combustor of the gas turbine. A reformed fuel configured to supply reformed fuel to a combustor of the gas turbine device, and controlling an operation load of the reformer based on a storage amount of the reformed fuel stored in the reformed fuel tank. A control device for a gas turbine provided with a heavy oil reforming device, comprising a control device. 請求項7に記載の重質油改質装置を備えたガスタービンの制御装置において、
前記改質燃料タンクには該改質燃料タンクに貯蔵された改質燃料の貯蔵量を検出する検出器が設置され、前記改質燃料制御装置には、予め該改質燃料タンクに貯蔵された改質燃料の貯蔵量に対応して選定される改質装置に対する運転操作指令に対する運転操作指令を出力する制御ロジックを備えた演算器が設けられており、前記検出器で検出した改質燃料の貯蔵量に基づいて前記演算器に備えられた制御ロジックから選定された該改質装置に対する運転操作指令によって前記改質装置の負荷運転を制御するように構成したことを特徴とする重質油改質装置を備えたガスタービンの制御装置。
In the control apparatus of the gas turbine provided with the heavy oil reforming apparatus according to claim 7,
The reformed fuel tank is provided with a detector for detecting the storage amount of the reformed fuel stored in the reformed fuel tank, and the reformed fuel control device is previously stored in the reformed fuel tank. An arithmetic unit is provided that has a control logic that outputs an operation command to the operation command for the reformer that is selected according to the storage amount of the reformed fuel, and for the reformed fuel detected by the detector. The heavy oil reformer is configured to control the load operation of the reformer according to the operation command for the reformer selected from the control logic provided in the arithmetic unit based on the storage amount. Gas turbine control device equipped with a quality device.
請求項8に記載の重質油改質装置を備えたガスタービンの制御装置において、前記改質燃料制御装置から指令される運転操作指令は、前記改質装置で改質燃料を生成するために供給される重質油の供給量及び高温高圧の水の供給量を夫々制御するように出力されていることを特徴とする重質油改質装置を備えたガスタービンの制御装置。 9. A control device for a gas turbine comprising the heavy oil reforming device according to claim 8, wherein an operation command issued from the reformed fuel control device is for generating reformed fuel in the reformer. A control device for a gas turbine provided with a heavy oil reformer, wherein the supply amount of heavy oil to be supplied and the supply amount of high-temperature and high-pressure water are respectively controlled. 改質装置で重質油を高温高圧の水と改質反応させて該重質油から改質燃料を生成し、前記改質装置で生成した改質燃料を改質燃料タンクに供給して貯蔵し、前記改質燃料タンクから貯蔵された改質燃料をガスタービン装置の燃焼器に燃料として供給してガスタービン装置を該改質装置の運転とは独立させて運転する重質油改質装置を備えたガスタービンの運転方法において、前記改質装置の負荷運転を前記改質燃料タンクに貯蔵された改質燃料の貯蔵量に基づいて複数段階設定された運転モードの中から選定し、この選定された運転モードに対応した負荷運転によって前記改質装置の運転を制御するようにしたことを特徴とする重質油改質装置を備えたガスタービンの運転方法。 The reformer reacts heavy oil with high-temperature and high-pressure water to produce reformed fuel from the heavy oil, and supplies the reformed fuel generated by the reformer to the reformed fuel tank for storage. A heavy oil reformer that supplies the reformed fuel stored from the reformed fuel tank as a fuel to the combustor of the gas turbine apparatus and operates the gas turbine apparatus independently of the operation of the reformer. The load operation of the reformer is selected from operation modes set in a plurality of stages based on the storage amount of the reformed fuel stored in the reformed fuel tank. An operation method of a gas turbine provided with a heavy oil reformer, wherein the operation of the reformer is controlled by a load operation corresponding to the selected operation mode. 請求項10に記載の重質油改質装置を備えたガスタービンの運転方法において、前記改質装置の負荷運転は、選定された運転モードに対応させて前記改質装置に供給される重質油及び水の供給量を夫々制御するようにしたことを特徴とする重質油改質装置を備えたガスタービンの運転方法。 The operation method of the gas turbine provided with the heavy oil reforming device according to claim 10, wherein the load operation of the reforming device is a heavy material supplied to the reforming device in accordance with a selected operation mode. An operation method of a gas turbine provided with a heavy oil reforming device, wherein the supply amounts of oil and water are respectively controlled. 請求項11に記載の重質油改質装置を備えたガスタービンの運転方法において、前記改質装置の負荷運転は、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量が常用範囲の液位を維持するように選定された運転モードに対応させて前記改質装置に供給される重質油及び水の供給量を夫々制御するようにしたことを特徴とする重質油改質装置を備えたガスタービンの運転方法。 The operation method of the gas turbine provided with the heavy oil reformer according to claim 11, wherein the load operation of the reformer is such that a storage amount of the reformed fuel stored in the reformed fuel tank is within a normal range. A heavy oil reformer that controls the amount of heavy oil and water supplied to the reformer corresponding to the operation mode selected to maintain the liquid level. Of operating a gas turbine comprising: 請求項12に記載の重質油改質装置を備えたガスタービンの運転方法において、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量が常用範囲を越えた液位に上昇した場合は前記改質装置の運転負荷を低負荷の運転モードに選択して前記改質装置の運転を制御するようにしたことを特徴とする重質油改質装置を備えたガスタービンの運転方法。 In the operation method of the gas turbine provided with the heavy oil reformer according to claim 12, when the storage amount of the reformed fuel stored in the reformed fuel tank rises to a liquid level exceeding the normal range. A method for operating a gas turbine comprising a heavy oil reformer, wherein the operation load of the reformer is selected as a low load operation mode to control the operation of the reformer. 請求項12に記載の重質油改質装置を備えたガスタービンの運転方法において、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量が常用範囲を下回った液位に低下した場合は前記改質装置の運転負荷を高負荷の運転モードに選択して前記改質装置の運転を制御するようにしたことを特徴とする重質油改質装置を備えたガスタービンの運転方法。 In the operation method of the gas turbine provided with the heavy oil reformer according to claim 12, when the amount of the reformed fuel stored in the reformed fuel tank is lowered to a liquid level lower than the normal range. A method for operating a gas turbine comprising a heavy oil reformer, wherein the operation load of the reformer is selected as a high-load operation mode to control the operation of the reformer. 請求項12に記載の重質油改質装置を備えたガスタービンにおいて、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量が常用範囲を越えて異常に高い液位となった場合は前記改質装置の運転負荷を停止の運転モードに選択して前記改質装置の運転を停止し、その後、前記改質燃料タンクに貯蔵された改質燃料の貯蔵量が減少して常用範囲を下回った液位に低下した場合は前記改質装置を再起動する運転モードに選択して前記改質装置の運転を行うことを特徴とする重質油改質装置を備えたガスタービンの運転方法。 In the gas turbine equipped with the heavy oil reformer according to claim 12, when the amount of reformed fuel stored in the reformed fuel tank exceeds an ordinary range and becomes an abnormally high liquid level. The operation load of the reformer is selected as a stop operation mode to stop the operation of the reformer, and thereafter the storage amount of the reformed fuel stored in the reformed fuel tank is reduced to reduce the normal range. A method for operating a gas turbine having a heavy oil reformer, wherein the reformer is operated by selecting an operation mode in which the reformer is restarted when the liquid level drops below the level. .
JP2006004767A 2006-01-12 2006-01-12 Gas turbine equipped with heavy oil reformer, control device for heavy oil reformer, and operation method of gas turbine equipped with heavy oil reformer Active JP4559363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004767A JP4559363B2 (en) 2006-01-12 2006-01-12 Gas turbine equipped with heavy oil reformer, control device for heavy oil reformer, and operation method of gas turbine equipped with heavy oil reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004767A JP4559363B2 (en) 2006-01-12 2006-01-12 Gas turbine equipped with heavy oil reformer, control device for heavy oil reformer, and operation method of gas turbine equipped with heavy oil reformer

Publications (2)

Publication Number Publication Date
JP2007187045A JP2007187045A (en) 2007-07-26
JP4559363B2 true JP4559363B2 (en) 2010-10-06

Family

ID=38342386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004767A Active JP4559363B2 (en) 2006-01-12 2006-01-12 Gas turbine equipped with heavy oil reformer, control device for heavy oil reformer, and operation method of gas turbine equipped with heavy oil reformer

Country Status (1)

Country Link
JP (1) JP4559363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281961B2 (en) * 2019-05-17 2023-05-26 三菱重工業株式会社 Overflow prevention device, vessel, overflow prevention method and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241365A (en) * 2000-02-29 2001-09-07 Nissan Motor Co Ltd Internal combustion engine with fuel reforming device
JP2002161735A (en) * 2000-11-30 2002-06-07 Nissan Motor Co Ltd Exhaust gas cleaning device for internal combustion engine
JP2004353562A (en) * 2003-05-29 2004-12-16 Toyota Motor Corp Dimethyl ether compression ignition engine
JP2005337214A (en) * 2004-05-31 2005-12-08 Hitachi Ltd Heavy oil reforming gas turbine power generation system using high temperature/high pressure water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241365A (en) * 2000-02-29 2001-09-07 Nissan Motor Co Ltd Internal combustion engine with fuel reforming device
JP2002161735A (en) * 2000-11-30 2002-06-07 Nissan Motor Co Ltd Exhaust gas cleaning device for internal combustion engine
JP2004353562A (en) * 2003-05-29 2004-12-16 Toyota Motor Corp Dimethyl ether compression ignition engine
JP2005337214A (en) * 2004-05-31 2005-12-08 Hitachi Ltd Heavy oil reforming gas turbine power generation system using high temperature/high pressure water

Also Published As

Publication number Publication date
JP2007187045A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP6707013B2 (en) Gas turbine plant and operating method thereof
JP5008613B2 (en) Fuel cell system
JP4836969B2 (en) Solid oxide fuel cell system
US11840447B1 (en) Systems and methods of processing ammonia
JP4921619B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
WO2008016257A1 (en) Fuel cell system and operating method
JP4495004B2 (en) Heavy oil reformed fuel-fired gas turbine system and operation method thereof
JP4559363B2 (en) Gas turbine equipped with heavy oil reformer, control device for heavy oil reformer, and operation method of gas turbine equipped with heavy oil reformer
JP2008120913A (en) Desulfurization system
RU2564308C1 (en) Method of operating industrial plant for producing urea, comprising multiple systems
JP2016167382A (en) Fuel battery system and operation method for the same
JP4975259B2 (en) FUEL CELL POWER GENERATION DEVICE, FUEL CELL POWER GENERATION DEVICE OPERATION METHOD, PROGRAM, AND RECORDING MEDIUM
JP2010015937A (en) Fuel cell power generating device
CN108751131B (en) Method for detecting and processing faults in natural gas reforming hydrogen production system
JP4550720B2 (en) Gas turbine equipment using reformed fuel as fuel and operation method thereof
JP2008135270A (en) Fuel cell system
JP4896901B2 (en) Solid oxide fuel cell system
JP4402606B2 (en) Heavy oil reforming method using hydrothermal reaction and heavy oil reformer using hydrothermal reaction
JP4981509B2 (en) Combined power plant steam turbine operation control system
JP4861088B2 (en) Heavy oil reformer and method of operating heavy oil reformer
JP2010257770A (en) Fuel battery power-generating system and operation method for fuel battery power-generating system
JP2005206457A (en) Hydrogen generator, and fuel cell system using hydrogen generator
CN113464924A (en) Method for improving stability of boiler feed water
JP5638822B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP4402531B2 (en) Heavy oil reforming apparatus and reforming method, gas turbine power generation apparatus and petroleum refining apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

R150 Certificate of patent or registration of utility model

Ref document number: 4559363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250