JP4556634B2 - Seed crystal fixing part and seed crystal fixing method - Google Patents
Seed crystal fixing part and seed crystal fixing method Download PDFInfo
- Publication number
- JP4556634B2 JP4556634B2 JP2004334139A JP2004334139A JP4556634B2 JP 4556634 B2 JP4556634 B2 JP 4556634B2 JP 2004334139 A JP2004334139 A JP 2004334139A JP 2004334139 A JP2004334139 A JP 2004334139A JP 4556634 B2 JP4556634 B2 JP 4556634B2
- Authority
- JP
- Japan
- Prior art keywords
- seed crystal
- silicon carbide
- adhesive
- carbide substrate
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、炭化珪素単結晶成長用の種結晶を種結晶支持部に固定するための固定構造と固定方法、及びそれらを用いた炭化珪素単結晶の製造方法に関するものである。 The present invention relates to a fixing structure and a fixing method for fixing a seed crystal for growing a silicon carbide single crystal to a seed crystal support, and a method for manufacturing a silicon carbide single crystal using them.
炭化珪素(SiC)は、大きな熱伝導率、低い誘電率、広いバンドギャップを有し、熱的、機械的に安定した特性を持っている。従って、炭化珪素を用いた半導体素子は、従来のシリコン(Si)を用いた半導体素子よりも高い性能を持つ。その利用範囲は、高温の環境で使用される耐環境デバイス材料、耐放射線デバイス材料、電力制御用パワーデバイス材料、高周波デバイス材料などが期待されている。この炭化珪素単結晶基板の製造方法として、昇華再結晶法(「改良レーリー法」とも呼ばれる)が主に採用されている。 Silicon carbide (SiC) has a large thermal conductivity, a low dielectric constant, a wide band gap, and has thermally and mechanically stable characteristics. Therefore, a semiconductor element using silicon carbide has higher performance than a semiconductor element using conventional silicon (Si). The range of use is expected to be environment-resistant device materials, radiation-resistant device materials, power device materials for power control, high-frequency device materials, etc. used in high-temperature environments. As a method for producing this silicon carbide single crystal substrate, a sublimation recrystallization method (also called “improved Rayleigh method”) is mainly employed.
図7は、この昇華再結晶法に用いられる装置の概略図で、坩堝7と種結晶支持部を備えた蓋体1よりなる黒鉛製坩堝7の下半部内には、原料粉末として炭化珪素粉末6が収容してあり、これに対向する蓋体1の種結晶支持部には種結晶4が配置してある。坩堝内は、炭化珪素粉末6側が高温に、種結晶4側が低温になるように保持され、炭化珪素粉末6の昇華ガスが低温の種結晶4上で再結晶することにより単結晶5が成長する。 FIG. 7 is a schematic view of an apparatus used for this sublimation recrystallization method. In the lower half of the graphite crucible 7 comprising the crucible 7 and the lid 1 having a seed crystal support, silicon carbide powder is used as a raw material powder. 6 is accommodated, and a seed crystal 4 is arranged on the seed crystal support portion of the lid 1 facing this. In the crucible, the silicon carbide powder 6 side is held at a high temperature and the seed crystal 4 side is held at a low temperature, and the sublimation gas of the silicon carbide powder 6 is recrystallized on the low temperature seed crystal 4 to grow a single crystal 5. .
上記方法において、種結晶4は、通常、蓋体1に設けた種結晶支持部に接着剤2を用いて固定される。その固定方法として、例えば、種結晶支持部と種結晶とを固定する際に用いる接着剤として、高分子材料を含有する接着剤を用いて高温処理することにより前記接着剤を炭化させるという方法が開示されている(特許文献1)。 In the above method, the seed crystal 4 is usually fixed to the seed crystal support provided on the lid 1 using the adhesive 2. As the fixing method, for example, as an adhesive used when fixing the seed crystal support part and the seed crystal, there is a method of carbonizing the adhesive by high-temperature treatment using an adhesive containing a polymer material. (Patent Document 1).
また、炭水化物と耐熱性微粒子と溶媒からなる接着剤(固定剤)を常温で乾燥させるという方法が開示されている(特許文献2)。 Also disclosed is a method of drying an adhesive (fixing agent) comprising a carbohydrate, heat-resistant fine particles and a solvent at room temperature (Patent Document 2).
また、種結晶の種結晶支持部と接着する面側の表面層を除去し、この表面層が除去された新たな面と種結晶支持部をカーボン粉末、高分子材料、有機溶媒から構成される接着剤を介して配置し、熱処理することにより固定するという方法が開示されている(特許文献3)。
しかしながら、前述の特許文献1から3における種結晶の固定方法の場合、図8(a)に示すように、接着剤2を乾燥・硬化させる工程において、接着層2に気泡が発生しやすく、接着層2に空隙8が残ってしまう。この空隙8が存在する状態で単結晶を成長させると、空隙8がなく接着剤2に密着している場所では蓋体1に熱が伝導するため、種結晶4と蓋体1の温度勾配はなく、空隙8が存在する場所では種結晶4が蓋体1に熱を逃がさないために、局所的に種結晶4と蓋体1の間に温度勾配が生じる。この結果、図8(b)に示すように、空隙2部分で種結晶4から温度の低い蓋体1に向かって種結晶4の昇華が起こる。昇華ガスは黒鉛製の蓋体1がガス不透過性ではないため、蓋体1を透過して外側に出て行く。こうした、種結晶4裏面で起こる裏面昇華は、種結晶4と蓋体1の貼付け面の複数箇所で発生し、単結晶成長中において継続して起こり、図8(c)に示すように、種結晶4を貫通し、成長結晶に伝播する大きな欠陥(マクロ欠陥)9を引き起こす。このマクロ欠陥9は、成長結晶からウェーハを切り出した際に、厚さ方向に貫通する中空欠陥となる。このような中空欠陥上にデバイスを作成した場合、デバイス特性が極端に劣化する、あるいはデバイス動作さえしないという問題がある。 However, in the case of the method for fixing the seed crystal in Patent Documents 1 to 3 described above, as shown in FIG. 8A, in the step of drying and curing the adhesive 2, air bubbles are easily generated in the adhesive layer 2, The void 8 remains in the layer 2. When the single crystal is grown in the presence of the void 8, heat is conducted to the lid 1 in a place where there is no void 8 and is in close contact with the adhesive 2, so the temperature gradient between the seed crystal 4 and the lid 1 is In addition, since the seed crystal 4 does not release heat to the lid 1 in the place where the void 8 exists, a temperature gradient is locally generated between the seed crystal 4 and the lid 1. As a result, as shown in FIG. 8B, sublimation of the seed crystal 4 occurs from the seed crystal 4 toward the lid 1 having a low temperature in the gap 2 portion. Since the graphite lid 1 is not gas-impermeable, the sublimation gas passes through the lid 1 and goes out. The back surface sublimation that occurs on the back surface of the seed crystal 4 occurs at a plurality of locations on the bonding surface of the seed crystal 4 and the lid 1 and continuously occurs during the single crystal growth. As shown in FIG. A large defect (macro defect) 9 that penetrates the crystal 4 and propagates to the grown crystal is caused. The macro defect 9 becomes a hollow defect penetrating in the thickness direction when the wafer is cut out from the grown crystal. When a device is formed on such a hollow defect, there is a problem that the device characteristics are extremely deteriorated or even the device does not operate.
本発明は、この従来の課題を解決するもので、種結晶裏面と種結晶支持部との間で生じる裏面昇華を防止し、成長結晶中に伸長するマクロ欠陥の発生をより確実に抑制できるようにした単結晶成長用の種結晶固定部と固定方法、およびそれらを用いた単結晶の製造方法を提供することを目的とする。 The present invention solves this conventional problem, prevents back surface sublimation that occurs between the seed crystal back surface and the seed crystal support part, and can more reliably suppress the occurrence of macro defects extending in the grown crystal. It is an object of the present invention to provide a seed crystal fixing part and a fixing method for growing a single crystal, and a method for producing a single crystal using them.
本発明の種結晶固定部は、炭素からなる支持部に種結晶を固定する種結晶固定部において、前記支持部の表面に接着剤を介して第1の炭化珪素基板が接着され、前記第1の炭化珪素基板と単結晶である第2の炭化珪素基板とをその耐熱性微粒子が黒鉛粒子またはセラミック粒子である接着剤にて接着することを特徴とする。 Seed crystal fixed part of the present invention, the seed crystal fixing unit for fixing the seed crystal to a support portion made of carbon, a first silicon carbide substrate through the adhesive to the surface of the support portion is bonded, said first The silicon carbide substrate and the second silicon carbide substrate which is a single crystal are bonded with an adhesive whose heat-resistant fine particles are graphite particles or ceramic particles .
また、本発明の種結晶固定方法は、炭素からなる支持部の表面に第1の接着剤を介して第1の炭化珪素基板を配置する工程と、前記第1の炭化珪素基板上に前記接着剤と同一である第2の接着剤を介して単結晶である第2の炭化珪素基板を配置する工程と、前記第1と第2の接着剤とを硬化させる工程とを含むことを特徴とする。 Moreover, the seed crystal fixing method of the present invention includes a step of disposing a first silicon carbide substrate on a surface of a support portion made of carbon via a first adhesive, and the bonding on the first silicon carbide substrate. Including a step of disposing a second silicon carbide substrate that is a single crystal through a second adhesive that is the same as the agent, and a step of curing the first and second adhesives. To do.
本発明の種結晶固定部は、種結晶支持部の表面に接着剤を介して第1の炭化珪素基板が接着され、この第1の炭化珪素基板上に接着剤を介して第2の炭化珪素基板が接着されている。そのため、接着剤を硬化させる工程において、仮に種結晶支持部と第1の炭化珪素基板間の接着剤に空隙ができたとしても、第1の炭化珪素基板は裏面昇華するが、第1の炭化珪素基板と第2の炭化珪素基板間の接着剤があるため、昇華再結晶法において炭化珪素の結晶を作るための種結晶基板である第2の炭化珪素基板の裏面昇華が防止され、成長結晶中に伸長するマクロ欠陥の発生を抑制できる。 In the seed crystal fixing portion of the present invention, the first silicon carbide substrate is bonded to the surface of the seed crystal support portion via an adhesive, and the second silicon carbide is bonded to the first silicon carbide substrate via an adhesive. The substrate is bonded. Therefore, in the step of curing the adhesive, even if a gap is formed in the adhesive between the seed crystal support portion and the first silicon carbide substrate, the first silicon carbide substrate is sublimated, but the first carbonization is performed. Since there is an adhesive between the silicon substrate and the second silicon carbide substrate, the back surface sublimation of the second silicon carbide substrate, which is a seed crystal substrate for producing a silicon carbide crystal in the sublimation recrystallization method, is prevented, and the grown crystal The occurrence of macro defects extending inward can be suppressed.
また、第1の炭化珪素基板と種結晶である第2の炭化珪素基板間の接着剤に空隙ができたとしても、この空隙ができた接着剤よりも低温側に、第1の炭化珪素基板があるため、種結晶基板である第2の炭化珪素基板の裏面昇華が防止され、成長結晶中に伸長するマクロ欠陥の発生を抑制できる。 Further, even if a gap is formed in the adhesive between the first silicon carbide substrate and the second silicon carbide substrate that is a seed crystal, the first silicon carbide substrate is located on the lower temperature side than the adhesive in which the gap is formed. Therefore, sublimation of the back surface of the second silicon carbide substrate, which is a seed crystal substrate, is prevented, and generation of macro defects extending into the grown crystal can be suppressed.
以下に、種結晶固定構造と固定方法及びそれらを用いた単結晶製造方法の実施の形態を図面とともに詳細に説明する。 Hereinafter, embodiments of a seed crystal fixing structure and fixing method and a single crystal manufacturing method using them will be described in detail with reference to the drawings.
図1は、本発明の実施例1における種結晶の固定構造を示すものである。まず黒鉛製の蓋体1に設けられた種結晶支持部に接着剤2を均一な厚さになるように塗布する。接着剤2として、フェノール樹脂とホルムアルデヒドが主成分であり、フルフリルアルコールを溶剤とし、耐熱性微粒子である黒鉛粒子が含まれている商品名グラフィボンド551−RN(アレムコ・プロダクツ製)を用いた。その後、厚さが約600μmの多結晶炭化珪素基板3を、種結晶支持部に塗布した接着剤に密着させて貼り合せる。 FIG. 1 shows a fixed structure of a seed crystal in Example 1 of the present invention. First, the adhesive 2 is applied to the seed crystal support portion provided on the graphite lid 1 so as to have a uniform thickness. As the adhesive 2, a trade name GRAPHYBOND 551-RN (made by Alemco Products) containing phenol resin and formaldehyde as main components, furfuryl alcohol as a solvent, and graphite particles as heat-resistant fine particles was used. . Thereafter, the polycrystalline silicon carbide substrate 3 having a thickness of about 600 μm is adhered and adhered to the adhesive applied to the seed crystal support.
然る後、この多結晶炭化珪素基板3上に、接着剤2を均一な厚さとなるように塗布し、その上に種結晶4を密着させ貼り合せる。本実施例では、種結晶4としてレーリー法により製造された厚さ約400μmのレーリー基板を用い、(000−1)カーボン面を接着面とした。 Thereafter, the adhesive 2 is applied on the polycrystalline silicon carbide substrate 3 so as to have a uniform thickness, and the seed crystal 4 is adhered and bonded thereto. In this example, a Rayleigh substrate having a thickness of about 400 μm manufactured by the Rayleigh method was used as the seed crystal 4, and the (000-1) carbon surface was used as an adhesive surface.
その後、接着面を加圧して接着部の密着性を向上させるために、加圧部材5を前記種結晶上に配置する。 Thereafter, the pressure member 5 is disposed on the seed crystal in order to pressurize the bonding surface and improve the adhesion of the bonded portion.
次に、前述のように加圧部材5を載せたまま、恒温槽中に配置し、熱処理により接着剤を乾燥・硬化する。これは、接着剤2中に含まれる溶媒を蒸発させるとともに、フェノール樹脂を硬化させるためである。この乾燥・硬化の熱処理は空気中で行い、熱処理温度と時間としては、室温で約4時間保持した後、約129℃まで10℃/分で昇温し、約129℃で約4時間保持し、約129℃から約260℃まで10℃/分で昇温して約260℃で約2時間保持した後、自然冷却する。 Next, the pressure member 5 is placed on the thermostat bath as described above, and the adhesive is dried and cured by heat treatment. This is because the solvent contained in the adhesive 2 is evaporated and the phenol resin is cured. This drying / curing heat treatment is carried out in air, and the heat treatment temperature and time are maintained at room temperature for about 4 hours, then increased to about 129 ° C. at a rate of 10 ° C./min, and maintained at about 129 ° C. for about 4 hours. The temperature is raised from about 129 ° C. to about 260 ° C. at a rate of 10 ° C./min and held at about 260 ° C. for about 2 hours, followed by natural cooling.
なお、上述の接着剤2の塗布厚さと、加圧部材5により種結晶に加える加重については、接着剤2の塗布厚さ、および加圧部材5により種結晶に加わる加重を変えて、熱処理により硬化させて、接着強度を評価し、最適な条件を決定した。接着剤2の硬化条件は、上記に示した本実施例の接着剤2の硬化条件で行った。その結果を表1に示す。 In addition, about the application | coating thickness of the above-mentioned adhesive 2, and the load added to a seed crystal by the pressurization member 5, the application | coating thickness of the adhesive 2 and the load added to a seed crystal by the pressurization member 5 are changed, and it heat-processes. After curing, the adhesive strength was evaluated and the optimum conditions were determined. The curing condition of the adhesive 2 was the same as the curing condition of the adhesive 2 of the present embodiment described above. The results are shown in Table 1.
種結晶に加わる加重が0.3MPaでは、接着剤の塗布厚さに依らず接着強度が弱く、ピンセット等で少し力を加えるだけで簡単に接着面が剥がれた。また、この場合は、硬化後の接着剤中に空隙の発生が多く見られた。種結晶に加わる加重が0.5MPa以上の場合は、接着剤の塗布厚さが50μm以上であれば、十分な接着強度が得られた。しかしながら、種結晶に加わる加重が0.5MPa以上の場合、接着剤の塗布厚さが300μm以上では、硬化中に接着剤が貼り付け面の端から溢れ出していた。この状態のまま、後述のような結晶成長を行うと、溢れ出した接着剤上に多結晶炭化珪素が成長し、種結晶から成長した炭化珪素単結晶と接触し、成長した炭化珪素単結晶の結晶品質を悪化させた。従って、接着剤2の塗布厚さの最良の範囲は50μmから200μmであり、また加圧部材5による種結晶への加重は0.5MPa以上が良い。 When the weight applied to the seed crystal was 0.3 MPa, the adhesive strength was weak regardless of the applied thickness of the adhesive, and the adhesive surface was easily peeled off by applying a little force with tweezers or the like. In this case, many voids were observed in the cured adhesive. When the weight applied to the seed crystal was 0.5 MPa or more, sufficient adhesive strength was obtained if the coating thickness of the adhesive was 50 μm or more. However, when the weight applied to the seed crystal is 0.5 MPa or more, the adhesive overflowed from the edge of the pasting surface during curing when the applied thickness of the adhesive was 300 μm or more. When crystal growth as described later is performed in this state, polycrystalline silicon carbide grows on the overflowing adhesive, and comes into contact with the silicon carbide single crystal grown from the seed crystal. Deteriorated crystal quality. Therefore, the best range of the coating thickness of the adhesive 2 is 50 μm to 200 μm, and the weight applied to the seed crystal by the pressure member 5 is preferably 0.5 MPa or more.
本実施例では、接着剤の塗布厚さを200μm、加圧部材5により種結晶に加わる加重を1.0MPaとした。また、本実施例において、接着剤2は商品名グラフィボンド551−RN(アレムコプロダクツ製)を用いたが、これに限ることなく、黒鉛微粒子やセラミック微粒子等の高耐熱性微粒子と熱硬化樹脂を有機溶媒により混合したものであれば使用できる。また、接着剤の硬化条件も、本実施例に記載した条件に限らず、接着剤の材質に応じて適宜調整すれば良い。 In this example, the applied thickness of the adhesive was 200 μm, and the load applied to the seed crystal by the pressure member 5 was 1.0 MPa. In the present example, the trade name GRAPHYBOND 551-RN (made by Alemco Products) was used as the adhesive 2. However, the present invention is not limited to this, and high heat-resistant fine particles such as graphite fine particles and ceramic fine particles and thermosetting resin are used. Can be used as long as they are mixed with an organic solvent. Further, the curing conditions of the adhesive are not limited to the conditions described in this embodiment, and may be appropriately adjusted according to the material of the adhesive.
上記のようにして、図1bに示すような種結晶固定構造体を得た。その後、昇華再結晶法を用いて炭化珪素単結晶を成長した。図2は、本実施例で用いた成長装置の概略図である。坩堝7内に炭化珪素原料6を収容し、蓋体1の種結晶支持部に固定した種結晶4を、炭化珪素原料6に対向するように配置する。 As described above, a seed crystal fixed structure as shown in FIG. 1b was obtained. Thereafter, a silicon carbide single crystal was grown using a sublimation recrystallization method. FIG. 2 is a schematic view of the growth apparatus used in this example. The silicon carbide raw material 6 is accommodated in the crucible 7, and the seed crystal 4 fixed to the seed crystal support portion of the lid 1 is disposed so as to face the silicon carbide raw material 6.
昇華再結晶法を用いた炭化珪素単結晶成長では、炭化珪素原料6を昇華させなければならないが、炭化珪素の昇華は、2000℃以上の高温が必要である。2000℃以上の高温では、温度の4乗に比例して輻射熱が失われるため、坩堝7および蓋体1を断熱材8で覆う必要がある。この断熱材8で覆った坩堝7及び蓋体1を、石英製の反応管9内に配置する。この反応管9は、二重管構造になっており、結晶成長中には、冷却水10を流して冷却している。また反応管9の上部にガス導入口11が、下部にはガス排気口12が設けられている。 In silicon carbide single crystal growth using the sublimation recrystallization method, the silicon carbide raw material 6 must be sublimated, but sublimation of silicon carbide requires a high temperature of 2000 ° C. or higher. At a high temperature of 2000 ° C. or higher, the radiant heat is lost in proportion to the fourth power of the temperature. Therefore, it is necessary to cover the crucible 7 and the lid 1 with the heat insulating material 8. The crucible 7 and the lid 1 covered with the heat insulating material 8 are placed in a quartz reaction tube 9. The reaction tube 9 has a double tube structure, and is cooled by flowing cooling water 10 during crystal growth. A gas inlet 11 is provided at the top of the reaction tube 9 and a gas exhaust 12 is provided at the bottom.
その後、反応管9内部を不活性ガスで置換するが、不活性ガスは、コスト、純度などの面から、アルゴン(Ar)が適している。この不活性ガス置換は、まずガス排気口12から反応管9内を高真空排気し、その後、ガス導入口11から不活性ガスを常圧まで充填する。反応管9内部を十分にアルゴンガス置換するために、この工程を数回繰り返した方が良い。 Thereafter, the inside of the reaction tube 9 is replaced with an inert gas, and argon (Ar) is suitable as the inert gas in terms of cost, purity, and the like. In this inert gas replacement, first, the inside of the reaction tube 9 is evacuated to a high vacuum from the gas exhaust port 12, and then the inert gas is filled from the gas inlet port 11 to normal pressure. In order to sufficiently replace the inside of the reaction tube 9 with argon gas, it is better to repeat this process several times.
その後、反応管9の周囲にらせん状に巻かれたコイル13に高周波電流を流すことにより、坩堝7および蓋体1を高周波加熱し昇温する。昇温時には、反応管9内部は、数10kPa程度の圧力にしておく必要がある。これは、低温時(所望の結晶成長温度以下)における炭化珪素原料6の昇華を防ぎ、結晶成長を開始させないようにするためである。 Thereafter, the crucible 7 and the lid 1 are heated at a high frequency by flowing a high-frequency current through a coil 13 spirally wound around the reaction tube 9 to raise the temperature. When raising the temperature, the inside of the reaction tube 9 needs to be kept at a pressure of about several tens of kPa. This is to prevent sublimation of the silicon carbide raw material 6 at low temperatures (below the desired crystal growth temperature) and prevent crystal growth from starting.
加熱時の温度制御は、反応管9上下部に設けられている石英製の温度測定用窓14、及び断熱材8の上下部に設けられた温度測定用の穴を通して、放射温度計15で、坩堝7下部、及び蓋体1上部の温度を測定し、高周波電源(図示せず)にフィードバックをかけ、コイル13に流す高周波電流を制御して行っている。このようにして、所望の温度まで昇温した後、徐々に圧力を下げて結晶成長を開始させる。本実施例では、坩堝7下部温度を2250℃、坩堝上部の中心点の温度を2200℃、反応管9内部の圧力を0.665kPaとし、20時間保持して結晶成長を行った。 The temperature control at the time of heating is performed with a radiation thermometer 15 through a temperature measuring window 14 made of quartz provided in the upper and lower portions of the reaction tube 9 and a temperature measuring hole provided in the upper and lower portions of the heat insulating material 8. The temperature at the lower part of the crucible 7 and the upper part of the lid 1 is measured, feedback is applied to a high-frequency power source (not shown), and the high-frequency current flowing through the coil 13 is controlled. Thus, after raising the temperature to a desired temperature, the pressure is gradually reduced to start crystal growth. In this example, the temperature of the crucible 7 lower part was 2250 ° C., the temperature at the center point of the crucible upper part was 2200 ° C., the pressure inside the reaction tube 9 was 0.665 kPa, and crystal growth was carried out while maintaining for 20 hours.
結晶成長終了時は、成長開始時とは逆に、反応管9内部の圧力を80kPaまで1時間かけて昇圧して、炭化珪素原料6からの原料の昇華を止め、その後、常温までゆっくりと冷却した。 At the end of crystal growth, contrary to the start of growth, the pressure inside the reaction tube 9 is increased to 80 kPa over 1 hour to stop the sublimation of the raw material from the silicon carbide raw material 6 and then slowly cooled to room temperature. did.
上記のようにして得られた炭化珪素単結晶を成長方向に平行にスライスし、透過型光学顕微鏡で観察を行った。図3にその写真を示す。図3から明らかなように、種結晶裏面からの昇華は観察されず、そのため成長した炭化珪素単結晶中にマクロ欠陥は全く無かった。 The silicon carbide single crystal obtained as described above was sliced parallel to the growth direction and observed with a transmission optical microscope. The photograph is shown in FIG. As is apparent from FIG. 3, no sublimation from the back surface of the seed crystal was observed, and therefore there was no macro defect in the grown silicon carbide single crystal.
以上のように、種結晶支持部の表面に接着剤を介して炭化珪素多結晶基板を接着し、この炭化珪素多結晶基板上に接着剤を介して種結晶を接着して、炭化珪素単結晶を成長させることにより、マクロ欠陥を抑制でき、高品質な単結晶を得ることができる。 As described above, a silicon carbide polycrystalline substrate is bonded to the surface of the seed crystal support portion via an adhesive, and the seed crystal is bonded to the silicon carbide polycrystalline substrate via an adhesive, thereby producing a silicon carbide single crystal. By growing the crystal, macro defects can be suppressed and a high-quality single crystal can be obtained.
図4は、本発明の実施例2における種結晶の固定構造を示すものである。まず黒鉛製の蓋体1に設けられた種結晶支持部に接着剤2を均一な厚さになるように塗布する。本実施例では、接着剤2として、フェノール樹脂とホルムアルデヒドが主成分であり、フルフリルアルコールを溶剤とし、耐熱性微粒子である黒鉛粒子が含まれている商品名グラフィボンド551−RN(アレムコ・プロダクツ製)を用いた。また塗布厚さは、200μmとした。その後、炭化珪素単結晶基板16を、種結晶支持部に塗布した接着剤2に密着させて貼り合せる。この炭化珪素単結晶基板16としては、レーリー法で作製された厚さ約400μmのレーリー基板を用い、(000−1)カーボン面を種結晶支持部側に向けて貼り合せた。 FIG. 4 shows a fixed structure of a seed crystal in Example 2 of the present invention. First, the adhesive 2 is applied to the seed crystal support portion provided on the graphite lid 1 so as to have a uniform thickness. In this embodiment, as the adhesive 2, the trade name GRAPHYBOND 551-RN (Alemco Products), which contains phenol resin and formaldehyde as main components, furfuryl alcohol as a solvent, and graphite particles as heat-resistant fine particles, is included. Made). The coating thickness was 200 μm. Thereafter, silicon carbide single crystal substrate 16 is adhered and bonded to adhesive 2 applied to the seed crystal support. As this silicon carbide single crystal substrate 16, a Rayleigh substrate having a thickness of about 400 μm manufactured by the Rayleigh method was used, and the (000-1) carbon surface was bonded to the seed crystal support portion side.
然る後、この炭化珪素単結晶基板16の(0001)シリコン面に接着剤2を均一な厚さとなるように塗布し、その上に種結晶4を密着させ貼り合せる。本実施例では、接着剤2の塗布厚さを200μmに、また種結晶4としてレーリー法により製造された厚さ約400μmのレーリー基板を用い、(000−1)カーボン面を接着面とした。 Thereafter, the adhesive 2 is applied to the (0001) silicon surface of the silicon carbide single crystal substrate 16 so as to have a uniform thickness, and the seed crystal 4 is adhered and bonded thereto. In this example, the application thickness of the adhesive 2 was set to 200 μm, and a Rayleigh substrate having a thickness of about 400 μm manufactured by the Rayleigh method as the seed crystal 4 was used, and the (000-1) carbon surface was used as the adhesive surface.
その後、加圧部材5を前記種結晶4上に配置する。本実施例では、加圧部材5として黒鉛製のブロックを用い、荷重として種結晶に対して1.0MPa加わるようにした。 次に、前述のように加圧部材5を載せたまま、恒温槽中に配置し、熱処理により接着剤を乾燥・硬化する。これは、接着剤2中に含まれる溶媒を蒸発させるとともに、フェノール樹脂を硬化させるためである。この乾燥・硬化の熱処理は空気中で行い、熱処理温度と時間としては、室温で4時間保持した後、約129℃まで10℃/分で昇温し、約129℃で4時間保持し、約129℃から約260℃まで10℃/分で昇温して約260℃で2時間保持し、その後、自然冷却した。 Thereafter, the pressing member 5 is disposed on the seed crystal 4. In this example, a graphite block was used as the pressure member 5, and 1.0 MPa was applied to the seed crystal as a load. Next, the pressure member 5 is placed on the thermostat bath as described above, and the adhesive is dried and cured by heat treatment. This is because the solvent contained in the adhesive 2 is evaporated and the phenol resin is cured. This drying / curing heat treatment is performed in air, and the heat treatment temperature and time are maintained at room temperature for 4 hours, then increased to about 129 ° C. at 10 ° C./min, maintained at about 129 ° C. for 4 hours, about The temperature was raised from 129 ° C. to about 260 ° C. at a rate of 10 ° C./min, maintained at about 260 ° C. for 2 hours, and then naturally cooled.
本実施例では、接着剤2として商品名グラフィボンド551−RN(アレムコプロダクツ製)を用いたが、これに限ることなく、黒鉛微粒子やセラミック微粒子等の高耐熱性微粒子と熱硬化樹脂を有機溶媒により混合したものであればかまわない。また、接着剤の硬化条件も、本実施例に記載した条件に限らず、接着剤の材質に応じて調整すれば良い。 In this example, the trade name GRAPHYBOND 551-RN (made by Alemco Products) was used as the adhesive 2. However, the present invention is not limited to this, and high heat-resistant fine particles such as graphite fine particles and ceramic fine particles are combined with thermosetting resin. It may be mixed with a solvent. Further, the curing condition of the adhesive is not limited to the conditions described in this embodiment, and may be adjusted according to the material of the adhesive.
上記のようにして、図4bに示すような種結晶固定構造体を作製した。その後、昇華再結晶法を用いて炭化珪素単結晶を成長した。この炭化珪素単結晶の成長は、実施例1と全く同じ成長装置および成長条件で行った。 As described above, a seed crystal fixing structure as shown in FIG. Thereafter, a silicon carbide single crystal was grown using a sublimation recrystallization method. The growth of this silicon carbide single crystal was carried out using exactly the same growth apparatus and growth conditions as in Example 1.
このようにして、得られた炭化珪素単結晶を成長方向に平行にスライスし、透過型光学顕微鏡で観察を行った。その結果、種結晶裏面からの昇華は観察されず、そのため成長した炭化珪素単結晶中にマクロ欠陥は全く無かった。 Thus, the obtained silicon carbide single crystal was sliced parallel to the growth direction and observed with a transmission optical microscope. As a result, sublimation from the back surface of the seed crystal was not observed, and therefore there was no macro defect in the grown silicon carbide single crystal.
以上のように、種結晶支持部の表面に接着剤を介して炭化珪素単結晶基板を接着し、この炭化珪素単結晶基板上に接着剤を介して種結晶を接着して、炭化珪素単結晶を成長させることにより、マクロ欠陥を抑制でき、高品質な単結晶を得ることができる。 As described above, a silicon carbide single crystal substrate is bonded to the surface of the seed crystal support portion via an adhesive, and the seed crystal is bonded to the silicon carbide single crystal substrate via an adhesive, thereby obtaining a silicon carbide single crystal. By growing the crystal, macro defects can be suppressed and a high-quality single crystal can be obtained.
(比較例)
以上の実施例1および実施例2で作製した炭化珪素単結晶と、従来の方法で作製した炭化珪素単結晶の比較を行った。図5は、本比較例における種結晶の固定構造を示すものである。まず黒鉛製の蓋体1に設けられた種結晶支持部に接着剤2を均一な厚さになるように塗布する。接着剤2としては、実施例1および実施例2で用いたものと同じ、フェノール樹脂とホルムアルデヒドが主成分であり、フルフリルアルコールを溶剤とし、耐熱性微粒子である黒鉛粒子が含まれている商品名グラフィボンド551−RN(アレムコ・プロダクツ製)を用いた。また塗布厚さは、実施例1および実施例2と同じく200μmとした。その後、種結晶を密着させ貼り合せる。種結晶としてレーリー法により製造された厚さ約400μmのレーリー基板を用い、(000−1)カーボン面を接着面とした。
(Comparative example)
A comparison was made between the silicon carbide single crystals produced in Example 1 and Example 2 above and the silicon carbide single crystals produced by the conventional method. FIG. 5 shows the fixed structure of the seed crystal in this comparative example. First, the adhesive 2 is applied to the seed crystal support portion provided on the graphite lid 1 so as to have a uniform thickness. Adhesive 2 is the same as that used in Example 1 and Example 2, and is a product containing phenolic resin and formaldehyde as main components, furfuryl alcohol as a solvent, and graphite particles as heat-resistant fine particles. The name GRAPHIC BOND 551-RN (Alemco Products) was used. The coating thickness was set to 200 μm as in the case of Example 1 and Example 2. Thereafter, the seed crystal is brought into close contact and bonded. As a seed crystal, a Rayleigh substrate having a thickness of about 400 μm manufactured by the Rayleigh method was used, and the (000-1) carbon surface was used as an adhesive surface.
その後、加圧部材5を前記種結晶上に配置する。加圧部材として黒鉛製のブロックを用い、実施例1および実施例2と同じく荷重として種結晶に対して1.0MPa加わるようにした。 Thereafter, the pressure member 5 is disposed on the seed crystal. A graphite block was used as the pressing member, and 1.0 MPa was applied to the seed crystal as a load as in Examples 1 and 2.
次に、前述のように加圧部材5を載せたまま、恒温槽中に配置し、熱処理により接着剤を乾燥・硬化する。この乾燥・硬化の熱処理は、実施例1および実施例2と同様に行い、その後、自然冷却した。 Next, the pressure member 5 is placed on the thermostat bath as described above, and the adhesive is dried and cured by heat treatment. This drying / curing heat treatment was performed in the same manner as in Example 1 and Example 2, and then naturally cooled.
上記のようにして、図5bのような構造体を得た。その後、昇華再結晶法を用いて炭化珪素単結晶を成長した。結晶成長は、実施例1および実施例2と全く同じ成長条件で行った。 A structure as shown in FIG. 5b was obtained as described above. Thereafter, a silicon carbide single crystal was grown using a sublimation recrystallization method. Crystal growth was performed under exactly the same growth conditions as in Example 1 and Example 2.
上記のようにして得られた炭化珪素単結晶を成長方向に平行にスライスし、透過型光学顕微鏡で観察を行った。その写真を図6に示す。前述したように図3に示される実施例1および実施例2により得られた炭化珪素単結晶は、種結晶の裏面昇華および単結晶中に伸長するマクロ欠陥は全く見られない。しかし、図6で明らかなように、比較例で示した従来方法で得られた炭化珪素単結晶は、蓋体の種結晶支持部と種結晶との間の接着剤から種結晶を貫通し単結晶部分まで伸長するマクロ欠陥が多数観察されている。 The silicon carbide single crystal obtained as described above was sliced parallel to the growth direction and observed with a transmission optical microscope. The photograph is shown in FIG. As described above, the silicon carbide single crystal obtained in Example 1 and Example 2 shown in FIG. 3 does not show any sublimation of the seed crystal and no macro defect extending in the single crystal. However, as is apparent from FIG. 6, the silicon carbide single crystal obtained by the conventional method shown in the comparative example penetrates through the seed crystal from the adhesive between the seed crystal support portion of the lid and the seed crystal. Many macro defects extending to the crystal part have been observed.
以上のことから、本発明を用いて製造された炭化珪素単結晶は、種結晶の裏面昇華が防止されているため、単結晶部分へ伸長するマクロ欠陥が全く発生せず、従来技術によって得られた炭化珪素単結晶と比較して、非常に高品質の炭化珪素単結晶を作製できる。 From the above, the silicon carbide single crystal manufactured using the present invention is prevented by the sublimation of the seed crystal, so that no macro defects elongating to the single crystal portion are generated and obtained by the prior art. Compared with the silicon carbide single crystal, a very high quality silicon carbide single crystal can be produced.
本発明にかかる種結晶固定構造と固定方法及びそれらを用いた単結晶製造方法は、種結晶裏面からの昇華を防止し、成長結晶中へのマクロ欠陥の導入を抑制できるため、昇華法により成長できる単結晶である硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、硫化亜鉛(ZnS)、窒化アルミニウム(AlN)、窒化ホウ素(BN)などにも適用できる。 The seed crystal fixing structure and fixing method according to the present invention and the single crystal manufacturing method using them can prevent sublimation from the back surface of the seed crystal and suppress the introduction of macro defects into the grown crystal. The present invention can also be applied to cadmium sulfide (CdS), cadmium selenide (CdSe), zinc sulfide (ZnS), aluminum nitride (AlN), boron nitride (BN), and the like that are single crystals.
1 蓋体
2 接着剤
3 炭化珪素多結晶基板
4 炭化珪素単結晶基板(種結晶)
5 加圧部材
6 炭化珪素原料
7 坩堝
8 断熱材
9 反応管
10 冷却水
11 ガス導入口
12 ガス排気口
13 コイル
14 温度測定用窓
15 放射温度計
16 炭化珪素単結晶基板
DESCRIPTION OF SYMBOLS 1 Cover body 2 Adhesive 3 Silicon carbide polycrystalline substrate 4 Silicon carbide single crystal substrate (seed crystal)
DESCRIPTION OF SYMBOLS 5 Pressurization member 6 Silicon carbide raw material 7 Crucible 8 Heat insulating material 9 Reaction tube 10 Cooling water 11 Gas inlet 12 Gas exhaust 13 Coil 14 Temperature measuring window 15 Radiation thermometer 16 Silicon carbide single crystal substrate
Claims (11)
前記支持部の表面に接着剤を介して第1の炭化珪素基板が接着され、
前記第1の炭化珪素基板と単結晶である第2の炭化珪素基板とをその耐熱性微粒子が黒鉛粒子またはセラミック粒子である接着剤にて接着することを特徴とする種結晶固定部。 In the seed crystal fixing part for fixing the seed crystal to the support part made of carbon,
A first silicon carbide substrate is bonded to the surface of the support portion via an adhesive;
A seed crystal fixing part, wherein the first silicon carbide substrate and a second silicon carbide substrate which is a single crystal are bonded together with an adhesive whose heat-resistant fine particles are graphite particles or ceramic particles .
前記第1の炭化珪素基板上に前記接着剤と同一である第2の接着剤を介して単結晶である第2の炭化珪素基板を配置する工程と、
前記第1と第2の接着剤とを硬化させる工程と、
を含むことを特徴とする種結晶固定方法。 Disposing a first silicon carbide substrate on a surface of a support portion made of carbon via a first adhesive;
Disposing a second silicon carbide substrate that is a single crystal on the first silicon carbide substrate via a second adhesive that is the same as the adhesive; and
Curing the first and second adhesives;
A seed crystal fixing method comprising the steps of:
室温で4時間放置する工程と、
室温から129℃まで毎分10℃で昇温する工程と、
129℃で4時間保持する工程と、
129℃から260℃まで毎分10℃で昇温する工程と、
260℃で2時間保持する工程と
からなることを特徴とする請求項4に記載の種結晶固定方法。 The step of curing the adhesive comprises:
Leaving it at room temperature for 4 hours ;
Increasing the temperature from room temperature to 129 ° C. at 10 ° C. per minute;
Holding at 129 ° C. for 4 hours ;
Increasing the temperature from 129 ° C. to 260 ° C. at 10 ° C. per minute;
The seed crystal fixing method according to claim 4, comprising a step of holding at 260 ° C. for 2 hours .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004334139A JP4556634B2 (en) | 2004-11-18 | 2004-11-18 | Seed crystal fixing part and seed crystal fixing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004334139A JP4556634B2 (en) | 2004-11-18 | 2004-11-18 | Seed crystal fixing part and seed crystal fixing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006143511A JP2006143511A (en) | 2006-06-08 |
JP4556634B2 true JP4556634B2 (en) | 2010-10-06 |
Family
ID=36623629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004334139A Expired - Fee Related JP4556634B2 (en) | 2004-11-18 | 2004-11-18 | Seed crystal fixing part and seed crystal fixing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4556634B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008044802A (en) * | 2006-08-11 | 2008-02-28 | Shin Etsu Chem Co Ltd | Method for manufacturing susceptor to which silicon carbide seed crystal is fixed |
JP4499698B2 (en) * | 2006-10-04 | 2010-07-07 | 昭和電工株式会社 | Method for producing silicon carbide single crystal |
JP4877204B2 (en) * | 2007-11-13 | 2012-02-15 | 株式会社デンソー | Silicon carbide single crystal manufacturing equipment |
JP2009132569A (en) * | 2007-11-30 | 2009-06-18 | Sumitomo Electric Ind Ltd | Method for growing aluminum nitride crystal, method for producing aluminum nitride crystal, and aluminum nitride crystal |
JP2009256193A (en) * | 2008-03-21 | 2009-11-05 | Bridgestone Corp | Method for producing silicon carbide single crystal |
KR101101983B1 (en) | 2008-12-17 | 2012-01-02 | 에스케이씨 주식회사 | Seed assembly and method of manufacturing the same |
JP5346788B2 (en) * | 2009-11-30 | 2013-11-20 | 昭和電工株式会社 | Method for producing silicon carbide single crystal |
JP5689661B2 (en) * | 2010-11-30 | 2015-03-25 | 株式会社フジクラ | Seed crystal support and method for producing single crystal using the same |
US9797064B2 (en) | 2013-02-05 | 2017-10-24 | Dow Corning Corporation | Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion |
US9738991B2 (en) | 2013-02-05 | 2017-08-22 | Dow Corning Corporation | Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion |
US9017804B2 (en) * | 2013-02-05 | 2015-04-28 | Dow Corning Corporation | Method to reduce dislocations in SiC crystal growth |
JP6237248B2 (en) | 2014-01-15 | 2017-11-29 | 住友電気工業株式会社 | Method for producing silicon carbide single crystal |
US9279192B2 (en) | 2014-07-29 | 2016-03-08 | Dow Corning Corporation | Method for manufacturing SiC wafer fit for integration with power device manufacturing technology |
CN110129886A (en) * | 2019-06-26 | 2019-08-16 | 哈尔滨科友半导体产业装备与技术研究院有限公司 | A kind of seed crystal fixed device in silicon carbide monocrystal growth |
JP7463699B2 (en) | 2019-11-11 | 2024-04-09 | 株式会社レゾナック | Method for producing SiC seed and SiC single crystal ingot |
CN112359413B (en) * | 2020-11-12 | 2023-09-08 | 北京北方华创微电子装备有限公司 | Silicon carbide seed crystal bonding method |
CN116837456B (en) * | 2023-07-17 | 2024-02-23 | 江苏超芯星半导体有限公司 | Seed crystal treatment method and silicon carbide crystal growth method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11171691A (en) * | 1997-12-11 | 1999-06-29 | Toyota Central Res & Dev Lab Inc | Agent for fixing seed crystal and production of single crystal with the same |
JP2000264794A (en) * | 1999-03-23 | 2000-09-26 | Denso Corp | Production of silicon carbide single crystal |
-
2004
- 2004-11-18 JP JP2004334139A patent/JP4556634B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11171691A (en) * | 1997-12-11 | 1999-06-29 | Toyota Central Res & Dev Lab Inc | Agent for fixing seed crystal and production of single crystal with the same |
JP2000264794A (en) * | 1999-03-23 | 2000-09-26 | Denso Corp | Production of silicon carbide single crystal |
Also Published As
Publication number | Publication date |
---|---|
JP2006143511A (en) | 2006-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4556634B2 (en) | Seed crystal fixing part and seed crystal fixing method | |
JP5841339B2 (en) | 100mm high purity semi-insulating single crystal silicon carbide wafer | |
JP7044265B2 (en) | A method for producing a seed crystal containing a protective film, a method for producing an ingot to which the protective film is applied, a method for attaching a seed crystal containing the protective film and a method for adhering the seed crystal. | |
JP7011129B2 (en) | How to grow a large-diameter silicon carbide single crystal ingot | |
KR101504772B1 (en) | Method for growing aluminum nitride crystal, process for producing aluminum nitride crystal, and aluminum nitride crystal | |
JP4523733B2 (en) | Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal | |
JP2011190154A (en) | Method and apparatus for producing crystal and multilayer film | |
JP5143139B2 (en) | Single crystal growth equipment | |
JP4054197B2 (en) | Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal ingot | |
KR101897078B1 (en) | Apparatus and method for fabricating ingot | |
JP4374986B2 (en) | Method for manufacturing silicon carbide substrate | |
JP4661039B2 (en) | Method for manufacturing silicon carbide substrate | |
JP4501657B2 (en) | Seed crystal fixing method for silicon carbide single crystal growth | |
KR101419471B1 (en) | Seed holder adhesion method, and growing nethod for single crystal using seed holder | |
KR102058873B1 (en) | Method for growing silicon carbide single crystal ingot with large diameter | |
KR102214314B1 (en) | Method for growing silicon carbide single crystal ingot with large diameter | |
JP2008019166A (en) | Method of fixing seed crystal and method of manufacturing single crystal using the same | |
JP4457708B2 (en) | Seed crystal fixing method and single crystal manufacturing method | |
KR20200066491A (en) | Apparatus for growing large diameter single crystal and method for growing using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071108 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20071212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091117 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100712 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |